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Abstract  

Switchgrass (Panicum virgatum L.) is a warm perennial grass with valuable characteristics as a biofuel 

crop. To avoid competition with food crops, biofuel crops will be likely relegated to less productive soils 

such as marginal lands. Consequently, the salinity and water scarcity problems that commonly affect 

marginal lands, compromise biofuel crops germination, emergence and seedling establishment. The aims 

of this study were to study the germination and seedling growth of switchgrass under salinity and water 

stress, and to describe the morpho-anatomical responses of the roots and leaves in the seedlings to these 

stresses. The effect of salt and water stress was assessed using sodium chloride (NaCl) and polyethylene 

glycol 8000 (PEG) at the same water potentials of -0.8, -1.0 and -1.2 MPa. Seeds were moist prechilled for 

7 days at 5 ºC and germinated at 30ºC/15 ºC (8 h light/16 h dark). NaCl treatments (-0.8 and -1.0 MPa) 

delayed germination rates but did not reduce the final germination percentage, whereas at a lower potential 

(-1.2 MPa) the final germination percentage was diminished. The effects of PEG (-1.0 and -1.2 MPa) on 

the germination rate and final percentage, were more detrimental than those induced by iso-osmotic 

concentrations of NaCl. PEG and NaCl reduced significantly the vigor index of -0.8 to -1.2 MPa. The 

morpho-anatomical changes such as the reduction in the root cross-section area and the thickening of the 

endodermis walls for both stress conditions and aerenchyma formation in the cortex under salinity, could 

significantly contribute in the survival and tolerance during the early seedling stages. 
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Abbreviations  

Ψw Water potential (MPa) 

DAS Days After Sowing 

FGP Final Germination Percentage 

t50 Time to obtain 50 % germination  

GR Germination Rate 

RL Root Length 

AL Aerial part Length 

VI Vigor Index   
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Introduction  

Switchgrass (Panicum virgatum L.) is a warm-season, short day C4 perennial grass native to the North 

American prairie. It has a diverse geographic distribution being adapted to a wide range of climate and soil 

conditions [1]. There are two groups of switchgrass ecotypes classed by their habitat preference, ploidy 

level, and molecular markers. Upland ecotypes are hexaploid or octoploid, grow  in drier environments, are 

shorter and thinner-stemmed, with rhizomes that are more vigorous. In contrast,  lowland ecotypes are 

commonly tetraploid, generally grow in wetter environments, are taller, thicker and bunchy stemmed with 

less vigorous rhizomes. 

Current and proposed uses for switchgrass are forage for grazing, haylage, erosion control, vegetative filter 

strips, reclamation/stabilization of sand dunes, fibre or pulp for paper, phytoremediation including smelter 

and mining sites, and biomaterials. In the last 20 years, switchgrass has begun to be studied for non-forage 

purposes such as bioenergy since it is a good candidate for direct combustion or conversion to liquid 

(bioethanol) or gaseous forms (biogas) energy feedstock [2]. Many reasons justify the use of switchgrass 

as a biomass crop for energy.  Key advantages include high net energy production, low nutrient 

requirements, high water use efficiency and  adaptation to marginal lands [2].  

Switchgrass is a rhizomatous species that can be reproduced by seeds. However, often switchgrass seed 

germination and establishment are poor and slow, reducing its economic viability as a biomass feedstock 

[1]. Factors that contribute to seedling failures include seed dormancy, extreme environmental conditions, 

and inadequate seeding management.  

Germination is a crucial phase in the plant life cycle, which determines the success of seedling 

establishment and subsequent growth [3]. Germination occurs after a series of metabolic events, only 

producing seedlings when the environmental conditions (temperature, humidity, light, oxygen, etc.) are 

favourable.  

Salinity and drought stress are becoming particularly widespread in many regions and may affect more than 

50 % of all arable land by 2050 [4]. While, both stresses repress plant growth and development due to the 

imposed  osmotic stress, only salinity stress affects  productivity of agricultural crops through ion toxicity 

[5–7]. Some plants have developed morphological, structural and functional adaptive strategies to cope 

with both stresses [8]. Aditionally, during salt stress, some plants develop various strategies to tolerate the 

saline conditions, i.e. ion homeostasis and compartmentalization, hormonal modulation, synthesis of 

antioxidants, and biosynthesis of osmoprotectants such as proline, glycine, betaine and sugars, among 

others [6]. Several studies have been conducted to study salinity and water stress tolerance in lowland and 

upland switchgrass genotypes in order to identify the morphological, physiological, biochemical and 

molecular adaptations [9–11].  

Salt stress is one of the major limiting factors for the germination and growth of switchgrass cultivars such 

as Alamo  [12], Blackwell, Cave-In-Rock and Kanlow [13, 14]. Based on the physiological parameters of 

33 switchgrass populations, 2-months old plants subjected to salt stress (250 mM NaCl) in hydroponics 

system for 24 days demonstrated significant differences in salt tolerance between populations [20]. The 

same study concluded that in general lowland ecotypes were more tolerant to salt stress than the upland 

ones and suggested that this variation may be closely associated with their genetic background and origin. 

This work classified Alamo switchgrass cultivar as salt tolerant and Cave-in-Rock as salt sensitive [14]. 
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Later, Kim et al. [15] demonstrated that proline levels were not positively correlated with salt tolerance in 

46 switchgrass populations subjected to salt stress by irrigation for 30 days, revealing multiple response 

mechanism to salt stress.  These mechanisms may not be delineated by ecotype designations.  

In relation to the water stress, morphological and physiological measurements and metabolomics profiles 

revealed a wide variation in drought tolerance among 49 lowland and upland switchgrass populations [16, 

17]. The most tolerant genotypes tended to have higher levels of abscisic acid, spermine, trehalose and 

fructose in comparison to most drought-sensitive ones [17]. A comparative study for differences in response 

to water deficit and nitrogen fertilizer in lowland (Alamo and Kanlow) and upland (Blackwell and Caddo) 

switchgrass cultivars suggested that Alamo is the best cultivar for forage and biomass production under 

drought and non-drought conditions [18]. This cultivar is also one of the most promising candidates for 

biofuel production, not only for its high biomass yields, but also because it has low fertilization 

requirements and is the most adapted, of the commercial lowland ecotypes, to unfavorable environments. 

It is well established that plant responses to water or salt stress depend on the stage of development,  stress 

intensity and duration. In our present study, we evaluated the effect of NaCl stress and water stress on the 

germination, emergence and the early growth of seedlings of Alamo switchgrass cultivar based not only on 

growth parameters, but also on and morpho-anatomical changes in roots and leaves. To the best of our 

knowledge this is the first report about the structural changes in roots and leaves induced by both types of 

stress for Alamo switchgrass cultivar during the seedling stage.  

The aims of this study were (i) to study the germination and seedling growth of switchgrass under salinity 

and water stress and (ii) to describe the morpho-anatomical responses of the roots and leaves in the seedlings 

to these stresses. 

 

Materials and Methods 

Plant material 

Switchgrass seeds cv. Alamo were hand harvested in November 2013, from adult plants grown at the 

Experimental Fields Service of the University of Barcelona (41°23′ N; 2°7′ E). Seeds were stored in paper 

bags at room temperature (22 ± 2 °C) and dry conditions (40 ± 5 % relative humidity (RH)). 

 

Seed germination assays 

Seeds were surface disinfected in 5 % sodium hypochlorite solution for 15 min and rinsed three times for 

5 min using sterile distilled water. The germination assays were performed in sterilized 9-cm diameter Petri 

dishes. Seeds were sown on two layers of sterilized filter papers (Prat Dumas, Couze-St-Front, France) 

moistened with 2.5 mL of test solutions. Fresh test solutions were added weekly to ensure keeping constant 

experiment conditions. Dishes were sealed with Parafilm® (Bemis Company Inc., Neenah, Wisconsin, 

USA) to prevent evaporation and randomly placed in a light and temperature controlled incubator (ASL 

Ibercex, Madrid, Spain). Light was provided by cool white fluorescent lamps (OSRAM L36W/840, 

Munich, Germany). Light intensity was measured using a LI-COR quantum/meter (LI-188 B) giving a 76 

± 5.9 µmol·m-2· s-1 PAR. The germination assay was carried out following ISTA rules [19] for switchgrass. 

Seeds were moist prechilled for 7 days at 5 ºC and then were set to germinate at 30/15 ºC (light/dark) and 

8/16 h photoperiod.  



5 

 

The number of germinated seeds were recorded daily for 28 days. Germinated seeds were scored and 

removed from the dish as soon as the roots protruded 2 mm through the pericarp. After each score, the 

dishes were re-sealed and randomly distributed in the germination chamber to avoid any positioning effects. 

Three germination assays were carried out yielding similar results; only data from third test is shown. 

Germination was tested using sodium chloride (NaCl) and polyethylene glycol 8000 (PEG-8000) aqueous 

solutions prepared according to Sosa et al. [20] and Michel [21] in order to simulate salinity and water 

stresses. Three different water potentials (Ψw) were prepared for each NaCl and PEG solution (-0.8, -1.0 

and -1.2 MPa). The saline solutions had equivalent concentrations of 200, 250 and 300 mM and an electrical 

conductivity (EC) of 18.5, 23.3 and 30.2 dS·m-1, respectively. The PEG solutions had a 24.46, 28.66 and 

31.76 w/v concentrations (0.2546, 0.2866 and 0.3176 g PEG/g H2O), respectively. Distilled water was used 

as control (0.0 MPa C).  

Experiments were arranged in a completely randomized design. For each treatment, eight replicates of one–

hundred seeds were set up. Four replicates were used to evaluate germination and four to evaluate seedling 

growth (see Morphological seedling growth parameters and light microscopy section below).  

After the germination test (28 days), the non-germinated seeds were subjected to a 7 days recovery period 

to determine their viability and possible toxic effects of the solutions during germination. Thus, the seeds 

were transferred to Petri dishes with distilled water for 7 days under the same temperature and light regimes. 

 

Germination data analysis 

The Final Germination Percentage (FGP) was calculated using the following equation:  

 

FGP (%) = Ng
Nt x 100 

 

where, Ng is the number of germinated seeds and Nt is the total number of seeds.  

The time to obtain 50 % germination (t50) was calculated according to the following formula modified by 

Farooq et al. [22]:  

 

�50 (����) = �� 
��

2  − ��� (�� − ��)      
�� − ��  

 

where, N is the final number of germinated seeds and Ni and Nj are the total number of seeds germinated 

in adjacent counts at time Ti and Tj respectively, when Ni < N2 < Nj . 

The germination rate (GR) was estimated using a Modified Timson’s Index:  

 

Germination rate = ∑ G
t  

 

where G is the percentage of seed germination at 2-day intervals and t is the total germination period [23].  

 

Morphological seedling growth parameters and light microscopy 
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Seeds were moist prechilled for 7 days at 5 ºC and germinated at 30/15 ºC (light/dark) with a 8/16 h 

photoperiod, according to ISTA guidelines [19]. Four Petri dishes containing 100 seeds were used for each 

treatment. Seedling growth was evaluated at 10, 20 and 28 days after sowing (DAS) seeds in 0.0 MPa 

control, NaCl and PEG 8000 at -0.8, -1.0 and -1.2 MPa solutions. For each treatment and time, four 

replicates of 20 randomly selected seedlings were taken from each Petri dish. Root length (RL) and aerial 

part length (AL) were measured using a calliper.   

Vigor index (VI) was calculated using the following equation: 

 

VI = (lroot + laerial) FGP 

 

where lroot is the root length (mm) and laerial is the length of the aerial part (mm). This index was 

calculated using the length of the root and aerial part of each seedling (at 28 DAS) and the FGP of seeds 

subjected to the same treatment [24].  

Root and first leaf samples of seedlings growing in control and -0.8 MPa NaCl and PEG solutions were 

collected at the end of the experiment (28 DAS). The samples were vacuum-infiltrated with 2.5 % (v/v) 

glutaraldehyde and 2 % (w/v) paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.4) and fixed for 

24 - 48 h at 4 ºC. After four rinses in phosphate buffer (10 min, 4 ºC) samples were post-fixed in 1 % (w/v) 

osmium tetroxide (OsO4) for 12 to 16 h at 4 ºC, dehydrated in an acetone-propylene oxide series and 

embedded in Spurr’s epoxy resin [25]. Blocks were trimmed into pyramids using a pyramitome (TM60, 

Reichert). The root and leaf cross-sections (1 µm thickness) were obtained using a Leica Ultracut E 

ultramicrotome (Leica Microsystems AG, Germany). The root cross-sections were obtained 5 mm above 

the root tip, while the leaf cross-sections were obtained from the middle-portion of the leaf. The sections 

were stained with methylene blue 1 % (w/v) and examined using an Olympus BX50 light microscope 

(Olympus Corporation, Japan). Pictures were capture with an Olympus SC30 camera (Olympus 

Corporation, Japan). Images at magnifications of 20X and 40X were analysed using Image J (Image 

Processing and Analysis in Java). Measurements were conducted on three biological replicates (three cross-

sections per sample). The total cross-section area, the central cylinder area, and the cross-section area of 

the protoxylem and metaxylem vessels plus the wall thicknesses of the protoxylem and metaxylem vessels 

and the inner wall of the endodermis thickness were measured in the root. The total leaf, mesophyll, 

epidermis and cuticle thickness, the number and area of bulliform cells per group, and the vascular bundle 

area were recorded in the leaf. 

 

 

 

 

 

Statistical Analysis 

The effects of NaCl and PEG on FGP, t50, GR, RL, AL and VI were analysed using one-way ANOVA (with 

7 treatment levels: 0.0 MPa control, -0.8 MPa NaCl, -1.0 MPa, -1.2 NaCl MPa, -0.8 MPa PEG, -1.0 MPa 

PEG and -1.2 MPa PEG). The morpho-anatomical parameters in the root and leaf were compared using 
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one-way ANOVA (with 3 treatment levels: 0.0 MPa control, -0.8 MPa NaCl and -0.8 MPa PEG). 

Differences between groups were evaluated using the Duncan test with a significance level of 5 %. The 

SPSS 20.0 software package (SPSS Inc., Chicago, IL, USA) was used for statistical analysis of results.  

The parameters measured were plotted using SigmaPlot (version 11.0, Systat Software Inc., Richmond, 

California, USA). 

 

Results 

Germination under salinity and water stress conditions  

Seeds germinated in distilled water (0.0 MPa Control) showed a 96.5 FGP at 28 DAS (Fig. 1) and reached 

t50 in 3 DAS (Table 1). Salinity and water stress inhibited germination, decreased germination rates and 

delayed the onset of germination in a dose-dependent manner (Fig. 1, 2 and Table 1).   

At 28 DAS, no significant differences were observed on the FGP at -0.8 and -1.0 MPa NaCl, when 

compared to the control (Fig. 1), although the GR decreased, being statistically different for each NaCl 

concentration (Fig. 2, Table 1). The t50 increased from 3 days for control to 6 and 11 DAS for -0.8 and -1.0 

MPa NaCl, respectively (Table 1). Furthermore, a significant inhibition of FGP occurred under -1.2 MPa 

NaCl (Fig. 1) which also significantly decreased the GR and t50 was achieved 17 DAS (Fig. 2, Table 1).  

The FGP at -0.8 MPa PEG showed no statistical differences when compared to the control and -0.8 or -1.0 

MPa NaCl treated seeds (Fig. 1). However, the GR was significantly  lower than the control and, in addition,  

t50 was reached on the 8th DAS, five days later than the control (Fig. 2, Table 1). In comparison, -1.0 and -

1.2 MPa PEG significantly inhibited the FGP (70 % and 46 %, respectively) and decreased the GR (Fig. 1, 

Table 1). The t50 was reached at 20 DAS for -1.0 MPa PEG, while for the -1.2 MPa PEG treatment, the t50 

could not be stated, because it was not reached the 50% germination at the end of the assay (Table 1). The 

FGP, t50 and GR did not vary significantly between -1.2 MPa NaCl and -1.0 MPa PEG treatments (Fig.1-

Table 1).   

Most of the un-germinated seeds from the NaCl and PEG treatments showed a recovery when transferring 

them to optimal conditions for one week. The FGP of -1.2 MPa NaCl treatment increased only from 75 % 

to 86 %, while the -1.0 and -1.2 MPa PEG treatments increased the FGP from 70 % and 46 %, respectively, 

to 90 % each in only 2 days (Fig. 2).  

 

Seedling growth under salinity and water stress conditions  

In the control condition (28 DAS), the root and aerial part length reached 14.46± 1.42 and 27.60 ± 2.10 

mm, respectively (Fig. 3, Table 1). Both salinity and water stress treatments caused a significant length 

reduction, being even stronger in the aerial parts than in the roots (Fig. 3, Table 1). At -0.8 MPa NaCl, the 

RL was significantly reduced by 35 %, while at -1.0 and -1.2 MPa NaCl the reduction in RL was 77 % and 

87 %, respectively (Fig. 3a, Table 1). A similar behaviour was observed in the aerial part growth, where 

AL was significantly reduced by 40 % at -0.8 MPa NaCl and by 85 % and 90 % at -1.0 and -1.2 MPa NaCl, 

respectively (Fig. 3b, Table 1).  

In water stress conditions, -0.8 and -1.0 MPa PEG significantly reduced the RL by 51 % and 66 %, while -

1.2 MPa PEG significantly reduced the RL by 96 % (Fig. 3a, Table 1). The aerial part growth was more 

affected by water stress since the -0.8 and -1.0 MPa PEG treatments resulted in significant reductions of 76 
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% and 96 %, respectively, when compared to the control. Furthermore, the -1.2 MPa PEG treatment totally 

inhibited AL growth (Fig. 3b, Table 1).   

Seedlings under control conditions had higher vigor index (VI) values.  The VI decreased significantly at 

potentials of -0.8, -1.0 and -1.2 MPa (Fig. 4, Table 1). Finally, we observed that seedlings grown at -0.8 

MPa NaCl had significantly higher VI when compared to all other treatments, although having significantly 

lowert VI than the control (Fig.4). 

 

Root and leaf morpho-anatomical responses under salinity and water stress conditions 

Seedlings showed a 49629 ± 2955 µm2 root cross-sectional area in the control (0.0MPa) (Table 2). 

Furthermore, the unistratified rhizodermis showed isodiametric thin-walled cells, lacked cuticle, and 

possessed trichoblasts. At 5 mm above the root tip (cutting height), the cortex, comprising five cell layers, 

did not show an exodermis although it had developed four layers of polyhedral parenchymal thin-walled 

cells, with intercellular spaces. Furthermore, the innermost layer, the endodermis, showed slight 

thickenings of 0.85 ± 0.07 µm in the inner tangential and radial walls (Table 2), which masked the Casparian 

strips. In addition, an unistratified pericycle with periclinal divisions opposite the five poles of protoxylem 

alternating with the phloem strands was identified in the vascular cylinder. Finally, the centripetal xylem 

differentiation showed protoxylem vessels with a cross-section area of 57.6 ± 2.3 µm2 and a wall thickness 

of 0.8 ± 0.1 µm (Table 2), and a metaxylem vessel at the root centre with a cross-section area of 781.5 ± 

72.9 µm2 and a wall thickness of 0.47 ± 0.09 µm (Fig. 5a, Table 2).  

Anatomical changes were observed under stress conditions, mainly in the cortex and the central cylinder 

(Fig. 5c and e). Under salinity stress (-0.8 MPa NaCl), the root cross-section area decreased significantly 

(36 %) in comparison with values found in control seedlings (Table 2). This treatment had no effect on the 

cross-section area of the central cylinder but affected the cortex dramatically because it induced the 

formation of aerenchyma due to a severe collapse of cortical cells (Fig. 5c). Furthermore, the endodermis 

showed a significant increase in U-shaped cell wall thickenings compared to the control (1.29 ±0.06 µm 

versus 0.85 ±0.07 µm) (Fig. 5a and c, Table 2). The salinity treatments also significantly increased both the 

cross-section area (37 %) and the wall thickness (90 %) of protoxylem vessels, however, it significantly 

decreased (by about 50 %) the cross-section area of the metaxylem vessels and the wall thickness increased 

about 148 % relative to control seedlings (Table 2). In turn, the -0.8 MPa PEG treatment dramatically 

reduced both the root and the central cylinder cross-section areas by approximately 45 % relative to the 

values found in control seedlings. A significant increase in the thickness of the endodermis was also 

observed in PEG treatment that resembled the observations made under salinity stress (Fig. 5e, Table 2). 

The cross-section areas of the protoxylem (0.86 ± 0.14 µm2) and the metaxylem (298.1 ± 42.5 µm2) vessels 

were significantly reduced under water stress in comparison to the values of control under salinity stress 

treatments (Table 2). In addition, PEG significantly reduced the protoxylem and metaxylem wall 

thicknesses in comparison to salinity stress, although no perceptible changes were observed in this 

parameter when compared to the control seedlings (Table 2). 

The anatomical analysis of the first leaf indicated a typical Kranz mesophyll of C4 NAD-ME species. 

Control leaves showed a total thickness of 68.9 ± 8.0 µm (Table 2). The epidermal layers (covered by the 

cuticle) of the adaxial and abaxial surfaces were characterized by elliptical fundamental cells; and the 
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stomatal complexes in both surfaces indicated an amphistomatic condition (Fig. 5b, d and f). The adaxial 

epidermis was thicker than the abaxial epidermis (7.3 ±3.1 versus 5.0 ±1.9 µm), whereas the cuticle 

thickness in both surfaces was similar (0.35 ± 0.15 and 0.48 ± 0.21 µm) (Table 2). Sets of colourless 

epidermal cells known as motor or bulliform cells were evident at the intercostal regions of the adaxial 

epidermis (Fig. 5b). They were arranged in groups of 4-5 cells (fan-shaped) occupying an area of 1348.5 ± 

210.0 µm2 (Fig. 5b). First order-vascular bundles, elliptical in outline, were observed in the centre of the 

blade, with 3-4 mesophyll cells between the adjacent secondary and tertiary bundles. Between the vascular 

system and the dermal system, the fundamental system (mesophyll) showed a thickness of 55.7 ± 4.1 µm 

(Table 2). It was characterized by the presence of an outer layer of radial chlorenchyma that overlapped the 

inner layer, or Kranz sheath, and the innermost “mestome sheath” surrounding the vascular bundle, which 

occupied an area of 4375.5 ± 119.8 µm2 (Table 2). Besides that, islets formed by 15-20 sclerenchyma cells 

at the ends of the limbs, and girders in the costal zones associated with the first and second-order vascular 

bundles (opposite the Kranz bundle sheath) were observed (Fig. 5b, d and f). Under salinity stress, the total 

thicknesses of the leaf and the mesophyll were increased by 36 % and a 40 % respectively, and the cuticle 

thicknesses of both the adaxial and abaxial epidermis were increased approximately two-fold in comparison 

to control seedlings (Table 2). Similar changes were induced in the PEG treatment where the total thickness 

of the leaf and the mesophyll thickness increased by 50 % and 40 %, respectively, in comparison to the 

values observed in control seedlings (Table 2). The cuticle thickness in the adaxial epidermis was increased 

by about 70 % and the cuticle thickness in the abaxial epidermis was increased about two-fold with respect 

to the control (Table 2). No significant differences between the thickness of either the adaxial or the abaxial 

epidermises, the number and area of bulliform cells or the vascular bundle area were found in leaves of 

control seedlings control and those submitted to salinity or water stress (Table 2).  

 

Discussion 

Our results demonstrated that Alamo switchgrass was more tolerant to salinity than water stress, both at the 

germination stage and at the seedling developmental phase. The specific morpho-anatomical changes 

observed in seedlings under salinity and water stress might be considered an adaptive strategy in this 

environmental conditions [39, 62]. 

 

Effects of stress conditions on germination 

In our experimental conditions, salinity stress induced by -0.8 MPa NaCl (200 mM) and -1.0 MPa NaCl 

(250 mM) did not reduce the FPG significantly, but decreased the GR. In contrast, the reduction in FPG 

and GR was evident at -1.2 MPa NaCl (300 mM (Fig. 1, Table 1). The progressive delay in germination 

associated to the lower GR induced by NaCl (Table 1) might be due to an osmotic effect that provokes a 

decrease in water uptake, which in turn makes it difficult to reach the minimal hydration level for successful 

seed germination [4]. A previous study has reported that 1 % NaCl (170 mM) significantly decreased 

Alamo cultivar seed germination from 82 % in the control to 36 % [12]. Recent studies have found a strong 

salt-tolerance variation among switchgrass cultivars [26]. Nevertheless, these differences in the threshold 

of salinity for a significant reduction in germination could not onlybe dep3endent on genotype, but also on 

the  experimental conditions [27]. As an example, seed germination of Panicum turgidum has been reported 



10 

 

as significantly reduced by salinity levels above 50 mM and this effect was more pronounced at 20-30 ºC 

than at 15-25 ºC [28].  

Liu et al. [17] classified Alamo switchgrass as salt tolerant based on physiological parameters of 20-month-

old plants after 24 days of salt stress treatment (250 mM NaCl). Our results agree with this classification 

because in our experimental conditions this cultivar could even germinate at -1.2 MPa NaCl. The electrical 

conductivity (30.2 dS·m-1) of a -1.2 MPa NaCl solution represents a high concentration of ions (Na+ and 

Cl-) only tolerated by halophyte species such as quinoa (Chenopodium quinoa) [29], common name 

(Limonium stocksii) and common name (Suaeda fruticose) [30]. Interestingly, not all of the non-germinated 

seeds treated with -1.2 MPa NaCl germinated when transferred to optimal conditions (Fig. 2). This suggests 

that this level of salinity inhibits germination due to both osmotic and ion-toxicity effects [6].  

Sun et al. [12] reported that water stress simulated by the addition of PEG (1 – 7.5 % (w/v)), did not have 

a great effect on in vitro germination of Alamo cultivar in comparison to the inhibitory effect of NaCl (0.1 

– 1.0 %). Our results demonstrated that the inhibitory effects of PEG (-1.0 and -1.2 MPa) on both the onset, 

the FPG, and the GR were more detrimental than those induced by isosmotic concentrations of NaCl. This 

discrepancy between the results of this study and previous works could be due to differences in 

experimental conditions such as: i) a different plant culture system (filter paper germination assay versus 

in vitro culture); ii) the method of PEG application (in aqueous solution versus in nutrient media); iii) the 

concentrations of the osmotic solutions tested (25-31 % w/v in our experiments versus 1-7.5 % w/v); iv) 

the frequency of changes of the osmotic solutions and v) the temperature regimes (15/30ºC versus room 

temperature), among others. The strongest germination inhibition effectiveness of PEG in comparison to 

NaCl isosmotic solutions has been found in other species like durum wheat (Triticum durum) [3], sunflower 

(Helianthus annuus) [31] and rice (Oryza sativa) [32]. The inhibitory effect of PEG, which is a non-ionic, 

water-soluble and non-penetrating solute, could be attributed to an osmotic stress that decreases seed 

hydration and results in lower water absorption, as stated by Murillo and Amador in common name (Vigna 

unguiculate) [33]. In our experimental conditions, the transfer of non-germinated seeds from PEG solutions 

to distilled water resulted in 100 % germination recovery at all osmotic potential levels (Fig. 2). This 

suggests that PEG only has an osmotic effect and does not produce toxicity or deleterious effects, which is 

in accordance with Murillo-Amador [33].  

 

Effects of stress conditions on seedling growth and anatomical features  

 

Our results showed that NaCl and PEG in the range of -0.8 to -1.2 MPa significantly reduced both the RL 

and AL. Although, Alamo seedlings looked healthy with no signs of injury, its emergency capacity or vigor 

was diminished in unfavourable environmental conditions. Thus, early seedling growth was more sensitive 

than germination to both stress treatments.  Early seedling growth was affected by a water potential of -0.8 

MPa that also reduced the root diameter near the root tip. Similar differences in sensitivity have been 

documented in other species like quino [34] and common name (Echinochloa crusgalli) [35]. The reduction 

in plant growth detected in Alamo seedlings under saline conditions and water stress (Fig 3a and b) is a 

general phenomenon in plants under stress [5], although it manifests differently in different organs. In 

general, roots are the first organs that respond under salt stress and RL is commonly affected than AL.  This 
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has been reported in Trailblazer, Cave-in-Rock, Blackwell and Kanlow switchgrass cultivars under salt – 

alkaline stress [11]. However, in our study, the inhibition of length was more prominent in aerial parts than 

in roots, as reported in sunflower [36], common name (Carthamus tinctorius) [37] and canola (Brassica 

juncea) [3]. For both RL and AL, PEG functioned as a stronger growth inhibitor than NaCl, at isosmotic 

concentrations as reported in common name [37], durum wheat [33] and common name (Vigna 

unguiculate) [38]. These results suggest that osmotic dehydration is the main factor affecting Alamo 

seedling growth. The relatively minor effects of NaCl compared to PEG at isosmotic concentrations could 

be due to differences in the membrane reflection coefficient between the osmotic species, which is lower 

for NaCl. As a result, the osmotic adjustment of seedlings subjected to salt stress should be faster and more 

efficient than in PEG isosmotic solutions. Thus, the salt stressed seedlings should experience lower water 

stress than those growing in PEG solutions as reported by Ayala-Cordero et al. [39]. An alternative 

observation was documented by Ji et al. [40] in wheat who demonstrated that low levels of PEG-mediated 

osmotic stress not only inhibited the roots growth, but also the premature differentiation of the root apical 

meristem (RAM) and stimulated the development of long and extensive root hair growth and the outgrowth 

of lateral roots.  

Our results reveal that in addition to inhibiting RL and AL, -0.8 MPa NaCl and PEG induced other morpho-

anatomical changes in roots and the first leaf. These effects are more apparent at the root anatomy, perhaps 

because they are the first organs in contact with the NaCl and PEG solutions, and this would be an adaptive 

advantage under stress conditions.  

At the root level, the reduction in cross-section area has been proposed as a trait for increasing root hydraulic 

conductivity and plant acquisition of water and productivity [41]. Our results agree with those observed in 

others species such as common name (Chloris gayana) [39], common name (Prosopis strombulifera) [41], 

common name (Cynodon dactylon) [42] and cotton [43] under salinity and wheat (Triticum aestivum) [3] 

and rice [38] under water deficit. In our study, the salinity decreased the root cross-section area mainly due 

to cortex width reduction (Table 2). The cortex is associated with the development of aerenchyma that may 

facilitate gas exchange and the radial transport of salts, nutrients and water through the root as reported for 

grass species like common name (Imperata cylindrica) [44], common name (Sporobolus arabicus) [45] 

and common name (Aeluropus lagopoides) [39]. Additionally, the formation of aerenchyma tends to 

prevent oxygen deficiency and thus supports uninterrupted xylem transport [46]. Under water stress, the 

reduction in root cross-section area was due to a change in both cortex width and the vascular cylinder. A 

decrease in the vascular cylinder has been observed in other systems under salinity and could be associated 

with a reduction in root hydraulic conductivity and the aerial part development [47]. Thus, the differential 

inhibition of the aerial part length induced by PEG with respect to isosmotic concentrations of NaCl (Fig. 

3) could be explained to a greater inhibition of root water transport by PEG treated seeds in comparison to 

NaCl, which has also been documented in the leaf development of hydroponically grown maize seedlings 

[39]. The results presented in the current work may not reflect the salt- or water stress-induced disturbances 

at the organ level as described by Ceccoli et al. [39]. It is worth noting that our anatomical observations 

were performed in a zone near the root tip, which is just a small part of the entire root system. Further work 

will be required to obtain information at different distances from the root tip. 
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The remarkable reduction in cross-section area of metaxylem vessels observed in roots of switchgrass 

seedlings grown under NaCl and PEG stress (Table 2) matched the findings of Akram et al. [48] in wheat 

under salinity stress and in common name [49] under drought. This response could constitute an efficient 

strategy to transport water by lowering the risk of embolisms (protecting the xylem against cavitation: a 

critical adaptation because narrow vessels are less prone to damage caused by embolism) and increasing 

water –flow resistance [50].  

Several lines of evidence have demonstrated that salt stress and drought affect the width of Casparian strips 

and induce suberification of the endodermis in many plants species, suggesting a strategy to block the entry 

of toxic elements into the root vasculature and to prevent water and oxygen loss [51, 52]. Indeed, our results 

indicate an increase in the thickness of the cell wall endodermis that  match those reported in Gossypium 

hirsutum [53], Oriza sativa [54] and the facultative halophyte Aeluropus littoralis [55] under salinity 

conditions. Also, they match the findings of Vasellati et al. [50] who reported the formation of a 

conspicuous endodermis in Paspalum dilatatum under drought stress. Contrary to our expectations, neither 

the NaCl nor the PEG treatments induced the formation of exodermis closer the root tip, despite its being a 

common response to water stress conditions [56]. However, we cannot exclude its formation at several 

centimetres from the tip, as mentioned by Enstone et al. [56]. Thus, our results revealed that near the root 

tip the endodermis might limit the free apoplastic diffusion of sodium ions into the vascular stream. This 

could lead to the accumulation of sodium ions in tissues peripheral to the endodermis.  

Structural changes in the first leaf were similar under both stress situations and they mainly affected the 

thickness of the mesophyll and the cuticles. The increase in mesophyll thickness match the findings in 

Mentha x piperita plants treated with PEG 100 g.L-1 [57] and in most plants [58] under salinity stress but 

is opposite to observations made in Cynodon dactylon [42]. At the epidermal level, both stresses increased 

the thickness of the cuticle, which is an effective mechanism against water loss under stress [59]. However, 

no changes were induced in either the number or the area of bulliform cells, unlike reports from other 

species such as Imperata cylindrica [60], Sporobolus arabicus [61] and Aeluropus lagopoides [38] under 

salinity conditions. Under our NaCl salinity conditions, epidermal salt glands were not observed, which is 

contrary to the findings in the upland switchgrass Cave-in-Rock cultivar in green house experiments [26]. 

This anatomical feature is one among the diverse mechanisms that may be used to handle salt stress, and 

our results suggest that the Alamo cultivar follows different strategies to cope with salinity. Kim et al. [15] 

reported the existence of multiple response modes to salt stress among switchgrass populations. To our 

knowledge, there is no information about the mechanisms involved in drought and salt tolerance in Alamo. 

For this reason, our study could be used as the basis for future investigations to clarify the salinity and 

drought tolerance mechanisms in this cultivar.   

 

 

Conclusions  

Alamo switchgrass cultivar is more tolerant to salinity than drought stress.  In general, this study revealed 

that Ψw of -0.8 MPa affected only the germination rate, whereas a Ψw of -1.0 and -1.2 MPa affected the 

FGP and germination rate under both salinity (NaCl) and water stress (PEG) treatments. Nevertheless, the 

PEG treatments had a greater effect on the FGP, GR and seedling growth when compared to the NaCl 
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treatments at a given Ψw. This behaviour would be related to the water uptake, which is reduced in response 

to PEG while salt stress effects are probably linked to ion accumulation.  

The most important anatomical changes due to salinity or drought stress occurred in the roots, which is the 

first organ to develop and experience salt excess or water scarcity. Furthermore, the reduction in the root 

cross-section area, aerenchyma formation in the cortex under salinity and the thickening of the endodermis 

walls could help avoid solute uptake and dehydration during early growth stages and thus could increase 

survival and tolerance of this species under salinity stress conditions.  
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Final germination percentage of Alamo switchgrass. The seeds germinated under different water 

potentials, salinity (NaCl) or water stress (PEG). Values represent the mean ± SE of four replicates. 

Different letters indicate significant differences (P <0.05) between treatments according to Duncan test 
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Figure 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Time courses of percentage germination of Alamo switchgrass in response to salinity (NaCl) and 

water stress (PEG). White, grey and black symbols correspond to control, NaCl and PEG treatment, 

respectively. Water potentials (Ψw): 0.0 MPa (○), -0.8 MPa (□), -1.0 MPa (∆) and -1.2 MPa (◊). Horizontal 

dotted line indicates the 50 % germination. After 28 days, un-germinated seeds were transferred to distilled 

water to study the recovery of germination during 7 days under the same temperature and light regimes. 

Vertical dotted line (day 28) indicates the start recovery period. Values represent the mean ± SE (error bars) 

of four replicates 
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Figure 3 

 

Fig. 3 Growth responses of Alamo switchgrass germinated under salinity (NaCl) or water stress (PEG). (a) 

Root length, (b) aerial part length and (c) seedlings at 10, 20 and 28 days after sowing (DAS). White, grey 

and black symbols correspond to control, NaCl and PEG treatment, respectively. Water potentials (Ψw): 0.0 

MPa (○), -0.8 MPa (□), -1.0 MPa (∆) and -1.2 MPa (◊). Values represent the mean ± SE of twenty replicates 
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Figure 4  

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Vigor index of Alamo switchgrass as a response of the germination and growth seedling under 

salinity (NaCl) or water stress (PEG), expressed as % of the control taken as 100 %. Different letters 

indicate significant differences (P <0.05) between treatments according to Duncan test 
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Figure 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Anatomical responses of Alamo switchgrass during early stage under salinity (NaCl) or water stress 

(PEG). 0.0 MPa control (a, b), -0.8 MPa NaCl (c, d) and -0.8 MPa PEG (e, f) treatments. Cross-sections of 

roots (a, c and e) showing the central cylinder and the inner cortex, u-shaped endodermis cell wall (black 

arrows), the protxylem walls (red arrows) under salinity (c) and water stress (e). Cross-sections of the first 

leaf (b, d and f) showing thickening of abaxial cuticle under salinity (d) and water stresses (f) (green 
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arrows). Ab, Abaxial epidermis; Ad, Adaxial epidermis; Ae, Aerenchyma; B, Bulliform cell; Co, Cortex; 

E, Endodermis; K, Kranz bundle sheath; Pe, Pericycle; Ph, Phloem; Ms, Mestome sheath; Mx, Metaxylem; 

Px, Protoxylem; S, Stomata complex; Sc, Sclerenchyma cells. Scale = 20 µm 
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Table 1 Response of t50, GR, RL, AL and VI in Alamo switchgrass under salinity (NaCl) or water stress 

(PEG). Values represent the mean ± SE of four replicates to t50, GR and of twenty replicates to RL, AL and 

VI. Different letters indicate significant differences (P <0.05) between treatments according to Duncan test 

 

Seed 

treatment 

Ψw 

(MPa) 
t50 (days) GR RL (mm) AL (mm) VI 

Control 0.0 3±0.1e 87±0.5a 14.5±1.5a 27.6±2.1a  1658.0±150.0a 

NaCl 

-0.8 6±0.3d 70±1.6b 9.4±0.9b 16.4±1.3b   1008.6±77.9b 

-1.0   11±0.7b 53±1.3d   3.3±0.7de     4.3±1.0cd  332.8±63.1d 

-1.2   17±0.4a 37±2.5e 1.9±0.5e     2.8±0.7de   162.9±42.5de 

PEG 

-0.8 8±0.3c 62±3.7c   7.2±0.1bc   6.1±0.9c   690.2±102.9c 

-1.0   20±0.4a 33±1.7e   4.9±1.3cd    1.0±0.5e 351.3±90.2d 

-1.2 - 17±1.4f 0.6±0.3e    0.0±0.0e   25.4±14.8e 

t50: the time to obtain 50 % germination; GR: germination rate index; RL: Root Length, AL: Aerial part 

Length; VI: Vigor Index. 
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Table 2 Morpho-anatomical response of Alamo switchgrass during early stage under 

salinity (NaCl) or water stress (PEG). Values represent the mean ± SE of three 

replicates. Different letters indicate significant differences (P <0.05) between 

treatments according to Duncan test. * The vascular bundle area including: radiate 

chlorenquima + Kranz sheath 

 

 

 Seed treatments 

Anatomical parameters C (0.0 MPa) NaCl (-0.8 MPa) PEG (-0.8 MPa)

Root cross section    

section area (µm2) 49621.1 ±2954.9a 31629.8 ±2541.3b 21106.5 ±1441.8

Central cylinder area (µm2) 5673.6 ±530.7a 5130.2 ±476.7a 2693.5 ±191.

Inner wall of the endodermis thickness (µm) 0.9 ±0.1b 1.3±0.1a 1.4 ±0.1

section area of Protoxylem vessel (µm2) 57.6 ±2.3b 79.0 ±9.5a 25.5 ±0.4

Protoxylem vessel wall thickness (µm) 0.8 ±0.1b 1.5 ±0.3a 0.9 ±0.2

section area of Metaxylem vessel (µm2) 781.5 ±73.0a 408.0 ±16.2b 298.2 ±42.

Metaxylem vessel wall thickness (µm) 0.5 ±0.1b 1.2 ±0.2a 0.6 ±0.1

Leaf cross section    

Total thickness (µm) 68.9±8.0b 93.8±3.1ab 103.4±13.94a

Mesophyll thickness (µm) 55.7±4.2b 76.9±3.7ab 79.6±9.8a

Adaxial epidermis thickness (µm) 7.4±3.1a 7.5±1.2a 10.9±1.8

Abaxial epidermis thickness (µm) 5.7±2.0a 7.7±1.4a 11.3±3.0

Cuticle thickness of adaxial epidermis  (µm) 0.4±0.2b 0.8±0.1a 0.6±0.1ab

Cuticle thickness of abaxial epidermis  (µm) 0.5±0.2b 0.8±0.2a 0.9±0.1a

Bulliform number of cells per group 4.0±0.6a 4.7±0.4a 4.7±0.4a

Bulliform cell area per group (µm2) 1348.5±210.0a 1954.1±520.9a 1294.8±451.

Vascular bundle area* (µm2) 4375.5±119.8a 3428.3±317.2a 3623.0±808.


