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0.1 Introduction

The main goal of this work is to construct the space-time, a topological space used
for physical modelling. In 1905, Albert Einstein published a revolutionary article that
changed the perception of space and time. He proposed that there is a maximum speed
that anything can travel, the speed of light, and its value is constant for any observer.
This caused interest to many scientists to study a new type of model based on Einstein’s
ideas. The phenomena happening on a velocity close to the speed of light contradict the
theory of Newton’s mechanics, which uses Euclidean spaces for modelling. The first space
proposed to model these effects is called Minkowski space-time, which is R4 with a non
Euclidean metric (this will be explained in detail in this work). The theory that studies
physical phenomena based on Einstein’s ideas, and modelled in the Minkowski space-
time, is called the Theory of special relativity. However, this theory was not enough. The
Minkowski space-time can only describe physical phenomena when there is no gravity
involved. It took 10 years for Einstein to create the theory of general relativity, which is
compatible with Newton’s theory of gravitation. The intuitive idea is that, in presence of
masses, the space-time is no longer "flat" (R4 has null curvature) and it becomes a "curved"
topological space. Hence, in order to construct the space-time, we shall introduce the ba-
sics of differential geometry, which studies the concepts of differential calculus applied to
curved spaces. Such spaces are called differentiable manifolds. Concepts as the curvature
and the metric are defined using tensor algebra, hence, we will also study the basics of
tensor calculus and algebra.

This work is aimed at readers with knowledge of linear algebra, topology, differen-
tiable calculus and basic classical mechanics. It is common to find many mathematicians
who struggle to understand theoretical physics. The methodology and notation can be
very confusing, being tough for a mathematician to acknowledge abstract physical con-
cepts. This work tries to be a guide for a mathematician to understand the basics of
general relativity.
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Chapter 1

Tensor calculus and algebra

Convention: The vector spaces will be over R and of finite dimension.

1.1 Tensor product of vector spaces

Definition 1.1. Let E and F be two vector spaces of dimensions n and m respectively, we define
E⊗ F as a vector field such that given a map τ : E× F → E⊗ F, the pair (E⊗ F, τ) satisfies:

• τ is bilinear.

• If e1, ..., en is a basis of E and v1, ..., vm is a basis of F, {τ(ei, vj)} is a base of E⊗ F.

Note that the dimension of E⊗ F is n ·m. We can not know by this definition if such
a pair exists and if it is unique. Let (E⊗ F, τ) be a pair that satisfies the properties above.
Given an analogous pair (E⊗̂F, τ′) that also satisfies such properties, we will say that f is
an isomorphism between these pairs if it is an isomorphism between E⊗ F and E⊗̂F and
makes the following diagram commutative

E⊗ F
f

$$
E× F

τ

OO

τ′ // E⊗̂F.

Proposition 1.2. Two pairs (E⊗ F, τ) and (E⊗̂F, τ′) satisfying the conditions of the definition
1.1 are always isomorphic.

Proof. Let e1, ..., en be a basis of E and v1, ..., vm be a basis of F. In order to make the last
diagram commutative, f has to satisfy f (τ(ei, vj)) = τ′(ei, vj). As τ(ei, vj) is a basis of
E⊗ F and τ′(ei, vj) is a basis of E⊗̂F, f is uniquely determined and it maps a basis to a
basis. Therefore, f is an isomorphism.

1



2 Tensor calculus and algebra

Proposition 1.3. There exist a vector space E⊗ F and a map τ : E× F → E⊗ F satisfying the
conditions of the definition 1.1

Proof. Let E⊗ F be any vector space of dimension n · m. Let {εi,j}i=1...n;j=1...m a basis for
E ⊗ F, and let {ei} and {vj} be bases for E and F respectively. We define the bilinear
mapping τ such that τ(ei, vj) = εi,j. In order to satisfy the second condition of 1.1, given
{e′i} and {v′j} any other bases for E and F, {τ(e′i , v′j)} must be also a basis for E⊗ F, which
is an elemental exercise of linear algebra.

With these two propositions we conclude the existence and uniqueness (except for
isomorphisms) of the pair (E⊗ F, τ).

Definition 1.4. We define the tensor product of E and F as the vector space E⊗ F.

Proposition 1.5. Given a multilinear map f : E1 × ... × Es → F, where E1, ..., Es and F are
vector spaces, there exists a unique linear mapping f ′ : E1⊗ ...⊗ Es → F that makes the following
diagram commutative:

E1 ⊗ ...⊗ Es
f ′

%%
E1 × ...× Es

τ

OO

f // F,

where τ is the mapping τ(x1, ..., xs) = x1 ⊗ ...⊗ xs.

Proof. Let {ei1}i1=1,...,n1 be a basis of E1. Let {vi2}i2=1,...,n2 be a basis of E2. . . . Let {wis}is=1,...,ns

be a basis of Es. As {ei1 ⊗ ...⊗wis}i1=1,...,n1,...,is=1,...,ns is a basis of E1⊗ ...⊗ Es the condition
of commutativity determines f ′ uniquely.

1.2 Definition of tensor

Definition 1.6. Let E be a vector space and E* its dual space, a tensor T of type (k,l) on E is a
multilinear map

T :

k︷ ︸︸ ︷
E× · · · × E×

l︷ ︸︸ ︷
E∗ × · · · × E∗ −→ K (1.1)

For example, if w ∈ E*, and v ∈ E, w(v) ∈ R, therefore, we can understand w as a (1,0)
tensor. We can also think about the vector v as a (0,1) tensor considering it as a map from
E* to R defined by v(w) = w(v).

1.3 The tensors space

Let k and l be natural numbers. We can define the sum of two (k,l) tensors T and R as
(T + R)(v1, ..., vk, w1, ..., wl) = T(v1, ..., vk, w1, ..., wl) + R(v1, ..., vk, w1, ..., wl) and if λ ∈ R
we define (λT)(v1, ..., vk, w1, ..., wl) = λT(v1, ..., vk, w1, ..., wl). It is easy to check that the
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space of (k,l) tensors, denoted as T(k,l)(E), is a R-vector space.

Let K be a (k,0) tensor on E. Using the proposition 1.5, one can deduce that there is a

bijective correspondence between the space of multilinear maps ×kE =

k︷ ︸︸ ︷
E× · · · × E → R

and the space of linear maps ⊗kE =

k︷ ︸︸ ︷
E⊗ · · · ⊗ E → R. Moreover, (⊗kE)*w ⊗kE*. Let

{ei}i=1,...,n be a basis for E and {wj}j=1,...,n its dual basis. We can write any element w of
⊗kE* as w = ∑j1,...,jk αj1,...,jk wj1 ⊗ · · · ⊗wjk and any v ∈ ⊗kE as v = ∑i1,...,ik λi1,...,ik ei1 ⊗ · · · ⊗
eik . The element w acts on v by w(v) = ∑i1,...,jk λi1,...,ik αj1,...,jk wj1(ei1) · · ·w

jk (eik ).
Let us generalize this to a (k,l) tensor T. Using T, we can define a linear map ⊗kE⊗l E*

→ R, this is, an element of (⊗kE⊗l E*)*= ⊗kE*⊗lE, and conversely. Therefore, there is
a bijective correspondence between a (k,l) tensor and an element of ⊗kE*⊗lE, this is,
T(k,l)(E) ∼= ⊗kE*⊗lE.

We will use these results in order to find a basis for T(k,l)(E). Let {ei}i=1,...,n be a basis
for E and {wj}j=1,...,n its dual basis. We know that the elements {wj1 ⊗ · · · ⊗ wjk ⊗ ei1 ⊗
· · · ⊗ eil}j1,...,il∈{1,...,n} form a basis for ⊗kE*⊗lE w T(k,l)(E). The dimension of T(k,l)(E) is
nk+l and we can write the element T ∈ T(k,l)(E) on such basis as:

T = ∑
i1,...,jk

λ
i1,...,il
j1,...,jk

wj1 ⊗ · · · ⊗ wjk ⊗ ei1 ⊗ · · · ⊗ eil (1.2)

In order to simplify the notation, from now on we shall remove the summation symbols.
This is commonly known as Einstein’s notation.

Definition 1.7. We define the tensor product of two tensors T and T′, of type (k, l) and (k′, l′)
respectively, as the (k + k′, l + l′) tensor denoted by T⊗ T′ satisfying:

(T ⊗ T′)((v, v′), (w, w′)) = T(v, w) · T′(v′, w′),

where (v, w) ∈ ×kE×l E∗ and (v′, w′) ∈ ×k′E×l′ E∗.

1.4 Identification of tensors with linear or multilinear maps

Proposition 1.8. Denoting as L(E; E) the space of linear maps from E to E, the map τ : T(1,1) −→
L(E; E), defined as τ(x, y′)(v) = y′(v)x, satisfies the conditions of the definition 1.1.

Proof. Indeed, it is clear that τ is bilinear. Let {ei} be a basis of E and {wj} be a basis of
E∗. The set of elements {εij} given by εij(v) = wj(v)ei are a basis of L(E; E), which can
be proved using elementary linear algebra.

Using proposition 1.2, we can conclude that L(E, E) is isomorphic to E⊗ E∗, therefore
we can identify these two vector spaces.
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Let L(E, E;R) be the space of bilinear maps from E×E toR. We can identify L(E, E;R)
with E∗⊗E∗ by defining the mapping τ : E∗×E∗ → L(E, E;R) such that τ(x′, y′)(v1, v2) =

x′(v1)y′(v2). Using a similar argument to the last proof, we conclude that τ satisfies both

conditions of 1.1. Analogously, we can identify ⊗kE∗ to L(
k︷ ︸︸ ︷

E, · · · , E;R).

Let us see now the identification of E⊗ (⊗kE) with the space L(
k︷ ︸︸ ︷

E, · · · , E; E). Let τ :

E×
k︷ ︸︸ ︷

E∗ × · · · × E∗ −→ L(
k︷ ︸︸ ︷

E, · · · , E; E) be the mapping defined as τ(x, y′1, ..., y′k)(v1, ..., vk) =

y′1(v1) · · · y′k(vk)x. Using similar arguments to the proof of the proposition 1.8, we con-
clude that τ satisfies the conditions of 1.1. This allows us to identify of E⊗ (⊗kE) with

L(
k︷ ︸︸ ︷

E, · · · , E; E).

1.5 Symmetric and antisymmetric tensors

The concepts of symmetric and antisymmetric tensors will only be applicable to pure
tensors, i.e, for (0, l) or (k, 0) tensors. Let us see, for example, the case of (0, l) tensors.
Let Sl be the the permutation group of the elements {1, ..., l}. Let σ ∈ Sl , and consider

the multilinear map (which will be denoted again by σ), σ :

l︷ ︸︸ ︷
E× · · · × E → ⊗lE defined

as σ(x1, ..., xl) = xσ(1) ⊗ · · · ⊗ xσ(l). Using proposition 1.5, there will exist a unique σ′ :
⊗lE→ ⊗lE making commutative the diagram

⊗lE

σ′

$$l︷ ︸︸ ︷
E× · · · × E

τ

OO

σ // ⊗lE.

We define the symmetrisation S and the antisymmetrisation A as the linear mappings
⊗l → ⊗l given by

S(T) = 1
r! ∑σ∈Sl

σ′(T), A(T) = 1
r! ∑σ∈Sl

ε(σ)σ′(T),

where ε(σ) is the signature of the permutation σ.

Definition 1.9. A tensor T ∈ ⊗lE is symmetric if S(T) = T and is antisymmetric if A(T) = T.

To define these concepts for a (k, 0) tensor is analogous, changing the space E by its
dual space.
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1.6 Tensor contraction

Definition 1.10. Let T = λ
i1,...,il
j1,...,jk

wj1 ⊗ · · · ⊗ wjk ⊗ ei1 ⊗ · · · ⊗ eil be a (k,l) tensor on the basis
described in the last subsection. For all (α, β) such that 1 ≤ α ≤ k, 1 ≤ β ≤ l, we define the
(α, β) index contraction as the linear map

Cα
β : ⊗kE∗ ⊗l E −→ ⊗k−1E∗ ⊗l−1 E

such that Cα
β(T) = δiβ jα λ

i1,...,il
j1,...,jk

wj1 ⊗ · · · ⊗ ŵjα ⊗ · · · ⊗wjk ⊗ ei1 ⊗ · · · ⊗ êiβ
⊗ · · · ⊗ eil , where δij

is the Kronecker’s delta and the hat on the elements means that they are removed.

Note that the coefficients of Cα
β(T) will be (Cα

β(T))
i1,...,il−1
j1,...,jk−1

= ∑n
γ=1 λ

i1,...,γ,...,il
j1,...,γ,...,jk

, where the
superscript γ is on the α position and the subscript γ is on the β position.
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Chapter 2

Differentiable manifolds

2.1 Definition of differentiable manifold

Definition 2.1. A C∞ atlas on a topological space M is a collection of pairs {(Ui, ϕi)}i∈I called
local charts, where the Ui are open sets that cover M and, for each index i, ϕi is a homeomorphism
of Ui onto an open subset of Rn, that satisfies the following condition:

For each pair i, j ∈ I such that Ui ∩Uj 6= ∅, the map

ϕi(Ui ∩Uj)
ϕj◦ϕ−1

i−−−−→ ϕj(Ui ∩Uj) (2.1)

is a C∞ map of ϕi(Ui ∩Uj) ∈ Rn onto ϕj(Ui ∩Uj) ∈ Rn.

We can define a Cratlas just changing C∞ by Cr in the last condition.

Definition 2.2. Two n dimensional and C∞ atlases are equivalent if their union is a n dimensional
and C∞ atlas.

Definition 2.3. A n dimensional and C∞ differentiable manifold is a topological space M,
Hausdorff, paracompact and equipped with an equivalence class of C∞ atlases.

2.2 Differenciable maps on manifolds

Definition 2.4. Let M be a differentiable manifold and {(Ui, ϕi)}i∈I an atlas of M. A pair (U, ϕ),
where U is an open set of M and ϕ a homeomorphism of U onto an open set of Rn, is an admissible
local chart of M if {(U, ϕ), (Ui, ϕi)}i∈I is an atlas of M.

Definition 2.5. Let M and N be two differentiable manifolds of dimensions m and n respectively.
Let p ∈ M. A map f : M −→ N is differentiable on p if there exist admissible local charts of M
and N, (U, ϕ), (V, ψ), with p ∈ U, such that f (U) ⊂ V and the map

ϕ(U)
ψ◦ f ◦ϕ−1

−−−−−→ ψ(V) (2.2)

7



8 Differentiable manifolds

is differentiable on ϕ(p). If f is differentiable ∀p ∈ M, we will say that f is differentiable.

Definition 2.6. Let M be a differentiable manifold and let f be a differentiable map f : M → R.
A map with this characteristics is called differentiable function.

2.3 Tangent space

We want to find an equivalent concept of the differential of a smooth function on Rn

applied on differentiable manifolds. As Rn is a differentiable manifold, the new concept
of such derivative has to be compatible to the classic concept on euclidean spaces. In this
chapter we will always consider M as a n dimensional differentiable manifold.

Definition 2.7. Let γ(t) be a curve on an open neighbourhood I ⊂ R of a ∈ R into M, this is, a
differentiable map γ : I → M. Let p = γ(a) and let F (M) be the set of differentiable functions
on M. The tangent vector of the curve on γ(a) = p is the operator γ̇(a) : F (U) → R defined
by f 7→ (d f (γ(t))/dt)t=a.

Remark: The last expresion is well defined because F : t 7→ f (γ(t)) is an ordinary
differentiable function on t. To prove that, let (U, ϕ) be a local admissible chart containing
γ(a). F(t) = f (γ(t)) = f (ϕ−1(ϕ(γ(t)))), and ϕ ◦ γ is differentiable by the definition of ϕ

and γ, and f ◦ ϕ−1 is also differentiable because f is differentiable.

Let γ(t) and α(s) be curves on M such that γ(a) = α(b) = p ∈ M. Let us define the
sum (γ̇(a) + α̇(b)) : F (M)→ R by f 7→ γ̇(a)( f ) + α̇(b)( f ).

We also define the product of γ̇(a) by λ ∈ R as (λγ̇(a))(
ffl
) = λγ̇(a)(

ffl
).

Theorem 2.8. Using the same notation of above, the sum γ̇(a) + α̇(b) is the tangent vector of a
curve on p, and so is λγ̇(a).

Proof. We want to find the curve which tangent vector on p is γ̇(a) + α̇(b). Let (U, ϕ) be
a local chart where p ∈ U ⊂ M. We can suppose that ϕ(p) is the origin of Rn because,
if it is needed, we can change ϕ by T ◦ ϕ, where T is a translation of Rn. Let ϕ(γ(t)) =

(γ1(t), ..., γn(t)) ∈ Rn and ϕ(α(s)) = (α1(s), ..., αn(s)) ∈ Rn. We define the curve ψ into
Rn

λ
ψ−→ ((γ̇1(a) + α̇1(b))λ, ..., (γ̇n(a) + α̇n(b))λ) (2.3)

where γ̇i(t) and α̇i(s) are ordinary derivatives. Let us consider the curve onto M, Ψ(λ) =

ϕ−1(ψ(λ)). Note that Ψ(0) = p. We are going to prove that Ψ is the curve that we want
to find. Using the definition of tangent vector of Ψ on p, we have:

Ψ̇(0)( f ) = d
dλ f (Ψ(λ))λ=0 = d

dλ f ◦ ϕ−1((γ̇1(a) + α̇1(b))λ, ..., (γ̇n(a) + α̇n(b))λ)λ=0 =

∑ ∂i( f ◦ ϕ−1)0(γ̇n(a) + α̇n(b)) = d
dt f ◦ ϕ−1(γ1(t), ..., γn(t))t=a +

d
ds f ◦

ϕ−1(α1(s), ..., αn(s))s=b = d
dt f (γ(a)) + d

ds f (α(b)) = γ̇(a)( f ) + α̇(b)( f ).
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To prove that λγ̇(a) is the tangent vector of a curve on p, the procedure is analogous.

The last proposition shows that the set of tangent vectors of curves on p ∈ M is a
vector space.

Definition 2.9. The set of tangent vectors of curves on p ∈ M is called tangent space, represented
by Tp M.

Theorem 2.10. Dim(Tp M) = Dim(M) = n.

Proof. Using the same notation of the last proof, let us define the curve γ : t 7→ (0, ..., t, ..., 0)(t
on the i place and zeros on the rest). Let Γ(t) = ϕ−1(γ(t)) be a curve on M, then the tan-
gent vector of such curve on p applied on f ∈ F (M) is

Γ̇(0)( f ) =
d
dt

f ◦ ϕ−1(0, ..., t, ..., 0)t=0 = (∂i f ◦ ϕ−1)0 = (∂i f )p. (2.4)

Then, (∂i)p is the tangent vector of Γ on p. We will now prove that (∂1)p, ...,(∂n)p form
a basis of Tp(M). Let α(s) be a smooth curve such that α(0) = p and let ϕ(α(s)) =

(α1(s), ..., αn(s)) ∈ Rn, then

α̇(0)( f ) = (
d f (α(s))

ds
)s=0 = ∑(∂i f )pα̇i(0). (2.5)

They are independent because if ∑ ai(∂i)p = 0, applying such operator to the function
αi, we get ∑ aiδij = 0⇒ ai = 0.

Definition 2.11. Let f ∈ F (M), we define the differential of f on p as the operator (d f )p ∈
Tp(M)* defined by (d f )p(v) = v( f ) for all v ∈ Tp(M).

Note that, if the manifold is Rn, (d f )p ∈ Tp(Rn)*, and this coincides with the classical
concept of the directional derivative of a function on Rn. From this definition, if (U, ϕ =

(x1, ..., xn)) is a local chart containing p, and x1, ..., xn are the coordinate functions on Rn

of such a chart, {(dx1)p, ..., (dxn)p} is the dual basis of {( ∂
∂x1 )p, ..., ( ∂

∂xn )p}.

2.4 Vector fields and 1-forms on manifolds

Definition 2.12. The disjoint union of the tangent spaces of M, denoted by TM, is called tangent
bundle. This is, TM =

⊔
p∈M

Tp M =
⋃

p∈M
{p} × Tp M.
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Note that the tangent bundle is a differentiable manifold in its own right. To prove
that, let us define the natural projection π : TM → M given by π(p, v) = p. Let
(U, ϕ = (x1, ..., xn)) be a local chart of M. We can identify the tangent bundle of U
with U×Rn using the map φ : TU → U×Rn, φ(p, vp) = (p; v1, ..., vn), where v1, ..., vn are
the components of the vector vp on {( ∂

∂x1 )p, ..., ( ∂
∂xn )p}. It is evident that φ is a bijective

mapping. We shall equip TU with the induced topology by φ−1. Let us equip TM with
the topology defined by; A subset of TM is an open set if and only if its intersection with
any TU (being U an open set of M) is an open set of TU. One can check that TM is a
paracompact and Hausdorff topological space. The dimension of TM is twice the dimen-
sion of M.

Definition 2.13. A vector field V on a differentiable manifold M is a mapping V : M → TM
such that π ◦V is the identity map. V is differentiable (resp. continuous) if V is a differentiable
map of manifolds (resp. continuous). Such a map is called a section of the tangent bundle.

Note that if we have a chart (U, ϕ = (x1, ..., xn)), where (x1, ..., xn) are the coordinate
functions, then

Vp = V1(p)(
∂

∂x1 )p + ... + Vn(p)(
∂

∂xn )p ∀p ∈ U (2.6)

is differenciable on p0 ∈ U ⇐⇒ V1, ..., Vn are differentiable functions on p0.

Definition 2.14. The Lie bracket of two vector fields V and W of M, noted as [V, W], is the
only vector field that satisfies [V, W]p( f ) = Vp(W( f ))−Wp(V( f )), ∀p ∈ M, where f is any
differentiable function defined on M.

Let α, β ∈ R, f , g ∈ F (M) and X1, X2, X, Y1, Y2, Y and Z be smooth vector fields on
M.
Properties:

• [αX1 + βX2, Y] = α[X1, Y] + β[X2, Y]
[X, αY1 + βY2] = α[X, Y1] + β[X, Y2]

• [X, Y] = −[Y, X]

• [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0, also known as Jacobi’s identity

• [ f X, gY] = f g[X, Y] + f X(g)Y− gY( f )X, for any functions f and g.

Definition 2.15. A 1-form w on a smooth manifold M consists about assigning an element of
Tp M∗ to each p ∈ M.

Having the same local chart as before, wp = w1(p)(dx1)p + ... + wn(p)(dxn)p, ∀p ∈ U.
We will say that the one-form is differentiable if wi are differentiable functions on every
local chart.
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2.5 Tensors and tensor fields on manifolds; Riemannian
manifold

Let M be a differentiable manifold, p ∈ M, and let (U, ϕ = (x1, ..., xn)) be a local chart
such that p ∈ U. We can take B = {( ∂

∂x1 )p, ..., ( ∂
∂xn )p} and B*= {(dx1)p, ..., (dxn)p} as basis

for Tp M and Tp M* respectively. A (k, l) tensor Tp on Tp M can be written as

Tp = ti1,...,il
j1,...,jk

(
∂

∂xi1
)p ⊗ ...⊗ (

∂

∂xil
)p ⊗ (dxj1)p ⊗ ...⊗ (dxjk )p, (2.7)

where ti1,...,il
j1,...,jk

= Tp((
∂

∂xi1
)p, ..., ( ∂

∂xil
)p, (dxj1)p, ..., (dxjk )p).

Example 2.16. A metric tensor on p is a symmetric and non degenerate (2,0) tensor on
Tp M. With the same coordinates used in this section, we can express a metric tensor on p
as Gp = gij dxi ⊗ dxj.

We can now generalize the concept of differentiable vector field applied to tensors.

Definition 2.17. A (k,l) tensor field of type (k,l) on a differentiable manifold M consists about
assigning a (k,l) tensor T(p) ∈ ⊗kTp M⊗l Tp M* to each p ∈ M.

Just as in vector fields, we can represent a tensor field on U as:

T(p) = ti1,...,il
j1,...,jk

(p)(
∂

∂xi1
)p ⊗ ...⊗ (

∂

∂xil
)p ⊗ (dxj1)p ⊗ ...⊗ (dxjk )p ∀p ∈ U. (2.8)

We will say that a tensor field is differentiable if tj1,...,jk
i1,...,il

(p) are differentiable functions on
U.

Definition 2.18. A metric tensor field is a (2, 0) differentiable tensor field that consists about
assigning a metric tensor Gp (defined in example 2.16) to every p ∈ M.

Definition 2.19. We define a Riemannian manifold as a pair (M,G), where M is a smooth
manifold and G is a positive defined metric tensor field on M. We will say that the manifold is
Pseudo-Riemannian if G is not necessarily positive defined.
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Chapter 3

Connections

3.1 Definition of connection, geodesic curve

Definition 3.1. Let X (M) be the set of smooth vector fields on M. A connection, or a covariant
derivative operator, on M is a mapping

X (M)×X (M) −→ X (M)

(V, W) 7−→ ∇VW

such that:

• ∇V(W1 + W2) = ∇VW1 +∇VW2.

• ∇V1+V2W = ∇V1W +∇V2W.

• ∇V( f W) = V( f )W + f∇VW, f ∈ F (M). (Leibniz’s rule)

• ∇ f VW = f∇VW.

This is defined globally (on the entire manifold). It is proven in pages 122 and 123 of
[1] that the constraint of ∇ to an open set U ∈ M is also a connection on U. And con-
versely, let ∪i∈IUi be an open cover of M and let ∇Ui be a connection defined on Ui. We
can define a connection ∇ on M if ∀i, j ∈ I such that Ui ∩Uj 6= ∅, ∇Ui |Ui∩Uj = ∇

Uj |Ui∩Uj .
Using this results, if we know ∇ on every open set of an atlas of M, we can use local
coordinates to calculate it.

Let (U, ϕ = (x1, ..., xn)) be a local chart and let V = Vi ∂
∂xi and W = W j ∂

∂xj be two
smooth vector fields on U, where W j and Vi are differentiable functions on U. Using the
definition of connection,

∇VW = ∇V(W j ∂
∂xj ) = V(W j) ∂

∂xj + W j∇Vi ∂
∂xi

∂
∂xj = V(W j) ∂

∂xj + W jVi∇ ∂
∂xi

∂
∂xj .

As the field ∇ ∂
∂xi

∂
∂xj is defined on U, we can express it as a linear combination of { ∂

∂xk },
therefore:

13
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∇ ∂
∂xi

∂
∂xj = Γk

ij
∂

∂xk ,

where the coefficients Γk
ij are differentiable functions on U, named Christoffel symbols of

∇ on (U, ϕ).

Definition 3.2. We will say that the connection is symmetric or torsion-free if Γk
ij = Γk

ji. If ∇
is torsion-free, ∇VW −∇WV = [V, W].

Note that
∇VW|p = (Vp(W j) + W j(p)Vi(p)Γk

ij(p))
∂

∂xj |p. (3.1)

This means that the tangent vector ∇VW|p depends on Vp and on the restriction of W on
a sufficiently small neighbourhood of p. Moreover, from this result we can deduce that
∇VW|p depends on Vp and on the value of W on a small smooth curve containing p such
that the tangent vector on p is Vp. Therefore, given any smooth curve γ : I → M and
V ∈ X (M), we can define ∇γ̇V because ∀t ∈ I, γ̇(t) ∈ Tγ(t)M and V is defined along γ.

Definition 3.3. A differentiable vector field V ∈ X (M) is called parallel if ∇γ̇V = 0.

Let a ∈ I and v ∈ Tγ(a)M. Using Picard’s theorem, we deduce that there only exists a
unique differentiable vector field V satisfying:

∇γ̇V = 0
Vγ(a) = v

The field V along the curve γ is commonly known as parallel transport of v along γ.

Definition 3.4. (Geodesic curve) A geodesic curve with respect to a connection ∇ is a curve γ

satisfying ∇γ̇γ̇ = 0.

Let t 7→ γ(t) be a parametrisation of γ. Using a local chart (U, ϕ = (x1, ..., xn)) and the
equation (3.1), we can write ∇γ̇γ̇ = 0 as

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
= 0, (3.2)

where Γi
jk are the Christoffel symbols relative to the basis {( ∂

∂x1 ), ..., ( ∂
∂xn )}.

3.2 Covariant derivative of a tensor field; Levi-Civita con-
nection

In order to define the Levi-Civita connection, we shall generalize the concept of covari-
ant derivative of a vector field to a tensor field.

Definition 3.5. Let T be a (k,l) tensor field defined on M and ∇ a connection. ∀V ∈ X (M),
∇V T is a (k,l) tensor field on M given by:
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∇V T(V1, ..., Vk; w1, ..., wl) = V(T(V1, ..., wl))−∑k
i=1 T(V1, ...,∇VVi, ..., Vk; w1, ..., wl)−

∑l
j=1 T(V1, ..., Vk; w1, ...,∇Vwj, ..., wl).

From this definition, we can deduce that given a one-form w, the covariant derivative
of w with respect to V is the one-form:

∇Vw(W) = V(w(W))− w(∇VW).

We can also infer that given f ∈ F (M), ∇V f = V( f ).

Given p ∈ M and v = Vp, the mapping

Tp M −→ ⊗lTp M⊗k Tp M∗

v 7−→ (∇V T)p

is linear. We proved that we can identify such a mapping with a (k + 1, l) tensor. We
define as ∇Tp such a tensor, and ∇T will be the tensor field that associates ∇Tp to each
p ∈ M. Having a local chart (U, ϕ = (x1, ..., xn)), ∇T is expressed as

∇Tp = ∇iT
i1,...,il
j1,...,jk

(p)( ∂
∂xi1

)p ⊗ ...⊗ ( ∂
∂xil

)p ⊗ (dxj1)p ⊗ ...⊗ (dxjk )p ⊗ (dxi)p,

where ∇iT
i1,...,il
j1,...,jk

are the function components of ∇T. Such components functions ap-

plied on p will be the matrix of the linear mapping above in the basis { ∂
∂xi } of Tp M and

{ ∂
∂xi1
⊗ ...⊗ ∂

∂xil
⊗ dxj1 ⊗ ...⊗ dxjk} of ⊗lTp M⊗k Tp M∗.

Definition 3.6. A parallel tensor field is a tensor field T that satisfies ∇V T = 0, ∀V ∈
X (M),i.e, ∇T = 0.

Definition 3.7. Given a Riemannian (or pseudo-Riemannian) manifold (M,G), a connection ∇
is a Levi-Civita connection if it is torsion-free and ∇G = 0.

Theorem 3.8. There exist a unique Levi-Civita connection for each pseudo-Riemannian manifold
(M,G).

Proof. Let us write the condition ∇G = 0 thrice, permuting the fields V, W and Z,

V(G(W, Z)) = G(∇VW, Z) + G(W,∇V Z)

Z(G(V, W)) = G(∇ZV, W) + G(V,∇ZW)

W(G(Z, V)) = G(∇W Z, V) + G(Z,∇WV).

Summing the first two equations and subtracting the third one, using that ∇ is torsion
free and G symmetric, we get:

V(G(W, Z)) + Z(G(V, W))−W(G(Z, V)) =

G([V, W], Z) + G([Z, W], V) + G([V, Z], W) + 2G(∇ZV, W).

Therefore:
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G(∇ZV, W) = 1
2 (V(G(W, Z)) + Z(G(V, W))−W(G(Z, V))−

G([V, W], Z)− G([Z, W], V)− G([V, Z], W)). (3.3)

This expression let us know the scalar product of (∇ZV)p with any other Wp, determining
a unique ∇ZV on each p ∈ M. One can easily prove the existence of ∇ by showing that
the field ∇ZV determined by (3.3) satisfies the properties of a connection.

From now on, every connection ∇ that we use will be the Levi-Civita connection. The
equation (3.3) is commonly known as Levi-Civita equation. Given a local chart (U, ϕ =

(x1, ..., xn), let us see how the Christoffel symbols are determined in the basis ( ∂
∂x1 , ..., ∂

∂xn ).
Let Gij = G( ∂

∂xi ,
∂

∂xj ). Using the constraint of the connection in U, let us write the Levi-

Civita equation (3.3) for the fields ∂
∂xi ,

∂
∂xj and ∂

∂xk . As [ ∂
∂xi ,

∂
∂xj ] = 0, the equation is written

as

Γr
ijGrk =

1
2{

∂
∂xi (Gjk) +

∂
∂xj (Gki)− ∂

∂xk (Gij)}.

Therefore, designing as (G ij) to the inverse matrix of (Gij),

Γr
ij =

1
2
Grk{ ∂

∂xi (Gjk) +
∂

∂xj (Gki)−
∂

∂xk (Gij)}. (3.4)

3.3 The Riemann curvature tensor field

Definition 3.9. The Riemann curvature tensor field, or Riemann tensor, is the (3,1) tensor field
given by:

R(V, W, Z) = ∇V∇W Z−∇W∇V Z−∇[V,W]Z (3.5)

where V, W and Z are smooth vector fields.

If X (M) is the space of smooth vector fields on M, it is easy to show that R :
X (M) × X (M) × X (M) → X (M), (V, W, Z) 7→ ∇V∇W Z − ∇W∇V Z − ∇[V,W]Z, is a
F (M)-multilinear mapping, therefore R is a (3,1) tensor field. Also, from the definition, R
is antisymmetric on the first two components. From now on we will use R(V, W)Z instead
of R(V, W, Z).

Let us now find an expression of R in local coordinates. Given a local chart of M,
(U, ϕ = (x1, ..., xn)),

R( ∂
∂xi ,

∂
∂xj )

∂
∂xk = Rl

kij
∂

∂xl .

We want to find the expression for Rl
kij in function of the Christoffel symbols. Using that

[ ∂
∂xi ,

∂
∂xj ] = 0,

R( ∂
∂xi ,

∂
∂xj )

∂
∂xk = ∇ ∂

∂xi
(Γs

jk
∂

∂xs )−∇ ∂

∂xj
(Γs

ik
∂

∂xs ) = (
∂Γs

jk
∂xi −

∂Γs
ik

∂xj )
∂

∂xs + (Γs
jkΓl

is − Γs
ikΓl

js)
∂

∂xl =

(
∂Γl

jk
∂xi −

∂Γl
ik

∂xj + Γs
jkΓl

is − Γs
ikΓl

js)
∂

∂xl .
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Therefore:

Rl
kij =

∂Γl
jk

∂xi −
∂Γl

ik
∂xj + Γs

jkΓl
is − Γs

ikΓl
js (3.6)

Proposition 3.10. The Riemann curvature tensor field satisfies the following identity:

G(R(V, W)Z, Y) = −G(R(V, W)Y, Z)

Proof. We have

G(R(V, W)Z, Y) = G((∇V∇W −∇W∇V −∇[V,W])Z, Y).

Moreover, as ∇G = 0,

G(∇V∇W Z, Y) = V(G(∇W Z, Y)− G(∇W Z,∇VY) =
VWG(Z, Y)−VG(Z,∇WY)−WG(Z,∇VY) + G(Z,∇W∇VY).

Doing the same with G(∇W∇V Z, Y) and substituting in the first equation of the proof, we
obtain G(R(V, W)Z, Y) = −G(R(V, W)Y, Z).

3.4 Second Bianchi identity

Let M be a pseude-Riemannian manifold. The Riemann curvature tensor field R is a
(3, 1) tensor field. Therefore, given a vector field V, ∇V R will also be a (3, 1) tensor field.
Hence, for all p ∈ M, we can identify Rp with a linear map Tp M× Tp M× Tp M −→ Tp M.

Proposition 3.11. ∇V R satisfies

∇V R(W, Z, Y) = ∇V(R(W, Z)Y)− R(∇VW, Z)Y− R(W,∇V Z)Y− R(W, Z)∇VY.

Proof. Identifying the (3, 1) tensor field R with a mapping Tp M× Tp M× Tp M −→ Tp M,
we can write R(W, Z)Y = C1

1C2
2C3

3(W ⊗ Z ⊗ Y ⊗ R), where Ci
i is the index contrac-

tion defined in section 1. Therefore, ∇V(R(W, Z)Y) = C1
1C2

2C3
3(∇VW ⊗ Z ⊗ Y ⊗ R) +

C1
1C2

2C3
3(W⊗∇V Z⊗Y⊗ R) +C1

1C2
2C3

3(W⊗ Z⊗∇VY⊗ R) +C1
1C2

2C3
3(W⊗ Z⊗Y⊗∇V R),

which lead us to the equation that we want to prove.

Proposition 3.12. (second Bianchi identity) The Riemann curvature tensor field satisfies the fol-
lowing identity:

(∇V R)(W, Z, Y) + (∇W R)(Z, V, Y) + (∇ZR)(V, W, Y) = 0.

We will write this identity as PV,W,Z(∇V R)(W, Z, Y) = 0

Proof. PV,W,Z(∇V R)(W, Z, Y) =
PV,W,Z{∇V(R(W, Z)Y)− R(∇VW, Z)Y− R(W,∇V Z)Y− R(W, Z)∇VY} =
PV,W,Z{∇V(R(W, Z)Y)− R(∇VW, Z)Y− R(W,∇V Z)Y− R(W, Z)∇VY}.

As ∇ is torsion-free, we can write this expression as
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PV,W,Z{∇V(R(W, Z)Y)− R(∇VW, Z)Y− R(W,∇ZV)Y− R(W, [V, Z])Y−
R(W, Z)∇VY} =

P∇V(R(W, Z)Y)−PR(∇VW, Z)Y +PR(∇ZV, W)Y−PR(W, [V, Z])Y−PR(W, Z)∇VY,

where PR(V, W)Z = PR(W, Z)V +PR(Z, V)W +PR(V, W)Z. However, as R(V, W)Z =

∇V∇W Z − ∇W∇V Z − ∇[V,W]Z, we can consider R(V, W) as the operator [∇V ,∇W ] −
∇[V,W]. Therefore,

∇V(R(W, Z)Y)− R(W, Z)∇VY = [∇V , R(W, Z)]Y = [∇V , [∇W ,∇Z]]Y− [∇V ,∇[W,Z]]Y,

and

R(W, [V, Z]) = [∇W ,∇[V,Z]]−∇[W,[V,Z]].

Substituting above these results, and using Jacobi’s identity, we prove the theorem.

3.5 Musical isomorphism

We can use the metric G to define the canonical isomorphism b : Tp M −→ Tp M∗

defined by b(v)(w) = G(v, w). We have

b( ∂
∂xi ) = Gijdxj,

where Gij are the components of the matrix of G, defined as gij = g( ∂
∂xi ,

∂
∂xj ). The inverse

isomorphism, denoted by ], is given by

](dxi) = G ij ∂
∂xi ,

where G ij are the components of the inverse matrix of G. Using ], we can define the
following isomorphism ]′ as

]′ : ⊗kTp M∗ −→ Tp M⊗ (⊗k−1Tp M∗)
w1 ⊗ ...⊗ wk 7−→ ](w1)⊗ w2 ⊗ ...⊗ wk.

]′ on each point determines an isomorphism of tensor fields called musical isomorphism.
Physicists usually refer to "raise and lower indices" when using the musical isomorphism.
The inverse of ]′ is denoted as b′.

3.6 Divergence of a tensor field

Let T be a (k, l) tensor field on a pseudo-Riemannian manifold (M, g) such that l > 0.
We define the divergence of T as

div(T) = Ck+1
1 (∇T),

where C is the index contraction that contracts the first index of Tp M with the last index
of Tp M∗. Note that div(T) is a (k, l − 1) tensor field. This definition is compatible with
the classic definition of the divergence of a vector field in Rn. Indeed, if V is a vector field
on a smooth manifold, div(V) = ∇iVi. If the manifold is Rn with the Euclidean metric,



3.7 Ricci tensor field and scalar curvature 19

∇iVi = ∂iVi.

We want to define the divergence of a tensor field for l = 0 and k 6= 0 on each p ∈ M.
If T is a (k, 0) tensor field, ]′T is a (k− 1, 1) tensor field, and we define

divT = div(]′T).

3.7 Ricci tensor field and scalar curvature

Definition 3.13. Let R be the Riemann tensor field of a smooth manifold M. The Ricci Tensor
field is the (2,0) tensor field defined by Ric = C1

1(R).

Let us use the usual local chart, and let Rij be the components of the Ricci tensor, i.e.,
Ric = Rijdxi ⊗ dxj. The Riemann tensor in this basis will be R = Rl

ijk
∂

∂xl ⊗ dxi ⊗ dxj ⊗ dxk.
Therefore:

Ric = C1
1(R) = C1

1(Rl
ijk

∂
∂xl ⊗ dxi ⊗ dxj ⊗ dxk) = Rl

l jkdxj ⊗ dxk,

hence, we have the equality:
Rij = Rl

lij. (3.7)

Definition 3.14. The scalar curvature is the function R given by R = C(]′Ric), where ]′ is the
musical isomorphism, and C is the only possible contraction.

From now on we will refer R to the scalar curvature (not to the Riemann curvature
tensor field). Given a local chart,

R = G ijRij.
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Chapter 4

Basics of special relativity

4.1 Introduction

At the end of the XIX century, it was believed that Newton’s mechanics described the
concepts of speed and force for any inertial (non-accelerating) frame of reference. This
was based on the theory of the Galilean relativity. Such a theory predicts that any inertial
frame of reference is valid to describe the movement of a particle. This was based on the
Galilean transformation of the components of space and time between frames of reference.
Let us see how this transformation works. For instance, consider two inertial frames of
reference F and F′, and let (r, t) ∈ R3 × I and (r′, t′) ∈ R3 × I be the space and time
components of a particle in F and F′ respectively. If F′ moves with a constant speed v
from F, the Galilean transformation is given by

r′ = r− vt
t′ = t

being (t, r) and (t′, r′) both equivalent.

Remark 4.1. Note that these expressions transform the origin of F to the origin of F′ at
t = 0. This means that these transformations are refereed to two frames of reference whose
origins coincide at one instant. If the origins do not coincide, we use the corresponding
translation in order to use the transformations above. With no lack of generality , from
now on we will only consider transformations between frames of references whose origins
are invariant.

One can deduce from Newton’s mechanics that there is not a maximum speed. This is
because what ever the speed of a particle is in F, we can always have a frame of reference
F′ in where the speed of the particle is greater. Experimentally, it is impossible to exceed
a certain speed when accelerating charges using a voltage. If we assume that all inertial
frames of reference are equally valid and we find one in which there is a limit speed, we
conclude that the Galilean transformations are wrong. One can also deduce that such
a transformation is not right because it doesn’t satisfy the Maxwell equations for the

21
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electromagnetism. Therefore, there was a need to develop a new theory to correct these
contradictions. Such a theory is the Einstein’s theory of relativity.

4.2 Postulates; Lorentz transformation

The postulates used by Einstein to develop the theory of special relativity were:

• First postulate (principle of relativity): The laws of physics are the same in all inertial
frames of reference.

• Second postulate (invariance of c): The speed of light in free space has the same
value c in all inertial frames of reference.

The Galilean transformation doesn’t satisfy the second postulate. Therefore, it is needed
to use a new method to transform the components (r, t) in F to (r′, t′) in a frame F′ that
moves with a constant vector speed v from F. Such a method is the linear transformation
called Lorentz transformation and it is given by

ct′ = γ(ct− v·r
c )

r′ = r + (γ− 1) r·v
v·v v− γvt

where γ = 1√
1− v·v

c2
(Lorentz factor). For the derivation of the Lorentz transformation see

[2] sections 14.3 and 14.6. In these expressions, "·" represents the scalar product in R3 with
respect to the Euclidean metric. Such a transformation will only make sense if |v| < c,
hence, an additional postulate is needed, that restricts the value of |v| as seen above. Note
that for v� c, γ(v) ≈ 1, and the Lorentz transformation in this case will be approximately
ct′ ≈ ct and r′ ≈ r− vt, i.e., the Galilean transformation.

4.3 Consequences of the Lorentz transformation

Let F and F′ be inertial frames of reference such that F′ moves parallel to the x axis
of F at a constant speed v such that 0 < v < c. Let P be a motionless point that in F is
written as P = (p, 0, 0). The coordinates of P in F′ at t′ are given by:

(x′, y′, z′) = ( p−vt√
1−v2/c2 , 0, 0)

t′ = −(v/c2)p+t√
1−v2/c2 .

Isolating t in the second equation and substituting it in to the first equation, (x′, y′, z′) =
(p
√

1− v2/c2 − vt′, 0, 0). Let Q be a different motionless point that in F is Q = (q, 0, 0).
Following the same procedure, Q described in F′ at the instant t′ is (q

√
1− v2/c2 −

vt′, 0, 0). Note that the distance between P and Q in F is |p − q| and the distance in
F′ is given by |p − q|

√
1− v2/c2. As

√
1− v2/c2 < 1, the distance measured by an ob-

server of F′ is shorter than the distance measured by an observer of F. This phenomenon
is known as length contraction.
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Using the same frames of reference of above, assume two different events happening
in the same point P of F, P = (p1, p2, p3), at different instants t0 and t1. These events will
be seen in F′ at the times t′0 and t′1 given by

t′i =
−(v/c2)p1+ti√

1−v2/c2 , i = 0, 1.

Therefore, t′1− t′0 = t1−t0√
1−v2/c2 and (t′1− t′0) > (t1− t0). This effect is known as time dilation.

To put an example, this means that if someone travels on a high speed spaceship, his clock
will go slower than the clock of someone staying on Earth. This is because, from Earth, the
spaceship reaches different points of space A and B at tA and tB respectively, while in the
spaceship the events (tA, A) and (tB, B) happen in the same place. Therefore, the observer
in the spaceship is in the frame of reference F, and the Earth is the frame of reference F′.

Let us now assume two different events happening in different points of F, P =

(p1, p2, p3) and Q = (q1, q2, q3), at the same time t0, i.e., simultaneous events in F. These
two events will be seen by an observer of F′ at the instants t′1 and t′2 given by

t′1 = −(v/c2)p1+t0√
1−v2/c2 , t′2 = −(v/c2)q1+t0√

1−v2/c2 .

Therefore, if p1 6= q1, these events will not be simultaneous for an observer of F′. Contrary
to Newton’s mechanics, in special relativity simultaneity is not absolute.

Let us see another important consequence of the Lorentz transformation that will be
useful to define a metric in space-time.

Definition 4.2. Given an inertial frame of reference F, and two points of R4 in F, (t1, r1) and
(t2, r2), we define the space-time interval as c2(t2− t1)

2− |r2− r1|2, where | · | is the Euclidean
norm in R3.

Let (t′1, r′1) and (t′2, r′2) be the same two points in any other inertial frame of reference
F′. One can prove by using the Lorentz transformation that c2(t2 − t1)

2 − |r2 − r1|2 =

c2(t′2 − t′1)
2 − |r′2 − r′1|2 (we will leave this as an exercise for the reader) . Therefore, the

value of is independent of the chosen frame of reference.

4.4 Minkowski space-time

In this section we will describe the first model of space-time. We want to keep con-
stant the distance between two events when changing the frame of reference. Using
the invariance of the space-time interval, let us define the following scalar product G
in R4. Given an inertial frame of reference, consider two different times tx and ty, and let
x = (ctx, x1, x2, x3) and y = (cty, y1, y2, y3) be two different events, where c is the speed of
light. We define

G(x, y) = −c2txty + x1y1 + x2y2 + x3y3.
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Note that ct is a longitude magnitude, being measured in meters as are the other compo-
nents.

Proposition 4.3. If f is the Lorentz transformation between two inertial frames of reference, then

G(x, y) = G( f (x), f (y)).

Proof. Using that G is bilinear and symmetrical with respect of the two arguments, we can
write

G(x, y) = 1
2{G(x + y, x + y)− G(x, x)− G(y, y)}.

We know that c2(t2 − t1)
2 − |r2 − r1|2 = −G((ct, r), (ct, r)) = −G( f (ct, r), f (ct, r)), there-

fore G(x + y, x + y), G(x, x) and G(y, y) are invariant when applying f .

Definition 4.4. The Minkowski space-time M is a pseudo-Riemannian manifold with null
Riemann curvature and isometric to the manifold (R4,G). The metric tensor field G can be written
in a Cartesian coordinate system as

G = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

and in matrix form as

G =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

The isometry is given by the identification (x0, x1, x2, x3) 7→ (ct, x, y, z). Using such
identification, the tensor field G can be written as G = −c2dt⊗ dt + dx⊗ dx + dy⊗ dy +

dz⊗ dz.

Let F be an inertial frame of reference in the Minkowski space-timeM, we define the
set C of F as

C := {(ct, x, y, z) ∈ M| − c2t2 + x2 + y2 + z2 < 0}.

C has two connected components C+ and C−. We define C+ as the connected component
of C contained in the semi-space t > 0 (the future). C is the set of events that can have
a relation of causality with the event in the origin of F. A vector of R4 is called time-like
if belongs to C. The boundary of C, ∂C, is called light cone, and it is the set of events
connected with the origin by a unique light ray (see figure 4.1).

Proposition 4.5. Let F and F′ be inertial frames of reference ofM and v the speed of F′ relative
to F. If f is the Lorentz transformation between F and F′, then f (C+) = C+.
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Figure 4.1: Light cone of a two dimensional space

Proof. From the proposition 4.1, we deduce that f (C) = C. As f is linear, f is continu-
ous and it will transform the connected component C+ to a connected component of C.
Therefore, it is sufficient to prove that f (w) ∈ C+ for any time-like vector w ∈ C+. Let
w = (1, 0, 0, 0) and f (w) its Lorentz transformed vector, given by

f (w) =


γ(1− v·(0,0,0)

c )

(0, 0, 0) + (γ− 1) (0,0,0)·v
v·v v− γv 1

c ).

Therefore, f (w) = γ(1, 1
c v), which belongs to C+.

Characterisation of the space-time interval

Given an inertial frame of reference in the Minkowski space-time, let O and A be two
different events (O is placed in the origin of the frame of reference), we can characterise
the space-time interval G( ~OA, ~OA) between O and A by the following:

• If G( ~OA, ~OA) < 0, the interval is called time-like.
-It is negative in all inertial frames of reference.
-It does not exist an inertial frame of reference in where O and A are simultaneous.
Therefore, it is not possible to have an inertial frame of reference such that A happens
before O.
-It is possible to find a frame of reference in which O and A happen in the same
place.

• If G( ~OA, ~OA) > 0, the interval is called space-like.
-It is positive in all inertial frames of reference.
-There exists an inertial frame of reference in which O and A are simultaneous.
-There does not exist a frame of reference in which O and A happen in the same
place.
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• If G( ~OA, ~OA) = 0, the interval is called light-like.
-O and A are connected by a unique light ray. They both belong to C.
-O and A can not be simultaneous events in any inertial frame of reference.
-There does not exist a frame of reference in where O and A happen in the same
place ( we can not have a frame of reference travelling at c).

4.5 Proper time

Given an inertial frame of reference F, let us consider a straight line l in R4 with
time-like direction vector v. Such a line can be parametrised as

r = vt + b

t = t

with ||v|| < c. For an observer of F, the line l will represent the movement of a particle
with uniform rectilinear motion and constant speed v. As F is inertial, we can have another
inertial frame of reference F′ moving at a constant speed v from F such that the particle
is static and in the origin of F′. Let PA and PB be different points of l such that PA is
previous to PB. For an observer of F′, these events will be represented by the coordinates
(ctA, 0, 0, 0) and (ctB, 0, 0, 0), with tA < tB. The distance between PA and PB, calculated in
F′, is given by

d(PA, PB) =
√
G(PB − PA, PB − PA) = ic(tB − tA).

Therefore, the time interval (tB− tA) measured in the frame of reference in which the par-
ticle is motionless is d(PA, PB)/ic. However, (tB − tA) can be calculated from any inertial
frame of reference because d(PA, PB) is invariant when applying the Lorentz transforma-
tion.

Consider that the particle reaches the event P1 = (ct1, p), that in F1, it is placed on l,
and it changes drastically its speed to a constant velocity w 6= v. Let PA = (ctA, A) and
PB = (ctB, B) be events represented in F such that tA < t1 < tB. An observer of F can
represent the motion of such a particle in R4 by two segments ending at P1 forming an
angle that have time-like director vectors. Suppose that an observer is travelling with the
particle. From A to p he will be in an inertial frame of reference and the time interval will
be d(PA, P1)/ic. At p, when the speed changes, its frame of reference will no longer be
inertial. An instant later, his frame of reference will be inertial again from p to B, and the
time measured from him between these two events will be d(P1, PB)/ic. We postulate that
the time measured by such an observer (that is not inertial) does not suffer any jump in
time at p. Therefore, the time measured by his clock between A and B is

1
ic (d(PA, P1) + d(P1, PB)).

Suppose now that the particle is moving arbitrarily with respect to F, and without any
drastic change of speed. Let us consider its trajectory in F given by a smooth curve γ of R4
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and instant speed v such that ||v|| < c, i.e, with a positive time-like tangent vector on each
point of γ. Let PA and PB be two different points on such a curve. We want to determine
the time interval measured by an observer moving with the particle, known as proper time
of the particle. As this observer is not necessarily in an inertial frame of reference, an
additional postulate is needed. Let us consider n− 1 points of γ, P1, P2, ..., Pn−1 situated
in numerical order between PA and PB. Let γ′ be the line formed by the segments PAP1,
P1P2,..., Pn−1PB. Such a line describes the motion of a particle that changes of inertial
frame of reference at the points P1, P2, ..., Pn−1. Using the postulate defined above, the
time measured by a clock moving with trajectory γ′ is

1
ic (d(PA, P1) + d(P1, P2) + ... + d(Pn−1, PB)).

It is evident that the greater the n is, the closer γ′ is to γ. We postulate: given two ob-
servers, the more approximate their trajectories in the Minkowski space-time are, the more
approximate their measured time interval becomes. Using these additional postulates, we
want to define the proper time of the particle on the trajectory γ between the events PA
and PB tending n to infinity. The last expression will become

1
ic (length of γ between PA and PB).

Definition 4.6. The time between two events, PA and PB, measured by an observer whose motion
is represented in the Minkowski space-time by the piecewise smooth curve γ, with positive time-like
tangent vector on each point (except the points in where γ is not differentiable), is the length of γ

between PA and PB divided by ic.

4.6 4-velocity, 4-momentum and 4-force

In classical mechanics, given any inertial frame of reference, it is assumed that the total
momentum of a system of particles, defined as ~p = ∑i m d~ri

dt (~ri ∈ R3 is the position vector
of the particle i), is conserved (momentum conservation law). Redefining the definition of
momentum in special relativity by changing the term d~ri

dt by d(ct,~ri)
dt , one deduces that this

conservation law is not satisfied for some inertial frame of references (see [2] section 15.1).
This contradicts the first postulate of special relativity. Therefore, we need to find a good
definition of momentum that satisfies a conservation law in the Minkowski space-time
and for all inertial frames of references.

Definition 4.7. Let γ(τ) be the trajectory of a particle in the Minkowski space-time parametrised
by its proper time τ (also named particle’s life). We define the 4-velocity of the particle at the
instant τ0 as dγ(τ)

dτ |τ=τ0 . The 4-momentum of the particle at τ0 is given by m dγ(τ)
dτ |τ=τ0 , where

m is the mass of the particle.

Let us analyse these definitions in an inertial frame of reference F. The particle’s life
will be parametrised as 

~r = (γ1(t), γ2(t), γ3(t))

ct = ct
,
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where (γ1(t), γ2(t), γ3(t)) are the coordinates of the particle in F, and t is the time mea-
sured from F. We can express t in function of τ, therefore, the last expression can be
written as 

~r = (γ1(t(τ)), γ2(t(τ)), γ3(t(τ)))

ct = ct(τ)
.

The 4-velocity ~v of the particle will be

~v = dγ
dτ = dγ

dt
dt
dτ = (c, dγ1

dt , dγ2

dt , dγ3

dt )
dt
dτ = (c, v1, v2, v3) dt

dτ ,

where (v1, v2, v3) is the usual velocity in F. Using the definition of proper time,

τ(t) = 1
ic
´ t

0

√
G( dγ

dξ , dγ
dξ )dξ,

therefore,

dτ
dt = 1

ic

√
G( dγ

dt , dγ
dt ) =

1
ic

√
G((c, v1, v2, v3), (c, v1, v2, v3))

=
√

c2−v2

c =
√

1− v2

c2 ,

where v =
√
(v1)2 + (v2)2 + (v3)2. Hence, if ~v is the 4-velocity and ~P the 4-momentum,

in F they will be expressed as

~v = (c, v1, v2, v3) 1√
1− v2

c2

and ~P = (c, v1, v2, v3) m√
1− v2

c2

.

The 4-force or Minkowski force is defined as ~F = d~P
dτ (analogously to F = d~P

dt of
classical mechanics).



Chapter 5

Relativistic continuum mechanics;
the stress energy tensor field

Continuum mechanics is a branch of mechanics such that materials are analysed and
modelled as if they could be divided infinite times. In other words, a model of an object is
made assuming that the substance of the object completely fills the space it occupies, i.e,
the object is a continuum. It is well known that this is not true on a very small scale, thus,
this theory will only be applicable on a large scale. In this section we will only emphasise
on the aspects needed for our purpose, giving a brief, intuitive explanation of the other
aspects.

5.1 Mass density; proper density

Consider a continuum medium in motion (for example a fluid) in a region U ∈ R3

with respect to an inertial frame of reference F. The density function ρ : I ×R3 −→ R of
the medium is related to the mass of a measurable region V ⊂ U at the instant t ∈ I by

m(V, t) =
´

V ρ(x, t) dV.

We consider that the density function is differentiable. Let x0 be a point of U and t0 be an
instant in time. Let Vδ be the ball of center x0 and radium δ. The density function can be
expressed as

ρ(x0, t0) = limδ→0
m(Vδ ,t0)
vol(Vδ)

.

Let P be a particle of the medium. Let τ be its proper time and τ0 be any instant of
it. Let F′ be an inertial frame of reference such that at t′ = 0 its origin coincides with the
particle at τ0 and the speed of P is null at that instant. As the particle is not necessarily
moving at a constant speed, P can have a non-null speed in F′ at any other time τ1 6= τ0.
An inertial frame of reference with these characteristics is called proper frame of P at τ0.
Measuring the mass density of the medium from F′ at the origin of F′ and at t′ = 0, we
get a number σ called proper density of the medium of P at τ0.

29
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5.2 Body force density and stress tensor field

Consider, as before, a continuum medium in motion in a region U ∈ R3. Let V be a
region of U. Following the classical dynamics of Newton and Euler, the motion of V is
produced by the action of applied forces which are assumed to be of two kinds: surface
forces ~FC and body forces ~FB. The surface forces are those which the rest of the medium
exerts on V, and body forces are those originating outside of the medium (for example,
if V is affected by a gravitational field). For further details, see [3] section 4.1. Thus, the
total force F applied on V at the instant t can be expressed as:

F (V, t) = ~FB(V, t) +~FC(V, t).

Definition 5.1. The body force density ~f (x, t), which depends differentially of x and t, is a vector
field defined as

~f (x, t) = limδ→0
FB(Vδ ,t)
vol(Vδ)

,

where Vδ is the ball of center x and radium δ.

~f (x, t) is, intuitively, the body force exerted on the point x at the instant t. Its magni-
tude is force per unit of volume.

We want to define the body force density in relativity. Let F be an inertial frame of
reference. Given an event (ct0, x0) ∈ R4, consider a particle of the medium in motion and
placed on x0 at the instant t0. Let F′ be an inertial frame of reference such that the particle
coincides with the origin of F′ at t′ = 0, and its instant speed at that time is null in F′

(proper frame of the particle at that time). Let H be the hyperplane that in F′ is orthogonal
to the ct′ axis (by the Minkowski metric) and contains (ct0, x0) (intuitively, H is a picture
of the space at t0, taken by an observer of F′). Let ~f = ( f1, f2, f3) be the body force density
at the origin of F′ at t′ = 0. The vector (0, f1, f2, f3) will be contained in H. From now on
we will denote such a vector of R4 as ~f ′.

Definition 5.2. With the considerations above, for each (ct, x) we have defined a vector ~f ′(t, x) ∈
R4 called Minkowski body force density. The function ~f ′ is supposed to be differentiable on its
components.

Cauchy’s principle Let S2 be the set of unit vectors of R3. There exists a differentiable
mapping

U × S2 × I −→ R3

(x,~u, t) 7−→ ~T(x,~u, t)

such that for all region V ⊂ U with a smooth boundary, and also for all tetrahedron V ⊂ U (even
if its boundary is not smooth), the surface force on V at the instant t is given by

~FC(V, t) =
ˆ

∂V
~T(x,~n(x), t)ds. (5.1)
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where, for all x ∈ ∂V, ~n(x) is the normal unit vector to ∂V, and ds is the surface element of ∂V.
Let us assume that the integral above makes sense when V is a tetrahedron (even if ~n(x) is not
defined on the edges). It is also supposed that ~T(x,~u, t) = −~T(x,−~u, t).

Let us see the significance of ~T. Given x ∈ U and ~u ∈ S2, let s be a small open neigh-
bourhood of x on a plane perpendicular to ~u containing x. Intuitively, ~T(x,~u, t) is the
force that the part of the medium at one side of s exerts to the other side with direction ~u,
therefore, it is a force per unit area. Using Newton’s third law (action reaction), one can
easily intuit why the condition ~T(x,~u, t) = −~T(x,−~u, t) is needed.

The mapping ~T(x,~u, t), given by the Cauchy’s principle, is defined for vectors belong-
ing to S2. Let us extend such a differentiable map for vectors of R3 by

T(x,~u, t) =


0 if ~u = 0

||~u||~T(x, ~u
||u|| , t) if ~u 6= 0

.

Cauchy proved that T(x,~u, t) depends linearly on ~u (Cauchy’s Theorem) (see [2], theorem
12.4). We proved in chapter one that given a vector space E, the space of linear mappings
from E to E can be identified to E∗ ⊗ E. Therefore, the linear mapping ~u 7→ T(x,~u, t)
defines a tensor of type (1, 1).

Definition 5.3. For each t ∈ I, T(x,~u, t) determines a (1, 1) tensor field T on U named Cauchy
stress tensor.

We want to find an analogous concept in the Minkowski space-time. Let F be an in-
ertial frame of reference in where the events are represented by (ct, x) ∈ R4. Consider
a particle of the medium placed in x0 at the instant t0. Let F′ be an inertial frame of
reference such that its origin coincides with the particle at t′ = 0 and the speed of the
particle with respect to F at that instant is null (proper frame of the particle at t0). Let
T be the Cauchy stress tensor at the instant t′ = 0 according to the observers of F′. Let
T(t0,x0)

be the tensor field applied on the origin of F′ at t′ = 0. By virtue of the Cauchy’s
theorem, T(t0,x0)

is a linear transformation. Consider the hyperplane H containing (t0, x0)

and orthogonal to the ct′ axis by the Minkowski metric. H represents the space of F′ at
t′ = 0 (informally, H is a picture of the space at the instant t′ taken by an observer of F′)
. With this considerations, T(t0,x0)

can be understood as a linear transformation of H. We
want to extend such a transformation to R4, which we will also design by T(t0,x0)

. Let us
impose that if v ∈ R4 is an orthogonal vector of H, T(t0,x0)

(v) = 0. Thus, we have defined
a tensor T(t,x) defined on each (t, x) ∈ R4. Note that this tensor field only depends on the
medium, because the frame of reference F′ used to define T(t,x) is uniquely determined by
the medium at each (t, x) ∈ R4.

Definition 5.4. Using the notation above, and considering that the tensor field T is differentiable,
we name T as the stress tensor field.

Note that T can be also taken as a (0, 2) tensor field using the musical isomorphism.
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5.3 Stress-energy tensor field

In this section we will define the stress-energy tensor field, which will be crucial to
locally determine the metric of space-time in presence of masses.

In classical continuum mechanics, the equations of motion of a continuum medium,
also known as Cauchy momentum equations, are given by

∂(ρ~v)
∂t + div(ρ~v⊗~v− T ) = ~f ,

where ρ is the density, ~f the body force density, ~v is the speed vector field of the medium
and T is the stress tensor field that in this expression is of type (0, 2). Considering that
the mass of the medium is constant in time, we can deduce the following equation, also
known as continuity equation (see [2] section 12.2)

∂ρ
∂t + div(ρ~v) = 0.

These last expressions depend on the chosen frame of reference. We want to find an ex-
pression in the Minkowski space-time that does not depend on the frame of reference. It
will also be necessary the compatibility with classical mechanics, i.e, if the speed of the
medium is a lot smaller than c, we should get the Cauchy momentum equations.

Consider the following equation in the Minkowski space-time:

div(σ~u⊗ ~u− T ) = ~f ′, (5.2)

where σ is the proper density, T is the (0, 2) stress tensor field, ~f ′ is the Minkowski
body force density and ~u is the speed vector field of the medium. In order to show the
compatibility of the equation (5.2) with the classical theory, assume that all of the particles
of the medium move at a small speed. Therefore, on each point of the fluid, and at each
instant, we have a proper frame F′ moving from F with a constant speed v � c. We can
approximate this by assuming that the frames of reference F′ coincide with F. The proper
density σ will be approximately ρ measured in F. Using components in F, the equation
(5.2) will be written as

∂
∂xα (ρvivα − T iα) + ∂

∂ct (ρviv0 − T i0) = f i,

where α ∈ {1, 2, 3} and i ∈ {0, 1, 2, 3}. Considering that all proper frames coincide with
F, T j0 = 0 (see section 5.2). Furthermore, as in this case the speed of the medium is small
compared with c, the Lorentz factor γ is almost 1 Therefore, v0 = c and the 0 component
will be

c( ∂ρ
∂t + div(ρu)) = 0,

where u is the three dimensional speed vector field defined by the three space components
of ~u. Note that dividing the equation by c, one gets the continuity equation. The other
three components will give us the Cauchy momentum equations.
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Definition 5.5. We define the stress-energy tensor field as

T =
1
c2 (σ~u⊗ ~u− T ). (5.3)

Using this definition, the equation (5.2) is written as

c2divT = ~f ′.

Note that we can use the Minkowski metric to convert T to a (1, 1) tensor field, which can
be understood as a linear mapping (see section 1.4). Let p be a point in the Minkowski
space-time and u = ~u(p). We want to prove that, considering T as a linear mapping, u
is an eigenvector with eigenvalue −σ. Suppose that F is an inertial frame of reference
in which the vector u is the director vector of the time axis, i.e, the coordinates of u are
(c, 0, 0, 0) in F. If the index 0 is the time component, and the space components are 1, 2
and 3, the components of T(u) in F are given by

T(u)i = Ti
kuk = cTi

0 = σ
c (u

iu0 − T i
0 ).

The components T i
0 are all 0 in F (see section 5.2). Therefore,

T(u)i = σ
c (u

iu0) =
σ
c (u

iG00u0) = −σui.

One can see that T does not have any other time-like eigenvector except of u multiplied
by any scalar. The vector field σ~u is called 4-momentum density vector field. Suppose that
we know T. It is possible to extract such a vector field by calculating the only time-like
eigenvector of norm ic and multiplying it by the opposite of its eigenvalue. Note that we
can also extract the information of the surface forces by knowing the stress-energy tensor
field.
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Chapter 6

The space-time; An introduction
to general relativity

In the case of special relativity, the effect of gravity doesn’t exist, being incomplete
and not compatible with Newton’s theory of gravity, which predicts that a mass placed in
space creates a gravitational field, attracting the rest of the masses. This incompatibility is
what pushed Einstein to create the theory of general relativity, which is compatible with
Newton’s theory of gravitation. Before formalising the basics of general relativity, we will
see an example that will help us to understand and develop such a theory.

6.1 The spinning disc

Let F be an inertial frame of reference and suppose that there is a disc of radium R
contained in the plane z = 0 such that its center coincides with the origin of F. Suppose
that at the instant t = 0 the disc starts spinning with a constant angular speed ω such that
ωR < c. Using a polar coordinate system, consider a point of the disc placed in (r0, θ0, 0)
at t = 0. We can parametrise the trajectory of P by the curve

x(t) = r0 cos(ωt + θ0)

y(t) = r0 sin(ωt + θ0)

z(t) = 0

t = t

, (6.1)

where (x, y, z) are the Cartesian space coordinates of P with respect to F. As in this
example the coordinate z will always be zero, we shall remove it from now on and consider
this example in a two dimensional space. Therefore, we can represent the motion of P in
the Minkowski space-time by the curve γ(t) = (ct, x(t), y(t)). The norm of γ̇(t) by the
Minkowski metric will be ||γ̇(t)|| =

√
ω2r2 − c2. As ||γ̇(t)|| does not depend on t, the

proper time of P is given by

35
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τ = 1
ic (
√

ω2r2 − c2)t =
√

1− r2ω2

c2 t.

Considering this expression and supposing that there is a clock stuck on P, one deduces
that the further that P is from the center of the disc, the slower the time measured by the
clock will go. Parametrising the trajectory of P by its proper time, we have

γ(τ) =



x(τ) = r0 cos( ω
α0

τ + θ0)

y(τ) = r0 sin( ω
α0

τ + θ0)

ct(τ) = cτ
α0

,

where α0 =

√
1− r2

0ω2

c2 . The 4-acceleration will be

d2γ(τ)
dτ2 = −ω2r0

α2
0
(0, cos( ω

α0
τ + θ0), sin( ω

α0
τ + θ0)).

This means that a particle of mass m stuck on P will experiment a 4-force directed to the

center of the disc and of norm m ω2r0
α2

0
. (centripetal force)

Consider another frame of reference F′ spinning with respect to F also with an angular
speed ω, and such that its origin coincides with the origin of F (and with the center of the
disc). Note that F′ is not inertial and the disc will be static in such a frame of reference.
For the observers of F′ (intuitively, the inhabitants of the disc), the trajectory of P in space
will only be a single constant point given by (r0, θ0). Let us express the Minkowski metric
using the coordinates (ct, r, θ). Using the equations (6.1), we have

dx = cos(ωt + θ)dr− rω sin(ωt+θ)
c cdt− r sin(ωt + θ)dθ

dy = sin(ωt + θ)dr + rω cos(ωt+θ)
c cdt + r cos(ωt + θ)dθ

cdt = cdt.

Therefore,

G = −c2dt2 + dx2 + dy2 = dr2 + r2dθ2 +
2r2ω

c
cdtdθ − (1− r2ω2

c2 )c2dt2. (6.2)

A point P of the disc will be denoted in F′ as (r0, θ0). It will have a trajectory in the
Minkowski space-time given by γ(t) = (ct, r0, θ0), with tangent vector γ̇(t) = (c, 0, 0).

Using (6.3), we can calculate the norm of (c, 0, 0), which will be
√

r2
0ω2 − c2. Therefore,

the proper time of P gives

τ = 1
ic (
√

ω2r2
0 − c2)t =

√
1− r2

0ω2

c2 t.

γ parametrised with τ will be γ(τ) = ( cτ
α , r0, θ0), where α =

√
1− r2

0ω2

c2 . This means that

γ̇1 = γ̇2 = 0 and γ̇0 = c/α. Therefore γ̈ = 0. When we choose a non inertial frame of
reference, fictitious forces occur. For example, the Coriolis force is a fictitious force that
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acts on objects that are in motion relative to a rotating frame of reference. It would be
false to say that there is no force acting on P using that γ̈ = 0. If P is static in F′, there
must be a real force keeping it motionless. Such a force is the one we found analysing this
problem in the frame F, which is inertial. We want to find an expression that allows us to
extract the 4-acceleration found from F in any frame of reference (even if it is not inertial).
Let us consider the acceleration given by ∇γ̇γ̇, where ∇ is the Levi-Civita connection. The
coordinates of ∇γ̇γ̇ will be

(∇γ̇γ̇)i = γ̈i + Γi
jkγ̇jγ̇k = c2

α2 Γi
00

Let us calculate the Christoffel symbols using the Levi-Civitta equations given by

GilΓi
jk =

1
2 (

∂Gjl

∂xk + ∂Gkl
∂xj −

∂Gjk

∂xl ).

The metric G in the point (ct, r0, θ0) is written as

G =


r2

0ω2

c2 − 1 0 r2
0ω
c

0 1 0
r2

0ω
c 0 r2

0

.

Therefore,

GilΓi
00 = ∂G0l

∂x0 − 1
2

∂G00
∂xl .

However, the only non null derivatives of G are the derivatives with respect the coordinate
x1 = r. Hence, the only non null GilΓi

00 will occur when l = 1. Therefore,

Gi1Γi
00 = − 1

2
∂G00

∂r = − r0ω2

c2 .

Therefore, the Christoffel symbols Γi
00 are given by

Γi
00 = G i1Gi1Γi

00,

where G ij are the coefficients of the inverse matrix of G,

G−1 =

−1 0 ω
c

0 1 0
ω
c 0 1

r2
0
− ω2

c2

.

The only non null Γi
00 is when i = 1 and we have

∇γ̇γ̇ = r0ω2

α2 (0,−1, 0).

Given this acceleration, we can calculate the 4-force by F = m∇γ̇γ̇, which will give us a

force directed to the center of the disc and with norm mr0ω2

α2 . Note that this is the same
result that we got using an inertial frame of reference and the classical derivative. Let us
see what happens if we leave a freely moving particle P of mass m at the point (r0, θ0)

of the disc. If γ(t) = (ct, r(t), θ(t)) is the trajectory describing the particle’s life such that
γ(0) = (0, r0, θ0), assuming that ∇γ̇γ̇ is the real acceleration, the condition that no forces
will act on P will be written as ∇γ̇γ̇ = 0, i.e, γ is a geodesic curve. The equation of a
geodesic curve is given by
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γ̈i + Γi
jkγ̇jγ̇k = 0.

As the particle is motionless at t = 0, γ̇(0) = (c, 0, 0). Therefore, the geodesic equation at
t = 0 is written as

γ̈i + Γi
00c2 = 0.

If an inhabitant of the disc (an observer of F′) refers the fictitious acceleration γ̈i to its
proper time τ = αt (not to the time t of F), we have

d2γi

dτ2 = 1
α2 γ̈i = − c2

α2 Γi
00.

The inhabitant of the disc may think that there is a force acting on P with the same norm
of the centripetal force and opposite direction (centrifugal force). This will only happen
because he refers the movement using the coordinates of F′, which is not inertial. An
observer of F will see that there is no force acting on the particle, and its movement will
be caused by the motion of the rotating disc (not because of the effect of a force). Imagine
that we close an observer of F′ in a small box. If such an observer leaves a particle Q of
mass m freely in motion inside the box, he might think that there is a gravitational field
attracting Q. Indeed, if he leaves a second particle of mass M 6= m freely in motion, its
acceleration will be the same as it was for the first particle. This is a characteristics of
gravitational fields. Therefore, the observer inside a small box can not know if the motion
of the particle is created by a "fictitious" force due to the motion of the box with respect to
the inertial observers, or by a "real" force created by a gravitational field.

Let us see what happens with the space geometry of F′ (not the space-time geometry).
When an observer of F′ measures the longitude of the circumference r = r0, the result
will not be 2πr0. Before formalise rigorously this result, we shall give first an intuitive
explanation. Let us divide the circumference r = r0 to n arcs denoted as α′1, α′2, ..., α′n such
that n is sufficiently large to confuse each α′i with a straight segment. Hence, we will
consider that each α′i is straight. If we do the same in F, we will have n straight segments

α1, α2, ..., αn. The measure of each αi will be the measure of α′i multiplied by
√

1−ω2r2
0/c2.

Hence, if the perimeter of r = r0 in F is 2πr0, in F′ will be 2πr0√
1−ω2r2

0/c2
. If an observer of F′

measures the radium of the circumference, as it is perpendicular to the movement, there
will not be length contraction (see section 4.3). Therefore, the radium will remain the same
between F and F′. One concludes that the relation between the circumferences centred in
the origin and their diameter is π in F and greater than π in F′. Hence, the geometry of
the space in F′ is no longer Euclidean.
Let us formalise with more rigour the results above. Consider a non inertial observer
placed in P0 = (r0, θ0). Given a fixed time t = t′ = 0, where t is measured in F and t′

in F′, consider an inertial frame of reference F′′ such that its origin coincides with P0 at
t′′ = 0 and the speed of the observer is null at that instant, i.e, the proper frame of P0 at
t′ = 0. Indeed, for each point P = (r, θ), motionless from F′, we have a proper frame of
P at t′ = 0. Let us design such an inertial frame of reference as F′′P . Every F′′P moves with
respect to the others, hence, the distances will vary depending on which inertial frame of
reference we are. Using the first postulate of the special relativity, we can only measure
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distances in an inertial frame of reference. In order to give a definition of "measuring
distances" in F′ that is compatible with every measurement made in an inertial frame of
reference, the only alternative that we have is thinking that the distances in F′ are given
by a metric such that the metric of the tangent space of a point P is the metric of F′′P . Note
that these considerations above are refereed to the space of F′ (not the space-time) because
the time is fixed at t′ = 0. Every point of the disc P0 = (r0, θ0) origins a curve γ of the
Minkowski space-time with tangent vector γ̇(0) = (c, 0, 0). The frame of reference F′′P0

will
have γ̇(0) as director vector of the time axis, and the perpendicular plane at t′′ = 0 will
be the space axes. Let us see what the condition of perpendicularity with γ̇(0) means.
Given a vector (cT, R, Θ) which origin is on (0, r0, θ0), the perpendicularity with (c, 0, 0) is
written as

(
c 0 0

)
r2

0ω2

c2 − 1 0 r2
0ω
c

0 1 0
r2

0ω
c 0 r2

0


cT

R
Θ

 = 0.

Therefore, we can express T as a function of Theta by

T =
r2

0ω

c2−r2
0ω2 Θ.

The vectors with origin γ(0) which are perpendicular to (c, 0, 0) are (c r2
0ω

c2−r2
0ω2 Θ, R, Θ). The

scalar product of two vectors that are perpendicular to γ̇(0) is given by

(
c r2

0ω

c2−r2
0ω2 Θ R Θ

)
r2

0ω2

c2 − 1 0 r2
0ω
c

0 1 0
r2

0ω
c 0 r2

0


c r2

0ω

c2−r2
0ω2 Θ′

R′

Θ′

 =

(
0 R (r2

0ω)2

c2−r2
0ω2 Θ + r2

0Θ
)c r2

0ω

c2−r2
0ω2 Θ′

R′

Θ′

 =

RR′ + (
(r2

0ω)2

c2−r2
0ω2 + r2

0)ΘΘ′ = RR′ + r2
0

1−
r2
0ω2

c2

ΘΘ′.

The last expression is the metric of the space (not the space-time) of F′′P0
. Therefore, the

metric that induces each one of the metrics of F′′P is the non euclidean metric for F′ given
by

dr2 + r2

1− r2ω2
c2

dθ2.

6.2 Einstein’s equivalence principle and the theory of grav-
itation

In the last example, we deduced that what causes the movement of free particles in
a small box on the spinning disc can be confused between a gravitational field and a
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force produced by its motion. This concept is known as Einstein’s equivalence principle,
which states that in any sufficiently small region of space, the effects of gravitation are the
same as those from acceleration. However, we saw that given the free particle’s life γ(τ),
whatever the reason of its movement is, its trajectory will satisfy ∇γ̇γ̇ = 0, where ∇ is the
Levi-Civitta connection with respect to the metric tensor field. We also saw that the metric
(6.2) depends on the angular velocity of the disc. Indeed, if the disc is not spinning, the
metric is written as

G = −c2dt + dr2 + r2dθ2,

which is the usual Minkowski metric in polar coordinates. Hence, one can deduce that
the rotating movement of the disc deforms the Minkowski metric. Moreover, we saw that
the space given at any time is also deformed when ω 6= 0. Using the idea that the effect
of a gravitational field is equal to the effect of the disc’s movement (Einstein’s equivalence
principle), we can conceive that a gravitational field creates a deformation of the metric
tensor field. When there is no gravity involved, a free particle’s life is represented as a
geodesic curve of the Minkowski space-time parametrised by its proper time (a geodesic
curve is a straight line in (R4,G)). The tangent vector at each point of the particle’s life will
be a time-like vector aiming towards the future (contained in C+). When a gravitational
field is involved, we shall change the Minkowski metric to another one, and the events will
no longer be represented inR4, being the new space-time a more general four dimensional
differentiable manifold M. However, the particle’s life will still be a geodesic curve of the
new space-time with the new metric, also parametrised by its proper time. Let γ(τ) be
the free falling particle’s life in space-time, and let (ct, x1, x2, x3) be coordinates in a local
chart of space-time such that the vector ∂

∂t aims to the future (we will study with more
details the concept of time orientation). The condition that its trajectory in space-time is a
geodesic curve is written as

γ̈i + Γi
jkγ̇jγ̇k = 0.

The observers whose life is represented by the coordinates (ct, x1, x2, x3) will think that
the particle is accelerating at γ̈i = −Γi

jkγ̇jγ̇k, and they will attribute this acceleration to a
4-force created by a gravitational field. But this is not a real force, it is a fictitious force
caused by the special election of the observers. In the expression of such a fictitious force,
the Christoffel symbols are involved, and, in the expression of the Christoffel symbols,
the first derivatives of the components of the metric G appear. Therefore, the (fictitious)
gravitational force depends on the first derivatives of the metric components. To give an
analogy with classical mechanics, as any force produced by a potential V is given by the
first derivatives of V, in the theory of general relativity the metric G will substitute the
gravitational potential V.

Let us see another 1-dimensional example built using Einstein’s equivalence princi-
ple, which will help us to develop Einstein’s gravitation theory. Consider an observer in
a small spaceship placed on the surface of the Earth. Such an observer experiences the
vertical force produced by the Earth’s gravitational field. If he drops a mass from a cer-
tain altitude, the mass will experience an acceleration of −g. The equivalence principle
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allows us to consider such an observer in the spaceship accelerating at g from an inertial
frame of reference in a zero-gravity space. Indeed, if he drops a mass, the observer will
see the mass accelerating at −g. We will use this example to repostulate the equivalence
principle. If we decrease the acceleration of the spaceship by g in both cases, the apparent
gravitational field should be the same in both frames of reference (the origin of the frame
of reference is in the center of the spaceship). In the case of the spaceship accelerating at
g, decreasing this value by g, the spaceship will have null acceleration and its speed will
remain constant. Therefore, if the observer at the center of the spaceship drops a mass
freely moving, it will not experience any apparent force and it will "float" (the spaceship
is travelling in a zero gravity space). In the case of the spaceship standing motionless on
the Earth, decreasing the value of its acceleration (which was 0) by g, we have a spaceship
accelerating at −g, i.e, free falling, and using the equivalence principle, we deduce that if
the spaceship is very small, the observer will experience that he is in a zero-gravity space.
Remember that the trajectory of a free falling particle’s life is a geodesic curve. Let us
repostulate the equivalence principle as: Any observer whose life is a geodesic curve will
experience no gravity in a small neighbourhood. But, how can we describe mathemati-
cally the equivalence principle?

We have seen that given a free falling particle’s life γ(τ), for every τ0, we can have
an inertial frame of reference Fτ0 such that its origin coincides with γ(τ0) and the particle
at the instant τ0 is static in Fτ0 (proper frame of reference of the particle at τ0). As the
particle’s life is a geodesic curve of the space-time, by using the equivalence principle, it
is logic to assume that at every point of γ(τ), we can have an inertial frame of reference
Fτ such that the effects of gravity are null in a small neighbourhood of space and time.
Therefore, one can deduce that the induced metric of Fτ to the tangent space Tγ(τ)M can
be represented through a change of coordinates in the tangent space as the Minkowski
metric (note that the tangent space of any point of the space-time is R4).

6.3 Definition of space-time

Definition 6.1. A Lorenz manifold is a pseudo-Riemannian manifold (M,G) such that M is a
four dimensional differentiable manifold and G is a metric tensor field such that for any p ∈ M,
there exists a basis e0, e1, e2, e3 of Tp M such that the scalar products G(ei, ej) are given by the
matrix

G =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Similarly with what we defined in the Minkowski space-time, a vector v ∈ Tp M is
called time-like if G(v, v) < 0, space-like if G(v, v) > 0 and light-like if G(v, v) = 0. Cp
is the cone formed by the time-like vectors of Tp M. Cp will have two connected compo-
nents. We will say that a Lorenz manifold (M,G) is orientable with respect to time if for
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all p ∈ M we can choose a connected component of Cp, which we will denote as C+
p , that

satisfies the following condition: There exists a smooth vector field V ∈ X (M) such that,
for each local chart (U, ϕ) of M, Vp ∈ C+

p for all p ∈ U. The election of the connected
component of Cp that satisfies the last condition is called a temporal orientation of M.

Definition 6.2. (Space-time) We define the space-time as a Lorenz manifold that is orientable
with respect to time, and with an election of a temporal orientation.

6.4 Einstein’s field equation

So far, we have seen the definition of space-time and its properties. But, how do we
determine the metric tensor field in a region of the space-time? Einstein deduced an
equation that allows us to determine such a tensor field. Let us see the deduction of this
equation. In the frame of the classical mechanics, the matter in a continuum medium is
described by the mass density σ. According to Newton’s theory, this matter will create a
gravitational field, whose potential V is related with σ by the Poisson equation

∆V = 4πKσ,

where ∆ is the Laplacian operator and K is the gravitational constant. But, how can we
write this equation based on the theory of gravitation proposed by Einstein? In general
relativity, we have seen that the potential V is substituted by the metric G. But if we replace
V, which is a scalar, with G, which is a tensor field, we will also have to substitute σ by a
tensor field of the same type as G. The relativistic equation would have to be an equation
of tensor fields. In chapter 5 we have defined the stress-energy tensor field T, which is of
type (2, 0) (same type of G), and contains the information of the matter, including σ. Such
a tensor field satisfies the continuity equation

c2divT = ~f ′,

where ~f ′ is the Minkowski body force density. Let us assume that the matter of the
medium creates the gravitational field and that there are no other sources generating body
forces (such as an electromagnetic field). In the gravitational theory developed in section
6.2, the gravitational forces do not exist, hence, there will be no body forces involved and
the continuity equation will be written as

divT = 0.

Therefore, a matter in absence of electric charges (which create electromagnetic fields) will
be described by the stress-energy tensor T that satisfies divT = 0. Hence, trying to build
an analogous expression to the Poisson equation, we are searching for an equation that
relates G with T and that does not depend on the chosen coordinates system. The second
member will be, then, kT, where k is a constant. The first member would have to be a
tensor field G′ that only depends on G (∆V only depends on V). Given a local chart, G′

would have to contain the second derivatives of Gij, analogously to ∆V, which contains
the second derivatives of V. Therefore, the equation that we are looking for is given by

G′ = kT. (6.3)
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In order to find the tensor field G′, we must search for those whose divergence is null.
Indeed, by virtue of the continuity equation, div(kT) = 0. Einstein proposed the tensor
field

G = Ric− 1
2

RG, (6.4)

where Ric is the Ricci tensor field and R the scalar curvature. G is known as the Einstein’s
tensor field. Let us prove that divG = 0.

Theorem 6.3. Div(Ric) = 1
2 dR, where dR is the differential of the scalar curvature.

Proof. As usual, we will chose a local chart (U, ϕ = (x1, ..., xn)). Using the second Bianchi’s
identity,

∇rRi
jkh +∇hRi

jrk +∇kRi
jhr = 0.

From the definition of Riemann curvature, the third term will be equal to −∇kRi
jrh. Note

that in the last expression, for each i, we have an independent equation. Taking r = i and
summing with respect to i, we have

∇iRi
jkh +∇hRi

jik −∇kRi
jih = 0.

Therefore, we deduce

G jk∇iRi
jkh + G

jk∇hRi
jik − G

jk∇kRi
jih = 0. (6.5)

In order to continue this proof, we need the following lemma:

Lemma 6.4. G jk∇iRi
jkh = −G ir∇iRk

rkh.

Proof. Ri
jkh = δmiRm

jkh = G irGrmRm
jkh = G irG( ∂

∂xi , R( ∂
∂xk , ∂

∂xh )
∂

∂xj ).
Using proposition 3.10, the last expression can be written as

−G irG( ∂
∂xj , R( ∂

∂xk , ∂
∂xh )

∂
∂xi ) = −G irGjmRm

rkh.

Therefore,

Ri
jkh = −G irGjmRm

rkh ⇒ G
jkRi

jkh = −G irRm
rkh.

Let us apply ∇ ∂
∂xi

to the tensor K with components Ki
h = G jkRi

jkh, and sum with respect

to i; we will obtain the expression

∇ ∂
∂xi

Ki
h = ∇i(G jk)Ri

jkh + G
jk∇iRi

jkh.

By how we defined the Levi-Civitta connection, we know that ∇iGjk = 0. We want to
prove that ∇iG jk = 0 ((G jk) is the inverse matrix of (Gjk)). Using that GG−1 = I, we have

(∇iG)G−1 + G∇iG−1 = 0,
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therefore, as (∇iG) = 0, the first member is zero and we deduce that ∇iG−1 = 0. Hence,
as ∇iG jk = 0, by applying ∇i on both sides of the equation G jkRi

jkh = −G irRm
rkh, we prove

the lemma.

Continuation of the theorem’s proof

Applying the lemma to the identity (6.5), we obtain

−G ir∇iRk
rkh + G

jk∇hRi
jik − G

jk∇kRi
jih = 0.

By the definition of Ricci tensor field, the equation above can be written as

−G ir∇iRrh + G jk∇hRjk − G jk∇kRjh = 0.

Note that the first and the third members are equal. Using that ∇iG ir = 0, the identity
can be written as

−2(div(Ric))h +∇hR = 0.

As R is a function, ∇hR = ∂R/∂xh. The equation above implies that 2div(Ric) = dR.

Corollary 6.5. divG = 0, where G is the Einstein’s tensor field.

Proof. We have to prove that div(Ric) = 1
2 div(RG), hence, using the last theorem, it is

sufficient to prove that div(RG) = dR. In a local chart (U, ϕ = (x1, ..., xn)), we have

(div(RG))h = ∇i(RG ikGkh) = (∇iR)G ikGkh = ∇hR = ∂R
∂xh .

Note that given a local chart, the Ricci curvature tensor field contains derivatives of the
Christoffel symbols, hence, it depends on the second derivatives of Gij (see equation 3.6).
Einstein proposed that the equation that had to substitute the Poisson equation is kT = G.
This expression is known as Einstein’s field equation. One could question if G is the only
tensor field satisfying divG = 0 and (determining a local chart) if it is the only one that is
expressed in function of the second derivatives of Gij. Given Λ ∈ R, if we add ΛG with
G, we obtain the tensor field

Ric− 1
2 RG + ΛG,

which divergence is also null because divG = 0 (remember that ∇G = 0) and it contains
the second derivatives of Gij. Poincare proved that the only tensor fields satisfying these
conditions where Ric− 1

2 RG + ΛG for all Λ ∈ R. Therefore, the equation substituting the
Poisson equation will be

G + λG = kT,

where k, and Λ are constants. By doing an approximation of this equation to a non
relativistic frame, and comparing with Newton’s theory of gravitation, one deduces that
k = 8Kπ/c2, where K is the gravitational constant, and Λ = 0 (see [2] section 18.5).
Therefore, the Einstein’s field equation is written as

Ric− 1
2 RG = 8Kπ

c2 T.
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