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SUMMARY 18 

Fusarium tomato wilt is one of the most prevalent and damaging diseases wherever 19 

tomatoes are grown intensively. Progress in agriculture in the 21st century is set to be 20 

based on lowering agrochemical inputs (implementation of Directive 2009/128/EC on 21 

sustainable use of pesticides), which can be achieved to some extent through the use of 22 

beneficial microorganisms. This study aimed at comparing the effects of the 23 

mycorrhizal fungus Rhizophagus irregularis and the biological control agent 24 

Trichoderma asperellum strain T34 on the incidence of fusarium wilt and the growth of 25 

tomato plants. Both R. irregularis and T34 lowered disease incidence at similar rates, 26 

compared to control plants. R. irregularis added below the seedlings reduced disease 27 

incidence more than when it was mixed with the substrate. T34 and R. irregularis 28 

increased plant height to the same extent, compared to both control and diseased plants. 29 

R. irregularis gave the highest levels of chlorophyll, followed by T34 and control 30 

plants; however, the measures for infected plants were slightly better for T34 than for R. 31 

irregularis. T34 and R. irregularis had similar effects on Ca, Mg, S, Mn, B and Si 32 

uptake in tomato plants, but R. irregularis induced a greater P, K, Zn, Cu and Mo 33 

accumulation than T34. Interestingly, at the end of the experiment, the depletion of the 34 

substrate was lower on Ca, Mg and S for plants inoculated with either R. irregularis or 35 

T34 compared to control plants, while the substrate for T34-treated plants had the 36 

lowest levels of Fe, Mn, Zn and Cu. 37 

 38 

Keywords: Biological control, Fusarium oxysporum, Lycopersicon esculentum Mill., 39 

mycorrhizae, plant nutrition. 40 

41 
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INTRODUCTION 42 

Agricultural production based on high yields, elevated fertiliser concentrations, 43 

intensive pest control and high water demand has resulted in soil and ground water 44 

contamination, nutrient depletion and reduced numbers of soil microorganisms. 45 

Chemical pesticides can successfully control plant diseases; however, their repeated use 46 

is not recommended because of the development of pathogen resistance, as well as for 47 

its adverse effects on animal and human health and on the environment. In Europe, 48 

under Directive 91/414, the use of chemical pesticides has been re-evaluated and 74% 49 

of the active ingredients in pesticides have been removed from the market (see 50 

http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/. Thus, 21st-51 

century agriculture faces the challenge of maintaining food production and quality 52 

through safer and more sustainable management that will lead to lower environmental 53 

and economic costs. Bacteria and fungi are natural components of soil fertility, involved 54 

in fixation of atmospheric N2 and solubilising phosphates, iron and other nutrients 55 

(Altomare and Tringovska, 2013; Azcón-Aguilar and Barea, 2015). A well-documented 56 

interaction between mycorrhizal fungi and plants is the exchange of plant carbohydrates 57 

for nitrogen, potassium, calcium, iron, copper, etc. (Smith, 1988; Franken et al., 2007). 58 

The non-pathogenic free-living fungi of the genus Trichoderma, which have previously 59 

been associated with mycoparasitism and antibiosis that can control soil-borne plant 60 

pathogens, have recently been linked to the promotion of plant growth. The 61 

convergence of certain effects of mycorrhizal and Trichoderma fungi is now well 62 

documented, such as the control of fungal disease by mycorrhizae and root colonisation 63 

by different Trichoderma spp. that improves nutrient absorption and plant growth 64 

(Bigirimana et al., 1997; Harman et al., 2004b; Howell et al., 2000; Segarra et al., 65 

2009; Shoresh et al., 2005; Yedidia et al., 2003; De Meyer et al., 1998; Djonovic et 66 
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al., 2006, 2007; Harman et al. 2004a; Korolev et al., 2008; Segarra et al., 2007; Shoresh 67 

et al., 2005). Tomato is one of the most important horticultural crops worldwide, in 68 

which several races of Fusarium oxysporumf. sp. lycopersici cause severe wilt and 69 

death, reducing production in warm areas. In Spain, an estimated 1,084,600 tons of 70 

tomatoes were produced in 2016 (monthly statistical bulletin from the Ministerio de 71 

Agricultura, Alimentación y Medio Ambiente, Spain, June 2017).  72 

The objectives of this study were: (i) to evaluate the potential of the arbuscular 73 

mycorrhizal fungus Rhizophagus irregularis as a biological control agent against 74 

fusarium wilt, in relation to the well-studied microbial control agent Trichoderma 75 

asperellum strain T34 (hereinafter T34) against this disease; and (ii) to compare the 76 

effects of T34 with R. irregularis on nutrient uptake and plant growth in tomato plants.  77 

MATERIALS AND METHODS 78 

Fungal inoculum preparation. The pathogen F. oxysporum f. sp. lycopersici race 79 

2, isolate RAF 70, was obtained from the University of Seville and grown in a liquid 80 

medium containing 10 gl-1of malt. The fungus was grown in a horizontal shaker 81 

operating at 150 rpm for seven days at room temperature. The culture was filtered 82 

through a 50µm nylon mesh to remove mycelium and centrifuged at 10,000 g (4°C) in a 83 

BeckmanJ-21C centrifuge. The pellet was washed twice in sterile distilled water to 84 

obtain medium-free conidia. A conidial suspension was prepared in sterile distilled 85 

water; the amount of conidia was determined with a haemocytometer and adjusted so as 86 

to inoculate at a concentration of 5x105 conidia per ml of substrate. 87 

A conidial suspension of the formulated product Trichoderma asperellum (Samuels 88 

et al., 1999) strain T34 was adjusted so as to inoculate at a concentration of 104 conidia 89 

per ml of substrate. The substrate was incubated with T34 at room temperature for 90 

seven days, and populations at the beginning and end of the experiment were evaluated 91 
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by the dilution plate technique in semi-selective media (Chung, 1990), with 1-2 92 

x104CFU of T34 present per ml of substrate at the beginning of the different 93 

experiments. 94 

R. irregularis was obtained from Mycosym (Seville, Spain) and used at doses of 2-95 

4% v/v (20-40 cm3or 6-12 g l-1) in the substrate, corresponding to 8ml per 400ml pot. 96 

The substrate used in all the experiments was a peat: vermiculite mixture (1:1, v/v) and 97 

the initial pH was adjusted to 6.0–6.5. 98 

Plant material and bioassays. Tomato plants (Lycopersicon esculentum Mill. cv. 99 

‘Roma’) from Semillas Fitó (Barcelona, Spain) were first germinated in substrate for 10 100 

days. The plants were treated as described in Segarra et al. (2010), with some 101 

modifications. After the appearance of the second or third true leaf, four tomato 102 

seedlings were transplanted into 400ml pots. Five pots were used for each treatment, 103 

representing 20 plants per treatment, and each disease study was repeated three times. 104 

The pots were placed in a walk-in growth chamber at 25°C ± 2°C, under 16 h of light at 105 

an intensity of 150-210 µE m-2 s-1 PAR (Photosynthetically Active Radiation). The 106 

transplanted pots were irrigated daily with 100 or 200 ml of a nutrient solution, 107 

depending on the rate of plant development. The nutrient solution applied was Hoagland 108 

for all treatments, except for plants inoculated with mycorrhizal fungi, which were 109 

fertilised with Hoagland containing 68 ppm of phosphorous.  110 

The substrates were inoculated with the pathogen, mixed vigorously and poured into the 111 

pots during transplanting of tomato seedlings. This was considered the beginning of the 112 

bioassay. Fifteen pots received substrate inoculated with the pathogen, while the other 113 

15 pots were not inoculated and served as controls. R. irregularis was either mixed with 114 

the substrate or added below the tomato seedlings (two different sets of studies), with 115 

half of these pots being infected with the pathogen. T34 was incubated in the substrate 116 
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and added to a different set of pots, half of which were inoculated with the pathogen. 117 

Thus, there were six treatments: control; pathogen (F. oxysporum f. sp. lycopersici); R. 118 

irregularis; R. irregularis + pathogen; T34; andT34 + pathogen. Disease incidence (DI) 119 

was measured as the percentage of diseased plants out of the total number of plants 120 

evaluated five weeks after the beginning of the bioassay: scored as 0 for non-diseased 121 

plants and 1 for plants showing wilts symptom.  122 

Plant growth measurements and substrate analysis. At the end of the experiment, 123 

the height of the plants, and their chlorophyll content together with the macro- and 124 

micronutrient levels in tomato leaves and substrate were recorded. For chlorophyll 125 

measurements, four expanded leaves from the same stage and treatment were analysed 126 

with a Minolta SPAD-502 chlorophyll meter (Plainfield, USA). 127 

For substrate analysis, 2-3 samples from each treatment were analysed and 1.5 g of 128 

dried substrate was ground at room temperature, using a ball mill, to a particle size of 129 

less than 150 µm and digested with 10.5 ml HCl and 3.5 ml HNO3. The solutions were 130 

kept for 16 h at room temperature, then heated (to 130ºC) at reflux for 2 h and further 131 

filtered. For the analysis of nutrients in the leaves, five well-developed leaves per 132 

treatment were analysed. For B, Mn, Zn, Cu, Mo and Ni analysis, samples were 133 

measured by inductively coupled plasma mass spectrometry (ICP-MS) using a Perkin-134 

Elmer ELAN 6000. For Ca, Fe, K, Mg, P, S and Si measurements, leaf samples were 135 

assessed by inductively coupled plasma optical emission spectrometry (ICP-OES), 136 

using a Perkin-Elmer Optima3200RL. A 45 mg leaf sample, dried at 60ºC, was prepared 137 

with an agate mortar and pestle and used for all analyses. 138 

Statistical analysis. Analysis of variance (ANOVA) was performed using data on 139 

plant height, chlorophyll content and percentage of diseased plants, as well as on macro- 140 

and micronutrient levels in tomato plant leaves and substrate. When significant 141 
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differences were observed (P<0.05), Duncan’s multiple range test was applied. Data 142 

were analysed with SPSS statistical software package version 18. 143 

 144 

RESULTS 145 

At the doses of phosphorus used, 68 ppm, tomato plants treated with R. irregularis 146 

achieved adequate growth over the duration of the study; below 50 ppm these plants 147 

showed lower growth rates. Of the plants inoculated with R. irregularis or T34 in the 148 

substrate, 30% and 32%, respectively, showed signs of disease, compared with 70% of 149 

the plants not inoculated with a beneficial fungus, which displayed fusarium wilt 150 

(Fig.1). The reductions in DI were thus 57% and 54% for plants inoculated with R. 151 

irregularis and T34, respectively. Similar results were attained in another set of studies 152 

where T34 was also mixed with the substrate, but R. irregularis added below the 153 

seedlings at transplantation. In these plants, the overall DI was lower. Plants not 154 

inoculated with either T34 or R. irregularis showed a DI of 58%, while those treated 155 

with T34 showed no DI and those exposed to R. irregularis presented a DI of 13% 156 

(Fig.2). The reductions in DI were thus 78% for R. irregularis and 100% for T34-157 

treated plants. No plants grown in substrates without FOL inoculation developed any 158 

symptoms of fusarium wilt. 159 

All plants inoculated with R. irregularis or T34 and not infected with the 160 

pathogenic F. oxysporum f. sp. lycopersici were taller than the control plants not 161 

inoculated with any of the fungi (Fig.3). The plants treated with either one of the 162 

beneficial fungi as well as FOL were also taller than FOL-infected plants not inoculated 163 

with R. irregularis or T34 (Fig.3). The plants treated with R. irregularis or T34 and not 164 

infected with FOL also exhibited significantly higher shoot dry weight (53% and 52% 165 

for R. irregularis added below the seedlings and T34, respectively; and 26% for R. 166 
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irregularis mixed into the substrate) than the non inoculated control plants (data not 167 

shown). R. irregularis-treated plants had the highest chlorophyll content, followed by 168 

those inoculated with T34 and by control plants (Fig. 4). R. irregularis or T34-treated 169 

plants infected with the pathogen showed the same pattern for chlorophyll content; with 170 

F. oxysporum f. sp. lycopersici-infected plants presenting the lowest chlorophyll 171 

content (Fig. 4).  172 

R. irregularis-treated tomato plants not infected with F. oxysporum f. sp. 173 

lycopersici and fertilised with Hoagland solution containing low phosphorus content 174 

accumulated more P and K at the end of the experiment than T34-inoculated plants and 175 

the non-inoculated control plants (Table 1). T34-treated plants accumulated the same 176 

levels of Ca and Mg as those inoculated with R. irregularis in the substrate, which were 177 

higher than the amounts determined in control plants. However, S levels in plants 178 

treated with R. irregularis in the substrate were higher than, but not significantly 179 

different from those in T34-inoculated plants, which exhibited S levels that were 180 

similarly higher, but not significantly different from those of controls plants (Table 1). 181 

The levels of Fe and Cu were also the same in control and R. irregularis and T34-182 

treated plants. Control plants showed lower levels of Mn, B, Zn and Si than inoculated 183 

plants, with the highest accumulation of Mn and B observed in plants treated with R. 184 

irregularis mixed with the substrate. Control and T34-inoculated plants showed the 185 

same levels of Mo, with R. irregularis-treated plants presenting a higher Mo 186 

concentration (Table 1). 187 

At the end of the bioassays, nutrient levels were also different in the substrates 188 

inoculated with R. irregularis, T34 or not treated with either (the control substrate). The 189 

levels of P and K were higher in the R. irregularis-treated substrate than in the T34-190 

treated and control substrates (Table 2). However, the control substrate accumulated the 191 
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highest concentrations of Ca, Mg and S. Meanwhile, Ca and Mg levels were higher in 192 

the substrate with R. irregularis mixed into it than for both R. irregularis added below 193 

the plants and T34; with S levels being the same for all the inoculated substrates (Table 194 

2). Substrate amounts of Fe, Mn and Cu were highest for R. irregularis mixed into the 195 

substrate, followed by the control, then by R. irregularis added below the seedlings, 196 

and finally by T34. The levels of B were higher in the R. irregularis-inoculated 197 

substrate than the T34-treated and control substrates. Mo concentrations were the same 198 

in all the substrates. 199 

DISCUSSION 200 

Strains of Trichoderma spp. are registered and used in agriculture as biopesticides 201 

under EU Regulation 1107/2009, while mycorrhizal isolates will be used as microbial 202 

fertilisers in European agriculture, according to the European Commission Brussels, 203 

17.3.2016 COM(2016) 157 final draft 2016/0084 (COD). However, there is a consistent 204 

body of evidence demonstrating that some mycorrhizal isolates can protect plants 205 

against soil-borne plant pathogens (Martínez-Medina et al., 2011 a, b) and that some 206 

Trichoderma spp. isolates enhance plant growth and development (López-Bucio et al., 207 

2015).  208 

In the present study, inoculation with either T34 or R. irregularis had a markedly 209 

positive influence on the health of tomato plants by reducing the DI caused by F. 210 

oxysporum f. sp. lycopersici. Furthermore, R. irregularis added directly below the plant 211 

performed better in reducing DI (by 77%) than when it was mixed with the substrate 212 

(55% reduction in DI). However, T34, which was always mixed with the substrate, 213 

produced reductions in DI of 57% and 100%. Similar results have previously been 214 

reported for T34 on the same disease and crop (Cotxarrera et al., 2002; Nogues et al., 215 

2002; Borrero et al., 2012) and also on carnation wilt (Sant et al., 2010), as well as 216 
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against other soil plant pathogens (Trillas et al., 2006; Segarra et al., 2013). Several 217 

studies demonstrate similar effects of other strains of different Trichoderma spp. on 218 

fusarium wilt and other soil diseases (Harman et al., 2004a; Howell, 2003; Vinale, 219 

2008; Dubey, 2007; Verma, 2007; Singh et al., 2014). 220 

The performance of different arbuscular mycorrhizal strains against fusarium wilt in 221 

melon plants varies widely: a DI of around 40% for Glomus mosseae, and DI of around 222 

50% for Glomus intraradices (now known as R. irregularis), compared to a DI of over 223 

80% for the control (Martínez-Medina, 2011a). Inoculation with each of these 224 

mycorrhizae together with T. harzianum (CECT 20714) further reduced DI to around 225 

20% (Martínez-Medina, 2011a). In another study by the same author (Martínez-226 

Medina, 2011b), the combination of T. harzianum and G. intraradices reduced DI to 227 

13%, while G. Mosseae or T. harzianum or their combination did not significantly 228 

improve DI. In a study of Phytophthora parasitica infection in papaya, G. mosseae or 229 

T. harzianum (strain IIHR-Th49) reduced DI by 75.5%, while their combination 230 

reduced DI by up to 90% (Sukhada et al., 2011).  231 

T34 and R. irregularis promoted plant growth (height and dry weight) to the same 232 

extent, compared to control; but their effects on chlorophyll levels were not the same. 233 

The chlorophyll content in leaves was highest in R. irregularis-inoculated plants, 234 

followed by T34-treated plants and control. Diseased control plants displayed the 235 

lowest chlorophyll content. 236 

Our results showing that R. irregularis promotes plant nutrient uptake are in agreement 237 

with those of other studies. It has been well established that R. irregularis significantly 238 

increases uptake of the macronutrients P, K and S. as well as uptake of the 239 

micronutrient B in tomato plants (Cardoso and Kuyper, 2006; Altomare and 240 

Tringovska, 2011; Smith and Smith, 2015). Moreover, studies of mycorrhizal fungi 241 
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have also reported increased uptake of Ca, Mg, Mn and Si. The reported effects of 242 

arbuscular mycorrhizae on Fe uptake vary (Altomare and Tringovska, 2011); and this is 243 

consistent with our observations of R. irregularis leading to an increase (when mixed 244 

with the substrate) or decrease (when added under the seedlings) in Fe uptake, 245 

compared to control plants. T34, with respect to the control plants, also significantly 246 

improved the uptake of Ca, Mg, Mn, B and Si, while moderately improving S uptake. 247 

Similar results have been obtained for other Trichoderma strains (T. asperellum T203 248 

and T. harzianum T22 (Yedidia et al., 2001; Kaya et al., 2009). It has been reported 249 

that strain T22 produces diffusible metabolites that can reduce Fe(III) and Cu(II) 250 

(Altomare and Tringovska, 1999); however, that study was performed in sucrose yeast 251 

extract rather than plants. 252 

In the conditions studied (non-restrictive nutrition), T34 did not mobilise, solubilise 253 

or improve P or K uptake by tomato plants, as observed with other Trichoderma spp. 254 

However, in a siliceous growing medium fertilised with low P levels, T34 and Bacillus 255 

subtilis strain QST713 have been shown to significantly increase total P levels in the 256 

shoots (García-López et al., 2016). Our observation of depleted macroelements (Ca and 257 

Mg) and microelements (Fe, Mn, Zn and Cu) in the substrate of T34-inoculated plants 258 

is very important and constitutes new information concerning the mechanisms where by 259 

T34 reduces fusarium wilt. Competition for iron leading to reduced incidence of 260 

fusarium wilt has previously been established for T34 (Segarra et al., 2010). 261 

Furthermore, non-pathogenic Fusarium species produce more siderophores than the 262 

pathogenic species and are able to compete more effectively for iron, thus, suppressing 263 

pathogenic species (Lemanceau et al., 1985). It has also been reported that in 264 

calcareous soil, T34 increases the Fe concentration in wheat plants grown in Fe-265 
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deficient media, but has no significant effect in Fe-enriched soil (de Santiago et al., 266 

2011).  267 

The use of Trichoderma spp. in commercial greenhouses for intensive crop 268 

production is widely accepted; however, the utilisation of mycorrhizae has certain 269 

restrictions due to the effect of fertiliser dose on mycorrhizal activity (Martínez-Medina 270 

et al., 2011b). According to the draft of the directive concerning fertilisers in Europe, 271 

mychorrizal fungi per se will be employed as microbial fertilisers, while Trichoderma, 272 

Bacillus and Pseudomonas species will be used as plant protection agents. It would be 273 

interesting to study nutrient uptake in plants (Kragelund and Nybroe, 1996; 274 

Raaijmakers et al., 1995) and/or DIs (Nahalkova et al., 2008; Olivain et al., 2006) in 275 

agricultural systems with a complex and rich microbial community using lower levels 276 

of chemical fertilisers or pesticides.  277 

In summary, plants inoculated with R. irregularis under the seedling and fertilised 278 

with Hoagland solution containing half the phosphorus content showed improved 279 

growth and nutrient uptake. Furthermore, R. irregularis protected plants against 280 

fusarium wilt at a rate similar to that achieved with the biological control agent T34. 281 

T34 also promoted the solubilisation of mineral elements, enhancing plant nutrient 282 

absorption and growth. 283 
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Table 1. Mineral elements in tomato plants Lycopersicon esculentum Mill. cv. Roma, at 

the end of the bioassays. Plants were grown in a substrate that was not inoculated 

(control) or inoculated with either Rhizophagus irregularis or Trichoderma asperellum 

strain T34. Plants inoculated with R. irregularis were cultivated with Hoagland solution 

containing half the phosphorus content. 

Mineral element 

in plant (dry 

weight) 

Control 

T. asperellum 

(T34) mixed in 

substrate 

R. irregularis 

mixed in 

substrate 

R. irregularis 

below seedlings 

P (mg/plant )     6.33 ± 0.27a     8.63 ± 0.61a   18.95 ± 1.40b   17.52 ± 1.39b 

K (mg/plant)   26.51 ± 5.47a   24.12 ± 4.43a   48.99 ± 3.90b   65.36 ± 4.26c 

Ca (mg/plant)   39.92 ± 0.17a   69.29 ± 9.62b   62.49 ± 1.70b   63.87 ± 2.75b 

Mg (mg/plant)   22.52 ± 0.31a   31.61 ± 3.21b   30.54 ± 0.62b   28.93 ± 1.23b 

S (mg/plant)   11.87 ± 0.30a   19.91 ± 1.92ab   24.61 ± 2.42b   27.27 ± 2.34b 

Fe (mg/plant)     0.14 ± 0.05a     0.16 ± 0.03a     0.24 ± 0.04a     0.23 ± 0.01a 

Mn (mg/plant)     0.30 ± 0.01a     0.42 ± 0.00b     0.54 ± 0.02c     0.43 ± 0.02b 

B (mg/plant)     0.08 ± 0.00a     0.14 ± 0.02b 0.19 ± 0.00c     0.18 ± 0.00bc 

Zn (µg/plant)   19.94 ± 6.07a   16.68 ± 1.08a   45.79 ± 7.77b   47.57 ± 3.39b 

Cu (µg/plant)     3.60 ± 0.92a     4.16 ± 1.52a     8.75 ± 1.59b     8.58 ± 1.08b 

Mo (µg/plant)     5.77 ± 0.48a     7.78 ± 0.48a 9.17 ± 0.59ab   13.12 ± 1.76b 

Si (µg/plant)     1.38 ± 0.10a     3.10 ± 0.63b     3.84 ± 0.15b     3.34 ± 0.25b 

 

Values for macronutrients and micronutrients are given as mean ± standard error of 6 

leaves per treatment collected from 3 replicates. Different letters indicate statistically 

significant differences, P<0.05, according to Duncan’s multiple range test. 
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Table 2. Macronutrient (mg g-1) and micronutrient (µg g-1) concentrations per dry 

weight of substrate at the end of the bioassays. Substrates were not inoculated (control) 

or inoculated with either Rhizophagus irregularis or Trichoderma asperellum strain 

T34. Plants inoculated with R. irregularis were cultivated with Hoagland solution 

containing half the phosphorus content. 

Mineral element 

in substrate 
Control 

T. asperellum 

(T34) mixed in 

substrate 

R. irregularis 

mixed in substrate 

R. irregularis 

below seedlings 

P (mg g-1)     0.45 ± 0.02a     0.45 ± 0.00a     2.20 ± 0.02b     2.22 ± 0.02b 

K (mg g-1)     0.45 ± 0.01a     0.46 ± 0.00a     1.50 ± 0.02b     1.61 ± 0.00c 

Ca (mg g-1)   15.64 ± 0.15c   12.06 ± 0.03a   14.33 ± 0.06b   11.89 ± 0.14a 

Mg (mg g-1)   72.99 ± 0.58d   55.04 ± 0.58b   57.09 ± 0.32c   46.22 ± 0.52a 

S (mg g-1)     0.96 ± 0.05b     0.58 ± 0.13a     0.64 ± 0.05a     0.34 ± 0.02a 

Fe (mg g-1)   17.50 ± 0.15c   13.36 ± 0.15a   19.35 ± 0.13d   16.38 ± 0.15b 

Mn(µg g-1)     0.27 ± 0.00c     0.21 ± 0.00a     0.26 ± 0.00c     0.23 ± 0.00b 

B(µg g-1)     5.01 ± 1.08a     3.68 ± 1.10a   11.55 ± 0.12b   12.64 ± 0.05b 

Zn(µg g-1)   35.79 ± 0.84b   26.68 ± 0.07a   60.87 ± 0.14d   57.33 ± 1.20c 

Cu(µg g-1)     6.85 ± 0.14b     5.22 ± 0.03a   10.40 ± 0.05d     9.42 ± 0.18c 

Mo(µg g-1)     1.62 ± 0.41a     0.96 ± 0.00a     1.08 ± 0.00a     0.98 ± 0.03a 

 

Values for macronutrients and micronutrients are given as mean ± standard error of 3 

replicates of substrate samples per treatment. Different letters indicate statistically 

significant differences, P<0.05, according to Duncan’s multiple range test. 
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Fig. 1. Disease incidence (%) in tomato plants Lycopersicon esculentum Mill. cv. 

Roma. Control, non-infected plants; FOL, plants infected with F. oxysporum f. sp. 

lycopersici at a concentration of 5x105 conidia per ml of substrate; RI, plants inoculated 

with Rhizophagus irregularis; RI + FOL, plants inoculated with R. irregularis and 

infected with FOL; T34, plants inoculated with Trichoderma asperellum strain T34; 

T34 + FOL, plants inoculated with T. asperellum strain T34 and infected with FOL. R. 

irregularis was mixed into the substrate at doses of 2%-4% v/v (20-40 cm3 or 6-12 g l-

1), while T. asperellum strain T34 was incubated in the substrate for 7 days at a 

concentration of 104cfu per ml of substrate. 
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Fig. 2. Disease incidence (%) in tomato plants Lycopersicon esculentum Mill. cv. 

Roma. Control, non-infected plants; FOL, plants infected with F. oxysporum f. sp. 

lycopersici at a concentration of 5x105 conidia per ml of substrate; RI, plants inoculated 

with Rhizophagus irregularis; RI + FOL, plants inoculated with R. irregularis and 

infected with FOL; T34, plants inoculated with Trichoderma asperellum strain T34; 

T34 + FOL, plants inoculated with T. asperellum strain T34 and infected with FOL. R. 

irregularis was added below the seedlings during transplantation at doses of 2%-4% 

v/v (20-40 cm3 or 6-12 g l-1), while T. asperellum strain T34 was incubated in the 

substrate for 7 days at a concentration of 104cfu per ml of substrate. 
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Fig. 3. Height of tomato plants Lycopersicon esculentum Mill. cv. Roma. Control, non-

infected plants; FOL, plants infected with F. oxysporum f. sp. lycopersici at a 

concentration of 5x105 conidia per ml of substrate; RI, plants inoculated with 

Rhizophagus irregularis; RI + FOL, plants inoculated with R. irregularis and infected 

with FOL; T34, plants inoculated with Trichoderma asperellum strain T34; T34 + FOL, 

plants inoculated with T. asperellum strain T34 and infected with FOL. R. irregularis 

was added below the seedlings during transplantation at doses of 2%-4% v/v (20-40 

cm3 or 6-12 g l-1), while T. asperellum strain T34 was incubated in the substrate for 7 

days at a concentration of 104cfu per ml of substrate. 
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Fig. 4. Leaf chlorophyll content of tomato plants Lycopersicon esculentum Mill. cv. 

Roma, as measured by a SPAD chlorophyll meter. Control, non-infected plants; FOL, 

plants infected with F. oxysporum f. sp. lycopersici at a concentration of 5x105 conidia 

per ml of substrate; RI, plants inoculated with Rhizophagus irregularis; RI + FOL, 

plants inoculated with R. irregularis and infected with FOL; T34, plants inoculated 

with Trichoderma asperellum strain T34; T34 + FOL, plants inoculated with T. 

asperellum strain T34 and infected with FOL. R. irregularis was added below the 

seedlings during transplantation at doses of 2%-4% v/v (20-40 cm3 or 6-12 g l-1), while 

T. asperellum strain T34 was incubated in the substrate for 7 days at a concentration of 

104cfu per ml of substrate. 
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