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Abstract. We find t-designs on compact algebraic manifolds with a
number of points comparable to the dimension of the space of polyno-
mials of degree t on the manifold. This generalizes results on the sphere
by Bondarenko, Radchenko and Viazovska in [BRV13]. Of special inter-
est is the particular case of the Grassmannians where our results improve
the bounds that had been proved previously.

1. Introduction

Given a real affine algebraic manifold M endowed with the normalized
Lebesgue measure µM, we say that a collection of N points x1, . . . , xN ∈M
is a t-design, also called averaging set or Chebyshev quadrature formula, if∫

M
P (x) dµM(x) =

1

N

N∑
i=1

P (xi),

for all polynomials P (x) of total degree less or equal than t.
The results for Chebyshev quadrature on the interval are classic, see for

example the survey paper by Gautschi and the commentaries by Korevaar,
[Gau14].

In the case of the sphere, these sets are known as spherical designs and
were introduced by Delsarte, Goethals and Seidel [DGS77] in the context of
algebraic combinatorics on spheres.

Since then, spherical designs have gained popularity in different areas of
mathematics, ranging over geometry, algebraic and geometric combinatorics,
and numerical analysis. See for instance the review [BB09] by Bannai and
Bannai or the more recent review of Brauchart and Grabner [BG15].

Very early the notion of t-designs was considered in other contexts beyond
the sphere. The projective designs were introduced by Hoggar [Hog82], who
continued Neumaier’s work in more general Delsarte spaces [Neu81]. They
were further investigated by Lyubich and Shalatova, [LS04], as a tool to
embed isometrically `2(Rn) in `2t(Rm).

When the points in a t-designs are separated, they tend to be evenly
distributed along the sphere or the projective space, and they are close
to optimal for other problems, like minimization of Newtonian energy as
observed in [HL08] and [BRV15].
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For this reason, in order to have evenly distributed subspaces, the t-
designs on Grassmannians were considered by Bachoc, Coulangeon and Nebe
in [BCN02]. In [BEG16] Breger, Ehler and Gräf make some numerical study
of approximation problems in Grassmannians and observe that two possible
notions of designs in Grassmannians (one of them using polynomials as
we did and another when one replaces polynomials by eigenvectors of the
Laplacian as in [BCN02]) are indeed related.

The existence of designs in a very general setting was proved by Seymour
and Zaslavsky in [SZ84], see also [AdR88]. One challenging problem is to
find designs with as few points as possible.

In [Kan15] Kane studied the existence of designs in path-connected spaces.
In particular for the Grassmannian G(k,Rn), linear subspaces of Rn of di-
mension k, he proved that one can find t-designs with a number of points
of order O(t2k(nk)) and he conjectured that it should be of order O(tk(nk))
since this is the dimension of the corresponding space of polynomials.

A breakthrough on the existence of designs of size of optimal asymptotic
order was obtained in [BRV13], where the conjecture by Korevaar and Mey-
ers was settled, [KM93,KM94]. The conjecture said that there are t-designs
with O(td) points in the d-dimensional sphere. This is asymptotically the
best rate possible. The proof is obtained by a fixed point theorem, thus it is
not constructive. On the other hand their method is very flexible, so they
could improve it in [BRV15] to obtain separated spherical designs with the
same cardinality.

As a further evidence of the flexibility of their method we are going to
adapt it to the setting of a general algebraic manifold and obtain sharp esti-
mates on the number of points needed for a t-design. The two main ingredi-
ents that are needed to adapt their method to this setting are the construc-
tion of area regular partitions in manifolds (this has been recently proved by
Gigante and Leopardi in [GL15]) and the existence of a sampling-type in-
equalities (Marcinkiewicz-Zygmund inequalities) for polynomials. This last
ingredient essentially follows from a Bernstein-type inequality for polyno-
mials in algebraic varieties proved in [BOC15]. If we specialize our results
we confirm the conjecture for Grassmannians stated in [Kan15], and we
also find the right order of quadrature formulas on ellipses, as suggested in
[KM94, Remark 3.2].

2. Definitions and Main results

Let M be a smooth, connected and compact affine algebraic manifold of
dimension d in Rn

M = {x ∈ Rn : p1(x) = · · · = pr(x) = 0} ,

where p1, . . . , pr ∈ R[X] are polynomials with real coefficients and the nor-
mal space at x ∈ M is of dimension n− d. This normal space is generated
by ∇p1(x), . . . ,∇pr(x), where ∇p denotes the gradient of the polynomial p
in Rn. We consider in M the d−dimensional Hausdorff measure (i.e. the
Lebesgue measure) µM, normalized by µM(M) = 1. We denote as d(x, y)
the geodesic distance between x, y ∈M.
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Let X ⊂ Cn be the complexification of M, i.e. the complex zero set of
the real polynomials p1(x), . . . , pr(x). The Lebesgue measure in X will be
denoted by µX .

The space of real algebraic polynomials on M of total degree at most
t, denoted by Pt = Pt(M) is the restriction to M of the space of real
polynomials in n variables. The dimension of the space Pt(M) is given by
the Hilbert polynomial and it satisfies:

dimPt(M) = deg(M)td +O(td−1).

Let P0
t be the Hilbert space of polynomials in Pt with zero mean∫

M
P (x) dµM(x) = 0,

with respect to the usual inner product

〈P,Q〉 =

∫
M
P (x)Q(x)dµM(x).

P0
t has a reproducing kernel i.e. for each x ∈ M there exists a unique

polynomial Kx ∈ P0
t such that

〈Q,Kx〉 = Q(x),

for all Q ∈ P0
t .

It is clear that x1, . . . , xN ∈M is a t-design if and only if

(1)
N∑
i=1

Kxi = 0.

The existence of designs was already proved in a very general setting in
[SZ84], our aim is to show, adapting the techniques from [BRV13] that one
can reach the right order given by the following result, see also [dlHP05].

Proposition 2.1. If x1, . . . , xN ∈M is a t-design in M, then N & td.

Proof. Let s be such that 2s = t, if t is even, and such that 2s + 1 = t
otherwise. We have that∫

M
P 2(x)dµM(x) =

1

N

N∑
i=1

P 2(xi), for P ∈ Ps.

Suppose that N < dimPs. Then for P1, . . . , PN ∈ Ps linearly independent
we have that

det(Pj(xi))i,j=1,...,N 6= 0.

Indeed, if the determinant above vanishes, there exist a non-trivial linear
combination

N∑
j=1

αjPj(xi) = 0, i = 1, . . . , N,

and we get a contradiction from∫
M

( N∑
j=1

αjPj(x)
)2
dµM(x) = 0.
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As det(Pj(xi))i,j=1,...,N 6= 0, there exist Q1, . . . , QN ∈ Ps such that Qj(xi) =

δij , for i, j = 1, . . . , N , and Q ∈ span{Q1, . . . , QN}⊥. Then

0 =

∫
M
Q(x)Qj(x)dµM(x) =

1

N
Q(xj), j = 1, . . . , N

and from
∫
MQ(x)2dµM(x) = 0 we get that Q(x) = 0. �

Remark. If x1, . . . , xN ∈ M is a t-design in M, for even t, and N =
dimPt/2(M), it is easy to see that the set of reproducing kernels of the
space Pt/2(M) on those points

Kt/2(·, xj), j = 1, . . . N,

form an orthogonal basis of Pt/2(M) and

Kt/2(xj , xj) = ‖Kt/2(·, xj)‖2L2(M) = N,

for all j = 1, . . . , N . The existence (or not) of these, so-called, tight designs
in a variety M seems to be a difficult problem.

In the case of the sphere Sd the (sharp) lower bounds tell us that if
x1, . . . , xN ∈ Sd is a t−design

N ≥
(
d+ s

d

)
+

(
d+ s− 1

d

)
= dimPs(Sd), N ≥ 2

(
d+ s

d

)
for t = 2s and t = 2s + 1, respectively. For the sphere Sd there are a
few tight spherical designs, see [BD79,BD80], for which these lower bounds
are attained. The tight spherical designs with larger cardinality are the
kissing tight 4-design for S21 of 275 = dimP2(S21) points for even t, and the
11−design for S23 of 196560 points from the Leech lattice for odd t.

Our main result is the following theorem where we show the existence of
designs with cardinality N for all N & dimPt(M).

Theorem 2.2. There is a constant CM depending only on M such that for
each N ≥ CMtd there are t-designs in M with N points.

Besides the sharp result for the sphere in [BRV13], Kuijlaars has proved
on the torus on R3 the existence of Chebyshev quadratures with Ct2 points
for polynomials of degree t, [Kui95]. In [Kan15] the author obtained results
in the very general setting of path-connected topological spaces. His result
in our setting provides designs for any N & t2d.

Observe that a sort of converse to Theorem 2.2 also holds. Indeed, let
M⊂ Rn be a smooth compact real manifold of dimension d. The existence
of a t−design of order td in M implies that the dimension the space of
polynomials in n variables of degree at most t/2, restricted toM, is of order
td. This implies that M is cut out by a system of polynomial equations.

To prove Theorem 2.2, we follow the strategy of [BRV13]. The main
ingredients are a result from Brouwer degree theory and Marcinkiewicz-
Zygmund inequalities for spaces of polynomials Pt(M). In [BRV13] the
authors borrow the Marcinkiewicz-Zygmund inequalities on the sphere from
[MNW01, Theorem 3.1], see also [DX13, Theorem 6.4.4]. We will prove the
analogue for algebraic polynomials on algebraic varieties.

To state our results we have to define area regular partitions.
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A finite family of closed sets R1, . . . , RN ⊂M is an area regular partition
of M if

µM(Ri) = 1/N,
N⋃
i=1

Ri =M, and µM(Ri ∩Rj) = 0 for i 6= j.

The diameter of the partition R = {R1, . . . , RN} is

‖R‖ = max
i=1,...,N

max
x,y∈Ri

d(x, y).

Following previous constructions for the sphere, it is not difficult to deduce
the existence of area regular partitions with diameter comparable to N−1/d

for any compact algebraic variety, see for example [RSZ94] and the references
therein. The existence of such a partition in our case can be deduced also
from a recent result by Gigante and Leopardi for Ahlfors regular metric
measure spaces, see [GL15, Theorem 2].

Proposition 2.3. For any N ≥ N0 = N0(M) ∈ N there exists an area
regular partition R = {R1, . . . , RN} of M, with µM(Ri) = 1/N for all
1 ≤ i ≤ N , and such that

(2) B(c1N
−1/d) ⊂ Ri ⊂ B(c2N

−1/d),

where B(r) is a geodesic ball in M of radius r > 0 and the constants c1, c2

depend only on M.

Our result about Marcinkiewicz-Zygmund inequalities is the following:

Theorem 2.4. There exists a constant A = A(M) > 0 such that if N ≥ Atd
and R = {R1, . . . , RN} is an area regular partition of M as in (2). Then
for all P ∈ Pt

(3)
1

2

∫
M
|P (x)|dµM(x) ≤ 1

N

N∑
i=1

|P (xi)| ≤
3

2

∫
M
|P (x)|dµM(x),

for any choice of xi ∈ Ri, with 1 ≤ i ≤ N .

We will need also Marcinkiewicz-Zygmund inequalities for tangential gra-
dients of polynomials. Observe that, unlike for the sphere, for a general
variety the tangential gradient is not necessarily a polynomial.

Definition 2.5. Given a differentiable function f inM⊂ Rn. The tangen-
tial gradient of f at a point x ∈ M, denoted as ∇Mf(x) is the orthogonal
projection of the gradient ∇f(x) onto the tangent space of M at x.

Corollary 2.6. There exists a constant A = A(M) > 0 such that if N ≥
Atd and R = {R1, . . . , RN} is an area regular partition of M as in (2).

Then for all P ∈ Pt
(4)

1

KM

∫
M
|∇MP (x)|dµM(x) ≤ 1

N

N∑
i=1

|∇MP (xi)| ≤ KM
∫
M
|∇MP (x)|dµM(x),

where KM = 3
√
d
(
r

n−d
)
CM for CM > 0 depending only on M and for any

choice of xi ∈ Ri, with 1 ≤ i ≤ N .
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As in [BRV13], the last ingredient of the proof of Theorem 2.2 is the
following result from Brouwer degree theory:

Theorem 2.7 ([CC06, Theorem 1.2.9]). Let f : Rn −→ Rn be a continuous
mapping and Ω an open bounded subset, with boundary ∂Ω, such that 0 ∈
Ω ⊂ Rn. If 〈x, f(x)〉 > 0 for all x ∈ ∂Ω, then there exists x ∈ Ω satisfying
f(x) = 0.

Defining the convenient mapping from Pt into itself, this result will give
us (1).

3. Proofs

First we prove the Marcinkiewicz-Zygmund inequalities in the algebraic
varietyM (Theorem 2.4). Similar results have been obtained also in general
compact Riemannian manifolds for spaces of, so-called, diffusion polynomials
(i.e. eigenfunctions of elliptic differential operators, in particular, for the
Laplace-Beltrami operator), [FM10,FM11]. In the proof we use the following
result from Berman and Ortega-Cerdà, analogous to the Plancherel-Polya
inequality for entire functions of exponential type, [You01].

Lemma 3.1 ([BOC15, Theorem 10]). There exists a constant C = CM > 0
such that for all polynomials P ∈ Pt the following inequality holds∫

U( 1
t )
|P (x)|dµX(x) ≤ C

td

∫
M
|P (x)|dµM(x),

where U
(

1
t

)
=
{
x ∈ X : d(x,M) ≤ 1

t

}
.

Proof of Theorem 2.4. During the proof, we will denote by C any constant
depending on M.

Given the degree t ∈ N, let N = td/ad ≥ Atd, where A = A(M) > 0 is
some constant to be determined. Consider the area regular partition with
N points given by Proposition 2.3. By assumption the balls satisfy

B(ac1t
−1) ⊂ Ri ⊂ B(ac2t

−1),

and therefore the diameter of R satisfies

2ac1

t
≤ ‖R‖ ≤ 2ac2

t
.

Then we compare the average of P and the integral and we obtain:

∣∣∣∣∣ 1

N

N∑
i=1

|P (xi)| −
∫
M
|P (x)|dµM(x)

∣∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∫
Ri

|P (xi)| − |P (x)|dµM(x)

∣∣∣∣
≤ ‖R‖

N

N∑
i=1

|∇MP (x′i)|,(5)

where x′i is such that |∇MP (x′i)| ≥ |∇MP (x)| for all x ∈ Ri. Observe that
we can take x′i in the ball B(ac2t

−1) containing Ri.
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Consider now each x′i as a point of X, the complex variety, and apply
Cauchy’s inequality

|∇MP (x′i)| ≤
C(

1
t

)2d+1

∫
BX(x′i,

1
t )
|P (z)|dµX(z),

where C is a constant depending on M and BX(x′i, t
−1) is a ball in X.

Observe that, for i = 1, . . . , N, the number of balls BX(x′i, t
−1) with

nonempty intersection is bounded independently of t. Indeed, if I ⊂ {1, . . . , N}
there exist C depending only on M such that if⋂

j∈I
BX(x′j , t

−1) 6= ∅, then
⋂
j∈I

B(x′j , Ct
−1) 6= ∅,

and Rj ⊂ B(x′j , Ct
−1) for j ∈ I. As each Rj contains a (disjoint) ball of

radius ac1t
−1, we get that

card(I)ad ≤ C.
We can bound the sum on (5) by the sum of integrals on the corresponding

balls and using the bounded intersections we can pass to a tubular domain
around M defined as in Lemma 3.1

N∑
i=1

∫
BX(x′i,

1
t )
|P (z)|dµX(z) ≤ C

ad

∫
U( 1

t )
|P (z)|dµX(z).

Finally we apply Lemma 3.1 and we get that (5) is bounded by

‖R‖
N

N∑
i=1

|∇MP (x′i)| ≤ C
‖R‖td+1

adN

∫
M
|P (x)|dµM(x).

By using that N = td/ad and the upper bound for ‖R‖ it is clearly enough
to take A = (4Cc2)d. �

To prove the Marcinkiewicz-Zygmund inequalities for the tangential gra-
dient (Corollary 2.6) we use the following inequality for vectors of polyno-
mials.

Corollary 3.2. Let k ∈ N be a fixed constant. There exists a constant
A = A(M, k) > 0 such that if R = {R1, . . . , RN} is an area regular partition
as in (2) with N ≥ Atd, then a vectorial Marcinkiewicz-Zygmund inequality
for polynomials of degree at most t + k holds. That is, for all vectors of
polynomials Q(x) = (Q1(x), . . . , Qm(x)) with m ≤ 2d and Qj(x) ∈ Pt+k(M)
we have that

(6)
1

3
√
d

∫
M
|Q(x)|dµM(x) ≤ 1

N

N∑
i=1

|Q(xi)| ≤ 3
√
d

∫
M
|Q(x)|dµM(x),

for any election of xi ∈ Ri.
Proof. Let A be the constant given by the Theorem 2.4 when we replace
t+ k with t. Then we use that

|Q(x)| ≤
m∑
j=1

|Qj(x)| ≤
√
m|Q(x)|,

and we apply the previous result for each Qj(x). �
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In [BRV13] this result above was enough because the tangential gradient
on the sphere of a spherical polynomial can be written as a vector of spherical
polynomials (i.e. polynomials restricted to the sphere). This does no longer
hold in our case and we have to be more careful.

Proof of Corollary 2.6. Let M be given as the common zero set of the real
polynomials p1(x), . . . , pr(x).

SinceM is smooth of dimension d, for all x ∈M the normal space toM
on x is generated by

∇pi1(x), . . . ,∇pin−d
(x),

where the index i1 < · · · < in−d (which may depend on x) is a subset of
{1, . . . , r}.

Assume that ij = j for j = 1, . . . , n−d. By the Gram-Schmidt determinant-
type formula we obtain an orthogonal basis u1(x), . . . , un−d(x) of the normal
space at x by the following determinants

ui(x) =

∣∣∣∣∣∣∣∣∣∣∣

〈∇p1(x),∇p1(x)〉 〈∇p2(x),∇p1(x)〉 . . . 〈∇pi(x),∇p1(x)〉
〈∇p1(x),∇p2(x)〉 〈∇p2(x),∇p2(x)〉 . . . 〈∇pi(x),∇p2(x)〉

...
...

. . .
...

〈∇p1(x),∇pi−1(x)〉 〈∇p2(x),∇pi−1(x)〉 . . . 〈∇pi(x),∇pi−1(x)〉
∇p1(x) ∇p2(x) . . . ∇pi(x)

∣∣∣∣∣∣∣∣∣∣∣
.

Observe that it is a formal determinant that must be computed developing
by the last row. Since every ∇pi(x) is a vector of polynomials, the product
〈∇pi(x),∇pj(x)〉 is also a polynomial and therefore ui(x) is also a vector of
polynomials of total degree bounded by a constant depending only on M.
The tangential gradient of P at x ∈M is then

(7) ∇MP (x) = ∇P (x)−
n−d∑
i=1

〈∇P (x), ui(x)〉ui(x)

|ui(x)|2
.

If there are n − d polynomials defining the normal space to M in all
the variety, in particular, for the sphere or any other algebraic hypersur-
face, the result follows because one can apply Corollary 3.2 to the vector of
polynomials (

n−d∏
i=1

|ui(x)|2
)
∇MP (x),

and use that as M is smooth

0 < C−1
M ≤

n−d∏
i=1

|ui(x)|2 ≤ CM,

for some CM > 0.
Now for any I ⊂ {1, . . . , r} with |I| = n− d we can define the vectors of

polynomials uIj (x) for j = 1, . . . , n−d (where maybe some of the polynomials

are zero) and by Corollary 3.2 the Marcinkiewicz-Zygmund inequalities hold
for

(8)

(
n−d∏
i=1

|uIi (x)|2
)
∇P (x)−

n−d∑
i=1

〈
∇P (x), uIi (x)

〉
uIi (x)

∏
j 6=i
|uIj (x)|2.
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Clearly, Marcinkiewicz-Zygmund inequalities hold also taking supremum for
the subsets I ⊂ {1, . . . , r} with |I| = n− d.

Indeed, now as

C−1
M |∇MP (x)| ≤ sup

I⊂{1,...,r}
|I|=n−d

n−d∏
i=1

|uIi (x)|2|∇MP (x)| ≤ CM|∇MP (x)|,

for some constant CM > 0, the result follows because for vI(x) as in (8)(
r

n− d

)−1 ∑
I⊂{1,...,r}
|I|=n−d

|vI(x)| ≤ sup
I⊂{1,...,r}
|I|=n−d

|vI(x)| ≤
∑

I⊂{1,...,r}
|I|=n−d

|vI(x)|,

for all x ∈M. �

The following result is the main tool to define a mapping with the right
properties and apply Theorem 2.7.

Lemma 3.3. There exists a constant A = A(M) > 0 such that if N ≥ Atd
then there exists a continuous mapping

P0
t →MN

P 7→ (x1(P ), . . . , xN (P )),

such that for all P ∈ P0
t with

∫
M |∇MP (x)|dµ(x) = 1

〈
P,

N∑
i=1

Kxi(P )

〉
=

N∑
i=1

P (xi(P )) > 0.

Proof. Let A = A(M) > 0 be given by Corollary 2.6. Let N ≥ Atd and
R = {R1, . . . , RN} be an area regular partition of M as in (2).

Given a polynomial P , we define inM the vector fieldXP = ∇MP/Uε(|∇MP |),
where Uε : R+ → R is a smooth increasing function such that Uε(x) = ε/2 if
0 ≤ x ≤ ε/2 and Uε(x) = x if x ≥ ε for some ε fixed. Since Uε(x) is smooth,
the vector field XP is smooth on M and depends continuously on P .

Now for each 1 ≤ i ≤ N we consider the map yi : [0,∞) −→ M that
satisfies the differential equation

(9)

{
∂
∂syi(s) = XP (yi(s))

yi(0) = xi

where xi ∈ Ri. The differential equation changes for each P ∈ P, thus we
will sometimes denote yi(s) as yi(P, s) to stress the dependence on P .

Note that the quantity
∑N

i=1 P (xi) is small since
∫
M P (x)dµ(x) = 0. In

order to increase this quantity, we move from the point xi in the direction
that increases P (xi), that is, the direction given by the vector ∇MP (xi).

Since the vector field XP is smooth, each yi is well defined and continuous
in both P and s. For a fixed s0 > 0 to be determined, define the continuous
mapping

(10) P0
t 3 P 7→ (x1(P ), . . . , xN (P )) = (y1 (P, s0) , . . . , yN (P, s0)) .
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Now, following [BRV13] we split

1

N

N∑
i=1

P (xi(P )) =
1

N

N∑
i=1

P (xi) +

∫ s0

0

d

ds

[
1

N

N∑
i=1

P (yi (P, s))

]
ds

≥
∫ s0

0

d

ds

[
1

N

N∑
i=1

P (yi (P, s))

]
ds−

∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ .(11)

We can modify the area regular partition without losing its essential prop-
erties. Indeed, if x′i belongs to a ball B(CM‖R‖) containing Ri, where
CM > 0 is a constant depending only on M then, defining

R′i = (Ri \ ∪Nj=1{x′j}) ∪ {x′i},

we get an area regular partition with the same properties, i.e.

B(c′1N
−1/d) ⊂ R′i ⊂ B(c′2N

−1/d),

for some constants c′1, c
′
2 depending only on M.

As in (5) and using that P ∈ P0
t has mean zero, we get∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ ≤ ‖R‖N
N∑
i=1

|∇MP (x′i)|,

where x′i is a point in the ball B(c′2N
−1/d) containing Ri where |∇MP (x)|

attains its maximum. Applying the the right-hand side inequality in (4) and
the modification of the area regular partition mentioned above we get that∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ ≤ KM‖R‖.
For any fixed 0 < s < CM‖R‖ we apply the left-hand side inequality in

(4) and again a modification of the area regular partition to get

d

ds

[
1

N

N∑
i=1

P (yi (P, s))

]
=

1

N

N∑
i=1

|∇MP (yi(P, s))|2

Uε(|∇MP (yi(P, s))|)

≥ 1

N

∑
i : |∇MP (yi(P,s))|≥ε

|∇MP (yi(P, s))| ≥
1

N

N∑
i=1

|∇MP (yi(P, s))| − ε

≥ 1

KM
− ε.

So, finally taking s0 = 3K2
M‖R‖ and ε = 1

2KM
we get from (11)

1

N

N∑
i=1

P (xi(P )) ≥ KM‖R‖
2

> 0.

�

Proof of Theorem 2.2. Fix t and define

Ω =

{
P ∈ P0

t :

∫
M
|∇MP (x)|dµM(x) < 1

}
,
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which is clearly an open, bounded subset of P0
t such that 0 ∈ Ω ⊂ P0

t . Take
N ≥ Atd for A given by Corollary 2.6 and let xi(P ) be the points defined
for P ∈ ∂Ω.

From the continuity of P 7→ (x1(P ), . . . , xN (P )) it follows that

P0
t 3 P 7→

N∑
i=1

Kxi(P ),

is continuous and from Lemma 3.3, for all P ∈ ∂Ω,〈
P,

N∑
i=1

Kxi(P )

〉
=

N∑
i=1

P (xi(P )) > 0.

Applying Theorem 2.7 we get the existence of some Q ∈ Ω for which∑N
i=1Kxi(Q) = 0.

�
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