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Abstract

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral 

responses. Here, we show that infection of DNA viruses induced the interaction of the mTOR 

downstream effector S6K1 (S6 kinase 1) and the signaling adaptor STING in a cGAS (cGAMP 

synthase)-dependent manner. We further demonstrate that the kinase domain, but not the kinase 

function of S6K1, was required for the S6K1-STING interaction and that the TBK1 critically 

promotes this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary 

for IRF3 activation and disruption of this signaling axis impaired the early-phase expression of 

IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our 

results have uncovered a fundamental regulatory mechanism for IRF3 activation in the cytosolic 

DNA pathway.

In eukaryotic cells, double-stranded DNA is normally sequestered in the nucleus or the 

mitochondria, thus being prevented from direct contact with the cytosol. As such, cytosolic 

exposure of DNA resulting from microbial infections or damaged host cells turns on an 

evolutionary conserved ‘danger’ signal to alarm the host immune system1, 2. In particular, 

infection with a number of DNA virus families results in introduction of DNA into the 

cytosol. For example, adenovirus (Ad), a nonenveloped, double-stranded DNA virus 

extensively used as vectors for both gene therapy and DNA vaccines3, exposes its genomic 

DNA to the cytosol during the infection process and has been used as a prototypical DNA 

virus to study host innate immune DNA recognition pathways4, 5.

Cytosolic DNA is a key pathogen-associated molecular pattern (PAMP) and is sensed 

mainly through a cytosolic cyclic GMP-AMP (cGAMP) synthase termed cGAS6, 7, which 

triggers innate antiviral and autoimmune responses1, 2. Upon binding to cytosolic DNA, 

cGAS catalyzes the production of a secondary messenger, the noncanonical 2′,3′ cGAMP 

(c[G(2′,5′)pA(3′,5′)p]), which is distinct from the canonical bacterial 3′,3′ cGAMP (c[G(3′,

5′)pA(3′,5′)p])6, 7, 8, 9. The cGAS product binds to and activates the downstream adaptor 

STING10, 11, also known as MPYS, MITA, ERIS and TMEM173 12, 13, 14, 15. Activated 

STING in turn recruits and activates IκB kinase and TBK1, which leads to the activation of 

NF-κB and IRF3, respectively6, 7, 9. Despite these advances in the understanding of DNA 

sensing mechanisms, the interaction between distinct regulatory molecules involved in 

cytosolic DNA signaling machinery remains to be further defined.

The two homologous isoforms of ribosomal protein S6 kinase, S6K1 and S6K2, are effector 

serine-threonine kinases downstream of mTOR, a central member in the PI(3)K-related 

kinase family that functions as a key signaling integrator of a variety of cues such as 

nutrients, stress, cell growth, apoptosis, transcriptional as well as translational co-
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ordination16. Of importance, recent studies show that the mTOR-S6K signaling axis 

modulates Toll-like receptor (TLR) pathways in a rapamycin-sensitive manner17, 18, 19. 

However, it is currently unknown whether mTOR-S6K may be integrated to cytosolic DNA-

mediated STING signalosome.

Here, using Ad as a model DNA virus, we show that S6Ks, especially S6K1, are required for 

Ad-induced IRF3 activation independently of S6K’s kinase activity. We demonstrate that 

S6K1 interacts physically with activated STING in a cGAS-cGAMP-dependent manner, 

forming a tripartite S6K1-STING-TBK1 signaling complex. This S6K-dependent IRF3 

signaling is important for inducing early innate immune responses as well as robust T cell 

immunity and mucosal antiviral defense. Thus, our report reveals a previously unrecognized 

regulatory function of S6Ks in the context of cytosolic DNA-elicited immune signaling.

 Results

 S6Ks are required for Ad-induced IRF3 activation

Ad induces IRF3 phosphorylation in a variety of immune cells4, 5. To characterize Ad-

induced IRF3 phosphorylation profile in mouse bone marrow-derived myeloid dendritic 

cells (BMDCs), we transduced wild-type BMDCs using a recombinant human Ad serotype 5 

vector with E1-E3 deletions to prevent undesirable infectious replication. Immunoblot 

analysis showed that Ad evoked sustained IRF3 serine 396 (S396) phosphorylation over a 

time course of 48 hours in BMDCs (Supplementary Fig. 1a) and that phosphorylated IRF3 

was distributed in both nuclear and cytoplasmic fractions (Supplementary Fig. 1b), 

suggesting that Ad-induced IRF3 phosphorylation is a continual process in BMDCs

IRF3 signaling is pivotal in innate immune responses20. Because mTOR-S6Ks and 

mTOR-4E-BPs signaling modules, widely known as regulators for cell growth and 

metabolism, have been shown to shape host innate immunity17, 18, 19, 21, we asked whether 

S6Ks or 4E-BPs were involved in regulating cytosolic DNA-induced IRF3 phosphorylation 

by transducing Ad in S6k1−/−, S6k2−/−, S6k1−/− S6k2−/−, Eif4ebp1−/− Eif4ebp2−/− and 

Eif4ebp1−/− Eif4ebp2−/− Eif4ebp3−/− BMDCs. Compared to wild-type BMDCs (Fig. 1a), 

IRF3 phosphorylation was markedly reduced in S6k1−/− BMDCs (Fig. 1b), whereas the 

effect of S6K2 deletion was less severe (Fig. 1c). Significantly, IRF3 phosphorylation was 

profoundly impaired in S6k1−/− S6k2−/− BMDCs (Fig. 1d), while no such effect was 

observed in Eif4ebp1−/− Eif4ebp2−/− or Eif4ebp1−/− Eif4ebp2−/− Eif4ebp3−/− BMDCs 

(Supplementary Fig. 1c). Notably, IRF3 protein expression was not affected by S6K ablation 

(Fig. 1b-d), indicating that S6K regulation of Ad-induced IRF3 activation was not due to 

downregulation of IRF3 expression. Furthermore, immunoblot analysis showed that Ad 

promoted IRF3 nuclear translocation in wild-type but not S6k1−/− S6k2−/− BMDCs (Fig. 

1e). Imunofluorescence microscopy confirmed that Ad-induced IRF3 nuclear translocation 

was significantly reduced in S6k1−/− S6k2−/− BMDCs (Fig. 1f). Together, these results 

indicate that S6Ks, particularly S6K1, are essential for Ad-triggered IRF3 activation. 

Additionally, we observed that herpes simplex virus-1 (HSV-1)-induced IRF3 

phosphorylation was similarly reduced in S6k1−/− S6k2−/− BMDCs (Supplementary Fig. 

2a).
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In parallel experiments, we stimulated wild-type and S6k1−/− S6k2−/− BMDCs with TLR4 

ligand lipopolysacchride (LPS) or vesicular stomatitis virus (VSV) known to activate RIG-

I22. We observed no differences in IRF3 phosphorylation between wild-type and S6k1−/− 

S6k2−/− BMDCs after these treatments (Supplementary Fig. 2), suggesting that S6K is 

specifically required for viral DNA-induced IRF3 activation in the cytosolic DNA pathway. 

To extend this, we transfected purified Ad DNA or synthetic interferon stimulatory DNA 

(ISD) or non-canonical cGAMP, the mammalian cGAS cyclic dinucleotide8, 23. Transfection 

of Ad DNA (Supplementary Fig. 3a), ISD (Supplementary Fig. 3b) and cGAMP 

(Supplementary Fig. 3c) triggered robust IRF3 phosphorylation in wild-type but not S6k1−/− 

S6k2−/− BMDCs. Thus, S6K is essential for cytosolic DNA-induced IRF3 phosphorylation.

Next, we examined S6K-dependent induction of IFN-stimulated genes following ISD 

transfection in BMDCs. ISD stimulation triggered a robust induction of IFIT1, IFIT3 and 

ISG15 proteins in wild-type BMDCs (Supplementary Fig. 3d). In contrast, the 8 h induction 

of these IRF3 target genes was substantially impaired in both S6k1−/− S6k2−/− 

(Supplementary Fig. 3e) and Irf3−/− (Supplementary Fig. 3f) BMDCs. Together, these data 

suggest that S6K-IRF3 signaling is a crucial temporal regulator for the early phase induction 

of IRF3 target genes in the cytosolic DNA pathway.

 IRF3 activation does not require S6K kinase function

S6Ks are known to regulate various cellular events through their kinase function16. To 

ascertain whether S6K kinase activity was critical in Ad-triggered IRF3 activation, we first 

characterized S6K1 phosphorylation on residues S371 and T38916, 24. Antibodies specific 

for phosphorylation at these sites indicated that S6K1 was phosphorylated in BMDCs even 

in the absence of Ad transduction (Fig. 2a). In addition, the prototypic S6K substrate rpS6 

(ribosomal protein S6)16, 24 was also constitutively phosphorylated at residues S240 and 

S244 in unstimulated BMDCs (Fig. 2a), indicating that phosphorylated S6K1 signals to its 

downstream target rpS6 in BMDCs at steady-state.

Following Ad transduction, phosphorylation of S371 and T389 residues in S6K1 remained 

the same compared to non-transduced BMDCs (Fig. 2a). Pretreatment with the mTOR 

inhibitor rapamycin 16, 25 for two hours before Ad transduction abolished S6K1 and rpS6 

phosphorylation in wild-type BMDCs (Fig. 2b). Despite the profound suppression of S6K1 

phosphorylation, Ad-triggered IRF3 phosphorylation was not inhibited by rapamycin (Fig. 

2b,c). Importantly, we observed that lentiviral reconstitution with a kinase-dead version of 

S6K1, hereafter S6K1(K100R), restored Ad-induced IRF3 phosphorylation in S6k1−/− 

S6k2−/− BMDCs (Fig. 2d). These observations indicate that S6K, but not its kinase activity, 

is required for Ad-triggered IRF3 activation.

 STING-dependent TBK1 activation does not involve S6Ks

To define the mechanisms of S6K action in IRF3 signaling, we carried out Ad transduction 

of BMDCs in which key adaptors representing distinct signaling cascades were ablated 

genetically. We observed that Ad-triggered IRF3 phosphorylation was unimpaired in 

Myd88−/− Trif−/− BMDCs (Fig. 3a). Similarly, Ad-triggered IRF3 phosphorylation in 

Mavs−/− BMDCs was intact (Fig. 3b). In contrast, genetic ablation of STING, the adaptor 
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representing the cytosolic DNA pathway12, 26, abolished Ad-induced IRF3 phosphorylation 

(Fig. 3c), confirming that the cytosolic DNA-mediated, STING-dependent pathway is 

responsible for Ad-induced IRF3 activation in BMDCs.

Cell’s sensing of virally presented cytosolic DNA causes STING to recruit and activate 

TBK1 6, 7, 9. Activated TBK1 in turn phosphorylates its downstream substrate IRF36, 7, 9. As 

such, we investigated S6K1’s contribution in the STING signalosome that links to TBK1 

and IRF3. Ad induced robust TBK1 serine 172 (S172) phosphorylation, a hallmark for 

TBK1 activation in wild-type BMDCs (Fig. 3c). Notably, genetic deletion of STING 

abrogated Ad-induced TBK1 phosphorylation (Fig. 3c), which correlated with an absence of 

IRF3 phosphorylation in Tbk1−/− BMDC (Fig. 3d). These data confirm that STING 

functions upstream of TBK1 and that TBK1 is the key kinase responsible for Ad-triggered 

IRF3 phosphorylation in BMDCs. However, despite the profound suppression of IRF3 

phosphorylation in S6k1−/− S6k2−/− BMDCs (Fig. 3e), Ad-triggered TBK1 phosphorylation 

was normal in the same cells (Fig. 3e). Consistently, we observed that rapamycin did not 

inhibit Ad-triggered TBK1 phosphorylation in BMDCs (Fig. 3f). Rapamycin only inhibited 

S6K kinase activity, but did not deplete S6K proteins in BMDCs (Fig. 3f). As expected, 

rapamycin did not suppress IRF3 phosphorylation in BMDCs (Fig. 3f). Together, these 

results indicate that unlike IRF3, STING-dependent TBK1 activation occurs independently 

of S6Ks, suggesting that S6Ks modify the ability of activated TBK1 to phosphorylate IRF3 

in the context of an Ad-triggered and STING-dependent recognition signal in BMDCs.

 S6Ks are required for IRF3 binding to STING

STING has a scaffold function and binds both TBK1 and IRF3 27. To test if S6K influences 

IRF3-TBK1 interaction through STING, we conducted co-immunoprecipitation studies and 

observed that endogenous STING bound to both TBK1 and IRF3 in Ad-transduced BMDCs 

(Fig. 4a). Although genetic deletion of S6Ks did not impair TBK1-STING interaction (Fig. 

4a), IRF3 binding to STING was abrogated in S6k1−/− S6k2−/− BMDCs (Fig. 4a). These 

data suggest that S6Ks are required for IRF3 binding to the activated STING in Ad-triggered 

cytosolic DNA pathway.

To extend these findings, we performed Ad transduction in Irf3−/− and Tbk1−/− BMDCs. 

STING immunoprecipitated TBK1 in Ad-transduced Irf3−/− BMDCs (Fig. 4b). In contrast, 

STING did not immunoprecipitate IRF3 in Ad-transduced Tbk1−/− BMDCs (Fig. 4c), 

indicating that Ad-triggered TBK1 binding to STING occurs independently of IRF3, which 

mechanistically explains the uncoupling of TBK1 and IRF3 activation (Fig. 3e and Fig. 4a). 

Phosphorylation of STING was previously shown to enhance IRF3 activation15, 27. Thus, we 

asked whether S6Ks would play a role in STING phosphorylation. In wild-type BMDCs, Ad 

transduction resulted in an apparent STING mobility shift in a time-dependent manner (Fig. 

4d). Phosphatase treatment abrogated the higher molecular weight bands of STING after Ad 

transduction (Fig. 4e), indicating that the observed STING mobility shift was due to 

phosphorylation. Notably, Ad-triggered STING band shift was unimpaired in S6k1−/− 

S6k2−/− BMDCs (Fig. 4d). In contrast, Ad was unable to evoke this shift in Tbk1−/− BMDCs 

(Fig. 4d) demonstrating that Ad-triggered STING phosphorylation was TBK1-dependent. 

Remarkably, we observed that although VSV infection resulted in marked IRF3 
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phosphorylation, it did not cause any discernible STING mobility shift (Supplementary Fig. 

4a). This is consistent with the finding that MAVS was required for VSV-induced IRF3 

activation in BMDCs (Supplementary Fig. 4a), emphasizing that STING activation 

constitutes a hallmark for cytosolic DNA-mediated signaling12, 26. Collectively, these results 

suggest that S6K plays an important role in facilitating IRF3 binding to cytosolic DNA-

activated STING.

 S6K1 interacts with STING to promote IRF3 phosphorylation

The requirement of S6Ks, particularly S6K1, for IRF3 binding to the activated STING 

suggests an interaction between S6K1 and STING in Ad-transduced BMDCs. To explore 

this possibility, we performed endogenous co-immunoprecipitation assays. While S6K1 and 

STING did not associate in mock-infected BMDCs, Ad induced endogenous S6K1 

interaction with STING in BMDCs (Fig. 5a). Of significance, when the cytosolic DNA 

sensor cGAS was silenced with cGAS shRNA in BMDCs (Fig. 5a,b), endogenous S6K1-

STING interaction was reduced (Fig. 5a) and IRF3 phosphorylation was inhibited (Fig. 5a). 

In contrast, LPS or VSV did not induce S6K1 and STING co-immunoprecipitation in 

BMDCs (Supplementary Fig. 4b) under the conditions when IRF3 was potently 

phosphorylated (Supplementary Fig. 4b). Collectively, these results indicate that S6K-

STING interaction occurs only in the cytosolic DNA-cGAS-STING pathway to promote 

IRF3 phosphorylation.

Next, we transfected S6K1 and STING expression plasmids into HEK293T cells, human 

embryonic kidney cells widely used as transfection hosts, which lack endogenous cGAS and 

STING (Fig. 5c)6, 28. Co-transfection resulted in association between HA-tagged mouse 

S6K1 and Flag-tagged mouse STING (Fig. 5d). Notably, S6K1(K100R)-HA29 bound to 

STING-Flag in a similar manner compared to wild-type S6K1-HA (Fig. 5d), indicating that 

S6K1-STING interaction in mammalian cells does not require S6K1 kinase function. Next, 

we examined the influence of STING activation on S6K1-STING interaction using the 

STING activator cGAMP 8, 23 in HEK293T cells, which do not express endogenous cGAS 

(Fig. 5c) and do not produce endogenous cGAMP 6. Because ectopically expressed STING 

was reported to be auto-activated in a ligand-independent manner28, 30, we transfected 

HEK293T cells with a pre-titrated amount of STING-Flag plasmid together with S6K1-HA 

such that STING-Flag remained responsive and treated the co-transfected HEK293T cells 

with cGAMP. We observed that cGAMP increased S6K1-HA and STING-Flag interaction in 

HEK293T cells (Fig. 5e). To evaluate the physiological relevance of this interaction, we 

transfected HEK293T cells with a pre-tested amount of STING-Flag plasmid such that 

STING-Flag induced only low IFR3 phosphorylation (Fig. 5f). Co-transfection of wild-type 

S6K1-HA or S6K1(K100R)-HA similarly augmented STING-Flag-dependent 

phosphorylation of endogenous IRF3 in HEK293T cells (Fig. 5f).

Next, we explored whether S6K1 affected STING dimerization or oligomerization, as this is 

a key process for signal propagation in innate immune signaling14, 26, 27. In HEK293T cells 

co-transfected with STING-HA and STING-Flag, STING existed partially as a dimer (Fig. 

5g). However, STING dimer fraction was increased substantially when S6K1-HA was co-
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transfected (Fig. 5g), suggesting that S6K1-STING interaction augments the formation or 

stabilization of STING dimers or oligomers.

S6K1 N- and C-terminal regions are known to regulate S6K1 activity16, 31. To determine 

whether these regions are involved in S6K1-STING interaction, wild-type STING-Flag was 

transfected into HEK293T cells together with Myc-tagged wild-type S6K1 or various S6K1 

truncation mutants. Truncation of N-terminus had no impact on S6K1-Myc and STING-Flag 

interaction (Fig. 6a). Notably, the deletion of C-terminus did not exhibit an inhibitory effect 

either (Fig. 6a). C-termini of signaling proteins are often involved in protein-protein 

interactions15, 27, 32. Thus, to further confirm the noninvolvement of S6K1 C-terminus in 

S6K1-STING interaction, we used a construct expressing only S6K1 C-terminus, 

S6K1(CT). S6K1(CT) was unable to associate with STING in HEK293T cells 

(Supplementary Fig. 5a), demonstrating that the regulatory domains of S6K1 required for 

canonical mTOR-S6K1 signaling are not required for S6K1 binding to STING. In contrast, 

deletion of the S6K1 kinase domain S6K1(ΔKD) abrogated S6K1-STING interaction in 

HEK293T cells (Fig. 6b).

Next, we determined which S6K1 domain(s) is involved in augmenting STING-induced 

IRF3 phosphorylation, as STING is the key structure for anchoring IRF3 to be 

phosphorylated by TBK127, 32. Following co-transfection of various Myc-tagged S6K1 

mutants with STING-Flag in HEK293T cells, wild-type S6K1-Myc substantially enhanced 

STING-Flag-dependent IRF3 phosphorylation (Supplementary Fig. 5b). Notably, this S6K1 

enhancement of IRF3 phosphorylation remained unchanged when either S6K1(ΔNT) or 

S6K1(ΔCT) or S6K1(ΔNTΔCT) was co-transfected with STING(WT)-Flag (Supplementary 

Fig. 5b). In contrast, S6K1(ΔKD) was unable to promote the STING-dependent IRF3 

phosphorylation (Supplementary Fig.5b). Collectively, these data show that S6K is a new 

STING binding partner to promote IRF3 phosphorylation.

 S6K1 forms a tripartite complex with STING and TBK1

To further investigate how TBK1 modulated S6K1-STING interaction, we silenced TBK1 in 

HEK293T cells with TBK1 shRNA (Fig. 7a). TBK1 silencing markedly inhibited S6K1-HA 

and STING-Flag interaction (Fig. 7b), indicating that TBK1 plays a pivotal role in S6K1-

STING association. To address whether S6K1 and TBK1 interact directly, we took 

advantage of the lack of endogenous STING in HEK293T cells6 and co-transfected S6K1-

HA and TBK1-Flag into these cells. We did not observe an appreciable direct interaction 

between S6K1-HA and TBK1-Flag in the absence of endogenous STING (Fig. 7c), 

suggesting that TBK1 might modify STING activity by unveiling a docking site on STING 

for S6K1.

To test this hypothesis, we co-transfected wild-type S6K1-HA and wild-type STING-Flag 

into HEK293T cells with or without wild-type TBK1-Flag or a kinase inactive mutant 

TBK1(K38A)-Flag33. Wild-type TBK1-Flag and TBK1(K38A)-Flag were expressed at 

similar levels (Fig. 7d). Notably, the co-transfected wild-type TBK1-Flag, but not 

TBK1(K38A)-Flag, resulted in higher molecular weight STING band shifts (Fig. 7d), which 

disappeared after phosphatase treatment (data not shown), indicating a TBK1-dependent 

STING phosphorylation. Importantly, when cells were co-transfected with wild-type TBK1-
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Flag, the STING-Flag precipitated by S6K1-HA appeared largely phosphorylated, as 

differentiated by its slower mobility (Fig. 7d) and phosphatase treatment (Fig. 7e). In 

contrast, no mobility shifted STING was precipitated by S6K1-HA in the presence of 

TBK1(K38A)-Flag (Fig. 7d). The faster migrating band of STING pulled down by S6K1-

HA in the presence of TBK1(K38A)-Flag (Fig. 7d) can be attributed to the endogenous 

TBK1, as that band further diminished when the triple transfection of S6K1-HA, STING-

Flag and TBK1(K38A)-Flag was conducted in TBK1 knockdown cells (data not shown).

Of importance, S6K1-HA also precipitated wild-type TBK1-Flag but not TBK1(K38A)-Flag 

(Fig. 7d) even though both bound to STING (Fig. 7d), indicating that TBK1 binding to 

STING alone may not be sufficient for promoting an interaction event between S6K1 and 

STING and suggesting that TBK1-mediated STING phosphorylation plays an important role 

in facilitating S6K1-STING interaction. To further confirm this, we found that isolated 

recombinant TBK1-Flag but not S6K1-HA caused phosphorylation of isolated STING-Flag 

in the in vitro kinase assay as demonstrated by slower mobility (Supplementary Fig. 6). 

Isolated S6K1-HA pulled down both isolated STING-Flag and TBK1-Flag following the 

kinase reaction (Supplementary Fig. 6), Collectively, these results further demonstrate that 

S6K1 can interact directly with phosphorylated STING and form a S6K1-STING-TBK1 

tripartite complex in mammalian cells.

 S6K-IRF3 signaling is required for in vivo antiviral immunity

To test S6K’s physiological significance in Ad-induced IRF3 signaling in MBDCs, we used 

an Ad-transduced DC-based vaccination as an in vivo system. We transduced wild-type, 

S6k1−/− S6k2−/− and Irf3−/− BMDCs with either an empty Ad vector or Ad vector encoding 

chicken ovalbumin peptide SIINFEKL (Ad-OVA) as a model foreign antigen and injected 

these transduced BMDCs into the footpads of wild-type recipient mice. We observed that 

transfer of Ad-OVA transduced S6k1−/− S6k2−/− or Irf3−/− BMDCs resulted in significantly 

impaired OVA-specific CD8+ T cell responses compared to those inoculated with similarly 

transduced wild-type BMDCs (Fig. 8a). Subsequent challenge of the DC-vaccinated mice 

with a single i.p. injection of recombinant vaccinia virus expressing OVA (VV-OVA) showed 

that the mice vaccinated with Ad-OVA-transduced S6k1−/− S6k2−/− or Irf3−/− BMDCs failed 

to control vaccinia virus infection (Fig. 8b).

S6Ks are known for their role in mRNA translation 34. Importantly, S6k1−/− S6k2−/− 

BMDCs showed similar expression of Ad transgene-encoded antigens as wild-type BMDCs 

(Supplementary Fig. 7a,b), indicating that S6k1−/− S6k2−/− BMDCs were not impaired in 

their ability to induce T cell responses due to global defects in protein expression. Similarly, 

S6k1−/− S6k2−/− BMDCs exhibited comparable levels of SIINFEKL peptide presentation 

(SIIN-H-2Kb) as Irf3−/− and wild-type BMDCs (Supplementary Fig. 7c). In addition, 

S6k1−/− S6k2−/− BMDCs had a comparable ability to migrate to draining lymph nodes 

(Supplementary Fig. 7d,e), where they displayed a similar surface expression of CD11c 

(data not shown) compared to Irf3−/− and wild-type BMDCs. Collectively, these data 

indicate that S6K-IRF3 signaling in the donor BMDCs is important for DNA vector-

transduced DCs to invoke optimal antigen-specific T cell responses in the recipient hosts.

Wang et al. Page 8

Nat Immunol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, the innate antiviral response to HSV-1 is STING-dependent12. This virus can 

cause productive infection in mice via intravaginal route12. We observed that HSV-1 

replication was markedly increased in the vaginal tracts of both S6k1−/− S6k2−/− and Irf3−/− 

mice compared to wild-type mice (Fig. 8c), indicating that HSV-1 infection in the vaginal 

mucosa also is restricted by S6K-dependent IRF3 signaling. Together, these findings suggest 

that S6K-IRF3 signaling is an important defense component in the host’s immune network.

 Discussion

S6Ks are known to play extensive roles in important cellular processes such as 

mitochondrial metabolism, cell-cycle progress and ribosome biogenesis16. In this study, we 

show that S6Ks are required for DNA virus-triggered IRF3 activation in BMDCs. We 

provide evidence that S6K1 associates physically with the activated STING and forms a 

tripartite S6K1-STING-TBK1 signaling complex. We further demonstrate that S6K-

mediated IRF3 signaling contributes to the early phase expression of IRF3 target genes and 

the induction of robust T cell responses and mucosal antiviral defense. Thus, our report 

reveals a crucial function of S6Ks in regulating the cytosolic DNA-cGAS-STING pathway 

to activate IRF3.

S6Ks are serine-threonine kinases, whose function is subject to rapamycin inhibition16. 

Previous reports have shown that rapamycin treatment substantially suppressed the induction 

of IFN and proinflammatory cytokines in a variety of cell types including plasmacytoid 

DCs, glioma cells and keratinocytes17, 18, 19, thus suggesting that the kinase activity of S6Ks 

is required for regulating these signaling processes. Here, we found that S6K-dependent 

activation of IRF3 was resistant to rapamycin inhibition in BMDCs following Ad 

transduction. In addition, the kinase-dead version of S6K1 restored Ad-induced IRF3 

phosphorylation in S6k1−/− S6k2−/− BMDCs at levels similar to wild-type S6K1. Thus, the 

kinase-independent role of S6Ks in IRF3 activation provides an example of a context-

specific switch for the regulatory roles of S6Ks. Of significance, we have not observed any 

difference in the expression of the related endogenous signaling proteins STING, TBK1 or 

IRF3 between wild-type and S6k1−/− S6k2−/− BMDCs. Moreover, we have confirmed that 

DNA virus-mediated transgene products or their antigen-presentation was not inhibited in 

S6k1−/− S6k2−/− BMDCs. These observations support the notion that S6K protein, but not 

its kinase function, may directly modulate innate antiviral immunity as a result of being an 

IRF3 signaling regulator.

IRF3 activation is a key effector event, upon which diverse regulatory signals converge in a 

context-specific way. On the basis of our molecular interaction data, we suggest the 

following model for S6K1-promoted IRF3 activation in the cytosolic DNA-cGAS-STING 

pathway: upon activation by cGAS-cGAMP, STING recruits TBK1 to form a STING-TBK1 

signaling complex. This event occurs independently of S6Ks and IRF3. Subsequently, S6K1 

interacts with phosphorylated STING to form a tripartite S6K1-STING-TBK1 signaling 

complex. Because the kinase-inactive mutant S6K1(K100R) interacted with STING 

similarly compared to wild-type S6K1, our working model further suggests that, 

independently of its kinase function, S6K1 acts as an “auxiliary adaptor” or “scaffold” in 
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promoting IRF3 to STING-TBK1 complex to facilitate TBK1-mediated IRF3 

phosphorylation.

STING phosphorylation by TBK1 was shown to have an essential role in recruiting IRF3 32. 

Here, we show that TBK1-mediated phosphorylation of STING is crucial for promoting a 

tri-molecular S6K1-STING-TBK1 interaction, particularly in the intact cells, which is 

required for propagating IRF3 signal transduction. Thus, one may hypothesize that the 

phosphorylation site(s) on STING targeted by TBK1 that is used for IRF3 recruitment may 

also be involved in S6K1-STING interaction. This hypothesis awaits substantiation in future 

studies.

Upon ligand activation in the cytosol, STING triggers both NF-κB and IRF3 signaling 

cascades6, 7, 9, 23. Ad transduction promoted both IRF3 and NF-κB phosphorylation in 

BMDCs. However, in contrast to IRF3 phosphorylation, Ad-elicited NF-κB phosphorylation 

was not S6K-dependent in BMDCs (data not shown). This observation demonstrates the 

specificity of S6Ks as cellular signaling molecules.

DNA virus-transduced DC-based vaccines hold promises for immunotherapy of cancer as 

well as certain viral diseases35. We observed that the Ad-transduced donor BMDCs required 

S6K-dependent IRF3 signaling to achieve optimal T cell responses in the recipient hosts. 

This finding not only demonstrates the utility of understanding the innate immune signaling 

pathways of virally transduced DCs, but also provides a rationale for exploring manipulation 

of virally transduced DCs ex vivo for the desired outcomes of DC-based vaccines in vivo. 

Importantly, the response to HSV-1, another DNA virus that induced a STING-dependent 

antiviral response 12 also depends on S6K-dependent IRF3 signaling. In the absence of 

S6Ks, this virus exhibited increased replication in the mucosa.

IRF3 is a key transcription factor that mediates an array of pivotal immune processes20. 

Congruently, a sophisticated regulatory mechanism for IRF3 activation might be 

evolutionarily advantageous as it offers the host possible context-specific regulation so that a 

given response can be timely initiated, finely tuned and properly terminated. Our discovery 

of S6Ks as crucial IRF3 regulators provides new insight into the IRF3 signaling network, 

particularly in its linkage to the STING-TBK1 signaling complex, a key signalosome in 

cellular innate immune responses.

 ONLINE METHODS

 Mice

Wild-type C57BL/6 and Goldenticket STING (Tmem173)-deficient mice were obtained 

from Charles River Laboratories and The Jackson Laboratory, respectively. Irf3−/− mice and 

Myd88−/− Trif−/− mice were bred in a specific pathogen-free environment within the animal 

facility at McMaster University. All other genotypic mice used for generating bone marrows 

were as follows: S6k1−/−, S6k2−/−, S6k1−/− S6k2−/−, Eif4ebp1−/− Eif4ebp2−/− and 

Eif4ebp1−/− Eif4ebp2−/− Eif4ebp3−/− mice and control wild-type mice17, 36, 37, 38: McGill 

University; Irf3−/−, Myd88−/−, Mavs−/− and control wild-type mice39: Washington 

University School of Medicine in St. Louis; Mavs−/− and control wild-type mice: University 
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of Washington in Seattle; Tnfr1−/− Tbk1−/− and Tnfr1−/− (control for Tbk1−/−) mice40: 

University of Massachusetts Medical School. All animal experiments were approved by the 

Institutional Animal Research Ethics Board of McMaster University and concurred with the 

guidelines established by the Canadian Council on Animal Care. No specific exclusion 

criteria were employed in mouse experiments nor randomization of the allocation of mice to 

experimental groups was conducted.

 BMDCs preparation

BMDCs were prepared as previously described41. Briefly, bone marrows were flushed from 

mouse femurs and tibiae and the dissociated bone marrow cells were resuspended in 

complete RPMI 1640 in the presence of 55 μM of β-mercaptoethanol (Gibco) and 

recombinant murine GM-CSF (40 ng/ml; PeproTech). On days 3 and 6, the cultures were 

provided with new media and fresh GM-CSF. From day 6 to day 8, BMDCs were harvested 

for various experimental purposes as specified.

 Viruses, viral transduction, LPS stimulation and reagents

Recombinant human serotype 5 Ad with E1/E3-deletion (Ad-BHGdE1E3) harboring no 

transgene, Ad-OVA expressing chicken ovalbumin peptide SIINFEKL fused to luciferase, 

and VSV with an M protein mutant (VSV-ΔM51) were described42. Ad and Ad-OVA were 

used at an MOI of 100 whereas VSV was used at an MOI of 25 for the various times as 

indicated. These MOIs were chosen because they were shown to be effective in transducing 

DCs for use in DC-based vaccination42. HSV-1 (strain KOS) was used at an MOI of 5 for 

BMDC infection for various time points as specified. Intravaginal infection and titration of 

infectious HSV-1 progenies were conducted as previously described43. Briefly, mice were 

anaesthetized by injectable anaesthetic given intraperitoneally and inoculated intravaginally 

with 10 μl containing 104 PFU of wild-type HSV-1. Vaginal washes were collected 48 h 

after infection and subjected to standard plaque assays using Vero cells. LPS (E. coli 

O111:B4, Sigma) was used at 100 ng/ml for various time points as specified. Rapamycin 

was from Calbiochem. Calf intestinal phosphatase (CIP) was from New England Biolabs. 

Noncanonical 2′,3′ cGAMP (c[G(2′,5′)pA(3′,5′)p]) was purchased from BioLog.

 Expression constructs and transfection

HA or Flag-tagged STING was amplified by PCR and cloned into pcDNA3.1 plasmid for 

expression in mammalian cells. Mammalian expression plasmids encoding HA-tagged wild-

type S6K1, kinase-inactive mutant S6K1(K100R) and Myc-tagged wild-type S6K1 and 

S6K1 truncated versions, as well as expression plasmids for Flag-tagged IRF3, wild-type 

TBK1 and kinase-inactive mutant TBK1(K38A) were described previously29, 31, 44, 45. The 

expression plasmid for S6K1 with kinase domain deletion, S6K1(ΔKD)-Myc, was made in 

GenScript. To construct S6K1 C-terminus fragment (411-512), the region containing the N-

terminus, the kinase domain and the linker domain was removed using deletion site directed 

mutagenesis on pRK5-S6K1-Myc 45. HEK293T cells were cultured in DMEM 

supplemented with 10% (v/v) FBS and were transfected using XtremeGENE HP DNA 

transfection reagent (Roche) according to the manufacturer’s instructions for various times 

as specified.
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 Lentiviruses

Lentiviral vectors for shRNA silencing of TBK1, cGAS and a scrambled shRNA sequence 

were obtained from Sigma. The Sigma MISSION shRNA vectors accession numbers were: 

human TBK1 (TRCN0000314840), mouse cGAS (TRCN0000178625) and the non-

targeting scrambled shRNA control (SHC002). Each shRNA vector was co-transfected into 

HEK293T cells with the lentivirus packaging plasmids PLP1, PLP2, and PLP-VSVG 

(Invitrogen) using Lipofectamine 2000 (Invitrogen). Viral supernatants were collected 48 

and 72 hours post-transfection and were filtered through a 0.45 μm nitrocellulose filter 

before use. For silencing of TBK1 gene expression in HEK293T cells, TBK1 shRNA 

lentiviral particles were incubated with the cells for 24 h before selection with puromycin 

and the drug-resistant cells were used for various experiments as indicated. For cGAS 

silencing, BMDCs collected on day 6 were transduced with cGAS lentiviral particles and 

were used 48 h later for various experiments as specified. Silencing efficiency was verified 

by Western blotting.

For lentiviral-mediated transgene expression, wild-type S6K1 and the kinase-inactive 

version S6K1(K100R) were amplified by PCR and cloned into the lentiviral vector 

pCW57.1 (Addgene) using NheI and BamHI. Lentiviruses were produced using the PLP1, 

PLP2 and PLP-VSVG packaging vectors on HEK293T cells and concentrated on sucrose 

cushion. For the reconstitution experiments, S6k1−/− S6k2−/− BMDCs were transduced on 

day 3 with lentivirus expressing either wild-type S6K1 or S6K1(K100R). The expressions of 

the transgenes were induced on day 7 with doxycycline (1 μg/ml). On day 8, the lentivirus-

transduced S6k1−/− S6k2−/− BMDCs were used for Ad infection for 24 h.

 In vivo immunization, T cell preparation and intracellular staining for flow cytometry and 
VV-OVA challenge

Following transduction with either Ad-empty or Ad-OVA, the transduced wild-type, Irf3−/− 

or S6k1−/− S6k2−/− BMDCs were injected subcutaneously into the footpads of wild-type 

recipient mice at 0.5×106 cells per footpad. T cell response analysis was conducted as 

previously described46. Briefly, 14 days after immunization, T cells were prepared and 

incubated with SIINFEKL peptide (OVA257-264, Biomer Technologies) at 1μg/ml for specific 

T cell restimulation. Incubation was performed for 5 h, in the presence of brefeldin A 

(GolgiPlug, BD Pharmingen) at 1 μg/ml for the last 4 h. Then, PBMCs were incubated with 

antibodies against CD16/CD32 (clone 2.4G2, dilution 1:200, BD Biosciences 553142, 

1DB-001-0000807496) to block Fc receptors, before T cell surface staining with anti-CD3-

APC-Cy7 (clone 145-2C11, dilution 1:100, BD Biosciences 557596, 

1DB-001-0000869695), anti-CD8-PE (clone 53-6.7, dilution 1:400, BD Biosciences 

553033, 1DB-001-0000868920) and anti-CD4-PerCP-Cy5.5 (clone RM4-5, dilution 1:800, 

eBioscience 45-0042-82, 1DB-001-0000884856). Cells were permeabilized and fixed with 

Cytofix/Cytoperm (BD Pharmagen) before intracellular cytokine staining with anti-IFN-γ-

APC (clone XMG1.2, dilution 1:100, BD Biosciences 554413, 1DB-001-0000874263) and 

anti-TNF-α-FITC (clone MP6-XT22, dilution 1:300, BD Biosciences 554418, 

1DB-001-0000871919). All these antibodies were previously cited. Data were acquired 

using a FACSCanto flow cytometer with FACSDiva software (BD Pharmingen) and 

analyzed with FlowJo Mac software (Treestar, Ashland, OR).
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On day 26 after immunization with Ad-empty or Ad-OVA-transduced BMDCs, the recipient 

mice were challenged by i.p. injection of 107 pfu of recombinant vaccinia virus encoding an 

endoplasmic reticulum-targeted SIINFEKL epitope (VV-OVA). Seven days later, VV-OVA 

titers were determined by plaque assay in the ovaries of the challenged mice47.

 Flow cytometry analysis of BMDCs and lymph node cells

CFSE (5-(and -6)-carboxyfluorescein diacetate succinimidyl ester) was obtained from 

Sigma. BMDC labeling with CFSE was conducted as previously described48. The popliteal 

lymph nodes were collected 48 h after mock or the CFSE-labeled BMDCs injection at the 

footpad. Stained BMDCs and lymph node cell suspensions were prepared for cytometry 

analysis using the flow cytometer and software as stated above. The monoclonal antibody 

25-D1.16 was obtained from eBioscience (#17-5743-80) and CD11c antibody was 

purchased from BD Biosciences (PE-Cy7 CD11c, #558079).

 Immunofluorescence microscopy

For immunofluorescence staining, BMDCs were grown on coverslips. After Ad transduction 

for 24 h, the transduced cells were fixed in cold methanol for 10 min, washed in PBS and 

blocked in 5% normal goat serum for 45 min. A rabbit anti-mouse IRF3 antibody (#4302, 

Cell Signaling Technology) was then applied at room temperature for 1 h. After washing in 

PBS, the cells were incubated with fluorescence-conjugated goat anti-rabbit IgG (Jackson 

ImmunoResearch Laboratories) for 45 min. Thereafter, the nuclear DNA of the 

immunolabeled cells were counterstained with DAPI (4′,6-diamidino-2-phenylindole, 

dihydrochloride, Molecular Probes) according to the product specification. The fluorescence 

staining was examined with an LSM 510 META inverted confocal microscope (63 oil 

objective; Carl Zeiss).

 Immunoblot and immunoprecipitation

For immunoblot (IB) analysis, the treated cells were lysed in radioimmunoprecipitation 

buffer (RIPA) (10 mM phosphate pH 7.4, 137 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate and 0.1% SDS) supplemented with protease inhibitor cocktail (Roche) and 

phosphatase inhibitor cocktail II and III (Sigma). The preparation of cytoplasmic and 

nuclear extracts was conducted as previously described49. Total or fractionated cellular 

extracts were resolved on 7.5-12% SDS-PAGE and transferred to nitrocellulose membrane 

(Santa Cruz). Blots were blocked in Odyssey blocking buffer (Li-cor) unless otherwise 

specified and detection was performed with respective primary antibodies, and bands were 

visualized with infrared dye-conjugated secondary antibodies using Odyssey scanner (Li-

cor). For immunoprecipitations (IP), the treated cells were lysed in IP buffer (20 mM Tris-

HCl pH 7.4, 137 mM NaCl, 1 mM EDTA, 1% NP-40, 10% glycerol and protease/

phosphatase inhibitor cocktail from ThermoFisher Scientific, #78441). The cellular extracts 

were incubated with respective IP antibodies or IP antibodies conjugated to Sepharose beads 

at 4°C for 1-3 h or overnight as specified. The immuoprecipitates were washed thoroughly 

and boiled in SDS sample buffer for Western blot analysis.
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 In vitro kinase assay for S6K1-STING-TBK1 complex formation

To obtain the required recombinant proteins, single transfections of S6K1-HA, STING-Flag 

and TBK1-Flag were conducted with Lipofectamine 2000 in HEK293T cells for 56 h. The 

respective recombinant proteins were isolated using HA tagged protein purification kit 

(MBL, #3320A) and Flag tagged protein purification kit (MBL, #3325A) according to the 

product specifications. S6K1-HA or STING-Flag or TBK1-Flag was released from 

respective tag antibody-Sepharose beads with free HA or Flag peptides to retain maximal 

biological activities. S6K1-HA alone or the reaction mixtures of S6K1-HA and STING-Flag 

with or without TBK1-Flag were then incubated in 1 × kinase buffer (Cell Signaling 

Technology, #9802) at 30°C for 1 h in the presence of ATP (Cell Signaling Technology, 

#9804) at a final concentration of 200 μM. In some experiments, the kinase reactione with 

STING-Flag and TBK1-Flag were conducted at 30°C first and S6K1-HA was added at 4°C 

later for 1 h. Thereafter, IP buffer (300 μl containing protease/phosphatase inhibitor cocktail 

from ThermoFisher Scientific, #78441) was added at 4°C. To avoid the interference with the 

subsequent IP reactions by free HA or Flag peptides in the reaction mixtures from the 

competitive elution process, the IP reactions were conducted with rabbit anti-S6K1 antibody 

(Millipore, #05-781R) for 1 h and the S6K1-antibody complexes were pulled down by anti-

rabbit IgG F(ab’)2 fragment Sepharose (Cell Signaling Technology #3400) for 1 h at 4°C. 

The immunoprecipitates were analyzed by immunoblot analysis using anti-Flag or anti-

S6K1 antibody as indicated.

 Antibodies

The primary antibodies used for immunoblot analysis and IP were from the following 

sources: abcam: IFIT1 (ab11821); Cell Signaling Technology: phospho-TBK1 (#5483), 

TBK1 (3504), phospho-IRF3 (S396, #4947), IRF3 (#4302), STING (#3337), STING 

(#13647), p70S6K1 (#9202), phospho-p70S6K1 (S371, #9208), phospho-p70S6K1 (T389, 

#9234), phospho-S6 ribosomal protein (S240/244, #5364), S6K2 (#14130), MyD88 (#4283), 

IPS-1(#4983), ISG15 (#2743), cGAS antibody (#31659), HA-Tag antibody-Sepharose 

(#3956), HA-Tag antibody (#3724), HA-Tag antibody (#2367), Flag-Tag antibody-

Sepharose (#5750), Flag-Tag antibody (#2368), Flag-Tag antibody (#8146), anti-rabbit IgG 

F(ab’)2 fragment Sepharose (#3400),, Myc-Tag antibody (#2278), GFP-Tag antibody 

(#2956); Abiocode: cGAS (R-3252-1); Santa Cruz Biotechnology: IRF3 (sc-9082 and 

sc-15991), TBK1 (sc-9910), histone H1 (sc-10806), p70S6Kβ (S6K2, sc-9381), rabbit anti-

goat IgG-HRP (sc-2768), HA-probe (sc-7392), Myc-Tag antibody-Sepharose (sc-40 AC), 

luciferase antibody (sc-74548); Sigma: β-actin antibody (A5441); Millipore: p70S6K1 

(05-781R); Novus Biologicals: Trif (NB-120-13810); and Zymed Laboratories: IRF3 (ZM3, 

51-3200); Rockland Immunochemicals: anti-Flag antibody (#600-401-383).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
S6Ks are required for Ad-induced IRF3 activation. (a-d) Immunoblot analysis of p-

IRF3(S396), IRF3, S6K1 and S6K2 in whole cell lysates of wild-type (a), S6k1−/− (b), 

S6k2−/− (c) and S6k1−/− S6k2−/− (d) BMDCs transduced with Ad. β-actin as loading control. 

(e) Immunoblot analysis of IRF3 in nuclear lysates of wild-type and S6k1−/− S6k2−/− 

BMDCs transduced with Ad. Histone H1 as a nuclear fraction marker. (f) 

Immunofluorescence microscopy of wild-type and S6k1−/− S6k2−/− BMDCs left untreated 
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or transduced with Ad, immunostained for IRF3 (green) and the DNA-binding dye DAPI 

(blue). Bar represents 10 μM. Data are representative of four independent experiments (a-f).
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Figure 2. 
S6K regulation of Ad-induced IRF3 activation is kinase function-independent. (a) 

Immunoblot analysis of p-S6K1(S371), p-S6K1(T389) and p-rpS6 (S240/244) in whole cell 

lysates of wild-type BMDCs transduced with Ad. β-actin as loading control. (b) Immunoblot 

analysis of p-S6K1(S371), p-S6K1(T389), p-rpS6 (S240/244), p-IRF3(S396) and IRF3 in 

whole cell lysates of wild-type BMDCs left untreated with medium (Med) or pre-treated 

with rapamycin (Rap) for 2 h and then transduced with Ad. β-actin as loading control. (c) 

Immunoblot analysis of p-IRF3(S396) and IRF3 in whole cell lysates of wild-type BMDCs 
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left untreated with medium (Med) or rapamycin (Rap) for 2 h and then transduced with Ad. 

Upper, the relative densities of p-IRF3 to IRF3 in arbitrary units. Bottom, the representative 

immunoblot bands of p-IRF3(S396) and IRF3. ND: p-IRF3 not detected. β-actin as loading 

control. (d) Immunoblot analysis of p-IRF3(S396), IRF3 and S6K1 in whole cell lysates of 

S6k1−/− S6k2−/− BMDCs transduced with lentiviruss expressing either S6K1(WT) or 

S6K1(K100R) for 96 h, subsequently left un-induced or induced with doxycycline (Dox) for 

24 h and then infected with Ad for 24 h. β-actin as loading control. Data are representative 

of three independent experiments (a-d).
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Figure 0003
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Figure 0004

Figure 3. 
Ad-triggered, STING-dependent activation of TBK1 does not require S6Ks. (a) Immunoblot 

analysis of p-IRF3(S396), MyD88 and Trif in whole cell lysates of Myd88−/− Trif−/− 

BMDCs transduced with Ad. β-actin as loading control. (b) Immunoblot analysis of p-

IRF3(S396) and MAVS in whole cell lysates of wild-type and Mavs−/− BMDCs transduced 

with Ad. β-actin as loading control. (c) Immunoblot analysis of p-TBK1(S172), TBK1, p-

IRF3(S396), IRF3 and STING in whole cell lysates of wild-type and Tmem173−/− BMDCs 

Wang et al. Page 23

Nat Immunol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transduced with Ad. β-actin as loading control. (d) Immunoblot analysis of p-IRF3(S396), 

IRF3 and TBK1 in whole cell lysates of wild-type and Tbk1−/− BMDCs transduced with Ad. 

β-actin as loading control. (e) Immunoblot analysis of p-TBK1(S172), p-IRF3(S396), S6K1 

and S6K2 in whole cell lysates of wild-type and S6k1−/− S6k2−/− BMDCs transduced with 

Ad. β-actin as loading control. (f) Immunoblot analysis of p-TBK1(S172), p-IRF3(S396), p-

S6K1(S371), S6K1 and S6K2 in whole cell lysates of wild-type and S6k1−/− S6k2−/− 

BMDCs transduced with Ad. β-actin as loading control. Data are representative of three 

independent experiments (a-f).
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Figure 4. 
S6Ks are crucial for Ad-induced IRF3 binding to STING. (a-c) Immunoprecipitation and 

immunoblot analysis of the interaction between STING, TBK1 and IRF3 in wild-type vs 
S6k1−/− S6k2−/− (a), wild-type vs Irf3−/− (b), and wild-type vs Tbk1−/− BMDCs transduced 

with Ad. Lysates (below), immunoblot analysis of TBK1, IRF3 and STING. (d) Immunoblot 

analysis of STING in whole cell lysates of wild-type, S6k1−/− S6k2−/− and Tbk1−/− BMDCs 

transduced with Ad. β-actin as loading control. (e) Immunoblot analysis of STING in whole 

cell lysates of wild-type BMDCs transduced with Ad for 24 h, subsequently treated with (+) 

Wang et al. Page 25

Nat Immunol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or without (−) calf intestine phosphatase. Data are representative of four independent 

experiments (a-e).
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Figure 5. 
S6K1-STING interaction promotes IRF3 phosphorylation. (a) Immunoprecipitation and 

immunoblot analysis of S6K1-STING interaction in wild-type BMDCs treated with control 

shRNA or cGAS shRNA for 48 h, then infected with Ad. Lysates (below), immunoblot 

analysis of S6K1, STING, p-IRF3(S396), IRF3 and β-actin. (b) Immunoblot analysis of 

cGAS in whole cell lysates of wild-type BMDCs treated with control shRNA or cGAS 

shRNA for 48 h. β-actin as loading control. (c) Immunoblot analysis of endogenous (Endog) 

cGAS and STING in whole cell lysates of HEK293T cells and wild-type BMDCs. β-actin as 
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loading control. (d) Immunoprecipitation and immunoblot analysis of the interaction 

between S6K1(WT)-HA or S6K1(K100R)-HA and STING(WT)-Flag in HEK293T cells 

transfected with respective plasmids for 24 h. Lysates (below), immunoblot analysis of 

S6K1-HA, STING-Flag and β-actin. (e) Immunoprecipitation and immunoblot analysis of 

the interaction between S6K1(WT)-HA and STING(WT)-Flag in HEK293T cells 

transfected with respective plasmids for 24 h, then transfected with 2′,3′ cGAMP for 6 h. 

Lysates (below), immunoblot analysis of S6K1-HA, STING-Flag and β-actin. (f) 
Immunoblot analysis of endogenous (Endog) p-IRF3(S396), endogenous IRF3, STING-Flag 

and S6K1-HA in whole cell lysates of HEK293T cells transfected with respective plasmids 

for 24 h. β-actin as loading control. (g) Immunoprecipitation and immunoblot analysis of the 

interaction between STING(WT)-HA and STING(WT)-Flag in HEK293T cells co-

transfected with S6K1(WT)-HA plasmid for 24 h. Lysates (below), immunoblot analysis of 

S6K1-HA, STING-Flag and STING-HA. β-actin as loading control. Data are representative 

of three independent experiments (a-g).
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Figure 6. 
The kinase domain but neither the N-nor the C-terminus of S6K1 is involved in mediating 

S6K1 interaction with STING. (a) Immunoprecipitation and immunoblot analysis of the 

interaction between STING(WT)-Flag and S6K1 truncation mutants (Δ mut)-Myc in 

HEK293T cells transfected with respective plasmids for 24 h. Lysates (below), immunoblot 

analysis of S6K1 Δ mut-Myc, STING-Flag and β-actin as loading control. (b) 

Immunoprecipitation and immunoblot analysis of the interaction between STING(WT)-Flag, 

S6K1(WT)-Myc or S6K1(ΔKD)-Myc in HEK293T cells transfected with respective 

plasmids for 24 h. Lysates (below), immunoblot analysis of S6K1-Myc, S6K1(ΔKD)-Myc, 

STING-Flag and β-actin as loading control. Data are representative of three independent 

experiments (a-b).
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Figure 7. 
S6K1 interacts with STING and TBK1 to form a tripartite complex. (a) Immunoblot 

analysis of TBK1 in control shRNA or TBK1 shRNA HEK293T cells. β-actin as loading 

control. (b) Immunoprecipitation and immunoblot analysis of the interaction between 

S6K1(WT)-HA and STING(WT)-Flag in control shRNA or TBK1 shRNA HEK293T cells. 

Lysates (below), immunoblot analysis of S6K1-HA, STING-Flag and β-actin as loading 

control. (c) Immunoprecipitation and immunoblot analysis of the interaction between 

S6K1(WT)-HA and TBK1(WT)-Flag in HEK293T cells transfected with respective 
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plasmids. Lysates (below), immunoblot analysis of S6K1-HA, TBK1-Flag and β-actin as 

loading control. (d) Immunoprecipitation and immunoblot analysis of the interaction 

between S6K1(WT)-HA, STING(WT)-Flag, TBK1(WT)-Flag or TBK1(K38A)-Flag in 

HEK293T cells transfected with respective plasmids for 24 h. Lysates (below), immunoblot 

analysis of STING, S6K1-HA, TBK1-Flag and β-actin as loading control. (e) Immunoblot 

analysis of STING in the immunoprecipitates pulled down by anti-S6K1-HA from the whole 

cell lysates of HEK293T cells triply transfected with S6K1(WT)-HA, STING(WT)-Flag and 

TBK1(WT)-Flag for 24 h, treated with (+) or without (−) calf intestine phosphatase. Data 

are representative of four independent experiments (a-e).
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Figure 8. 
Disruption of DNA virus-induced S6K-IRF3 signaling in donor’s BMDCs impairs the 

induction of the recipient host’s T cell responses. (a) Flow cytometry analysis of OVA-

specific IFNγ+ CD8+ T-cells in wild-type recipient mice vaccinated with Ad-empty-

transduced wild-type BMDCs or Ad-OVA-transduced wild-type, S6k1−/− S6k2−/− or Irf3−/− 

BMDCs. Wild-type vs knockout BMDCs significant, * P <0.001, one way ANOVA (mean ± 

s.d.). (b) Plaque assay of VV-OVA in ovaries of the mice vaccinated with Ad-empty-

transduced wild-type BMDCs or Ad-OVA-transduced wild-type, S6k1−/− S6k2−/− or Irf3−/− 
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BMDCs (n=5 per group). ND: VV-OVA not detected. (c) Plaque assay of HSV-1 in the 

vaginal washes of wild-type mice (n=8), S6k1−/− S6k2−/− mice (n=3) and Irf3−/− mice (n=5) 

infected intravaginally with HSV-1 for 48 h. * P <0.05 and ** P <0.01 for wild-type vs 
Irf3−/− mice and S6k1−/− S6k2−/− mice, respectively, by one-way ANOVA (mean ± s.d.). 

Data are representative of three independent experiments (a-b) and two independent 

experiments (c).
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