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Abstract
Objectives—We aimed at extending the natural and orthogonal interaction (NOIA) framework,
developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for
reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the
performance of the NOIA statistical models using simulated data and lung cancer data.
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Methods—The NOIA statistical models are developed for the additive, dominant, recessive
genetic models, and a binary environmental exposure. Using the Kronecker product rule, a NOIA
statistical model is built to model gene-environment interactions. By treating the genotypic values
as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control
data.

Results—Our simulations showed that power for testing associations while allowing for
interaction using the statistical model is much higher than using functional models for most of the
scenarios we simulated. When applied to the lung cancer data, much smaller P-values were
obtained using the NOIA statistical model for either the main effects or the SNP-smoking
interactions for some of the SNPs tested.

Conclusion—The NOIA statistical models are usually more powerful than the functional models
in detecting main effects and interaction effects for both quantitative traits and binary traits.

Keywords
Statistical power; Genetic association studies; Case-control association analysis; Gene-
environment interaction; Environmental risk factor; Association mapping; Orthogonal modeling

Introduction
Although genome-wide association studies (GWAS) have been successful in identifying
disease susceptibility loci, it remains a challenging goal for statistical geneticists to identify
and characterize effects of genetic and environmental factors that influence common
complex traits [1, 2]. The significant SNP associations identified by GWAS are estimated to
account for only a few percent of the genetic variance [3, 4]. Since most of these studies
have used a single-locus analysis strategy, there is increasing interest in genome-wide
interaction analysis in the efforts of finding the missing heritability. An important issue is
how one can properly quantify the genetic and environmental effects in a unified manner
such that correct estimation can be achieved for the relative contributions of different
factors. This is the case especially when there exist gene-gene or gene-environment
interactions.

The term GxE interaction has various different meanings. The nature of an interaction may
be biological or merely statistical. A statistical interaction may be defined as departure from
an additive model on some scale. For a quantitative trait, if the contributions of a genetic
locus and an environment factor are additive on the scale of this trait, we say that there is no
interaction between the locus and the environment factor. Any deviation from this additivity
will be referred to as a GxE interaction. For a binary trait (such as a disease), we define the
GxE interaction as deviation from additivity of a genetic effect and an environment effect on
the log-odds scale.

The statistical formulation of the natural and orthogonal interaction (NOIA) model of
genetic effects, were recently developed [5] and provides a framework in which estimates of
genetic effects for a quantitative trait remain orthogonal even under the departure from
Hardy-Weinberg proportions (HWP) of the loci. The orthogonal estimates do not change in
a reduced model and hence are very convenient for model selection for finding the genetic
architecture of the traits[6]. More importantly, the NOIA framework directly leads to a
proper and orthogonal decomposition of genetic variance and hence a more meaningful
calculation of the heritability of the trait, while facilitating the modeling of multiple genetic
factors along with their interactions.
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In this paper, we evaluate the performance of the orthogonal models, compared to the usual
models, in both testing for interaction between two factors and testing for association while
allowing for interaction. We extend the NOIA framework in several different ways. First,
we derive the NOIA formulation to all possible reduced genetic models, including the
additive, dominant and recessive models. We then extend the NOIA framework to include a
binary environmental exposure and its interaction with a gene with a reduced or saturated
genetic model. Finally, we also explore the possibility of generalizing the orthogonal models
to the analysis of binary traits, such as diseases. We found that the meaning of orthogonality
is somewhat different on the log-odds scale than its original meaning for a quantitative trait:
although the estimators are no longer orthogonal, the variance decomposition remains
orthogonal when the log-odds are simply treated as genetic effects under the alternative
hypothesis of an effect in the NOIA formulation. Our simulation results showed that for both
quantitative and qualitative traits, the statistical models have higher power than the usual
functional ones in most of the scenarios we have tested. We also illustrate the usage of the
formulations using real data.

Methods
One-locus models: quantitative traits

If a quantitative trait is influenced by a single diallelic gene, or locus,

(1)

the genotypic value can be modeled using linear regression on the number of a reference
allele, say allele 2, as follows:

(2)

where G = G11, G12 and G22 are the genotypic values when the number of reference alleles
is, N = 0, 1 and 2, respectively, and

(3)

with genotype frequencies p11, p12 and p22, respectively. Here N̄ and V denote the mean and
variance of N

respectively. The genetic effect vector, , consists of the three regression parameters, μ =
Ḡ, α = COV(N, G)/V and δ = G12 − (G11 + G22)/2, and can be expressed as

(4)

if we define
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(5)

The vector of genotypic values, , can be expressed by

(6)

Here, Ss is the design matrix. In a regression analysis, we make inference on parameters (μ,
α and δ). Therefore Ss can also be referred to as coding matrix for sampled data, because
each row of Ss includes the code for regression on the parameters for an individual with the
corresponding genotype. For example, if an individual has genotype 12, data for this
individual will be coded according to the second row of Ss as follows:

(7)

Unlike the genotypic values, , the genetic effects, , depend on genotype frequencies and
the model based on these parameters are referred to as statistical model [5]. As shown in [5],
this statistical model is orthogonal, meaning that estimates of these parameters are
uncorrelated. The orthogonality of the statistical model is also reflected by the fact that the
variance of G can be decomposed into those of the additive and dominant components

(8)

because COV[(N − N̄)α, εδ] = 0. The additive and dominant variances can be expressed as

(9)

(10)

Traditionally, the one-locus genotypes are coded in one of the following two ways: (−1, 0,
1) and (0, 1, 2). In either case, the genetic effects do not depend on allele frequencies and are
determined merely by the functionality of the locus. So, both coding methods correspond to
functional models. For these two coding schemes, the genotypic values are expressed as

(11)

and

(12)

respectively. These two functional models are related to the statistical model through
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(13)

and

(14)

respectively. In contrast to the statistical model, neither of these two functional models is
orthogonal.

One-locus models: qualitative traits
For the analysis of cas-control data sampled according to a qualitative trait such as disease,
we can define a similar statistical model by treating the genotypic values and the genetic
effects as the logit (i.e., logarithm of the odds) of the disease. However, two important
features of the orthogonal models may no longer be valid here. First, the estimates of
parameters using logistic regression are not uncorrelated. Recall that the variance of
estimates of parameters for linear regression can be expressed as

(15)

where χ is the design matrix, as far as the error terms for all samples are independent and
identically distributed with variance σ2, which can be shown to be diagonal for the statistical
model [5]. However, for logistic regression, the variance of estimates of parameters is

(16)

where ν is a diagonal matrix with elements

(17)

for the ith individual in the sample with πGi the probability of being affected given the
values of regressor for the individual. It can be shown that

(18)

where

(19)

and S is a design matrix. This means that, for logistic regression, the statistical model
defined in (6) has no orthogonal estimates as in the case of linear regression, unless the gene
is not associated with the disease (πG would then assume the same values for all genotypes).
Second, as will be shown later, the estimates of main effects for a full interaction model is
no longer the same as the corresponding effects of the reduced models, i.e., the single-locus
model and the environment-only models. Nevertheless, the orthogonal decomposition of
variance is still valid here on the log-odds scale. We will therefore apply this model to the
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analysis of case-control data. We will hereafter use a common terminology, statistical
model, for both quantitative and qualitative trait, and evaluate its performance in simulation
studies. We do not explicitly model the influence of the genotype frequencies on the
variance of the regression parameters in logistic regression.

We extended the formulations for the statistical and functional models to the following three
reduced genetic models: additive, dominant, and recessive.

Gene-environment interaction
Suppose we have a binary environmental exposure, M, with phenotypic values M1 and M2
for unexposed and exposed individuals, respectively. Denote the unexposed frequency by m.
A functional model for this environmental exposure is

(20)

with effects defined as

(21)

For a two-level factor, following [5], the criterion for orthogonality can be derived as
follows. From the regression model

(22)

orthogonality requires that

(23)

is diagonal, where

(24)

and m1 = m and m2 = 1 − m are the exposure frequencies. Since

(25)

it follows that the model, S, is orthogonal when

(26)

Using this criterion, we find that the functional model given above is not orthogonal.

The orthogonal (or, statistical) model for the binary environmental factor is
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(27)

with effects defined as

(28)

Using the Kronecker product rule [5], we have the following non-orthogonal functional
model for the gene-environment interaction

(29)

and the statistical model

(30)

The relation between the statistical and functional models is

(31)

One of the desired properties of the statistical models is that the marginal effects of the gene
or the environmental exposure are the same as the corresponding main effects of the full
GxE model. This is the case for the linear regression of a quantitative trait. For a quantitative
trait determined by a gene and a binary exposure, from the vector of genotypic values,

, the marginal model for the gene is

(32)

(33)
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(34)

It can be shown that the corresponding marginal genetic effects is

(35)

A similar expression can be obtained for the marginal effects of the environmental exposure.
However, this may not be the case for the statistical model under the alternate model of
association defined on the log-odds scale for a qualitative trait. This is because the same
relation for the genotypic values, equations (32),(33), and (34), is valid on the scale of
penetrance, and the penetrances are nonlinearly related to the log-odds.

For the three reduced genetic models, the formulations for statistical and functional models
for GxE and their relationships are given in Supplementary Note.

Simulation methods
Simulation of data with a quantitative trait—It is straightforward to simulate data of
independent individuals randomly sampled with a quantitative trait influenced by a diallelic
gene and a binary exposure. For given values of the variant allele frequency, p, and the
exposure prevalence, m, assuming independency between the gene and the exposure and
Hardy-Weinburg proportion for the gene, an individual was assigned joint genotype 111,
121, 221, 112, 122, or 222 with probabilities, p2(1 − m), 2p(1 − p)(1 − m), (1 − p)2(1 − m),
p2m, 2p(1 − p)m or (1 − p)2m, respectively. Each individual was then assigned a value of the
quantitative trait according to the genotypes using the genotypic values determined from a

pre-specified vector of genetic effects: . A residual was then added
to the simulated quantitative trait by generating a random number from a normal distribution

with pre-specified mean (0) and variance ( ). Data so simulated for 1000 individuals
served as a replicate. For each genetic model, 1000 replicates were simulated.

Simulations of case-control data—We simulated case-control data with both main and
interaction effects using the logistic models. If the risk of disease is determined by a diallelic
gene and a binary exposure, we assume that the penetrance model is given by

(36)

where d = 1 denotes that fact that an individual is affected and Gi is the genotypic value
when the joint genotype is i with i = 111, 121, 221, 112, 122, or 222. Using Bayes’ theorem,
we have the distribution of the six genotypes in the cases as follows

(37)

where Pi is the frequency of genotype i in the population, given by p2(1 − m), 2p(1 − p)(1 −
m), (1 − p)2(1 − m), p2m, 2p(1 − p)m or (1 − p)2m, respectively, as in the simulation of a
quantitative trait. Given the genotypic values and the frequencies of the joint genotypes, this
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expression was used for simulating joint genotypes of cases. For the simulation of controls,
we have a similar expression:

(38)

The genotypic values were determined from pre-specified genetic effects, . It should be
noted that, unlike the simulated data for a quantitative trait, not only the allele frequencies,
but also the genetic effects, in the simulated case-control data are usually different from the
corresponding pre-specified values (population parameters) because of ascertainment bias.

Results
Results of simulations

Our first simulation exhibited both main effects of a gene and a binary exposure and their
interaction on a quantitative trait, representing a general scenario:

. The residual variance was 144.0,
and the allele frequency and exposure frequency were 0.15 and 0.22 respectively. The vector
of genetic effects in the statistical model was then [102.33, 5.37, 1.33, 3.98, 3.05, 1.5].
Figure S1 shows the distribution of the estimates of all six effects in all the 1000 replicates.
It can be seen that for both the statistical and the functional models, the vectors of genetic
effects were estimated accurately. Figure 1 shows the power as a function of critical values
of the Wald test P-values for the four parameters: the additive effects of the gene, the
dominant effects of the gene, the environment effect, and the interaction effect between the
additive effect of the gene and the environment effect for both statistical models and
functional models. For the dominant by environment interaction effects, the estimates and
the test P-values were identical for the statistical and functional models. Also shown is the
power for the additive and dominant effects of the gene using the gene-only statistical
models. It is clear that for the additive effect of the gene, both the GxE model and the gene-
only model had much higher power than the functional models. For the environment effect,
the statistical model had higher power than the functional model.

Another simulation was performed for a scenario where only the gene was responsible to the

trait: . The residual variance was 144.0 and the allele
frequency and exposure frequency were 0.15 and 0.22 respectively. The vector of genetic
effects in the statistical model was then [101.71, 5.40, 2.00, 0.00, 0.00, 0.00]. Again, the
estimates of parameters were accurate, as shown in Figure S2, for both the statistical and
functional models. For the additive effect of the gene and the additive by environment
interaction effect, the estimate of the statistical model had less variations among the
replicates than that of the functional model. Power for detecting the additive effect was
again much higher in the statistical model than that in the functional model (Figure 2).
Power for detecting the dominant effects using both statistical and functional models were
very low because of the small simulating value compared to the residual variance (2 vs.
144). For the other two parameters, for which the simulating values were zero, the false
positive rates were very close to the nominal value for both statistical and functional models.

Similar scenarios were simulated for a qualitative trait. For a generic scenario, we used a
vector of genetic effects given by [−2.0, 0.3, 0.1, 0.2, 0.1, 0.04]. The allele frequency and
exposure frequency were set to 0.25 and 0.25, respectively. Because we simulated case-
control data set, the ascertainment of equal number of cases and controls altered the
proportions of being affected for different genotypes and exposure status. The resulting
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genetic effects, averaged over all 1000 replicates in the sample were thus estimated as
[−0.26, 0.28, 0.10, 0.18, 0.27, −0.15], referred to as the actual functional effects. The
statistical effects were then calculated using the actual allele frequency and exposure
frequency and the actual functional effects: [0.00, 0.38, 0.06, 0.26, 0.20, −0.15]. Figure S3
shows that this actual (or, sample) statistical effects were indeed located in the
corresponding center of the distribution of estimated parameters using logistic regression.
Also shown in Figure S3 is that the functional model correctly estimated the actual genetic
effects. Figure 3 shows that power of detecting the main additive effect of the gene was
mush higher than that of the functional model. Power of detecting the exposure effect using
the statistical model was also significantly higher than the functional model. For the
dominant effect and the interaction effect, both models had the similarly low power.

Similar to the case of quantitative trait, we also simulated case-control data a scenario where
only the gene was associated to the disease with simulating values of genetic effects given
by [−2.0, 0.4, 0.2, 0.0, 0.0, 0.0]. The allele frequency and exposure frequency were still set
to 0.25 and 0.25, respectively. Again because of ascertainment, the sample genetic effects
were actually [−0.27, 0.35, 0.23, −0.08, −0.02, 0.05] and the corresponding statistical effects
where [0.00, 0.45, 0.25, −0.07, 0.00, 0.05]. Figure S4 shows the distributions of estimates of
the parameters from analyses using the statistical and functional models.

In the four simulations given above, the difference of powers between the NOIA statistical
models and the functional models were extremely large. For instance, in Figure 1, it can be
seen that the power for testing α = 0 was about 95% and the power for testing for a = 0 was
only around 30% at the 1% significance level. The power of tests depends on many factors,
including allele frequencies, sample sizes, genetic effects, and significance level. We plotted
power for a wide range of significance level, which allows one to compare tests of powers of
tests across a broad range. We use these simulations to illustrate how the transformation
from the usual functional model to the statistical model may improve power of detecting a
genetic factor.

For both quantitative and qualitative traits, we also simulated the null scenario, that is, a
scenario without any effects either from the gene or the environmental factor (data not
shown), and found that all the false positive rates were around the nominal level.

Application to real dataset
We applied the NOIA statistical model and the usual functional model to the ILCCO
(International lung cancer consortium) data [7], consisting of 17 independent case-control
studies (most but not all of the original studies agreed to participate in this study). The
objectives of the consortium are to share data to increase statistical power, reduce
duplication of research efforts, replicate novel findings, and realize substantial cost savings.
Details of the participating studies have been described previously [7]. Our goal here was to
examine how genetic variants, which have been identified through GWAS, may interact
with smoking in determining the risk of lung cancer by pooling the datasets. Here, we
focused on six SNPs in three regions: rs2736100 and rs402710 (5p15), rs2256543 and
rs4324798 (6p21), and rs16969968 and rs8034191 (15q25). Our analysis included 95468
Caucasians with 39686 cases and 55752 controls after quality control. For both NOIA
statistical model and the usual functional model, logistic regression was performed with sex,
age and study group as covariates.

Table 1 and Table S1 show the P-values and estimates and their 95% confidence intervals of
the analysis, respectively. For the four SNPs located on 5p15 and 15q25, the NOIA
statistical model detected genetic additive effects, while the functional model did not or
showed larger P-values. For the additive-smoking interaction effects, the NOIA statistical
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model was more powerful than the functional one for the two SNPs on 15q25 and SNP
rs2256543 on 6q21. For all SNPs and all models, the smoking effect was extremely
significant. But, here the NOIA statistical models showed much smaller P-values than the
functional models. For the covariates, sex and age, results from statistical and functional
models were the same, as they were modeled in the same way. None of the SNPs had
significant dominant effects, or dominant-smoking interaction, under either statistical model
or functional model. It is interesting that the SNP rs2256543 on 6p21 was detected to predict
lung cancer risk through an interaction with smoking, but no main effect.

Discussion
Multicollinearity occurs naturally in genetic regression analysis using functional models
between the additive component and the dominance component and becomes even more
complicated between the main effects and interaction effects when two or more genes or
environmental factors are involved. When multicollinearity is present, the standard errors
can become large and thus coefficients need to be very large in order to be statistically
significant. In the NOIA framework, we solve the collinearity problem by orthogonalizing
the dominant regressor with respect to the additive regressor, in order to keep the natural
meaning of the coefficient of the additive regressor, i.e. the effect of allele substitutions. As
a result, the NOIA statistical and functional models have identical additive regressor (i.e. the
number of variant allele) and dominance coefficients, but different additive coefficient and
dominant regressor terms. This strategy is exactly the same as the Gram-Schmidt process in
mathematics for orthonormalising a set of vectors. This orthogonalizing procedure assigns
all the shared variance of the additive and dominant components in the functional model to
the additive component in the statistical model, thus usually making the power for detecting
the additive effects higher. Our simulations and real-data analysis confirmed this
anticipation. We found that the statistical model usually showed higher power in detecting
main and/or interaction effects for both linear regression for quantitative traits and logistic
regression for binary traits.

However, caution has to be exercised in interpreting the results of the statistical model.
Specifically, the meaning of additive effect (α) in the statistical model is different from that
in the functional model (a). The statistical effect, α, is determined not only by the true
additive effect, a, but also by the dominance effect, d, and allele frequency. Nevertheless,
both tests for α and for a give information on whether there exists a genetic factor for a
quantitative trait or the risk of a disease. Our results shown in the figures indicated that
transformation from the parameters used in the usual functional model to those in the
statistical model leads to a more powerful test for the existence of a genetic factor while
allowing for a dominant effect and a GxE interaction.

Some of the important properties of the NOIA framework for linear regression of
quantitative traits are not always valid for logistic regression of qualitative traits, when we
generalize the statistical model to the later case by treating the logit of the disease as
genotypic values and genetic effects. Under the alternate model, when there is an association
between the genotypes or environmental factors, the estimates of logistic regressing
parameters are no longer uncorrelated. Also, under the alternate model, the main effects of a
full interaction model are not the same as the corresponding main effects of the reduced
single-gene model or the environment-only model. Nevertheless, we still advocate the
application of the statistical model in analyzing case-control data, because it is more
powerful in most of the cases.

Application of the NOIA statistical model to the ILCCO data confirmed the associations of
the following loci with lung cancer through main effects: rs2736100, rs402710, rs16969968,
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and rs8034191. The main effects of these loci under the usual functional model were not
significant (or had a larger P value) while allowing for gene-smoking interaction.
Furthermore, the gene-smoking interaction was more significant under the statistical model
for loci rs2256543, rs16969968, and rs8034191. Specifically, the statistical model revealed
that the locus rs2256543 plays a rule in the development of lung cancer through interaction
with smoking, but not with a main effect.

Finally, the advantage of statistical model over the usual functional model is not limited to
the study of interaction effects. We propose that even for one-locus genetic analysis, such as
GWAS, one should consider applying the statistical model, since it orthogonalizes the
additive and dominant effects and hence improves power of detecting genetic effects.
Although, the genetic effects in the statistical model usually are determined not only by the
biological mechanisms but also the population properties, proper explanations of the genetic
effects can be achieved through transformations established in the NOIA model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Power vs. critical values of the Wald testing P-values as a test statistic for a simulated data
set with a quantitative trait influenced by a gene and an environmental factor. The

simulating values of the genetic effects were . The
corresponding statistical genetic effects were [102.33, 5.37, 1.33, 3.98, 3.05, 1.5]. The allele
frequency and exposure frequency were 0.15 and 0.22, respectively. The simulating residual
variance is 144.0.
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Fig. 2.
Power vs. critical values of the Wald testing P-values as a test statistic for a simulated data
set with a quantitative trait influenced by a gene and an environmental factor. The

simulating values of the genetic effects were . The
corresponding statistical genetic effects were [101.71, 5.40, 2.00, 0.00, 0.00, 0.00]. The
allele frequency and exposure frequency were 0.15 and 0.22, respectively. The simulating
residual variance is 144.0.

Ma et al. Page 14

Hum Hered. Author manuscript; available in PMC 2013 August 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 3.
Power vs. critical values of the Wald testing P-values as a test statistic for a simulated case-
control data set with GxE interaction for all replicates. The simulating values of the genetic

effects were . The actual sample values of the genetic
effects were [−0.28, 0.30, 0.10, 0.20, 0.11, 0.03]. The corresponding statistical genetic
effects were [−0.01, 0.38, 0.10, 0.27, 0.13, 0.03]. The allele frequency and exposure
frequency were 0.25 and 0.25 respectively.
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Fig. 4.
Power vs. critical values of the Wald testing P-values as a test statistic for a simulated case-
control data set with GxE interaction for all 1000 replicates. The simulating values of the

genetic effects were . The actual sample values were [−0.31,
0.40, 0.19, 0.00, 0.01, −0.01]. The corresponding statistical genetic effect were [0.00, 0.49,
0.19, 0.00, 0.00, −0.01]. The allele frequency and exposure frequency were 0.25 and 0.25,
respectively.
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