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Abstract 

In this work we provide the ultrastructural study of the spermiogenesis of the 

lanternfish Lampanyctus crocodilus (Myctophiformes, Myctophidae) with special 

emphasis on the condensation of chromatin and the biochemical characterization 

of its sperm nuclear basic proteins (SNBPs). The round head of the early 

spermatid of L. crocodilus develops into a curved conical-shaped head in the 

spermatozoon. Two flagella, already present in the spermatid, are inserted 

laterally at the convex side of the sperm head. Both flagella possess a 9+0 

axoneme instead of the typical 9+2 axonemal structure. Mitochondria undergo a 

characteristic redistribution during spermiogenesis. A reduced number of them are 

present away from the centrioles at both ends of the concave side of the sperm 

head. In the process of chromatin condensation during spermiogenesis, 

fibrogranular structures with granules of 25±5 nm and 50±5 nm can be observed in 

the early spermatid, which develop into larger granules of about 150±50 nm in the 

middle spermatid. The later coalesce during the transition to advanced spermatid 

and spermatozoon giving rise to a highly condensed chromatin organization in the 

sperm cell. Protamines are the main SNBPs associated with this chromatin; 

however, they are unusually large and correspond to the largest protamines 

described in fish to date. Small stoichiometric amounts of histones as well as other 

basic proteins coexist with these protamines in the spermatozoon. 
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Introduction 

 

Spermiogenesis and spermatozoa ultrastructure has been studied in many fish 

species (see the reviews by Jamieson 1991, 2009a; Mattei 1991b; Lahnsteiner 

and Patzner 2007; and references therein). However, in some groups of fishes, 

such as the Myctophiformes, very little information is available (Jamieson 2009b). 

The teleost fish Lampanyctus crocodilus (Risso 1810) belongs to the family 

Myctophidae (lanternfishes), which is the most abundant of the two families in the 

order Myctophiformes (Myctophidae and Neoscopelidae). About 32 genera with at 

least 240 species are included in this family (Nelson 2006). They are deep-sea 

marine fishes that can be found in all oceans. The name lanternfish refers to their 

ability to produce bioluminescence through a number of photophores distributed 

along their body (Hulley 1984). 

A brief ultrastructural report on the spermatid and spermatozoon of Lampanyctus 

sp was provided by Mattei and Mattei (1976). According to these authors, the 

spermatozoon has an S-shaped completely opaque nucleus and an acrosome is 

lacking (as is characteristic of the neopterygian fishes) (Jamieson 1991). They 

described the early spermatid and the spermatozoon as biflagellate cells with a 

9+0 axonemal structure and pointed out that this was the only known fish where 

biflagellarity and the 9+0 pattern coexisted. These characters were later found in 

two more members of the family Myctophidae: Symbolophorus californiensis and 

Notoscopelus sp. (Hara 2007). However, contrary to these observations, Hara and 

Okiyama (1998) report that in Lampanyctus jordani the spermatozoon has a 

spherical head, is uniflagellated, and with a 9+2 axonemal structure (reviewed in 

Jamieson 2009b). This variability in the same genus is certainly surprising and the 
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study of more species is needed to reach a more general view. Also, a detailed 

ultrastructural study of the spermiogenic process is missing.  

One of the most dramatic changes occurring during spermiogenesis is the 

remodelling of the sperm chromatin. The proteins that organize DNA in the sperm 

nuclei are usually called SNBPs (sperm nuclear basic proteins). In contrast to the 

proteins associated with somatic chromatin (somatic histones), SNBPs exhibit a 

great variability. However, they can be classified in three main groups: the histone 

type (H type), the protamine-like type (PL type) and the protamine type (P type) 

(reviewed in Ausió 1999; Eirín-López and Ausió 2009). The H type includes 

proteins compositionally and structurally related to somatic histones. The P type 

encompasses a group of small arginine-rich highly basic proteins which usually 

replace the majority of the germinal somatic-like histones, achieving a higher 

degree of chromatin condensation. Finally, the PL type includes a group of 

proteins that are structurally and functionally intermediate between the H and the 

P type, and which are related to histone H1. Although the P type is prevalent 

among teleost fishes, examples of the other two types can also be found (Saperas 

et al. 1993a; Saperas et al. 1994; Frehlick et al. 2006). 

In the present work we have been able to obtain fresh mature specimens of 

Lampanyctus crocodilus and provide an ultrastructural characterization of the 

spermiogenesis of this species. We have also studied the chromatin condensation 

pattern, and we give a biochemical characterization of the sperm nuclear basic 

proteins associated with the chromatin of this spermatozoon. 
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Materials and methods 

Animals 

Specimens of Lampanyctus crocodilus (Jewel lanternfish) (Myctophidae, 

Myctophiformes) were collected from the Mediterranean Sea (Barcelona, 

Catalonia, Spain) during April and May. Upon collection, they were maintained on 

ice until arrival to the shore destination where they were dissected right away. 

Flowing sperm samples were obtained by gentle abdominal massage. Testes 

were checked by bright field or phase microscopy and only ripe gonads containing 

sperm cells were used. 

Testis and sperm samples intended for the ultrastructural studies were 

immediately fixed as described below. Samples to be used in biochemical analysis 

were preserved in 90% ethanol at -20ºC until further processing (see below). 

 

Transmission electron microscopy (TEM) 

Fresh testes samples were fixed for 3 hours at 4ºC in 2% paraformaldehyde - 

2.5% glutaraldehyde mixture in 0.1 M cacodylate buffer (pH 7.2), with 0.1 M 

sucrose and 0.2 mM calcium chloride. They were post-fixed for 1 hour at 4ºC in 

2% osmium tetroxide in the same buffer, followed by acetone dehydration and 

embedding in Spurr’s resin. Ultrathin sections were obtained on an ultra-

microtome (Leica Ultracut UCT), stained with uranyl acetate and lead citrate, and 

then examined with a Jeol EM-1010 electron microscope operating at 80 kV. 
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Scanning electron microscopy (SEM) 

Fresh sperm and testes samples were minced and dispersed in PBS and the 

resulting cell suspensions were glued on poly-L-lysine-coated coverslips. These 

samples were fixed (2 hours) and post-fixed (2 hours) at 4ºC as in TEM, and 

dehydrated using a series of increasing ethanol for 30 minutes. The samples were 

next dried at their critical point with carbon dioxide and sputter coated with gold-

palladium. Analysis was carried out on a Jeol J-6510 scanning electron 

microscope at 10 -15 kV acceleration voltage. 

 

Extraction and purification of sperm basic nuclear proteins (SNBPs) 

Nuclei were prepared as previously described (Saperas et al. 1993a) with slight 

modifications. Briefly, ripe male gonads were homogenized in a Dounce in 4-5 

volumes of ice-cold buffer A [0.25 M sucrose, 5 mM CaCl2, 50 mM Tris-HCl (pH 

7.4)], containing 50 mM benzamidine chloride as a protease inhibitor (Chiva et al. 

1988), filtered and centrifuged (2300xg, 10 min, 4ºC). Pellets were homogenized 

with buffer A containing 0.1% Triton X-100 and centrifuged under the same 

conditions. This step was repeated one more time. Before protein extraction, 

pellets were homogenized in ice-cold buffer B [20 mM EDTA, 50 mM Tris-HCl (pH 

7.4)], centrifuged, and then homogenized in ice-cold buffer C [50 mM Tris-HCl (pH 

7.4)] and centrifuged one last time. In those instances where sperm or gonad from 

a single specimen was processed, the homogenization steps with buffers B and C 

were omitted and all the steps were carried out in an Eppendorf tube. 
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SNBPs were extracted from the nuclear pellets with 0.4 N HCl. In some instances, 

a sequential acid solubilisation of the SNBPs was performed. In these instances, a 

first extraction was carried out with 35% acetic acid in order to solubilise the 

histone component (Chiva et al. 1992). After centrifuging at 16,000xg, HCl was 

added to the supernatant to make it 0.25 N HCl and the pellet was re-extracted 

right away with 0.4 N HCl and centrifuged again to recover the supernatant. 

Proteins from all the acid extracts were immediately precipitated overnight with 6 

volumes of acetone at −20ºC. The protein precipitates were recovered by 

centrifugation at 16,000xg, rinsed with cold acetone and finally dried (Chiva et al. 

1990). 

Protein fractionation and purification was performed by either reversed phase high 

performance liquid chromatography (RP-HPLC) or by cationic exchange fast 

performance liquid chromatography (FPLC). RP-HPLC was performed using a 

Vydac C18 4.6 x 250 mm column eluted with acetonitrile gradients in the presence 

of trifluoroacetic acid (TFA) (as indicated in the figures). Two solutions were used 

for the generation of the gradients: solution A (0.1% TFA) and solution B (100% 

acetonitrile), as described elsewhere (Ausió 1988). Cationic exchange 

chromatography was carried out on an ÄKTA Purifier 10 FPLC system using a 

HiTrap SP FF column (GE Healthcare). Elution was carried out with a gradient 

from 50 mM to 2 M NaCl in 50 mM sodium acetate (pH 6.0). Some of the fractions 

obtained in this way were dialysed, lyophilized and re-fractionated by HPLC as 

described above.  

 

Electrophoretic analyses 
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Acetic acid/urea polyacrylamide gel electrophoresis (AU-PAGE) was carried out as 

described elsewhere (Saperas et al. 1992). For the two-dimensional gel 

electrophoresis (2D-PAGE), AU-PAGE was used for the first dimension and 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli 

1970) was used for the second dimension. Slices of the lanes from the AU-PAGE 

were soaked for 20 minutes in the stacking SDS gel solution [6% acrylamide, 

0.16% bisacrylamide, 0.125 M Tris (pH 6.8), 0.1% SDS] under constant shaking 

prior to loading on top of the SDS gel. 

 
 
Mass spectrometry and amino acid analysis 
 
Matrix-assisted laser desorption/ionization (MALDI) was carried out as described 

previously (Hunt et al. 1996). Amino acid analysis was carried out as in Kasinsky 

et al. (2005).  
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Results 

During L. crocodilus spermiogenesis, round spermatids develop into a biflagellate 

sperm cell with modified head morphology (Fig. 1). The two flagella, already 

present in the spermatid phases, will grow to reach a final length of about 55 µm 

(Fig. 1a, c). 

 

Ultrastructure of the spermatid 

The early spermatid of L. crocodilus is a round cell with a voluminous nucleus in a 

central position, surrounded by a number of mitochondria which are very close to 

the nuclear envelope. Dispersed flat cisternae of endoplasmic reticulum (ER) can 

also be seen in the cytoplasm (Fig. 2a, b). A pair of centrioles is found in the basal 

pole of the cell and they give rise to a pair of flagella that will develop during this 

stage (Fig. 1b). The nuclear envelope membranes of this region are in intimate 

contact and present higher electron density than in the rest of the nucleus (Fig. 

2b). A dense fibrous pericentriolar structure is found associated with both the 

centrioles and the nuclear envelope (arrowheads in Fig. 2b).  

From the early stages of spermiogenesis, a high number of non-electron dense 

vesicles are found in the cytoplasm (Fig. 2c). These vesicles together with other 

cytoplasmic material are removed from the cell as cytoplasmic drops (arrows in 

Fig. 2c). These residual bodies are observed around the spermatid in the lumen of 

the spermatogenic tubules. They will be phagocyted by the Sertoli cells found next 

to the peritubular myoid cells of the walls of these tubules (Fig. 2d).  
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The middle spermatid is also a round cell but with a slightly reduced volume. At 

this stage, mitochondria have diminished in number and they are not found 

uniformly distributed around the nucleus anymore, but grouped in a position 

distant from the basal pole of the cell and close to the nuclear envelope (Fig. 2e). 

The nucleus loses its spherical shape in the apical pole, opposite to the centrioles. 

Its conformation flattens and undergoes a transition to a semi-spherical shape 

(Fig. 2e, g) 

At this stage, the fibrous pericentriolar structure that is observed in the early 

spermatid (Fig. 2b) undergoes a substantial enlargement and adopts a concave 

shape that surrounds the basal region of the nucleus and is associated with the 

centrioles (Fig. 2f). 

The advanced spermatid of L. crocodilus undergoes a dramatic change both in its 

internal and external morphology, and transforms from a rounded cell to a curved 

conical shaped cell. At the beginning of this transition, the cytoplasm from the 

spermatid apical zone invaginates to the interior of the nucleus, which adopts a “C” 

shape and exhibits an internal concave side and an external convex side (Fig. 3a). 

The mitochondria are close to the nuclear envelope along the concave side while 

the fibrous pericentriolar structure is located along the convex side of the nucleus 

(Fig. 3a). 

As the advanced spermatid develops further the nucleus adopts a more open “C” 

shape (Fig. 3b, c). In the final stages of development, the spermatid’s 

mitochondria distribute in two groups one at each end of the concave side of the 

nucleus (Fig. 3c). Two centrioles aligned in parallel can be observed in the convex 
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side somewhat displaced from its centre. Each of them exhibits the typical 

cylindrical structure consisting of 9 triplets of microtubules (Fig. 3c). 

 

Ultrastructure of the spermatozoon 

The spermatozoon of L. crocodilus is a biflagellate cell with a long and curved 

conical-shaped head of about 6 µm, a short neck, and two long flagella of 55 µm 

(Fig. 1c, d). Due to the form of the spermatozoon head, the following 

morphological regions can be established: an anterior end, a posterior end, a 

concave side (which arises from the apical pole of the spermatid) and a convex 

side (derived from the basal pole of the spermatid) (Fig. 1d). The posterior end of 

the head is wider than the anterior end, which looks like a cylindrical appendix 

(Fig. 1d). The nucleus occupies practically the whole volume of the head and 

shows the same elongated and curved conformation (Fig. 3d). 

Two sets of mitochondria, one at each end of the head, are present. They are 

small and with few cristae and are close to the nuclear envelope of the concave 

side (Fig. 3d, e). At the convex side and in close proximity to the posterior end, the 

cytoplasm expands slightly to form a short neck where the two centrioles align in 

parallel, adopting an orientation of about 60º with respect to the nuclear surface 

(Fig. 3f, g). The distal ends of both centrioles are oriented towards the posterior 

end of the spermatozoon, where the axonemes of the flagella emerge (Fig. 3f, g). 

The fibrous pericentriolar structure that was already apparent in the spermatid can 

also be observed in the spermatozoon neck at the cytoplasmic region between the 

nuclear envelope and the proximal end of both centrioles (Fig. 3f).  
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The axonemes of both flagella do not exhibit the canonical 9+2 pattern. Instead 

they display the 9+0 pattern as they only contain the nine peripheral microtubule 

doublets (Fig. 3h). The diameter of the flagellum is ~250 nm. However, sections of 

smaller diameter (~200 nm) corresponding to the distal end of the flagellum and 

showing one of the doublets displaced to the centre can also be observed (Fig. 3h, 

arrow).  

 

Chromatin condensation pattern and characterization of the SNBPs 

Fig. 4 summarizes the chromatin condensation pattern observed during the 

spermiogenesis of L. crocodilus. At the early spermatid stages chromatin has a 

fibrogranular appearance with granules of 25±5 nm in diameter. Condensation of 

the chromatin takes place starting from the nuclear periphery with the appearance 

of granular structures of 50±5 nm that gradually replace the 25±5 nm organization, 

which can still be observed in the centre of the nucleus (Fig. 4a). The nucleus is 

voluminous and round at this stage (Figs. 2a, b). During the transition to middle 

spermatid the nucleus not only begins to lose its spherical conformation but its 

chromatin undergoes a progressive condensation into larger globular structures of 

150±50 nm in diameter (Fig. 4b, see also Fig. 2g). These will progressively 

coalesce through the stage of advanced spermatid, giving rise to a highly 

condensed chromatin organization (Fig 4c, Fig. 3a,b,c) similar to that finally 

observed in the spermatozoon (Fig. 3e, g). 

The biochemical characterization of the proteins associated with this highly 

condensed chromatin was investigated. Fig. 5a shows the electrophoretic pattern 

of the proteins extracted with 0.4 N HCl from the nuclei of sperm and ripe testis 
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from L. crocodilus. For comparison purposes, histones (from chicken erythrocyte) 

and salmine (salmon protamine) are also shown. In both the sperm and the testis 

extracts, the protein bands appear distributed in two major regions according to 

their electrophoretic mobility: several protein bands that migrate in the histone 

region and a group of faster migrating electrophoretic bands (P in Fig. 5a) with a 

mobility intermediate between histones and salmine. The latter group consists of 

three proteins, P1, P2 and P3, which are quantitatively the most important of the 

extract. 

To further characterize the SNBPs of L. crocodilus, a sequential acid solubilisation 

of  these proteins was carried out (Fig. 5b). The sperm nuclei from ripe testes of L. 

crocodilus were divided into two aliquots. The first nuclei aliquot was used to 

perform a 0.4 N HCl extract as before (HCl in Fig. 5b), while the second aliquot 

was first extracted with 35% acetic acid (AC) and then reextracted with 0.4 N HCl 

(post acetic acid extraction) (PA) (Fig. 5b). Both linker (H1 family) and core 

histones (H2A, H2B, H3, H4) are typically extracted with 35% acetic acid 

(Subirana et al. 1973; Saperas et al. 1993a), while proteins with a higher 

arginine/lysine ratio such as protamines require stronger acids (0.4 N HCl) for their 

complete extraction. Although some other minor bands can be detected, the AC 

extract from L. crocodilus sperm nuclei consists mainly of histone proteins. This 

can be clearly ascertained from the two-dimensional gel as shown by their 

electrophoretic migration in the SDS-PAGE second dimension (Fig. 5c, AC). 

However, the faster migrating P fraction as well as some proteins that migrate in 

the histone mobility region are mostly found in the PA extract (see arrows in Fig. 

5b). This is indicative of a higher basicity of these proteins. Furthermore, the fact 

that these same proteins do not enter into the SDS gel of the 2D-PAGE (arrows in 
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Fig. 5c) strongly indicates that these proteins must be arginine-rich (Chiva and 

Subirana 1987; Chiva et al. 1990; Saperas et al. 1993a). 

Although in AU-PAGE the faster P fraction does not exhibit the high 

electrophoretic mobility which is characteristic of fish protamines (see lane S in 

Fig. 5a), the biochemical behaviour of these proteins during the acid extractions 

and in the 2D-PAGE suggests that the proteins present in this fraction (P1, P2 and 

P3) could be considered as protamines. Characterization of the HCl, AC and PA 

acid extracts was carried out by RP-HPLC (Fig. 6a, b). The electrophoretic 

analysis (Fig. 6b) reveals how the P fraction of L. crocodilus SNBPs corresponds 

to the first proteins to elute in this chromatography, as it would be expected from 

highly hydrophilic molecules. By contrast, when cationic exchange-FPLC was 

used to fractionate the same extracts, these proteins were the last to elute and 

required high concentrations of NaCl (from 1.6 M up to 2 M NaCl), as it would be 

expected from highly positively proteins which bind with higher strength in this type 

of chromatography. None of the gradients assayed with both types of columns nor 

the HPLC repurification of the FPLC purified samples allowed us to obtain the 

three proteins as separated peaks. However, selection of the best fractions from 

several of the chromatographies allowed us to carry out a preliminary amino acid 

analysis from protein fractions P1 and P3 (see Fig. 6e and Table 1). Also the 

molecular mass of P1, P2 and P3 proteins could be determined by mass 

spectrometry (Fig. 6d). 

Table 1 shows the amino acid composition and molecular mass of P1 and P3 from 

L. crocodilus compared to those of several fish and other vertebrate protamines. 

The amino acid analyses reveal that the basic nature of the P fraction of L. 

crocodilus SNBPs is the result of a high arginine content (42.2 mol percent and 
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46.2 mol percent for P1 and P3 fractions, respectively), which is highly 

characteristic of protamines, being the content of lysine much lower (4.4 mol 

percent and 3.5 mol percent, respectively). As with protamines, the content of the 

phosphorylatable amino acids serine+threonine is also significantly high. Mass 

spectrometry analysis of L. crocodilus protamines estimates the molecular mass of 

the proteins in the P fraction (10211 Da, 9770 Da and 9484 Da for P1, P2 and P3, 

respectively) (Fig. 6d). These values are much higher than the typically observed 

for other fish protamines (usually between 4000 Da and 5000 Da) (Table 1). 
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Discussion 

Ultrastructural studies 

Our observations of the early spermatid of L. crocodilus agree essentially with 

those of Mattei and Mattei (1976). Thus, we also observe in this stage a 

voluminous central nucleus; the existence of two parallel centrioles that give rise to 

two flagella of the 9+0 type (still short at this stage); and the presence of a dense 

fibrous pericentriolar formation. However, we add some more observations on the 

early spermatid, such as the chromatin organization (discussed below), or the 

perinuclear disposition of the mitochondria at this stage (that will be lost later on). 

We also show how this spermatid develops into the spermatozoon. 

According to Mattei et al. (1978) we observe that the liberation of cytoplasmic 

drops takes place from the early stages of spermiogenesis, without the active 

participation of the Sertoli cells. They do participate, however, in the phagocytosis 

of these residual bodies. Thus Sertoli cells with a high number of lysosomes are 

observed in the walls of the spermatogenic tubules (Fig. 2d). Also, the fact that a 

mix of spermatids and sperm cells can be seen in the lumen of the spermatogenic 

tubules (Fig. 2a, b) is an indication that spermatogenesis could be of the semi-

cystic type in this species. 

The changes in the nucleus morphology, from spherical to the final curved conical-

shape, are accompanied by an enlargement of the fibrous pericentriolar structure, 

which progressively extends through the basal pole of the nucleus. An electron 

dense plate is also described in the monoflagellate and biflagellate spermatozoa of 

the family Apogonidae (cardinal fish) (Lahnsteiner 2003; Fishelson et al. 2006). 
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The precise function and composition of this fibrous structure is not known. It could 

be constituted by microtubules or by fibrillar proteins other than tubulin. In L. 

crocodilus this fibrous pericentriolar structure found along the convex side of the 

nucleus could be involved in the nuclear morphogenesis process, playing a role in 

the remodelling of the nuclear (and the sperm head) shape; it could also be 

involved in the anchoring of the centrioles. Other possibilities such as a role in the 

fertilization process cannot be excluded (note in Fig. 3a how FS protrudes forward 

resembling the cylindrical appendix found in the anterior end of the spermatozoon 

head shown in Fig. 1d). 

At the same time a reorganization of the chondriome is observed and the size and 

number of mitochondria are reduced. During spermiogenesis, mitochondria usually 

move towards the basal pole of the cell, where the flagellum is found. Instead, in L. 

crocodilus, mitochondria move far away from the centrioles, to be finally found at 

both ends of the concave side and close to the nuclear envelope in the 

spermatozoon (see Fig. 2a, e, 3a, d, and the detail in Fig 3e). In the Myctophidae 

Symbolophorus californiensis and Notoscopelus sp., small spherical mitochondria 

are also found in the concave side in close contact with the nuclear membrane. 

However, according to Hara (2007), they are numerous and distributed along all 

the length of the nucleus. A similar event is observed in Elopomorpha fishes, 

which also presents an elongated sperm nucleus. In this group, mitochondria 

migrate during spermiogenesis to settle frequently at the tip of the nucleus 

opposite the end at which the centrioles are located. However, only one 

mitochondrion is found in this case, as mitochondria fuse into a single structure. 

The flagellum is also of the 9+0 pattern, but it is located perpendicular to the 

elongated nucleus. Another difference is that the proximal centriole of the 
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Elopomorpha is extended as two elongate bundles of 4 and 5 triplets running 

towards the tip of the elongate nucleus, which may extend as a pseudoflagellum 

(Mattei 1991a, 1991b; reviewed in Jamieson 1991, Jamieson and Mattei 2009). 

Instead L. crocodilus presents biflagellarity. 

While uniflagellate spermatozoa are mostly observed in fishes, biflagellarity has 

been reported in some species of the orders Polypteriformes (bichirs) (Mattei 

1970), Ceratodontiformes (lungfishes) (Boisson et al. 1967; Mattei 1970; Pukerson 

et al. 1974), and four orders among teleost fishes: Siluriformes (catfishes) 

(Jamieson 1991, 2009a; Shain 2006; Spadella et al. 2006; Quagio-Grassiotto et al. 

2011), Myctophiformes (lanternfishes) (Mattei and Mattei 1976, Hara 2007), 

Batrachoidiformes (toadfishes) (Hoffman 1963; Casas et al. 1981; Stanley 1965), 

and Perciformes (Mattei and Mattei 1978, 1984; Yao et al. 1995; Mattos et al. 

2002; Lahnsteiner 2003; Fishelson et al. 2006) (more details can be found in 

Jamieson 2009b). Uniflagellate and biflagellate species can be found sometimes 

in the same order and even in the same family. For instance, among 

Ceratodontiformes, Protopterus (African lungfish, Proptopteridae) is biflagellate 

(Boisson et al. 1967; Mattei 1970; Pukerson et al. 1974) while Neoceratodus 

(Australian lungfish, Ceratodontidae) has one flagellum (Jespersen 1971); in 

Siluriformes, there are families such as Cetopsidae, Aspredinidae, 

Nematogenyidae or Malapteruridae that are biflagellate, while others like 

Pimelodidae, Diplomystidae, Siluridae or Clariidae are uniflagellate  (Jamieson 

1991, 2009a; Shain 2006; Spadella et al. 2006; Quagio-Grassiotto et al. 2011). 

Both uniflagellate and biflagellate species have been reported in the family 

Doradidae (Siluriformes) (Quagio-Grassiotto et al. 2011). It is also remarkable that 

in Apogonidae (Perciformes), sperm with one or two flagella can be found in a 
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same species, percentage of each type differing in males of different lengths, as 

well as in different species (Fishelson et al. 2006). 

Among Myctophiformes, Lampanyctodes hectoris and Diaphus danae are said to 

have aflagellate sperm (Young et al. 1987), although this statement needs 

confirmation (see also Jamieson 1991, pp. 159-160). Thus Myctophidae could 

include aflagellate, uniflagellate and biflagellate sperm, although it has to be 

ascertained whether this diversity of sperm structure indicates polyhyly (Jamieson 

2009b). In this sense, it would be very interesting to study the sperm cells of more 

myctophiform species. 

Until now, Elopomorpha is the only other group of fishes with the 9+0 axoneme 

pattern. No phylogenetic significance can be attached to these resemblances to 

Lampanyctus nor is their functional significance clear (Jamieson 1991). 

Thus, to our knowledge, and as already stated by Mattei and Mattei (1976), 

Myctophidae is the only group of fishes where biflagellarity and the 9+0 axoneme 

structure have been found to coexist. 

Note: All the fish species and groups mentioned follow Nelson’s (2006) 

classification. 
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SNBPs and chromatin condensation 

Although some amount of histones and other basic proteins of similar 

electrophoretic mobility are found in the sperm cell of L. crocodilus, the main 

SNBPs found in this species are proteins P1, P2 and P3. The compositional 

analysis of almost pure fractions of P1 and P3 (Table 1) shows that they can be 

classified as protamines. They have a high content of basic amino acids (around 

50 mol%) mainly constituted by arginine, very low presence (if any) of acidic and 

aromatic amino acids, and the presence of phosphorylatable amino acids (serine 

and threonine). The only differing trend is the amount of alanine, which is higher 

than usual. One of the typical characteristics of protamines is that arginines are 

found associated in clusters. Although not easy to do, it would be very interesting 

to sequence these proteins to verify if the high amount of arginine that they 

present is also organized in clusters. 

L. crocodilus protamines, however, differ from the other known fish protamines in 

their size. Fish protamines are typically small proteins, usually constituted by 30-

40 amino acids, with molecular masses around 4000 and 5000 Da. Although there 

are some cases of somewhat bigger protamines in fishes (among the 

Gasterosteiformes and the Scorpaeniformes) (Giménez-Bonafé et al. 2000; 

Frehlick et al. 2006), they are no larger than 6700 Da (Table 1). In contrast, L. 

crocodilus protamines present estimated molecular masses of 9500-10200 Da 

(Fig. 6d), about double the value of most fish protamines and closer to birds’ 

protamines (Table 1). In the case of birds it has been suggested that the presence 

of some internal homologies in the Gallus protamine sequence and its increased 

length compared to fish protamines might be due to a partial duplication event 

during the evolution of birds (Dixon et al. 1985). We do not know at present if a 
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gene duplication could be involved in the case of L. crocodilus. Another possibility 

would be that proteins in the P fraction of L. crocodilus corresponded to especially 

arginine-enriched PL-type proteins such as that found in Chaetopterus 

variopedatus (De Petrocellis et al. 1983; Piscopo et al. 1993; Fioretti et al. 2012).  

 

One common feature observed during the initial stages of spermiogenesis in 

several species is the disappearance of the structural differences between 

euchromatin and heterochromatin, with a nuclear chromatin organization 

consisting of uniformly distributed 20 nm granules (Ribes et al. 2001; Kurtz et al. 

2009; Chiva et al. 2011). In a previous study, it has been proposed that this can be 

considered to be the ancestral model of nuclear differentiation in animal 

spermiogenesis (Kurtz et al. 2009). According to this work, histones are partially 

acetylated during the early stages of spermiogenesis, resulting into a 

homogeneous chromatin structure consisting of 20 nm granules that can be 

observed in a number of species. In the most simple cases, histones are later 

deacetylated, leading to a certain degree of chromatin condensation. This is, for 

instance, the case for the fish Sparus aurata, which has the H-type SNBPs (Kurtz 

et al. 2009). In more advanced cases, protamines displace the acetylated histones 

leading to a much higher degree of chromatin condensation. In the fish 

Dicentrarchus labrax, where a canonical fish protamine of 34 amino acids replaces 

histones during spermiogenesis (Saperas et al. 1993b), granules of about 20 nm 

can be observed in the earlier stages. However, as spermiogenesis progresses, 

these granules undergo a chromatin remodelling into progressively larger coarse 

granules of about 80 nm, concomitantly with substitution of histones by 
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protamines. Finally these coarse granules coalesce resulting in an almost 

uniformly packaged chromatin (Kurtz el al. 2009). 

In the case of L. crocodilus a similar simple condensation pattern is observed 

starting with 25 nm fibrogranular structures, which would be equivalent to those 

described above for other species. Progressively, granules of about 50±5 nm and 

150±50 nm develop, which finally coalesce to produce the highly condensed 

chromatin observed in the sperm cell. Although we do not have direct 

experimental evidence, most probably the final 150±50 nm granules are 

constituted by protamine-associated DNA. The presence of intermediate sized 

granules is likely related to the fact that L. crocodilus SNBPs do not exclusively 

consist of protamines but also of a certain amount of histones and other more 

basic proteins. The fusion of the coarse granules observed in the final stages of 

spermiogenesis in this work, as well as in a number of species is probably related 

to protamine dephosphorylation (Kurtz et al. 2009; Chiva et al. 2011). It has been 

described by several authors (Oliva and Dixon 1991; Lewis et al. 2003; Martínez-

Soler et al. 2007) that protamines are phosphorylated at the time when they 

replace histones and they are subsequently dephosphorylated during the final 

stages of spermiogenesis. This enhances protein-DNA interaction producing the 

homogeneous (or quasi-homogeneous) chromatin of the sperm cell. 

 

In conclusion, in the fish Lampanyctus crocodilus (Myctophiformes, Myctophidae) 

a number of particularities converge: the presence of a biflagellate spermatozoon, 

the 9+0 axoneme pattern, an unusual redistribution of mitochondria during 

spermiogenesis, and the presence of the largest protamines known to date in 
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fishes. It would be very interesting to investigate more myctophiform species to 

check how widespread these characteristics are within the group (especially with 

regard to the number and type of flagella). 

 

 



24 
 

Acknowledgements 

We are very grateful to José Antonio Caparrós and the crew of the fishing boats 

Nus and l’Òstia for kindly providing us with the biological material. We are also 

thankful to Raquel Sánchez-Giraldo for her help with sample transportation and for 

her assistance with the FPLC, as well as Enric Huguet and Sara K. Murase for 

their help with the translation from Japanese. Microscopic observations were 

performed in the Scientific Technical Services of the University of Barcelona. This 

work was supported in part by Fundació Bosch i Gimpera (Universitat de 

Barcelona) to E.R., by grant BFU2009-10380 (Ministerio de Ciencia e Innovación, 

Spain), FEDER, and AQU-2009-SGR-1208 (Generalitat de Catalunya) to N.S., 

and by a Natural Sciences and Engineering Research Council of Canada 

(NSERC) 46399-2012 grant to J.A. 

 



25 
 

References 

Ando T, Watanabe S (1969) A new method for fractionation of protamines and the 
amino acid sequence of one component of salmine and three components of 
iridine. Int J Protein Res 1:221-224 

Ausió J (1988) An unusual cysteine-containing histone H1-like protein and two 
protamine-like proteins are the major nuclear proteins of the sperm of the 
bivalve mollusc Macoma nasuta. J Biol Chem 263: 10141-10150  

Ausió J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol 
Chem 274:31115-31118 

Boisson C, Mattei X, Mattei C (1967) Troisième note sur la spermiogenèse de 
Protopterus annectens (Dipneuste) du Sénégal. Institut Fondamental d’Afrique 
Noire. Bulletin série A (Sciences Naturelles) 29:1097-1121 

Buesa C, del Valle L, Saperas N, Goethals M, Lloris D, Chiva M (1998) Primary 
structure of scombrine α: two different species with an identical protamine. 
Comp Biochem Physiol 119B:145-149 

Casas MT, Muñoz-Guerra S, Subirana JA (1981) Preliminary report on the 
ultrastructure of chromatin in the histone containing spermatozoa of a teleost 
fish. Biol Cell 40:87-92 

Chiva M, Kasinsky HE, Mann M, Subirana JA (1988) On the diversity of sperm 
basic proteins in the vertebrates. VI. Cytochemical and biochemical analysis in 
birds. J Exp Zool 245:304-317 

Chiva M, Lafargue F, Rosenberg E, Kasinsky HE (1992) Protamines, not histones, 
are the predominant basic proteins in sperm nuclei of solitary ascidian 
tunicates. J Exp Zool 263:338-349 

Chiva M, Rosenberg E, Kasinsky HE (1990) Nuclear basic proteins in mature 
testis of the ascidian tunicate Styela montereyensis. J Exp Zool 253:7-19 

Chiva M, Saperas N, Ribes E (2011) Complex chromatin condensation patterns 
and nuclear protein transitions during spermiogenesis: Examples from mollusks. 
Tissue Cell 43:367-376 

Chiva M, Subirana JA (1987) Mètode per a obtenir protamines testiculars riques 
en arginina. IV Jornades de Biologia Molecular (Societat Catalana de Biologia), 
pp 77-80 

Daban M, Martinage A, Kouach M, Chiva M, Subirana JA, Sautière P (1995) 
Sequence analysis and structural features of the largest known protamine 
isolated from the sperm of the archaeogastropod Monodonta turbinata. J Mol 
Evol 40:663-670 



26 
 

De Petrocellis B, Parente A, Tomei L, Geraci G (1983) An H1 histone and a 
protamine molecule organize the sperm chromatin of the marine worm 
Chaetopeterus variopedatus. Cell Differ. 12:129-135. 

Dixon GH, Aiken JM, Jankowski JM, McKenzie DI, Moir R, States JC (1985) 
Organization and evolution of the protamine genes of salmonid fishes. In: 
Reeck G, Goodwin G, Puigdomènech P (eds) Chromosomal proteins and gene 
expression. Plenum Press, New York, pp 287-314 

Eirín-López JM, Ausió J (2009) Origin and evolution of chromosomal sperm 
proteins. Bioessays 31:1062-1070 

Fioretti FM, Febbraio F, Carbone A, Branno M, Carratore V, Fucci L, Ausió J, 
Piscopo M (2012) A sperm nuclear basic protein from the sperm of the marine 
worm Chaetopterus variopedatus with sequence similarity to the arginine-rich 
C-termini of chordate protamine-likes. DNA Cell Biol. 31:1392-402 

Fishelson L, Delarea Y, Gon O (2006) Testis structure, spermatogenesis, 
spermatocytogenesis, and sperm structure in cardinal fish (Apogonidae, 
Perciformes). Anat Embryol 211:31-46 

Frehlick LJ, Eirín-López JM, Prado A, Su HW, Kasinsky HE, Ausió J (2006) Sperm 
nuclear basic proteins of two closely related species of scorpaeniform fish 
(Sebastes maliger, Sebastolobus sp.) with different sexual reproduction and the 
evolution of fish protamines. J Exp Zool 305A:277-287 

Giménez-Bonafé P, Laszczak M, Kasinsky HE, Lemke MJ, Lewis JD, Iskandar M, 
He T, Ikonomou MG, White FM, Hunt DF, Chiva M, Ausió J (2000) 
Characterization and evolutionary relevance of the sperm nuclear basic proteins 
from stickleback fish. Mol Reprod Dev 57:185-193 

Hara M (2007) Ultrastructure of spermatozoa of two species of Myctophidae; 
Symbolophorus californiensis and Notoscopelus sp. Japan J Ichthyol 54:41-46 

Hara M, Okiyama M (1998) An ultrastructural review on the spermatozoa of 
Japanese fishes. Bulletin of the Ocean Research Institute, University of Tokyo 
33:1-138 

Hoffman RA (1963) Gonads, spermatic ducts, and spermatogenesis in the 
reproductive system of male toadfish, Opsanus tau. Chesapeake Science 4:21-
29 

Hulley PA (1984) Myctophidae. In: Whitehead PJP, Bauchot ML, Hureau JC, 
Nielsen J, Tortonese E (eds) Fishes of the North-eastern Atlantic and the 
Mediterranean (FNAM). UNESCO, Paris, vol I, pp 429-483 

Hunt JG, Kasinsky HE, Elsey RM, Wright CL, Rice P, Bell JE, Sharp DJ, Kiss AJ, 
Hunt DF, Arnott DP, Russ MM, Shabanowitz J, Ausió J (1996) Protamines of 
reptiles. J Biol Chem 271:23547-23557 

Jamieson BGM (1991) Fish evolution and systematics: Evidence from 
spermatozoa. Cambridge University Press, Cambridge 



27 
 

Jamieson BGM (2009a) Reproductive biology and phylogeny of fishes (agnathans 
and bony fishes): phylogeny, reproductive system, viviparity, spermatozoa. 
Jamieson BGM (ed) Reproductive biology and phylogeny series, vol 8, part A, 
Science Publishers, Enfield (NH), pp. 1-788 

Jamieson BGM (2009b) Ultrastructure of spermatozoa: Neoteleostei: 
Stenopterygii, Cyclosquamata, Scopelomorpha and Paracanthopterygii. In: 
Reproductive biology and phylogeny of fishes (agnathans and bony fishes): 
phylogeny, reproductive system, viviparity, spermatozoa. Jamieson BGM (ed) 
Reproductive biology and phylogeny series, vol 8, part A, Science Publishers, 
Enfield (NH), pp 415-445 

Jamieson BGM, Mattei X (2009) Ultrastructure of spermatozoa: Elopomorpha and 
Clupeomorpha. In: Reproductive biology and phylogeny of fishes (agnathans 
and bony fishes): phylogeny, reproductive system, viviparity, spermatozoa. 
Jamieson BGM (ed) Reproductive biology and phylogeny series, vol 8, part A, 
Science Publishers, Enfield (NH), pp 255-285 

Jespersen Å (1971) Fine structure of the spermatozoon of the Australian lungfish 
Neoceratodus forsteri (Krefft). J Ultrastr Res 37:178-185 

Kasinsky HE, Frehlick LJ, Su HW, Ausió J (2005) Protamines in the internally 
fertilizing neobatrachian frog Eleutherodactylus coqui. Mol Reprod Dev 70:373-
381 

Kurtz K, Saperas N, Ausió J, Chiva M (2009) Spermiogenic nuclear protein 
transitions and chromatin condensation. Proposal for an ancestral model of 
nuclear spermiogenesis. J Exp Zool (Mol Dev Evol) 312B:149-163 

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the 
head of the bacteriophage T4. Nature 227:680-685 

Lahnsteiner F (2003) The spermatozoa and eggs of the cardinal fish. J Fish Biol 
62:115-128 

Lahnsteiner F, Patzner RA (2007) Sperm morphology and ultrastructure in fish. In: 
Alavi SMH, Cosson JJ, Coward K, Rafiee G (eds) Fish spermatology. Alpha 
Science International Ltd, Oxford, pp 1-61 

Lewis J, Song Y, de Jong M, Bagha S, Ausió J (2003) A walk through vertebrate 
and invertebrate protamines. Chromosoma 111:473-482 

Martínez-Soler F, Kurtz K, Ausió J, Chiva M (2007) Transition of nuclear proteins 
and chromatin structure in spermiogenesis of Sepia officinalis. Mol Reprod Dev 
74:360-370 

Mattei C, Mattei X (1978) La spermiogenèse d’un poisson téléostéen 
(Lepadogaster lepadogaster). II-Le spermatozoide. Biologie Cellulaire 32:267-
274 

Mattei C, Mattei X (1984) Spermatozoïdes biflagellés chez un poisson téleóstéen 
de la famille Apogonidae. J Ultrastr Res 88:223-228 



28 
 

Mattei C, Mattei X, Marchand B (1978) Elimination de cytoplasme par les 
spermatides jeunes de deux poissons téléostéens: Citharinus sp. et 
Lampanyctus sp. C R Soc Biol 172:393-396 

Mattei X (1970) Spermiogenèse comparée des poissons. In: Baccetti B (ed) 
Comparative Spermatology. Academic Press, New York, pp 57-69 

Mattei X (1991a) Spermatozoon ultrastructure and taxonomy in fishes. In: Baccetti 
B (ed) Proceeding of the VIth International Congress on Spermatology, Siena. 
Raven Press, New York, pp 985-990 

Mattei X (1991b) Spermatozoon ultrastructure and its systematic implications in 
fishes. Can J Zool 69:3038-3055 

Mattei X, Mattei C (1976) Spermatozoïdes à deux flagelles de type 9+0 chez 
Lampanyctus sp. (poisson Myctophidae). J Microsc Biol Cell 25:187-188 

Mattos E, Santos MNS, Azevedo C (2002) Biflagellate spermatozoon structure of 
the hermaphrodite fish Satanoperca jurupari (Heckel, 1840) (Teleostei, 
Cichlidae) from the Amazon river. Braz J Biol 62:847-852 

Nelson JS (2006) Fishes of the world. 4th edition. John Wiley & Sons, Hoboken, 
NJ 

Okamoto Y, Muta E, Ota S (1987) Primary structures of M6 and M7 of mugiline 
beta (Mugil japonicus). J Biochem 101:1017-1024 

Oliva R, Dixon GH (1989) Chicken protamine genes are intronless. The complete 
genomic sequence and organization of the two loci. J Biol Chem 264:12472-
12481 

Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-
protamine replacement reaction. Prog. Nucleic Acid Res. Mol. Biol. 40:25-94 

Puckerson ML, Jarvis JUM, Luse SA, Dempsey EW (1974) X-ray analysis coupled 
with scanning and transmission electron microscopic observations of 
spermatozoa of the African lungfish, Protopterus aethiopicus. J Zool (London) 

172:1-12 

Piscopo M, Tomei L, De Petrocellis L, Geraci G (1993) Anion-mediated lysine-
arginine interaction. Evidence in Chaetopterus variopedatus sperm protamine. 
FEBS Lett. 334:125-127. 

Quagio-Grassiotto I, Ortiz RJ, Sabaj Pérez MH, Oliveira C (2011) Sperm of 
Doradidae (Teleostei: Siluriformes) Tissue Cell 43:8-23 

Ribes E, Sánchez de Romero LD, Kasinsky HE, del Valle L, Giménez-Bonafé P, 
Chiva M (2001) Chromatin reorganization during spermiogenesis of the mollusk 
Thais hemostoma (Muricidae). Implications for sperm nuclear morphogenesis in 
cenogatropods. J Exp Zool 289:304-316 



29 
 

Saperas N, Ausió J, Lloris D, Chiva M (1994) On the evolution of protamines in 
bony fish: Alternatives to the “retroviral horizontal transmission” hypothesis. J 
Mol Evol 39:282-295 

Saperas N, Chiva M, Ausió J (1992) Purification and characterization of the 
protamines and related proteins from the sperm of a tunicate, Styela plicata. 
Comp Biochem Physiol B 103:969-974 

Saperas N, Lloris D, Chiva M (1993a) Sporadic appearance of histones, histone-
like proteins, and protamines in sperm chromatin of bony fish. J Exp Zool 
265:575-586 

Saperas N, Ribes E, Buesa C, García-Hegart F, Chiva M (1993b) Differences in 
chromatin condensation during spermiogenesis in two species of fish with 
distinct protamines. J Exp Zool  265:185-194 

Shain AAB (2006) Semicystic spermatogenesis and biflagellate spermatozoon 
ultrastructure in the Nile electric catfish Malapterus electricus (Teleostei: 
Siluriformes: Malapteruridae) Acta Zoologica 87:215-227 

Spadella MA, Oliveira C, Quagio-Grassiotto I (2006) Occurrence of biflagellate 
spermatozoa in Cetopsidae, Aspredinidae, and Nematogenyidae (Teleostei: 
Ostariophysi: Siluriformes) Zoomorphology 125:135-145 

Stanley HP (1965) Electron microscopic observations on the biflagellate 
spermatids of the teleost fish Porichthys notatus. Anatomical Record 151:477 

Subirana JA, Cozcolluela C, Palau J, Unzeta M (1973) Protamines and other basic 
proteins from spermatozoa of molluscs. Biochim Biophys Acta 317:364-379 

Suzuki K, Ando T (1972) Studies on protamines. XVII. The complete amino acid 
sequence of clupeine YI. J Biochem 72:1433-1446 

Takamune K, Nishida H, Takai M, Katagiri C (1991) Primary structure of toad 
sperm protamines and nucleotide sequence of their cDNAs. Eur J Biochem 
196:401-406 

Young JW, Blaber SJM, Rose R (1987) Reproductive biology of three species of 
midwater fishes associated with continental slope of eastern Tasmania, 
Australia. Marine Biology 95:323-332 

Yao Z, Emerson CJ, Crim LW (1995) Ultrastructure of the spermatozoa and eggs 
of the ocean pout (Macrozoarces americanus L.), an internally fertilizing marine 
fish. Mol Reprod Dev 42:58-64 

Yulikova EP, Rybin VK, Silaev AB (1979) The primary structure of stellin A. Bioorg. 
Khim. 5:5-10 

 



30 
 

Figure legends 

 

Fig. 1 Scanning electron micrographs (SEM) of the spermatid and spermatozoon 

of Lampanyctus crocodilus. a General view of the spermatid. b View of the head, 

neck and the two flagella of the spermatid. c General view of the spermatozoon. d 

Magnified view of the spermatozoon where the different morphological regions of 

the head can be identified: anterior end (1), posterior end (2), concave side (3) and 

convex side (4) (see text for more details). C1, C2, centrioles; F1, F2, flagella; H, 

head; Ne, neck. Bars 10 µm (a,c), 1 µm (b, d). 

 

Fig. 2 Transmission electron micrographs (TEM) of spermatids of L. crocodilus at 

different stages of development. a, b Early spermatid. The round nucleus and one 

of the flagella can be seen. Chromatin presents a fibrogranular appearance. 

Cisternae of endoplasmic reticulum and mitochondria are observed around the 

nucleus. The arrowheads point to the fibrous pericentriolar structure. c Early 

spermatid in the process of shedding a large cytoplasmic drop. The arrows 

indicate residual bodies or cytoplasmic drops produced during the process of 

spermiogenesis. d Image of the spermatogenic tubule wall and lumen. Sertoli cells 

phagocytosis of the cytoplasmic drops emitted by the spermatids in the lumen of 

the tubule can be seen. e Middle spermatid. The nucleus starts losing its spherical 

appearance at the apical pole region, while mitochondria start grouping at the 

nuclear envelope near this area. f Detail of the basal region of the middle 

spermatid. One of the centrioles and the axoneme of one of the flagella can be 

observed. The pericentriolar structure attached to the nuclear envelope of the 

basal pole of the nucleus can also be seen. In the nucleus, a large number of 
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granules of 50±5 nm are observed. g Section of a more developed middle 

spermatid showing granular structures of 150±50 nm in the nucleus. C, centriole; 

Cd, cytoplasmic drops; ER, endoplasmic reticulum; F, flagellum; FS, fibrous 

pericentriolar structure; M, mitochondria; MC, peritubular myoid cells; N, nucleus; 

SC, Sertoli cells; SZ, spermatozoon; V, non-electron dense vesicles. Bars 1 µm (a-

c,e), 6 µm (d), 0.5 µm (f,g). 

 

Fig. 3 TEM of the advanced spermatid and spermatozoon of L. crocodilus. a-c 

Advanced spermatid. The nuclear morphogenesis transition during 

spermiogenesis gives rise to a curved conical-shaped nucleus. Mitochondria 

locate in two groups at both ends of the concave side of the nucleus, while the 

fibrous pericentriolar structure locates in its convex side. Chromatin appears more 

condensed due to the agglutination of the 150±50 nm granules. d-e Oblique 

sections at the head level of the spermatozoon. The nucleus occupies most of the 

spermatozoon head volume and its chromatin shows the same degree of 

condensation as in the advanced spermatid. Mitochondria are found at both ends 

of the head. f-g Longitudinal sections of the sperm head, neck piece and the two 

flagella: The fibrous pericentriolar structure can be observed in the neck between 

the nucleus and the two centrioles, which arrange in parallel at an angle of about 

60º with respect to the nucleus. h Cross section of the flagella showing the 9+0 

doublet axoneme configuration. The arrow indicates the section of a distal end of a 

flagellum where one of the doublets is displaced to the centre.  

C1, C2, centrioles; F1, F2, flagella; FS, fibrous pericentriolar structure; H, head; M, 

mitochondria; N, nucleus; Ne, neck; 1-4, as in Fig. 1. Bars 1 µm (a-d), 0.5 µm (e-

g); 200 nm (h). 
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Fig. 4 Chromatin condensation pattern during L. crocodilus spermiogenesis 

(TEM). a Early spermatids: Fibrogranular structures of 25±5 nm predominate in the 

central region and granules of 50±5 nm can be observed in the periphery of the 

nucleus. b Middle spermatid: Chromatin consists mainly of granular structures of 

150±50 nm. c Advanced spermatid and spermatozoon: The chromatin is much 

more condensed as a result of the agglutination of the 150±50 nm granules shown 

in b. Bars 0.2 µm. 

 

Fig. 5 Electrophoretic analyses of the SNBPs of L. crocodilus. a AU-PAGE of a 0.4 

N HCl sperm (Sp) or ripe testis (T) extract (from one specimen in each case). CM, 

Chicken erythrocyte histone marker; S, salmine (fish protamine marker from 

salmon); P, protamines. b AU-PAGE of ripe testes acid extracts obtained from 

several specimens by either direct treatment with 0.4 N HCl, or by sequential 35% 

acetic acid (AC) and 0.4 N HCl after extraction with 35% acetic acid (PA). Histone 

H1 and core histones (H2A, H2B, H3, H4) are identified. The arrows on the right 

side point to the electrophoretic protein bands that do not appear in the second 

dimension SDS-PAGE shown in (c). c Two-dimensional gel electrophoretic 

analysis of the AC and HCl extracts shown in (b). First dimension (1D) as in (b); 

second dimension (2D) in SDS-PAGE (15% acrylamide). Arrows as in (b). 

 

Fig. 6 Biochemical characterization of L. crocodilus SNBPs. a Reversed phase 

HPLC fractionation of SNBPs extracted with 0.4 N HCl (HCl), 35% acetic acid 
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(AC), and 0.4 N HCl after extraction with 35% acetic acid (PA) (see Materials and 

methods for more details). The dotted line corresponds to the acetonitrile elution 

gradient. P, protamines; CH, core histones.  b AU-PAGE analysis of some of the 

fractions collected along the elution profile of the HCl sample shown in (a). The 

fraction numbers are indicated on top of the gel. HCl, PA and AC, are the same as 

in (a); CM; chicken erythrocyte marker. c FPLC analysis of an HCl extract. The 

inset shows an AU-PAGE of the proteins of the combined fractions indicated with 

Roman numerals. The dotted line corresponds to the NaCl elution gradient. d 

Matrix-assisted laser desorption/ionization (MALDI) of fraction 36 in (b) (inset). e 

AU-PAGE of the HPLC and FPLC/HPLC protein fractions used for amino acid 

analyses (see Table 1). 
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Table 1 Amino acid composition (mol%) of Lampanyctus crocodilus protamines (P1 and P3 fractions showed in Fig. 6e) compared to several sequenced protamines from fish and other vertebrate 

groups. 

 

 
t, traces; u, unknown. (1) This work; (2) Yulikova et al. 1979; (3) Suzuki and Ando 1972; (4) Ando and Watanabe 1969; (5) Okamoto et al. 1987; (6) Giménez-Bonafé et al. 2000; (7) Frehlick et al. 
2006; (8) Saperas et al. 1993b; (9) Buesa et al. 1998; (10) Takamune et al. 1991; (11) Oliva and Dixon 1989. 
Asx, Asp or Asn; Glx, Glu or Gln; (*) This value could range from 0 (all Asn and Gln) to this maximum value (all Asp and Glu). 
 
 

 
Amino 
acid 

FISH 

AMPHIBIANS BIRDS 
O. Myctophiformes 

O. 
Acipenseriformes 

O. 
Clupeiformes 

O. 
Salmoniformes 

O. 
Mugiliformes 

O. 
Gasterosteiformes 

O. 
Scorpaeniformes 

O. Perciformes 

Lampanyctus crocodilus1 
Acipenser 
stellatus 

Clupea 
pallasii 

Onkorhynchus 
keta 

Mugil 
cephalus Gasterosteus 

wheatlandi6 
Sebastolobus sp.7 

Dicentrarchus 
labrax8 

Scomber 
scombrus 

Bufo 
japonicus Gallus 

domesticus11 
P1 P3 Stelline A2 Clupeine YI3 Salmine AI4 

Mugiline β 
M65 

Scombrine α9 P110 

Lys 4.4 3.5 18.5 - - - 2.1 3.7 - - 5.1 - 

His - - 11.1 - - - 2.1 - - - 10.3 - 

Arg 42.2 46.2 44.4 64.5 65.6 62.5 44.7 48.1 61.8 64.7 43.6 58.1 

Asx 0.3 0.3 - - - - - 1.9 (Asn) - - 2.6 (Asp) - 

Thr 7.7 7.1 3.7 6.5 - 3.1 6.4 11.1 5.9 2.9 7.7 1.6 

Ser 4.2 3.8 7.4 9.7 12.5 3.1 4.3 5.6 5.9 5.9 5.1 16.1 

Glx 1.1 1.2 - - - 3.1 (Glu) 2.1 (Gln) 1.9 (Gln) 
5.8 (2.9 Glu. 

2.9 Gln) 
- 2.6 (Gln) - 

Pro 6.4 6.2 - 6.5 9.4 9.4 8.5 5.6 5.9 5.9 10.3 3.2 

Gly 2 1.2 3.7 3.2 6.2 - 4.3 3.7 - - - 8.1 

Ala 21.4 21 7.4 6.5 - 6.2 6.4 9.3 5.9 8.8 5.1 3.2 

Cys - t - - - - - - - - - - 

Val 8.4 7.6 - - 6.2 6.2 12.8 7.4 8.8 11.8 5.1 1.6 

Met 0.6 0.3 - - - - - - - - - 1.6 

Ile 0.6 0.9 - 3.2 - 6.2 2.1 - - - - - 

Leu 0.7 0.4 3.7 - - - 4.3 1.9 - - - - 

Tyr - 0.3 - - - - - - - - 2.6 6.5 

Phe - - - - - - - - - - - - 

Trp - - - - - - - - - - - - 

              

Arg+Lys 46.6 49.7 62.9 64.5 65.6 62.5 46.8 51.8 61.8 64.7 48.7 58.1 

Asp+Glu ≤1.4* ≤1.5* - - - 3.1 - - 2.9 -  - 

              

Number 
of amino 
acids 

u u 27 31 32 32 47 54 34 34 39 62 

Molecular 
mass (Da) 

10211 9484 3532.1 4111.8 4249.9 4317.1 5818.9 6715.8 4565.3 4533.4 5090.8 8117.3 


