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Abstract
Objective—To investigate whether genetic modifiers of CF lung disease also predispose to
CBAVD in association with CFTR mutations. We tested the hypothesis that polymorphisms of
TGFB1 (transforming growth factor) (rs 1982073, rs 1800471) and EDNRA (endothelin receptor
type A) (rs 5335, rs 1801708) are associated with the CBAVD phenotype.

Design—Genotyping of subjects with clinical CBAVD.

Setting—Outpatient and hospital based clinical evaluation.

Patients—DNA samples from 80 CBAVD subjects and 51 healthy male controls from various
regions of Europe. One of the largest genetic studies of this disease to date.

Interventions—None.

Main outcome measures—Genotype analysis.
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Results—For SNP rs 5335, we found increased frequency of the CC genotype among CBAVD
subjects. The difference was significant among Turkish patients vs. controls (45.2% vs. 19.4%,
p<0.05), and between all cases vs. controls (36% vs. 15.7%, p<0.05). No associations between
CBAVD penetrance and polymorphisms rs1982073, rs1800471 or rs1801708 were observed.

Conclusions—Our findings indicate that EDNRA polymorphism rs 5335 may be associated
with CBAVD penetrance. To our knowledge, this is the first study to investigate genetic modifiers
relevant to CBAVD.

Keywords
congenital bilateral absence of the vas deferens; CBAVD; CFTR; cystic fibrosis; CF; modifier
gene; TGFβ; EDNRA

INTRODUCTION
Cystic fibrosis (CF) is a common autosomal recessive disorder among Caucasians, and
affects one in 3500 live births in the United States (1). The disease is caused by mutations in
the cystic fibrosis transmembrane conductance regulator (CFTR) gene (2–4). CF is
characterized by lung, pancreatic, liver and other exocrine glandular abnormalities.
Approximately 98% of males with CF are infertile, and lack the vas deferens bilaterally (5).
More than 1500 disease-causing CFTR mutations have been identified (6). Certain
mutations have also been implicated in a variety of CFTR-related pathologic conditions such
as disseminated bronchiectasis, allergic bronchopulmonary aspergillosis, diffuse
panbronchiolitis, recurrent idiopathic pancreatitis, giant nasal polyposis, and congenital
bilateral absence of the vas deferens (CBAVD) (7–9).

CBAVD is associated with normal spermatogenesis and obstructive azoospermia due to lack
of the vas (10). A small subset of males without known CFTR defects exhibit CBAVD.
However 80–97% of CBAVD subjects posses at least one defective CFTR allele, and 50–
93% of individuals with CBAVD carry two variants, including class IV or V CFTR
abnormalities (11– 15). CBAVD thus belongs to a group of CF related disorders - and is
considered an isolated, urogenital form of CF. Although a high percentage of CBAVD
patients carry mutations in CFTR, approximately one in 29 Caucasian males in the United
States carries one CFTR variant but never develops CBAVD (16). The finding of a single
CFTR mutation is therefore a poor predictor for involution of the vas. Other genetic or
environmental factors must modify penetrance of CBAVD, but these are not yet known.

The best characterized CBAVD specific variant is the polymorphic polythymidine tract (Tn)
in CFTR intron 8 (IVS8) for which length is inversely correlated with the degree of exon 9
skipping during mRNA splicing. The number of thymidines varies in this tract between 5
and 9, but extremely short alleles (with 3 or 2 thymidines) have also been described in
CBAVD (17, 18). Lower numbers of thymidine residues in the tract predict an increasing
proportion of nonfunctional CFTR (i.e. lacking exon 9) (15). Mak et al (19) show that a
CBAVD patient with the common F508del mutation and an IVS8-5T variant produced 32%
of the normal levels of CFTR in the lung (exon 9 intact; a level of expression sufficient to
maintain a normal pulmonary phenotype), but insufficient full-length CFTR (26% in
reproductive tissues) to allow proper structural development of the vas. The amount of
functional CFTR (with exon 9) in a CF F508del/IVS8-7T carrier male (38%) in the
reproductive tract was suggested to be sufficient for normal function and vas development
(19). A ‘mild’ CFTR allele that maintains partial ion channel activity, R117H, is associated
with the 5T allele in CF and 7T in CBAVD (20). Rave- Harel et al examined epithelial
tissues from CBAVD subjects, and showed that levels of normal CFTR transcripts were
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higher in the nasal epithelium than in epididymal epithelium (21). Therefore it has been
suggested that amounts of CFTR protein required for normal function vary between
different tissues (22). In general, the vas deferens has been viewed as a tissue among the
most sensitive to altered CFTR activity (22).

Genetic modifiers of the CF pulmonary phenotype represent an area of intensive study.
Recently, Drumm et al. (23) showed that the tissue growth factor-β1 (TGFB1) codon 10 CC
genotype (rs 1982073) is associated with severe lung disease among individuals
homozygous for CFTR mutations (23). This allele is linked to elevated TGFB1 gene
expression and higher circulating levels of TGFB1 in human subjects (24–26). A second
TGFB1 single nucleotide polymorphisms (SNP) in codon 25 (rs 1800471) may also
influence TGFβ-1 protein levels (27), and has been implicated as a contributor to CF lung
disease progression (27, 28).

In addition to an emerging understanding of TGFB1 as a modifier of CF severity, Darrah et
al. (29) found a strong correlation between lung phenotype in CF and polymorphisms in the
endothelin receptor type A (EDNRA) gene. In particular, the genotype AA at position -231
from AUG (rs 1801708) in EDNRA and genotype CC in exon eight (rs 5335) were
associated with more severe lung disease in CF females (29). With reference to these results,
McKone et al. (30) examined 21 tag SNPs in the EDN1 (endothelin-1), EDN3
(endothelin-3), EDNRA, and EDNRB (endothelin receptor type B) genes. The study
confirmed a significant association between an EDNRA haplotype including SNP rs 5335
and CF lung disease, but no association with tagSNPs in other candidate genes (30).
Interestingly, both TGFβ and endothelin play a role in extracellular matrix formation (31,
32) wound healing (31, 32), lung diseases such as asthma (33, 34) and lung fibrosis (27, 35–
37). Moreover, Jain et al. (38) observed a connection between TGFβ and the endothelin-
EDNRA system in idiopathic lung fibrosis, and demonstrated that endothelin-1 influences
TGFβ-1 production through EDNRA.

Based on these considerations, we hypothesized that TGFB1 and EDNRA polymorphisms
might play a role in penetrance of CBAVD. We designed a study to test whether codon 10
or codon 25 TGFB1 polymorphisms, or either of the two EDNRA gene polymorphisms
reported to modify CF lung disease, might also contribute as genetic modifiers of CBAVD.

MATERIALS AND METHODS
Samples

We analyzed genomic DNA samples from 80 CBAVD individuals and 51 healthy male
control subjects. This included 19 patient samples and 20 (non-CBAVD) controls from
Spain (Medical and Molecular Genetics Center-IDIBELL), 31 CBAVD subjects and 31
controls from Turkey (Department of Medical Biology, Hacettepe University), and 30
individuals with CBAVD from Portugal (Department of Genetics, Faculty of Medicine and
Laboratory of Cell Biology; Institute Biomedical Sciences Abel Salazar of University of
Porto). The study therefore represents one of the largest genetic analyses to date of CBAVD,
for which large patient populations are not readily available. Criteria for inclusion as a
subject required known CFTR variants. Controls were defined as healthy sperm donors or
other unrelated individuals with an intact vas deferens. Over 40 different CFTR
polymorphisms of varying ‘severity’ were represented. Because more than 1500 CF disease
associated mutations have been described previously, it is very likely that other mutations in
certain subjects were present but not detected by the genotyping methods described here.
The protocol was approved by the Institutional Review Board of Human Use at the
University of Alabama at Birmingham and by local Portuguese, Spanish, and Turkish ethical
committees.
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Methods
A 453 bp region of the 5’ end of TGFB1 gene (GenBank Accession Number: NT_011109)
was amplified using 5’ GAGGACCTCAGCTTTCCCTC 3’ (forward) and 5’
CTCCTTGGCGTAGTAGTCGG 3’ (reverse) primers. This region includes both rs 1982073
and rs 1800471 TGFB1 SNPs. Conditions were as follows: predenaturation at 95°C for 5
minutes, followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 60°C for 30 s,
extension at 72°C for 45 s, and a final extension at 72°C for 5 minutes. A region
encompassing 480 bases of the promoter region of EDNRA gene (Ensembl Gene ID:
ENSG00000151617), including SNP rs 1801708, was amplified using the primers 5’
GTGGAAGGTCTGGAGCTTTG 3’ and 5’ TTCCCAGCTCTCGTCTTCTC 3’. Conditions
were: 95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 58°C for 30s and 72°C for 40
s. The final extension step was 72°C for 7 minutes. For detection of the exon 8 SNP of the
EDNRA gene (rs 5335), we used primers: 5’ CTGCTGCTGTTACCAGTCCA 3’ and 5’
TGACCAGTTCCCATTGAACA 3’. (95°C for 5 min, followed by 35 cycles of 95°C for 30
s, 55°C for 30 s, 72°C for 45 s, with a final extension step of 72°C for 7 minutes).

PlatinumR Blue PCR Supermix (Invitrogen, Carlsbad, CA, USA), ApexTM RED Taq DNA
Polymerase Mastermix (Genesee Scientific, San Diego, CA, USA), or RedTaqR DNA
polymerase with 10× RedTaqR PCR Reaction Buffer (Sigma-Aldrich, Saint Louis, MI,
USA) were used for amplification. Because the EDNRA promoter constitutes a GC rich
region, dimethyl sulphoxide (DMSO, 10%) was added to the PCR mixture to increase
efficiency of that particular PCR. QIAquick PCR Purification Kit (Qiagen, Valencia, CA,
USA) was used prior to sequence analyses with BigDye Terminator v3.1 Cycle Sequencing
Ready Reaction kit (Applied Biosystems, Foster City, CA, USA). The sequencing products
were run by standard protocols on an Applied Biosystems 3730 Genetic Analyzer with
POP-7 polymer (Genomics Core Facility of the Howell and Elizabeth Heflin Center for
Human Genetics, University of Alabama at Birmingham). Sequence analyses and
comparisons were conducted using Chromas Lite software (39) and Clustal W Multiple
Sequence Alignment software (40).

Statistical Analysis
For each SNP, an assessment was performed assuming both a dominant and non-dominant
genetic relationship with the CBAVD phenotype, as the precise relationships between SNP
genotype and TGFB1 or EDNRA activity are not known. Differences in the distribution of
SNP genotypes were compared using χ2 analysis. In addition, a two-sample proportion test
to monitor differences in overall allelic frequencies was conducted between groups.
Comparisons were performed between all cases and controls collected in the study, and
subdivided by ethnicity to evaluate for population specific differences. Only historical
controls were available for the Portuguese subjects; therefore these were not included in the
statistical analyses. CFTR genotypes and polymorphism data for the Portuguese group are
provided in Tables 1 and 4. Due to the selective nature of the candidate genes being
explored, no corrections were made for multiple comparisons. All statistical analyses were
done using SPSS statistical software package.

RESULTS AND DISCUSSION
This study was designed to pursue modifier genes contributing to the CBAVD phenotype.
Eighty CBAVD subjects (Table 1) and 51 controls were investigated for candidate
polymorphisms in TGFB1 or EDNRA. Darrah et al. (29) previously described two
polymorphisms in EDNRA associated with a more severe lung phenotype among CF
subjects. Both the AA genotype of SNP rs 1801708 and the CC allele of rs 5335 were
reported to occur more frequently among CF individuals with severe lung symptoms. In a
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large cohort of CBAVD subjects and controls, we observed a notable increase of the CC
allele at SNP rs 5335 in association with CBAVD (Table 2). The CC allele was significantly
greater in the largest matched study cohort (i.e. Turkish patients vs. controls 45.2% vs.
19.4%, p<0.05 by χ2-analysis), and between all cases vs. controls (36% vs. 15.7%, p<0.05).
The EDNRA promoter SNP (rs 1801708) did not appear to influence the penetrance of
CBAVD (p=0.22) (for either Turkish or Spanish cases vs. controls; Table 2). Similarly,
studies of the rs 1982073 (TGFB1 codon 10) SNP indicated a trend towards increased T
allelic frequency in all CBAVD subjects compared to controls (58% vs. 45%), although
neither the subgroup analyses for polymorphism distribution by ethnicity nor genotype
frequency indicated a significant association with CBAVD penetrance. With regard to
TGFB1 codon 25 SNP (rs 1800471), there was no association with CBAVD for any of the
analyses performed (Tables 3 and 4).

Transforming growth factor β is the best described modifier of the CF pulmonary phenotype.
With reference to the present study, the human vas deferens, epididymis, and seminal
vesicle develop from the Wolffian-ducts, and it is well established that TGFβ and related
signaling pathways are crucial during normal Wolffian-duct development and differentiation
(41–43). A rat gene expression-array suggested that during Wolffian-duct formation,
androgens indirectly modify IGF (insulin-like growth factor) and TGFβ signaling pathways,
both of which play an important role during epithelial-mesenchymal interactions and normal
development of the vas (43). Although TGFβ and associated signaling pathways have been
shown to subserve a crucial role in the normal vas, and clearly contribute to CFTR-related
pathology in tissues such as lung, the significance of this pathway in atypical CF-related
conditions such as CBAVD has not been studied previously.

In our experiments, we found that TGFB polymorphisms rs 1800471 and 1982073 do not
impact the CBAVD clinical phenotype. The result suggests important differences in the
pathogenesis attributable to altered CFTR expression in CBAVD versus pulmonary CF. For
example, CF lung manifestations including polymorphonuclear cell infiltration and cytokine
release are known to exacerbate CF lung injury, and TGFβ (a known inflammatory
modulator) might influence the extent of pulmonary inflammation due to chronic infection.
Such mechanisms may not be relevant to vas development in utero, and therefore cannot be
invoked to account for CBAVD in the setting of CFTR deficiency.

On the other hand, results from this initial survey indicate that at least one known genetic
modifier of CF lung disease (EDNRA) does appear to associate with CBAVD. Endothelin
receptor type A or a close homologue have been implicated previously as important during
normal formation of the mammalian nervous system, the anorectum, and cranio-facial
structures such as the mandible (44–47). Our results point to EDNRA as playing a
significant role during development of the vas deferens, and indicate that the gene product
may contribute to loss of the vas in the setting of CFTR insufficiency. Having said this,
CBAVD is likely a multifactorial disease, and a number of other modifying factors almost
certainly influence disease penetrance. Further studies of larger patient cohorts, as well as
genome-wide association analyses will be necessary to determine the major effectors that
influence penetrance of CBAVD.
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Table 4

Allelic frequencies of EDNRA and TGFB1 SNPs

EDNRA exon 8 SNP (rs 5335)

C allelic frequency Ethnicity Patients Controls

Turkish 64.5% 51.6%

Spanish 50% 42.5%

Portuguese 33.3% ND a

EDNRA promoter SNP (rs 1801708)

A allelic frequency Ethnicity Patients Controls

Turkish 45.2% 30%

Spanish 18.4% 41.9%

Portuguese 26.8% ND a

TGFB1 codon 10 SNP (rs 1982073)

T allelic frequency Ethnicity Patients Controls

Turkish 54.8% 45.1%

Spanish 63.2% 45%

Portuguese b 55% 44.4%

TGFB1 codon 25 SNP (rs 1800471)

G allelic frequency Ethnicity Patients Controls

Turkish 91.9% 95.2%

Spanish 100% 92.5%

Portuguese b 95% 92.5%

a
ND = not done

b
Control data from Alves H, Histocompatibility Center, University of Porto, Portugal
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