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Abstract

Distortion risk measures summarize the risk of a loss distribution by means of a single value.
In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted
Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a
single value. We show that these concepts can be derived from the Choquet integral, and then
the mathematical relationship between distortion risk measures and the OWA and WOWA
operators for discrete and finite random variables is presented. This connection offers a
new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail
Value-at-Risk can be understood from an aggregation operator perspective. The theoretical
results are illustrated in an example and the degree of orness concept is discussed.

1. Introduction1

The relationship between two different worlds, namely risk measurement and fuzzy sys-2

tems, is investigated in this paper. Risk measurement evaluates potential losses and is useful3

for decision making under probabilistic uncertainty. Broadly speaking, fuzzy logic is a form4

of reasoning based on the ‘degree of truth’ rather than on the binary true-false principle.5

But risk measurement and fuzzy systems share a common core theoretical background. Both6

fields are related to the human behavior under risk, ambiguity or uncertainty1. The study7
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1The expected utility theory by von Neumann and Morgenstern (1947) was one of the first attempts to
provide a theoretical foundation to human behavior in decision-making, mainly based on setting up axiomatic
preference relations of the decision maker. Similar theoretical approaches are, for instance, the certainty-
equivalence theory (Handa, 1977), the cumulative prospect theory (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992), the rank-dependent utility theory (Quiggin, 1982), the dual theory of choice under
risk (Yaari, 1987) and the expected utility without sub-additivity (Schmeidler, 1989), where the respective
axioms reflect possible human behaviors or preference relations in decision-making.
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of this relationship is a topic of ongoing research from both fields. Goovaerts et al. (2010a),8

for instance, discuss the hierarchical order between risk measures and decision principles,9

while Aliev et al. (2012) propose a decision theory under imperfect information from the10

perspective of fuzzy systems.11

Previous attempts to link risk management and fuzzy logic approaches are mainly found12

in the literature on fuzzy systems. Most authors have focused on the application of fuzzy13

criteria to financial decision making (Engemann et al., 1996; Gil-Lafuente, 2005; Merigó and14

Casanovas, 2011), and some have smoothed financial series under fuzzy logic for prediction15

purposes (Yager and Filev, 1999; Yager, 2008). In the literature on risk management, con-16

tributions made by Shapiro (2002, 2004, 2009) regarding the application of fuzzy logic in17

the insurance context must be remarked.18

In this paper we analyze the mathematical relationship between risk measurement and19

aggregation in fuzzy systems for discrete random variables. A risk measure quantifies the20

complexity of a random loss in one value that reflects the amount at risk. A key concept21

in fuzzy systems applications is the aggregation operator, which also allows to combine22

data into a single value. We show the relationship between the well-known distortion risk23

measures introduced by Wang (1996) and two specific aggregation operators, the Ordered24

Weighted Averaging (OWA) operator introduced by Yager (1988) and the Weighted Ordered25

Weighted Averaging (WOWA) operator introduced by Torra (1997).26

Distortion risk measures, OWA and WOWA operators can be analyzed using the theory27

of measure. Classical measure functions are additive, and linked to the Lebesgue integral.28

When the additivity is relaxed, alternative measure functions and, hence, associated integrals29

are derived. This is the case of non-additive measure functions2, often called capacities as30

it was the name coined by Choquet (1954). We show that the link between distortion31

risk measures and OWA and WOWA operators is derived by means of the integral linked32

to capacities, i.e. the Choquet integral. We present the concept of degree of orness for33

distortion risk measures and illustrate its usefulness.34

Our presentation is organized as follows. In section 2, risk measurement and fuzzy35

systems concepts are introduced. The relationship between distortion risk measures and36

aggregation operators is provided in section 3. An application with some classical risk37

measures is given in section 4. Finally, implications derived from these results are discussed38

in the conclusions.39

2. Background and notation40

In order to keep this article self-contained and to present the connection between two41

apparently distant theories, we need to introduce the notation and some basic definitions.42

2.1. Distortion risk measures43

Two main groups of axiom-based risk measures are coherent risk measures, as stated by44

Artzner et al. (1999), and distortion risk measures, as introduced by Wang (1996) and Wang45

2See Denneberg (1994).
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et al. (1997). Concavity of the distortion function is the key element to define risk measures46

that belong to both groups (Wang and Dhaene, 1998). Suggestions on new desirable prop-47

erties for distortion risk measures are proposed in Balbás et al. (2009), while generalizations48

of this kind of risk measures can be found, among others, in Hürlimann (2006) and Wu49

and Zhou (2006). As shown in Goovaerts et al. (2012), it is possible to link distortion risk50

measures with other interesting families of risk measures developed in the literature.51

The axiomatic setting for risk measures has extensively been developed since seminal52

papers on coherent risk measures and distortion risk measures. Each set of axioms for53

risk measures corresponds to a particular behavior of decision makers under risk, as it has54

been shown, for instance, in Bleichrodt and Eeckhoudt (2006) and Denuit et al. (2006).55

Most often, articles on axiom-based risk measurement present the link to a theoretical56

foundation of human behavior explicitly. For example, Wang (1996) shows the connection57

between distortion risk measures and Yaari’s dual theory of choice under risk; Goovaerts58

et al. (2010b) investigate the additivity of risk measures in Quiggin’s rank-dependent utility59

theory; and Kaluszka and Krzeszowiec (2012) introduce the generalized Choquet integral60

premium principle and relate it to Kahneman and Tversky’s cumulative prospect theory.61

Basic risk concepts are formally defined below. Let us set up the notation.62

Definition 2.1 (Probability space). A probability space is defined by three elements (Ω,A,P).63

The sample space Ω is a set of the possible events of a random experiment, A is a family64

of the set of all subsets of Ω (denoted as A ∈ ℘ (Ω)) with a σ−algebra structure, and the65

probability P is a mapping from A to [0, 1] such that P (Ω) = 1, P (∅) = 0 and P satisfies66

the σ − additivity property.67

A probability space is finite if the sample space is finite, i.e. Ω = {$1, $2, ..., $n}. Then68

℘ (Ω) is the σ−algebra, which is denoted as 2Ω. In the rest of the article, N instead of Ω will69

be used when referring to finite probability spaces. Hence, the notation will be
(
N, 2N ,P

)
.70

Definition 2.2 (Random variable). Let (Ω,A,P) be a probability space. A random variable71

X is a mapping from Ω to R such that X−1 ((−∞, x]) := {$ ∈ Ω : X ($) ≤ x} ∈ A, ∀x ∈ R.72

A random variable X is discrete if X (Ω) is a finite set or a numerable set without73

cumulative points.74

Definition 2.3 (Distribution function of a random variable). Let X be a random variable.75

The distribution function of X, denoted by FX , is defined by FX (x) := P (X−1 ((−∞, x])) ≡76

P (X ≤ x).77

The distribution function FX is non-decreasing, right-continuous and lim
x→−∞

FX (x) = 078

and lim
x→+∞

FX (x) = 1. The survival function of X, denoted by SX , is defined by SX (x) :=79

1−FX (x), for all x ∈ R. Note that the domain of the distribution function and the survival80

function is R even if X is a discrete random variable. In other words, FX and SX are defined81

for X (Ω) = {x1, x2, ..., xn, ...} but also for any x ∈ R.82
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Definition 2.4 (Risk measure). Let Γ be the set of all random variables defined for a given83

probability space (Ω,A,P). A risk measure is a mapping ρ from Γ to R, so ρ (X) is a real84

value for each X ∈ Γ.85

Definition 2.5 (Distortion risk measure). Let g : [0, 1]→ [0, 1] be a non-decreasing function
such that g (0) = 0 and g (1) = 1 (we will call g a distortion function). A distortion risk
measure associated to distortion function g is defined by

ρg (X) := −
∫ 0

−∞
[1− g (SX (x))] dx+

∫ +∞

0

g (SX (x)) dx.

The simplest distortion risk measure is the mathematical expectation, which is obtained86

when the distortion function is the identity as shown in Denuit et al. (2005). The two most87

widely used distortion risk measures are the Value-at-Risk (V aRα) and the Tail Value-at-88

Risk (TV aRα), which depend on a parameter α ∈ (0, 1) usually called the confidence level.89

Broadly speaking, the V aRα corresponds to a percentile of the distribution function. The90

TV aRα is the expected value beyond this percentile3 if the random variable is continuous.91

The former pursues to estimate what is the maximum loss that can be suffered with a92

certain confidence level. The latter evaluates what is the expected loss if the loss is larger93

than the V aRα. Both risk measures are distortion risk measures with associated distortion94

functions shown in Table 2.1. Unlike the V aRα, the distortion function associated to the95

TV aRα is concave and, then, the TV aRα is a coherent risk measure in the sense of Artzner96

et al. (1999). Basically, this means that TV aRα is sub-additive (Acerbi and Tasche, 2002)97

while the V aRα is not. Like in the case of V aRα and TV aRα, there is a strong relationship98

between the quantiles of the random variable and distortion risk measures, as it is shown in99

Dhaene et al. (2012).100

Table 2.1: Correspondence between risk measures and distortion functions.

Risk measure Distortion function g(x)

V aRα ψα (x) =

{
0 if x ≤ 1− α
1 if x > 1− α

}
= 1(1−α,1](x)

TV aRα γα (x) =

{ x

1− α
if x ≤ 1− α

1 if x > 1− α

}
= min

{
x

1− α
, 1

}

2.2. The OWA and WOWA operators and the Choquet integral101

Aggregation operators (or aggregation functions) have been extensively used as a natural102

form to combine inputs into a single value. These inputs may be understood as degrees of103

3We consider TV aRα as defined in Denuit et al. (2005). That is, TV aRα (X) =
1

1− α

∫ 1

α

V aRδ (X) dδ.

4



preference, membership or likelihood, or as support of a hypothesis. Let us denote by104

R = [−∞,+∞] the extended real line, and by I any type of interval in R (open, closed,105

with extremes being ∓∞,...). Following Grabisch et al. (2011), an aggregation operator is106

defined.107

Definition 2.6 (Aggregation operator). An aggregation operator in In is a function F (n)
108

from In to I, that is non-decreasing in each variable; fulfills the following boundary conditions,109

inf
~x∈In

F (n) (~x) = inf I, sup
~x∈In

F (n) (~x) = sup I; and F (1) (x) = x for all x ∈ I.110

Some basic aggregation operators are displayed in Table 2.2.111

Table 2.2: Basic F (n) aggregation operators.

Name Mathematical expression Type of interval I

Arithmetic
mean

AM (~x) =
1

n

n∑
i=1

xi Arbitrary I. If I = R, the convention
+∞+(−∞) = −∞ is often considered.

Product Π (~x) =
n∏
i=1

(xi) I ∈ {|0, 1|, |0,+∞|, |1,+∞|}, where
|a, b| means any kind of interval, with
boundary points a and b, and with the
convention 0 · (+∞) = 0.

Geometric
mean

GM (~x) =

(
n∏
i=1

(xi)

)1/n

I ⊆ [0,+∞], with the convention 0 ·
(+∞) = 0.

Minimum
function

Min (~x) = min {x1, x2, ..., xn} Arbitrary I.

Maximum
function

Max (~x) = max {x1, x2, ..., xn} Arbitrary I.

Sum func-
tion

∑
(~x) =

n∑
i=1

xi I ∈ {|0,+∞|, | −∞, 0|, | −∞,+∞|},
with the convention +∞ + (−∞) =
−∞.

k-order
statistics

OSk (~x) = xj, k ∈ {1, ..., n}
where xj is such that
# {i|xi ≤ xj} ≥ k and
# {i|xi > xj} < n− k

Arbitrary I.

k-th pro-
jection

Pk (~x) = xk, k ∈ {1, ..., n} Arbitrary I.

~x denotes (x1, x2, ..., xn).

Source: Grabisch et al. (2011).

There is a huge amount of literature on aggregation operators and its applications. See,112

among others, Beliakov et al. (2007), Torra and Narukawa (2007) and Grabisch et al. (2009,113
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2011). Despite the large number of aggregation operators, we focus on the OWA oper-114

ator and on the WOWA operator. Several reasons lead us to this selection. The OWA115

operator has been extensively applied in the context of decision making under uncertainty116

because it provides a unified formulation for the optimistic, the pessimistic, the Laplace117

and the Hurwicz criteria (Yager, 1993), and there are also some interesting generalizations118

(Yager et al., 2011). The WOWA operator combines the OWA operator with the concept of119

weighted average, where weights are a mechanism to include expert opinion on the accuracy120

of information. This operator is closely linked to distorted probabilities.121

2.2.1. Ordered Weighted Averaging operator122

The OWA operator is an aggregation operator that provides a parameterized family123

of aggregation operators offering a compromise between the minimum and the maximum124

aggregation functions (Yager, 1988). It can be defined as follows 4
125

Definition 2.7 (OWA operator). Let ~w = (w1, w2, ..., wn) ∈ [0, 1]n such that
∑n

i=1 wi = 1.126

The Ordered Weighted Averaging (OWA) operator with respect to ~w is a mapping from Rn to127

R defined by OWA~w (x1, x2, ..., xn) :=
n∑
i=1

xσ(i) · wi, where σ is a permutation of (1, 2, ..., n)128

such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), i.e. xσ(i) is the i-th smallest value of x1, x2, ..., xn.129

The OWA operator is commutative, monotonic and idempotent, and it is lower-bounded130

by the minimum and upper-bounded by the maximum operators. Commutativity is referred131

to any permutation of the components of ~x. That is, if the OWA~w operator is applied to132

any ~y such that yi = xr(i) for all i, and r is any permutation of (1, ..., n), then OWA~w (~y) =133

OWA~w (~x). Monotonicity means that if xi ≥ yi for all i, then OWA~w (~x) ≥ OWA~w (~y).134

Idempotency assures that if xi = a for all i, then OWA~w (~x) = a. The OWA operator135

accomplishes the boundary conditions because it is delimited by the minimum and the136

maximum functions, i.e. mini=1,...,n {xi} ≤ OWA~w (~x) ≤ maxi=1,...,n {xi}.137

The OWA~w is unique with respect to the vector ~w (the proof is provided in the Ap-138

pendix). The characterization of the weighting vector ~w is often made by means of the139

degree of orness measure (Yager, 1988).140

Definition 2.8 (Degree of orness of an OWA operator). Let ~w ∈ [0, 1]n such that
∑n

i=1 wi =
1, the degree of orness of OWA~w is defined by

orness (OWA~w) :=
n∑
i=1

(
i− 1

n− 1

)
· wi.

4Unlike the original definition, we consider an ascending order in ~x instead of a decreasing one. This
definition is convenient from the risk management perspective since ~x may be a set of losses in ascending
order. The relationship between the ascending OWA and the descending OWA operators is already provided
by Yager (1993).
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Note that the degree of orness represents the level of aggregation preference between the141

minimum and the maximum when ~w is fixed. The degree of orness can be understood as the142

value that the OWA operator returns when it is applied to ~x∗ =
(

0
n−1

, 1
n−1

, ..., n−2
n−1

, n−1
n−1

)
. In143

other words, orness (OWA~w) = OWA~w

(
~x∗
)
. It is straightforward to see that orness (OWA~w) ∈144

[0, 1], because ~x∗, ~w ∈ [0, 1]n. If ~w = (1, 0, ..., 0), then OWA~w ≡Min and orness (Min) = 0.145

Conversely, if ~w = (0, 0, ..., 1), then OWA~w ≡Max and orness (Max) = 1. And when ~w is146

such that wi = 1
n

for all i, then OWA~w is the arithmetic mean and its degree of orness is147

0.5. As we will see later, orness is closely related to the α level chosen in risk measures.148

Alternatively to the degree of orness, other measures can be used to characterize the149

weighting vector, such as the entropy of dispersion (Yager, 1988) based on the Shannon150

entropy (Shannon, 1948) and the divergence of the weighting vector (Yager, 2002).151

The OWA operator has been extended and generalized in many ways. For example,152

Xu and Da (2002) introduced the uncertain OWA (UOWA) operator in order to deal with153

imprecise information, Merigó and Gil-Lafuente (2009) developed a generalization by using154

induced aggregation operators and quasi-arithmetic means called the induced quasi-OWA155

(Quasi-IOWA) operator and Yager (2010) introduced a new approach to cope with norms156

in the OWA operator. Although it is out of the scope of this paper, the OWA operator is157

also related to the linguistic quantifiers introduced by Zadeh (1985), and a subset of them158

may be interpreted as distortion functions.159

2.2.2. Weighted Ordered Weighted Averaging operator160

The WOWA operator is the aggregation function introduced by Torra (1997). This161

operator unifies in the same formulation the weighted mean function and the OWA operator162

in the following way5.163

Definition 2.9 (WOWA operator). Let ~v = (v1, v2, ..., vn) ∈ [0, 1]n and ~q = (q1, q2, ..., qn) ∈
[0, 1]n such that

∑n
i=1 vi = 1 and

∑n
i=1 qi = 1. The Weighted Ordered Weighted Averaging

(WOWA) operator with respect to ~v and ~q is a mapping from Rn to R defined by

WOWAh,~v,~q (x1, x2, ..., xn) :=
n∑
i=1

xσ(i) ·

h
∑
j∈Aσ,i

qj

− h
 ∑
j∈Aσ,i+1

qj

 ,

where σ is a permutation of (1, 2, ..., n) such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), Aσ,i =164

{σ (i) , ..., σ (n)} and h : [0, 1] → [0, 1] is a non-decreasing function such that h (0) := 0165

and h

(
i

n

)
:=

n∑
j=n−i+1

vj; and h is linear if the points

(
i

n
,

n∑
j=n−i+1

vj

)
lie on a straight line.166

Note that this definition implies that weights vi can be expressed as vi = h

(
n− i+ 1

n

)
−167

h

(
n− i
n

)
and that h (1) = 1.168

169

5In the original definition ~x components are in descending order, while we use ascending order. An
additional subindex to emphasize dependence on function h is also introduced here.
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Remark 1170

The WOWA operator generalizes the OWA operator. Given a WOWAh,~v,~q operator on
Rn, if we define

wi := h

∑
j∈Aσ,i

qj

− h
 ∑
j∈Aσ,i+1

qj

 ,

and OWA~w where ~w = (w1, ..., wn), then the following equality holds WOWAh,~v,~q = OWA~w.171

As it can easily be shown, vector ~w satisfies the following conditions:172

(i) ~w ∈ [0, 1]n;173

(ii)
n∑
i=1

wi = 1.174

175

Condition (i) is straightforward. Let us denote si =
∑

j∈Aσ,i qj and sn+1 := 0. Hence,176

si ≥ si+1 for all i due to the fact that Aσ,i ⊇ Aσ,i+1 and that qj ≥ 0. Then h (si) ≥ h (si+1)177

since h is a non-decreasing function. Finally, as si ∈ [0, 1] and h(s) ∈ [0, 1] for all s ∈ [0, 1],178

then it follows that wi = h(si)− h(si+1) ∈ [0, 1] for all i.179

To prove condition (ii), note that Aσ,1 = N ,
∑

j∈N qj = 1 and that h (1) = 1 and180

h (0) = 0, then
n∑
i=1

wi =
n∑
i=1

(h(si)− h(si+1)) = h(s1)− h(sn+1) = 1− 0 = 1.181

182

Remark 2183

Let us analyze the particular case when OWA and WOWA operators provide the ex-184

pectation of random variables. Suppose that X is a discrete random variable that takes n185

different values and ~x ∈ Rn is the vector of values, where the components are in ascending186

order. Let ~p ∈ [0, 1]n be a vector consisting of the probabilities of the components of ~x.187

Obviously, it holds that OWA~p (~x) = E (X). Besides,188

WOWAh,~v,~p (~x) =
n∑
i=1

xi ·

[
h

(
n∑
j=i

pj

)
− h

(
n∑

j=i+1

pj

)]

=
n∑
i=1

xi · [h (SX (xi−1))− h (SX (xi))] .

If h is the identity function then WOWAh,~v,~p (~x) = E (X) since SX (xi−1)− SX (xi) = pi for189

all i (with the convention x0 := −∞).190

191

Remark 3192

Note that if X is discrete and uniformly distributed then SX (xi−1) =
n− i+ 1

n
for all193

i = 2, ..., n + 1, and hence h (SX (xi−1)) = h

(
n− i+ 1

n

)
=

n∑
j=i

vj. This remark is helpful194

to interpret the WOWA operator from the perspective of risk measurement. In the WOWA195
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operator the subjective opinion of experts may be represented by vector ~v. Let us suppose196

that no information regarding the distribution function of a discrete and finite random197

variable X is available. If we assume that X is discrete and uniformly distributed, then198

vector ~v directly consists of the subjective probabilities of occurrence of the components199

xi according to the expert opinion. Another possible point of view in this case is that ~v200

represents the subjective importance that the expert gives to each xi.201

Remark 4202

Since the domain of the survival function is R, then the selected function h is crucial203

from the risk measurement point of view, especially for a small n.204

2.2.3. The Choquet integral205

The Choquet integral has become a familiar concept to risk management experts since206

it was introduced by Wang (1996) in the definition of distortion risk measures. OWA and207

WOWA operators can also be defined based on the concept of the Choquet integral. In this208

subsection we follow Grabisch et al. (2011) to provide several definitions which are needed209

in section 3.210

Definition 2.10 (Capacity). Let N = {m1, ...,mn} be a finite set and 2N = ℘ (N) be the211

set of all subsets of N . A capacity or a fuzzy measure on N is a mapping from 2N to [0, 1]212

which satisfies213

(i) µ (∅) = 0;214

(ii) A ⊆ B ⇒ µ (A) ≤ µ (B), for any A,B ∈ 2N (monotonicity).215

If µ (N) = 1, then we say that µ satisfies normalization, which is a frequently required216

property.217

Definition 2.11 (Dual capacity). Let µ be a capacity on N . Its dual or conjugate capacity
µ̄ is a capacity on N defined by

µ̄ (A) := µ (N)− µ
(
Ā
)
,

where Ā = N\A (i.e., Ā is the set of all the elements in N that do not belong to A).218

If we consider a finite probability space
(
N, 2N ,P

)
, note that the probability P is a219

capacity (or a fuzzy measure) on N that satisfies normalization. In addition, P is its own220

dual capacity.221

222

Definition 2.12 (Choquet integral for discrete positive functions). Let µ be a capacity on
N , and f : N → [0,+∞) be a function. Let σ be a permutation of (1, ..., n), such that
f
(
mσ(1)

)
≤ f

(
mσ(2)

)
≤ ... ≤ f

(
mσ(n)

)
, and Aσ,i =

{
mσ(i), ...,mσ(n)

}
, with Aσ,n+1 = ∅. The

Choquet integral of f with respect to µ is defined by

Cµ (f) :=
n∑
i=1

f
(
mσ(i)

)
(µ (Aσ,i)− µ (Aσ,i+1)) .
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If we let f
(
mσ(0)

)
:= 0, then an equivalent expression for the definition of the Choquet223

integral is Cµ (f) =
n∑
i=1

[
f
(
mσ(i)

)
− f

(
mσ(i−1)

)]
µ (Aσ,i) .224

The concept of degree of orness introduced for the OWA operator may be extended to225

the case of the Choquet integral for positive functions as226

orness (Cµ) :=
n∑
i=1

(
i− 1

n− 1

)
· (µ (Aid,i)− µ (Aid,i+1)) . (2.1)

Let us illustrate the degree of orness for three simple capacities. The first one, denoted227

as µ∗, is such that µ∗ (A) = 0 if A 6= N and µ∗ (N) = 1. In this case, Cµ∗ ≡Min and we find228

through expression (2.1) that orness (Min) = 0. The second case, denoted as µ∗, is such229

that µ∗ (A) = 1 if A 6= ∅ and µ∗ (∅) = 0. In this situation, Cµ∗ ≡ Max and, as expected,230

we get that orness (Max) = 1. Finally, we consider capacity µ# such that µ# (A) solely231

depends on the cardinality of A for all A ⊆ N . Then µ# (Aσ,i)−µ# (Aσ,i+1) is defined by i. If232

we denote by wi = µ# (Aσ,i)−µ# (Aσ,i+1) for all i, it follows that Cµ# is equal to OWA~w. In233

the particular case where µ# (A) = #A
n

for any A ⊆ N , then wi = n−(i−1)
n
− n−i

n
= 1

n
. So, in234

this situation Cµ# is the arithmetic mean, and we can easily verify that orness
(
Cµ#
)

= 0.5:235

orness
(
Cµ#
)

=
n∑
i=1

(
i− 1

n− 1

)
·
(
µ# (Aid,i)− µ# (Aid,i+1)

)
=

n∑
i=1

(
i− 1

n− 1

)
· 1

n
=

1

2
.

(2.2)
In order to be able to work with negative functions, the Choquet integral of such functions236

needs to be defined also for them. Below we define the asymmetric Choquet integral, which237

is the classical extension from real-valued positive functions to negative functions. Note that238

symmetric extensions have gained an increasing interest (Greco et al., 2011; Mesiar et al.,239

2011), but we are not going to use them in this article.240

241

Definition 2.13 (Asymmetric Choquet integral for discrete negative functions). Let f :242

N → (−∞, 0] be a function, µ a capacity on N and µ̄ its dual capacity. The asymmetric243

Choquet integral of f with respect to µ is defined by Cµ (f) := −Cµ̄ (−f) .244

Given the previous definition, we can now extend the definition of the Choquet integral245

to any function f from N to R.246

Definition 2.14 (Choquet integral for discrete functions). Let µ be a capacity on N and247

f a function from N to R. We denote by f+ (mi) = max {f (mi) , 0} and f− (mi) =248

min {f (mi) , 0}. Then the Choquet integral of f with respect to µ is defined by249

Cµ (f) := Cµ
(
f+
)

+ Cµ
(
f−
)

= Cµ
(
f+
)
− Cµ̄

(
−f−

)
. (2.3)
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3. The relationship between distortion risk measures, OWA and WOWA oper-250

ators251

Three results for discrete random variables are presented in this section. First, the252

equivalence between the Choquet integral and a distortion risk measure is shown, when253

the distortion risk measure is fixed on a finite probability space. Second, the link between254

this distortion risk measure and OWA operators is provided. And, third, the relationship255

between the fixed distortion risk measure and WOWA operators is given. Finally, we show256

that the degree of orness of the V aRα and TV aRα risk measures may be defined as a function257

of the confidence level when the random variable is given. To our knowledge, some of these258

results provide a new insight into the way classical risk quantification is understood, which259

can now naturally be viewed as a weighted aggregation.260

The link between the Choquet integral and distortion risk measures for arbitrary ran-261

dom variables is well-known since the inception of distortion risk measures (Wang, 1996),262

and has lead to many interesting results. For example, the concept of Choquet pricing and263

its associated equilibrium conditions (De Waegenaere et al., 2003); the study of stochastic264

comparison of distorted variability measures (Sordo and Suarez-Llorens, 2011); or the con-265

ditions for optimal behavioral insurance (Sung et al., 2011) and the analysis of competitive266

insurance markets in the presence of ambiguity (Anwar and Zheng, 2012). Here we present267

the discrete version, which is useful for our presentation.268

The relationship between the WOWA operator and the Choquet integral is also known269

by the fuzzy systems community (Torra, 1998), as well as the relationship between distorted270

probabilities and aggregation operators (Honda and Okazaki, 2005). However, the results271

shown in this section provide a comprehensive presentation that allows for a connection to272

risk measurement.273

Proposition 3.1. Let
(
N, 2N ,P

)
be a finite probability space, and let X be a discrete finite

random variable defined on this space. Let g : [0, 1]→ [0, 1] be a distortion function, and let
ρg be the associated distortion risk measure. Then, it follows that

Cg◦P (X) = ρg (X) .

Proof. Let N = {$1, ..., $n} for some n ≥ 1 and let us suppose that we can write X (N) =274

{x1, ..., xn}, with X ({$i}) = xi, and such that xi < xj if i < j; additionally, let k ∈ {1, ..., n}275

be such that xi < 0 if i = {1, ..., k − 1} and xi ≥ 0 if i = {k, , ..., n}. In order to obtain the276

Choquet integral of X, a capacity µ defined on N is needed. As previously indicated, P is277

a capacity on N that satisfies normalization, although it is not the one that we need.278

Since g is a distortion function, µ := g ◦ P is another capacity on N that satisfies279

normalization: µ (∅) = g (P (∅)) = g(0) = 0, µ (N) = g (P (N)) = g(1) = 1, and if A ⊆ B,280

the fact that P (A) ≤ P (B) and the fact that g is non-decreasing imply that µ (A) ≤ µ (B).281

Regarding X+, the permutation σ = id on (1, ..., k − 1, k, ..., n) is such that x+
σ(i) ≤ x+

σ(i+1)282

for all i or, in other words, x+
1 ≤ x+

2 ≤ ... ≤ x+
k−1 ≤ x+

k ≤ x+
k+1 ≤ ... ≤ x+

n . Then,283
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Aσ,i = {$i, ..., $n} and taking into account x+
i = 0 ∀i < k, we can write Cg◦P (X+) as284

Cg◦P (X+) =
n∑
i=1

(
x+
i − x+

i−1

)
(g ◦ P) (Aσ,i) =

n∑
i=k

(
x+
i − x+

i−1

)
g

(
n∑
j=i

pj

)
. (3.1)

Additionally, the permutation s on (1, ..., k − 1, k, ..., n) such that s (i) = n+1−i, satisfies285

−x−s(i) ≤ −x
−
s(i+1) for all i, so −x−n ≤ −x−n−1 ≤ ... ≤ −x−k ≤ −x

−
k−1 ≤ −x

−
k−2 ≤ ... ≤ −x−1 .286

We have As,i =
{
$s(i), ..., $s(n)

}
= {$n+1−i, ..., $1} and, therefore, Ās,i = {$n+2−i, ..., $n}.287

Taking into account that x−i = 0 ∀i ≥ k, we can write Cg◦P (−X−) as288

Cg◦P (−X−) =
n∑
i=1

(
−x−s(i) + x−s(i−1)

) (
g ◦ P

)
(As,i)

=
n∑
i=1

(
−x−n+1−i + x−n+2−i

) (
g ◦ P

)
(As,i)

=
n∑
i=1

(
−x−i + x−i+1

) (
g ◦ P

)
(As,n+1−i)

=
n∑
i=1

(
−x−i + x−i+1

) [
1− (g ◦ P)

(
Ās,n+1−i

)]
=

n∑
i=1

(
−x−i + x−i+1

)
[1− (g ◦ P) ({$i+1, ..., $n})]

=
k−1∑
i=1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
.

(3.2)

Expressions (3.1) and (3.2) lead to289

Cg◦P (X) = Cg◦P (X+)− Cg◦P (−X−)

= −
k−1∑
i=1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
+

n∑
i=k

(
x+
i − x+

i−1

)
g

(
n∑
j=i

pj

)

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk

[
1− g

(
n∑
j=k

pj

)]

+
n∑

i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
+ xkg

(
n∑
j=k

pj

)

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
.

(3.3)
Now consider ρg (X) as in definition 2.5, and note that the random variable X is defined290

on the probability space (N, 2N ,P). Given the properties of Riemann’s integral, if we define291

x0 := −∞ and xn+1 := +∞, then the distortion risk measure can be written as292
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ρg (X) = −

[
k∑
i=1

∫ xi

xi−1

[1− g(SX(x))]dx−
∫ xk

0

[1− g(SX(x))]dx

]

+

∫ xk

0

g(SX(x))dx+
n+1∑
i=k+1

∫ xi

xi−1

g(SX(x))dx.

(3.4)

If we consider x ∈ [xi−1, xi), then FX(x) =
i−1∑
j=1

pj, since FX(x) = P (X ≤ x) and SX(x) =293

1−
i−1∑
j=1

pj =
n∑
j=i

pj. Given that the distortion function g is such that g(0) = 0 and g(1) = 1,294

expression (3.4) can be rewritten as295

ρg (X) = −
k∑
i=1

∫ xi

xi−1

[
1− g

(
n∑
j=i

pj

)]
dx+

∫ xk

0

[
1− g

(
n∑
j=k

pj

)]
dx

+

∫ x0

0

g

(
n∑
j=k

pj

)
dx+

n+1∑
i=k+1

∫ xi

xi−1

g

(
n∑
j=i

pj

)
dx

= −
∫ x1

−∞
[1− g (1)] dx−

k∑
i=2

∫ xi

xi−1

[
1− g

(
n∑
j=i

pj

)]
dx

+

∫ xk

0

[
1− g

(
n∑
j=k

pj

)]
dx+

∫ xk

0

g

(
n∑
j=k

pj

)
dx

+
n∑

i=k+1

∫ xi

xi−1

g

(
n∑
j=i

pj

)
dx+

∫ +∞

xn

g (0) dx

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk

[
1− g

(
n∑
j=k

pj

)
+ g

(
n∑
j=k

pj

)]

+
n∑

i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
.

(3.5)
And then the proof is finished because ρg (X) = Cg◦P (X) using (3.5) and (3.3).296

Let us present Cg◦P (X) in a more compact form. We denote Fi−1 = 1− g

(
n∑
j=i

pj

)
and
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Si−1 = g

(
n∑
j=i

pj

)
for i = 1, ..., n+ 1, so Fi−1 = 1− Si−1. Note that F0 = 0 and Sn = 0, so

k∑
i=2

(xi−1 − xi)Fi−1 =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1,

and
n∑

i=k+1

(xi − xi−1)Si−1 =
n∑

i=k+1

xi (Si−1 − Si)− xkSk.

The previous expressions applied to Cg◦P (X) lead to6
297

Cg◦P (X) =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1 + xk +
n∑

i=k+1

xi (Si−1 − Si)− xkSk

=
n∑
i=1

xi (Si−1 − Si) =
n∑
i=1

xi

[
g

(
n∑
j=i

pj

)
− g

(
n∑

j=i+1

pj

)]
.

(3.6)

If g = id, then ρid(X) = E (X). The same result for a continuous random variable is easy298

to prove using the definition of distortion risk measure and Fubinni’s theorem. Expression299

(3.6) is useful to prove the following two propositions.300

Proposition 3.2 (OWA equivalence to distortion risk measures). Let X be a discrete finite301

random variable and
(
N, 2N ,P

)
be a probability space as defined in proposition 3.1. Let ρg302

be a distortion risk measure defined in this probability space, and let pj be the probability of303

xj for all j. Then there exist a unique OWA~w operator such that ρg (X) = OWA~w (~x). The304

OWA operator is defined by weights305

wi = g

(
n∑
j=i

pj

)
− g

(
n∑

j=i+1

pj

)
. (3.7)

The proof is straightforward. From proposition 3.2 it follows that a finite and discrete306

random variable X must be fixed to obtain a one-to-one equivalence between a distortion307

risk measure and an OWA operator.308

Proposition 3.3 (WOWA equivalence to distortion risk measures). Let X be a discrete309

finite random variable and
(
N, 2N ,P

)
be a probability space as in proposition 3.1. If ρg is a310

distortion risk measure defined on this probability space, and pj is the probability of xj for all311

j, consider the WOWA operator such that h = g, ~q = ~p and vi = g

(
n− i+ 1

n

)
−g
(
n− i
n

)
312

for all i = 1, ..., n. Then313

ρg (X) = WOWAg,~v,~p (~x) . (3.8)

6A similar expression is used by Kim (2010) as an empirical estimate of the distortion risk measure,
where the probabilities are obtained from the empirical distribution function.
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Proof. Using proposition 3.2 it is known that there exists a unique ~w ∈ [0, 1]n such that314

OWA~w (~x) = ρg (X):315

wi = g

(
n∑
j=i

pj

)
− g

(
n∑

j=i+1

pj

)
= g (SX (xi−1))− g (SX (xi)) . (3.9)

In addition, there exists an OWA~u operator such that OWA~u = WOWAg,~v,~p defined by316

ui = g

 ∑
Ωj∈Aid,i

pj

− g
 ∑

Ωj∈Aid,i+1

pj

 = g (SX (xi−1))− g (SX (xi)) . (3.10)

Expressions (3.9) and (3.10) show that ~w = ~u and, due to the uniqueness of the317

OWA operator, we conclude that ρg (X) = OWA~w (~x) = WOWAg,~v,~p (~x), where vi =318

g

(
n− i+ 1

n

)
− g

(
n− i
n

)
.319

Again, the one-to-one equivalence between a distortion risk measure and a WOWA op-320

erator is obtained given that the discrete and finite random variable is fixed.321

To summarize the results, for a given distortion function g and a discrete and finite322

random variable X, there are three alternative ways to calculate the distortion risk measure323

that lead to the same result than using definition 2.5:324

1. By means of the Choquet integral of X with respect to µ = g ◦ P using expression325

(3.6).326

2. Applying the OWA~w operator to ~x, following definition 2.7 with wi = g

(
n∑
j=i

pj

)
−327

g

(
n∑

j=i+1

pj

)
, i = 1, ..., n, and pj the probability of xj for all j.328

3. And, finally, applying the WOWAg,~v,~p operator to ~x, following definition 2.9, where329

vi = g

(
n− i+ 1

n

)
− g

(
n− i
n

)
and pj the probability of xj for all j.330

3.1. Interpreting the degree of orness331

We can derive an interesting application from expression (3.6). In particular, the concept332

of degree of orness introduced for the OWA operator may be formally extended to the case333

of Cg◦P (X), as:334

orness (Cg◦P (X)) :=
n∑
i=1

(
i− 1

n− 1

)
· [g (SX (xi−1))− g (SX (xi))] . (3.11)

Note that this expression is similar to (2.1). This result is now applicable to both positive335

and negative values and only the distorted probabilities are considered among capacities.336
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Let us show risk management applications of the degree of orness of the distortion risk337

measures. Note, for instance, that the regulatory requirements on risk measurement based on338

distortion risk measures may be reinterpreted by means of the degree of orness. Given a finite339

and discrete random variable X, when distortion risk measure ρg (X) is required there is an340

implicit preference weighting rule with respect to the values of X, which takes into account341

probabilities. This preference weighting rule can be summarized by orness (OWA~w), where342

~w is such that wi = g (SX (xi−1))− g (SX (xi)).343

There are some cases of special interest, such as the mathematical expectation, the V aRα344

and TV aRα risk measures:345

• If g = id, then Cg◦P ≡ E and346

orness (E (X)) =
n∑
i=1

(
i− 1

n− 1

)
· [SX (xi−1)− SX (xi)] =

n∑
i=1

(
i− 1

n− 1

)
· pi. (3.12)

In particular, if the random variable X is discrete and uniform, i.e. pi = 1
n
, then347

expression (3.12) equals 1/2.348

Given a confidence level α ∈ (0, 1), let kα ∈ {1, 2, ..., n} be such that xkα = inf{xi|FX (xi) ≥349

α} = inf{xi|SX (xi) ≤ 1− α}, i.e. xkα is the α−quantile of X.350

• Regarding V aRα, from Table 2.1 it is known that ψα (SX (xi)) = 1(1−α,1] (SX (xi)).351

Since ψα (SX (xi−1))−ψα (SX (xi)) = 1{kα} (i), the degree of orness of V aRα is obtained352

as353

orness (V aRα (X)) =
n∑
i=1

(
i− 1

n− 1

)
· [ψα (SX (xi−1))− ψα (SX (xi))] =

kα − 1

n− 1
.

(3.13)

• In the case of TV aRα, from Table 2.1 γα (SX (xi)) = min

{
SX (xi)

1− α
, 1

}
. Taking into

account that

γα (SX (xi−1))− γα (SX (xi)) =


0 i < kα

1− 1

1− α

n∑
j=kα+1

pj i = kα

pi
1− α

i > kα.

,

therefore354
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orness (TV aRα (X)) =
n∑
i=1

(
i− 1

n− 1

)
· [γα (SX (xi−1))− γα (SX (xi))]

=

(
kα − 1

n− 1

)
·

[
1− 1

1− α

n∑
j=kα+1

pj

]
+

n∑
i=kα+1

(
i− 1

n− 1

)
· pi

1− α

=
kα − 1

n− 1
+

1

1− α
·

n∑
i=kα+1

(
i− kα
n− 1

)
pi.

(3.14)

Note that for V aRα and TV aRα, the degree of orness is directly connected to the α level355

chosen for the risk measure, i.e. the value of the distribution function at the point given by356

the quantile. In the following example an application of the degree of orness in the context357

of risk measurement is presented.358

4. Illustrative example359

A numerical example taken from Wang (2002) is provided. This example is selected as360

a particular case where common risk measures show drawbacks in the comparison of two361

random variables, X and Y . Table 4.1 summarizes the probabilities, distribution functions362

and survival functions of both random variables.363

364

Table 4.1: Example of loss random variables X and Y.

Loss px FX SX py FY SY
0 0.6 0.6 0.4 0.6 0.6 0.4
1 0.375 0.975 0.025 0.39 0.99 0.01
5 0.025 1 0
11 0.01 1 0

We can calculate distortion risk measures for X and Y using aggregation operators.365

In particular, we are interested in E, V aRα and TV aRα for α = 95%, which follow from366

expression (3.6) and ψα and γα as in Table 2.1. In this example E, V aR95% and TV aR95%367

have the same value for the two random variables.368

The weighting vectors linked to the OWA operators (see expression 3.7) for E, V aR95%369

and TV aR95% are displayed in Table 4.2. The values of the distortion risk measures for each370

random variable and the associated degree of orness are shown in Table 4.3. In addition,371

the weighting vectors linked to the WOWA operators (see expression 3.8) are listed in Table372

4.4.373

374
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Table 4.2: Distorted probabilities in the OWA operators for X and Y (~w).

E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
Loss ~w ~w ~w ~w ~w ~w

0 0.6 0.6 0 0 0 0
1 0.375 0.39 1 1 0.5 0.8
5 0.025 0 0.5
11 0.01 0 0.2

Table 4.3: Distortion risk measures and the associated degree of orness for X and Y .

E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
Risk value 0.5 0.5 1 1 3 3

Degree of orness 0.2125 0.205 0.5 0.5 0.75 0.6

Table 4.4: WOWA vectors linked to distortion risk measures for X and Y .

E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
Loss ~p ~v ~p ~v ~p ~v ~p ~v ~p ~v ~p ~v

0 0.6 1/3 0.6 1/3 0.6 0 0.6 0 0.6 0 0.6 0
1 0.375 1/3 0.39 1/3 0.375 0 0.39 0 0.375 0 0.39 0
5 0.025 1/3 0.025 1 0.025 1
11 0.01 1/3 0.01 1 0.01 1
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First, note that point probabilities are distorted and a weighted average of the random375

values with respect to this distortion (OWA~w) is calculated to obtain the distortion risk376

measures. Second, the results show that weights ~v for the WOWA represent the risk attitude.377

It is taken into account how the random variable is distributed by means of weights ~p. In378

this example, we are only worried about the maximum loss when we consider V aR95% and379

TV aR95%. All values have the same importance in the case of the mathematical expectation.380

Note that V aR95% and TV aR95% have equal ~v and ~p for each random variable, although381

the distortion risk measures have different values. It is due to the fact that function h in382

WOWA plays an important role to determine the particular distortion risk measure that is383

calculated, since function h is the distortion function for V aRα and TV aRα.384

Finally, it is interesting to note that the degree of orness of a distortion risk measure385

can be understood as another risk measure for the random variable, with a value that386

belongs to [0, 1]. The additional riskiness information provided by the degree of orness can387

be summarized as follows:388

• It is shown that orness (E (X)) 6= orness (E (Y )), and both are less than 0.5. Note389

that 0.5 is the degree of orness of the mathematical expectation of an uniform random390

variable. The greater the difference (in absolute value) between the degree of orness of391

the mathematical expectation and 0.5, the greater the difference between the random392

variable and an uniform. In the example, both random variables are far from a discrete393

uniform, but Y is farther than X;394

• The orness (V aR95% (X)) is equal to orness (V aR95% (Y )), because the number of395

observations is the same and V aR95% is located at the same position for both variables;396

• The degree of orness of TV aR95% is different for both random variables, although397

they have the same value for the TV aR95%. Given these two random variables with398

the same number of observations, V aR95%, orness of V aR95% and TV aR95%, more399

extreme losses are associated to the random variable with the lower degree of orness400

of TV aR95%. Therefore, this additional information provided by the degree of orness401

may be useful to compare X and Y , given that they are indistinguishable in terms of402

E, V aR95% and TV aR95%.403

5. Discussion and conclusions404

This article shows that distortion risk measures, OWA and WOWA operators in the405

discrete finite case are mathematically linked by means of the Choquet integral. Aggregation406

operators are used as a natural form to summarize human subjectivity in decision making407

and have a direct connection to risk measurement of discrete random variables.408

From the risk management point of view, our main contribution is that we show how409

distortion risk measures may be derived -and then computed- from Ordered Weighted Av-410

eraging operators. The mathematical links presented in this paper may help to interpret411

distortion risk measures under the fuzzy systems perspective. We show that the aggregation412

preference of the expert may be measured by means of the degree of orness of the distortion413
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risk measure. Regulatory capital requirements and provisions may then be associated to the414

aggregation attitude of the regulator and the risk managers, respectively. In our opinion,415

the mathematical link between risk measurement and fuzzy systems concepts presented in416

this paper offers a new perspective in quantitative risk management.417

Despite the fact that, in practice, risk management decisions are usually taken in the418

discrete and finite world, some comments must be made on the possibility to extend the419

results to the context of countable or continuous random variables. Countable and continu-420

ous cases have received much less attention in information systems literature in comparison421

to the discrete and finite case. Up to the best of our knowledge, proposals of aggregation422

functions with countable (Grabisch et al., 2009) or continuous (Yager, 2004; Yager and Xu,423

2006) arguments are scarcely used by fuzzy experts. The next natural step in our research424

might be the analysis of countable probability spaces. Considering convenient aggregation425

operators with countable arguments and setting additional conditions regarding convergence426

of series, we think that results shown in this article might be extended to the countable case.427

To conclude, there is likely room for further research in this field.428

Appendix 1429

Proof of OWA uniqueness
Given two different vectors ~w and ~u from [0, 1]n we wonder if OWA~w = OWA~u, i.e. if the
respective OWA operators on Rn are the same. We show that this is not possible. Suppose
that, for all ~x ∈ Rn, OWA~w (~x) = OWA~u (~x). Let vectors ~zk ∈ Rn, k = 1, ..., n be defined
by

~zk,i =

{
0 if i < k
1/ (n− i+ 1) if i ≥ k

.

Then, iterating from k = n to k = 1, we have that:430

• Step k = n. We have ~zn = (0, 0, ..., 0, 1), and permutation σ = id is useful to calculate431

OWA~w (~zn) and OWA~u (~zn). Precisely, OWA~w (~zn) = 1 ·wn and OWA~u (~zn) = 1 · un.432

If OWA~w = OWA~u, then un = wn.433

• Step k = n − 1. We have ~zn−1 =
(
0, 0, ..., 1

2
, 1
)
, and permutation σ = id is still434

useful. So OWA~w (~zn−1) = 1
2
· wn−1 + 1 · wn and, taking into account the previous435

step, OWA~u (~zn−1) = 1
2
· un−1 + 1 ·wn. If the hypothesis OWA~w = OWA~u holds, then436

un−1 = wn−1.437

• Step k = i. From previous steps we have that uj = wj, j = i + 1, ..., n and in this438

step we obtain ui = wi.439

• Step k = 1. Finally, supposing again that OWA~w = OWA~u, we obtain that uj = wj440

for all j = 1, ..., n. But this is a contradiction with the fact that ~w 6= ~u.441
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