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Abstract

We analyse models for panel data that arise in risk allocation prob-
lems, when a given set of sources are the cause of an aggregate risk
value. We focus on the modeling and forecasting of proportional con-
tributions to risk over time. Compositional data methods are proposed
and the time-series regression is flexible to incorporate external infor-
mation from other variables. We guarantee that projected proportional
contributions add up to 100%, and we introduce a method to generate
confidence regions with the same restriction. An illustration is pro-
vided for risk capital allocations.

JEL classification: C02, G22, D81.
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1 Introduction

What managers have in mind when they analyse the aggregation of
risks is the “diversification effect”. The different sources of risk com-
pensate each other and the overall risk is lower than what would result
from considering the sources separately.

The calculus of the contribution of each source of risk to the aggre-
gate result corresponds exactly to the concept of risk allocation. A risk
allocation assigns a percent value to each component, in such a way
that the contribution of that source to the aggregated value is reflected
by the percentage. Risk allocations in enterprise risk management dis-
tribute the contribution to the total risk by different sources. It also
helps to assess risk diversification, because it allows to find the percent
contribution and so to identify sources that produce all the risk. As

∗Corresponding Author. Department of Econometrics, University of Barcelona,
Diagonal 690, 08034-Barcelona, Spain. Tel.:+34-93-4020484; fax: +34-93-4021983; e-mail:
msantolino@ub.edu

1



such, risk allocations are expressed in percent of the total risk. Allo-
cations can be used in the context of investments, business lines and
other possible activities that have multiple risk components.

Predictions of risk allocations over time need to preserve the fact
that they add up to one hundred per cent. This means that univariate
time-series analysis of each historical time series does not guarantee
that predictions will satisfy the restriction that the sum of risk allo-
cations expressed in percent is 100%, unless a restriction is included
in the process. This is precisely the problem that we study by imple-
menting compositional data time-series analysis.

An advantage of compositional data is the reduction of the number
of parameters in time-series modelling. If we only care about future
compositions, we illustrate that it may be beneficial to transform the
data to compositions. This reduces the dimension of the data by one,
and this reduction may yield a better model performance, as we show
in this paper. We introduce compositional models to actuarial science,
and we differ from the literature on compositional data in two more
ways. First, we compare compositional models with standard non-
compositional models, and study the model performance. Second, we
introduce a method to compute confidence intervals of the forecasts.

The dynamics of allocations are modeled using compositional time
series regressions. Modeling multivariate time series of compositional
data have gained some attention in last years (Kynclová et al., 2015;
Snyder et al., 2017; Perez-Foguet et al., 2017). These previous stud-
ies focused on the expected projections. However, a major issue in
risk management is the analysis of scenarios involving deviations from
expectations. We propose a methodology to compute compositional
confidence intervals of projections over time. Projected compositions
over these confidence intervals provide valuable information to risk
managers of allocations under less likely scenarios.

Applications of compositional techniques in risk-management are
scarcely found in the literature. Glassman and Riddik (1996) analyse
the performance of international portfolio models using log-ratio trans-
formations. Belles-Sampera et al. (2016) show the connection between
capital allocation principles and compositional data for a one-period
horizon. These authors apply compositional techniques to compute
the distance between a set of risk allocation solutions and to compute
the distance between them, but they do not address forecasting prob-
lems. Verbelen et al. (2018) study compositional regression models in
motor insurance pricing, but they do not study the time series and
forecasting.

As an important application, we study risk capital allocations. Risk
capital allocations problems emerge when an aggregate capital deter-
mined by risk measure needs to be allocated to the risk units within a
firm. On a one-period horizon, risk capital allocations have been stud-
ied intensively in the literature, for instance, with game-theoretic and
optimization-based approaches (see, among others, Tasche, 1999; De-
nault, 2001; Buch et al., 2011; Dhaene et al., 2012; Zaks and Tsanakas,
2014; Boonen et al., 2017).
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In this paper, our focus differs from the conventional literature
about risk capital allocation in two fundamental ways. First, we are
interested in the dynamics of allocations over time. Second, we do not
focus on the absolute value of risk capital allocations, but we are in-
terested in the proportional contributions (compositions). Risk capital
allocations fluctuate over time due to economic developments, but we
abstract from this and model explicitly how the relative risk capital
allocations to sources of risk evolve over time.

We claim that the methods presented here are useful to analyse the
past behaviour of relative risk capital allocations and to predict future
percent values directly together with confidence intervals. Forecasting
of relative risk capital allocations has not been considered before by
previous authors. The analysis is then flexible enough to analyse a
panel of n different sources of risk and their corresponding contribu-
tions to the overall result along time, that is over T periods. Alterna-
tively, one can forecast the underlying time-series in order to determine
a future relative risk capital allocation. This alternative method re-
quires nested simulations, which may be time-consuming to simulate
(for efficient methods to solve nested simulations, see, among others,
Bauer et al., 2012; Gan and Lin, 2015). An advantage of our method
is that we do not need nested simulations. We also consider the possi-
bility of introducing external information from other variables, such as
market uncertainty, the external evolution of the economy or, other in-
dicators. Our results facilitate decision-making processes in enterprise
management that need to consider the dynamics of relative risk capital
allocations. This is simply done, by means of the compositional panel
data regression that incorporates other external variables.

The article is organized as follows. The vector space structure of
compositional data is introduced in the next section. The regression
model and the confidence regions for time-series compositional data
are presented in Section 3. In Section 4, risk capital allocation models
are described, and we provide a numerical illustration. Concluding
remarks can be found in Section 5.

2 The clr and ilr operations

In this section, we review notation and operators for compositional
data. Unless mentioned otherwise, we assume that vectors have length
n > 1. The set of compositions is denoted by the following simplex:

Sn =
{
x = (x1, . . . , xn) : xi ≥ 0,

n∑
i=1

xi = 1
}
.

In this paper, we only consider compositions that have no coordinates
equal to zero, i.e., we focus on the set:

Sn+ =
{
x = (x1, . . . , xn) : xi > 0,

n∑
i=1

xi = 1
}
. (2.1)
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For econometric modelling, it is not convenient that the range of
compositional data is constrained. Therefore, we transform compo-
sitional data to allow for the range IR per coordinate. In this way,
we can construct a regular econometric model to forecast the com-
positions. The first isometric transformation we use is the centered
log-ratio transformation (clr)

clr(x) =
(

ln
xi
g(x)

)
i=1,...,n

, with g(x) =
( n∏
i=1

xi
)1/n

, x ∈ Sn+, (2.2)

where the log ratio of the vector is applied component-wise (Aitchison,
1986; Aitchison and Egozcue, 2005). The inverse clr transformation is
straightforward: if x∗ = clr(x), then x = C[exp(x∗)], where the expo-
nential is applied by components and where C is the closing function:

C(x) =
x∑n
i=1 xi

.

By definition, the clr transformed components sum up to zero. This
may be a source of problems when doing statistical analysis, as, e.g.,
the variance matrix of a clr-transformed composition is singular (Pawlowsky-
Glahn et al., 2011; van den Boogaart and Tolosana-Delgado, 2013).

Note that clr(x) ∈ IRn. We define the isometric log-ratio transfor-
mation, denoted by ilr(x) ∈ IRn−1, as follows. There exist an isometric
linear mapping between the simplex Sn+ and the (n − 1)-dimensional
Euclidean space IRn−1. This mapping is called the isometric log-ratio
transformation (ilr).

The isometry is constructed by representing the result in a basis of
the (n − 1)-dimensional image space of the clr transformation. This
is constructed by taking an orthonormal basis of IRn including the
vector vn = (1, . . . , 1), i.e., some (n − 1) linearly independent vectors
{v∗1 , . . . , v∗n−1}. In computational terms, one can arrange the vectors
{v∗j } by columns in a n × (n − 1)-element matrix, denoted by V (a
contrast matrix), with the following properties:

• V is a quasi-orthonormal matrix, as

V T · V = 1n−1, and V · V T = 1n − 1
n1n×n, (2.3)

where 1n is the n×n identity matrix, and 1n×n is a n×n matrix
full of ones.

• The columns of V sum up to zero,

1 · V = 0, (2.4)

where 1 indicates a row vector of ones.

Thanks to these properties, we can find simple expressions to have an
equivalence between coordinates ζ and compositions x ∈ Sn+:

clr(x) · V = ln(x) · V := ilr(x),

ilr−1(ζ) = C[exp(ζ · V T )].
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Through these expressions, we also defined explicitly the so-called
isometric log-ratio transformation (ilr): this is nothing else than a
transformation that provides the coordinates of any composition with
respect to a given orthonormal basis. There are as many ilr as or-
thonormal basis can be defined, as well as matrices V satisfying (2.3)
and (2.4).

Note that the operation ilr depends on V , and in the sequel of
this paper we will fix V as follows. The sequential binary partition
proposed by Egozcue et al. (2003) has been broadly used because it
allows the interpretation in terms of grouped parts of the composition.
To create the first coordinate, the parts of the composition are divided
into two groups. Parts in the first group are coded +1 and placed in
the numerator. Parts in the second group are coded −1 and placed in
the denominator. The first coordinate describes the balance between
these two groups. In the second and following steps, each group is in
turn divided into two groups. The splitting process of a group stops
when it only has one component, which is coded 0 in the subsequent
steps.

Each coordinate describes the balance between two groups: +1
parts and -1 parts. For this reason, coordinates are also called bal-
ances. In step k, coordinate ilr(x)k (balance zk) is created as follows.
The rk parts of the first group and sk parts of the second group have
elements (xn1

, xn2
, ..., xnrk

) and (xd1 , xd2 , ..., xdsk ), respectively, where
rk indicates the number of parts that takes value +1 and sk the num-
ber of parts that takes value −1 in step k. The isometric log-ratio
transformation ilr(x)k is given by

zk = ilr(x)k =

√
rk · sk
rk + sk

ln
(xi1 · · · xirk )1/rk

(xj1 · · · xjsk )1/sk
, k = 1, . . . , n− 1.

(2.5)
The number of steps to obtain a single component in each group is
exactly n− 1.

3 Method

We show the vector autoregressive model for compositional data in
Section 3.1, our method to construct confidence intervals of our pre-
dictions in Section 3.2, and model selection in Section 3.3.

3.1 Regression model

Let xt be a composition for all t. It holds that xt =
(
W1,t

Wt
, . . . ,

Wn,t

Wt

)
,

where Wi,t is the amount allocated to the i-th source of risk at time t
for i = 1, . . . , n, and Wt the total amount to allocate among the parts,
Wt = W1,t+ · · ·+Wn,t. The composition can be equivalently expressed
as xt = C(W·,t) with W·,t = (W1,t, . . . ,Wn,t). We assume that there
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are no zeros in the compositional data vector. We build a regression
model with compositional response1:

ilr(xt) = b+B · ilr(xt−1) + εt, (3.1)

where ilr is the isometric log-ratio transformation, b is a vector of
parameters in IRn−1, B is an (n− 1)× (n− 1) matrix of parameters in
the real space, and εt ∼ Nn−1(0,Σε). This is a Vector Autoregressive
(VAR) model, with one lag. Point predictions of compositions are
invariant on the choice of the orthonormal basis V for the isometric
log-ratio transformation (Snyder et al., 2017; Pawlowsky-Glahn et al.,
2011).

Secondly, we propose the following model:

ilr(xt) = b+B · ilr(xt−1) + γ · log(Wt−1) + εt, (3.2)

where Wt−1 is a control variable and γ is the (n − 1) × 1 vector of
coefficients defined in the real space. This is a vector auto-regression
model with exogenous variables collecting the total amount to allocate
among the parts at time t − 1. This exogenous variable is selected
to analyse if the size of the total amount to allocate (in log scale) at
time t − 1 has explanatory capacity on ilr(xt). This model may be
straightforwardly extended to a higher number of lags and/or more
exogenous variables.

Finally, we compare the regression model with compositional data
with a naive model. The naive model is a VAR(1) model:

W·,t = c+D ·W·,t−1 + εt, (3.3)

where c is an (n × 1) vector and D an (n × n) matrix, both defined
in the real space, and εt has an n-dimensional multivariate normal
distribution with expectation 0 and covariance matrix Σε. Note that
in this model, the forecasts are not compositional, so to compare results
the closing function would be applied to forecasts.

The naive regression approach is also considered with the exogenous
variable:

W·,t = c+D ·W·,t−1 + γ · log(Wt−1) + εt, (3.4)

where D is again an (n× n) matrix and c and γ are (n× 1) vectors.

3.2 Confidence interval of predictions

We use bootstrapping methods to compute confidence intervals of pre-
dictions. We first simulate the predictive distribution for the next r
periods for the model (3.1).

At time t, the algorithm design to the next period (the first unob-
served period) is as follows:

1A geometric interpretation on the simplex Sn requires the introduction of special per-
turbation and powering operators for compositions (Aitchison and Egozcue, 2005; Kyn-
clová et al., 2015).
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1. We simulate S matrices of estimated coefficients B̂s, based on
N(B̂, var(B̂)).

2. We estimate ilr(x̂t+1)s = ilr(xt) · B̂s for s = 1, ..., S.

3. We simulate S error matrices εs based on Nn−1(0,Σε).

4. The prediction error is incorporated ilr(x̃t+1)s = ilr(x̂t+1)s + εs

for s = 1, ..., S.

With this algorithm, S simulated forecasts of ilr(x̃t+1) are obtained.
Note that parameter uncertainty is included in step 2. Steps 3 and 4
include uncertainty associated to the process (prediction). This is a
common way to simulate the predictive distribution by bootstrapping.
The predictive distribution could be easily estimated, for instance, by
means of non-parametric methods or fitting a parametric distribution.
To obtain the predicted α-confidence region, we identify the α percent
of the simulated forecasts with the highest squared Mahalanobis dis-
tance to the E[ilr(x̃t+1)], where E[ilr(x̃t+1)] = ilr(xt) · B̂. The squared
Mahalanobis distance of the s-th simulated forecast is computed as,(

ilr(x̃t+1)s −E[ilr(x̃t+1)]
)
·Σ−1

ε ·
(

ilr(x̃t+1)s −E[ilr(x̃t+1)]
)T
. Finally,

the inverse of the ilr transformation is considered to transform ilr(x̃t+1)
to a projected composition, x̃t+1.

Similarly, the algorithm design to the remaining periods is as fol-
lows:

1. We simulate S matrices of estimated coefficients B̂s, based on
N(B̂, var(B̂)).

2. We estimate ilr(x̂t+r)
s = ilr(x̃t+r−1)s · B̂s for s = 1, ..., S and

r > 1.

3. We simulate S error matrices εs based on Nn−1(0,Σε).

4. The prediction error is incorporated ilr(x̃t+r)
s = ilr(x̂t+r)

s + εs

for s = 1, ..., S.

At any projected period, t+r with r > 1, the predicted α-confidence
regions are again obtained identifying the α percent of the simulated
forecasts with the highest squared Mahalanobis distance to the E[ilr(x̃t+r)],
where E[ilr(x̃t+r)] = E[ilr(x̃t+r−1)] · B̂.

The same algorithm may be adapted to simulate the predictive
distribution for the next r periods for models (3.2),(3.3) and (3.4).
In models with exogenous variables, when r > 1, we need to forecast
Wt+r−1 as well. We forecast Wt+r−1 with an AR(1) model, i.e.,

Wt+r = α+ βWt+r−1 + ζt,

where α and β are scalar parameters, and ζt ∼ N(0, σ2
ζ ).

3.3 Model selection

First, the models dealing with compositional data and those dealing
with allocated amounts can be compared. Both models are Vector
Autoregressive (VAR) models, with or without an exogenous variable.
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For such models, we can include more lags. For model selection, we
consider the following two well-known information criteria, Akaike’s
information criterion (AIC, Akaike 1973) and the Bayesian information
criterion (BIC, Schwarz 1978):

AIC = −2`+ 2K,

BIC = −2`+ ln(N)K,

where ` is the log-likelihood with the estimated parameters, K the
number of parameters, and N the number of observations. The model
with the smallest AIC/BIC is selected. Yang (2005) explains the differ-
ences between the AIC and BIC and van den Boogaart and Tolosana-
Delgado (2013) argue that the use of the AIC and BIC levels for model
selection with compositional data is suitable. The AIC and BIC are in-
variant to the choice of the contrast matrix V for the ilr transformation
(Kynclová et al., 2015).

Next, we test our forecast accuracy via backtesting. Assume that
our data-set contains T periods. For a jump-off period k ∈ {T −
h, . . . , T − 1}, with h > 1 we study the forecast performance using the
mean Aitchison distance of prediction errors (MADPE):

MADPE(k,m) =
1

T − k

T∑
t=k+1

da(xt, x̂
k,m
t ), (3.5)

where x̂k,mt is the at time k-forecasted composition using model m
for the period t. And, da corresponds to the Aitchison distance and it
holds that da(xt, x̂

k,m
t ) = d(ilr(xt), ilr(x̂

k,m
t )), where d is the Euclidean

distance (Aitchison, 1986; Egozcue et al., 2003). The forecast accuracy
is best for the model with the lowest MADPE.

4 Illustration in risk capital allocations

In this section, we provide the main econometric analysis of this paper
based on the data as described in Section 4.2. The two main models
that we study are (3.1) and (3.2), which we will compare with the naive
models in (3.3) and (3.4). The Value-at-Risk risk measure is considered
for the application. The chosen allocation method is the one based on
the Euler allocation rule. Results were obtained in the programming
language R, with packages vars (Pfaff and Stigler, 2013), robComposi-
tions (Templ et al., 2017), and compositions (van den Boogaart et al.,
2015).

4.1 Euler allocation rule

A capital allocation problem arises when an amount associated to the
whole has to be distributed among its parts. Many previous studies
deal with the analysis of capital allocation problems in risk manage-
ment where an economic amount is fixed to cover the risk (see, among
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others, Furman and Zitikis, 2008; Tsanakas, 2004; Kalkbrener, 2005;
Dhaene et al., 2012; Tsanakas, 2009; Urbina and Guillen, 2014; Zaks
and Tsanakas, 2014). In this section, we briefly discuss the well-known
Euler allocation rule.

We assume that the amount to share among parts is associated
with the positive random variable Yt that indicates the (unknown)
daily value of the aggregate investment in month t. The positive ran-
dom variable in risk management can also indicate loss severity. Let
us assume that the aggregate investment consists of n different assets,
where Yi,t is the positive random variable indicating the daily invest-
ment value of the i-th asset in the month t, i.e. Yt =

∑n
i=1 Yi,t.

The value to allocate among the n parts is computed by means
of a risk measure, ρ. A risk measure ρ maps random variables into
real numbers. We assume that ρ is positive homogeneous, i.e., it holds
that ρ(cX) = cρ(X) for all c > 0 and all random variables X. We
want to allocate a strictly positive amount to the n assets that are
Ft-measurable. To take into account dependency between assets, the
Euler allocation rule can be used. Following the Euler allocation rule
(Tasche, 1999; Denault, 2001), in the month t the risk proportion al-
located to asset i is given by

∂
∂λi

ρ
(∑n

j=1 λjYj,t
)∣∣∣
λ=(1,...,1)

ρ(Yt)
, (4.1)

where ρ(Yt) is the value that the risk measure assigns in the month
t to the daily investment value of the portfolio and λi indicates the
number of units of the i-th asset, i = 1, . . . , n. The expression

∂

∂λi
ρ
( n∑
j=1

λjYj,t
)∣∣∣
λ=(1,...,1)

can be interpreted as the partial contribution of Yi,t to the value that
the risk measure assigns to the aggregate random variable Yt. Since the
risk measure is positively homogeneous, it holds that (Tasche, 1999):

ρ(Yt) =

n∑
i=1

∂

∂λi
ρ
( n∑
i=1

λiYi,t
)∣∣∣
λ=(1,...,1)

.

Therefore, the Euler allocation rule guarantees full risk allocation, i.e.
the sum of risk proportions obtained by expression (4.1) is equal to
one. Moreover, Tasche (1999) characterizes the Euler allocation rule
as the unique one satisfying a suitability property, which is a property
derived from performance management.

Some popular examples of positively homogeneous risk measures
are the Value-at-Risk (VaR) and the conditional Value-at-Risk (Buch
et al., 2011; Cossette et al., 2012; Asimit et al., 2011). Let us consider
the Value-at-Risk with confidence level α ∈ (0, 1). The α-Value-at-Risk
is defined as

ρ(Yt) = VaRα(Yt) = sup {y | FYt
(y) ≤ 1− α} .
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If the cumulative distribution function FYt is continuous and strictly
increasing then VaRα(Yt) = F−1

Yt
(1 − α), where F−1

Yt
is the quantile

distribution function. The risk capital proportion allocated to the i−th
asset defined in (4.1) can be expressed as:

E
[
Yi,t

∣∣∣Yt = VaRα(Yt)
]

VaRα(Yt)
. (4.2)

The risk capital proportion defined in (4.2) can be interpreted as
the i−th component of a composition at time t. In this framework, the
composition at time t is xt = (x1,t, . . . , xn,t), where xi,t is computed as
in (4.2) for i = 1, . . . , n. If we assume that (Y1,t, . . . , Yn,t) is a multivari-
ate normally distributed random vector, (Y1,t, . . . , Yn,t) ∼ Nn(µt,Σt)
where µt is the vector of means and Σt the covariance matrix at time
t, then it holds that:

E
[
Yi,t

∣∣∣Yt = VaRα(Yt)
]

= E
[
Yi,t
]

+
cov(Yi,t, Yt)√

var(Yt)
·VaRα(Z) (4.3)

where cov(Yi,t, Yt) is the covariance between Yi,t and Yt, var(Yt) the
variance of Yt and Z is a standard normal random variable. The Euler
allocation rule defined in (4.3) can result in null or negative capitals,
although in practice it barely occurs. In the application of our com-
positional time series model, we assume that the values of the com-
positional Euler allocation rule in (4.1) are strictly positive, i.e., the
compositions are in Sn+.

4.2 Data

We assume that n = 3, and that an investor selects the S&P 500
index, the DAX index, and the CAC 40 index, respectively. We use
these indexes from January 1st, 2000, to December 31st, 2016, and
monitor for every working day their daily value. We consider a buy-
and-hold portfolio with an initial equal investment to each index on
January 1st, 2000. The original aggregate investment in the portfolio
was 100,000 dollars. The daily value of the investment in each index
is considered a source of risk, and the aggregated daily value of the
portfolio has an overall risk, which is displayed in Figure 1.

The time series is divided in monthly periods. We fit every month
(20 workings days) a multivariate normal distribution to the three risk
components of the past month. Then, we apply this approximation so
that the aggregate risk is normally distributed, and calculate the 95%-
Value-at-Risk of this approximated aggregate risk. In this manner,
we obtain 210 risk measure values associated to the aggregate daily
portfolio at each month, Wt = VaR95%(Yt) for t = 1, . . . , 210. All
values are positive.

We assume that the risk capital allocation is determined by the Eu-
ler allocation rule, as defined in (4.3). In this way, we obtain each com-
ponent of the vector W·,t = (W1,t,W2,t,W3,t). We construct the com-
positional risk capital allocation for each month according to (4.2). Our
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Figure 1: Evolution of the aggregate daily value of a portfolio that invests
100,000 units in the S&P 500 index, the DAX index, and the CAC 40. The
investment is equally split in the three components on January 1st, 2000
and the investment goes on until December 31st, 2016.
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Figure 2: Evolution of the compositional data that capture the relative
contribution of each index to the overall risk. Here, the solid line is the
relative risk due to the S&P 500 index, the dashed line is the relative risk
due to the DAX index, and the dotted line is the relative risk caused by the
CAC 40.

data consists of 210 compositions. We verify that the compositional
data is positive, so that (x1,t, x2,t, x3,t) ∈ S3+ for all t = 1, . . . , 210.

We display the compositional data in Figure 2. The dynamics of the
relative risk capital allocations over time are shown. We observe the
decreasing evolution of the third index risk contribution, which is the
CAC 40 index. The classical form to display three-part compositions
is by means of ternary diagrams. We provide a ternary diagram of the
compositions in the simplex S3 in Figure 3.

We now express the compositional data with respect to an orthonor-
mal basis of the underlying vector space with Euclidean structure. We
use the sequential binary partition shown in (2.5). Table 1 shows the
choice of the sequential binary partition for this example and Table 2
shows the associated contrast matrix of this sequential binary parti-
tion.

This particular choice of sequential binary partition leads to the
following balances,

z1 =

√
2

3
ln

x1√
x2 · x3

, z2 =
1√
2

ln
x2
x3
. (4.4)
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Figure 3: A ternary diagram of the compositional data in our numerical
illustration.

Order x1 x2 x3 r s
z1 +1 -1 -1 1 2
z2 0 +1 -1 1 1

Table 1: A 3-dimensional sequential binary partition.

x1 x2 x3√
2
3 − 1

2

√
2
3 − 1

2

√
2
3

0
√

1
2 −

√
1
2

Table 2: The contrast matrix V T associated with the sequential binary
partition in Table 1.
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With this transformation, balance z1 contains relative information
(ratio) of the part x1 to the parts x2 and x3, and balance z2 only
relative information of the part x2 to the part x3. Note that x1, x2
and x3 indicate the proportion of the 95%-VaR risk portfolio value
associated to the investment in the S&P 500 index, the DAX index,
and in the CAC 40 index, respectively.

4.3 Model selection

Now, we compare the four regression models. In this example, the ex-
planatory variable in the model specification (3.2) and (3.4) is the risk
measure value in the previous month, Wt−1 = VaR95%(Yt−1). First,
we compare the models in (3.1) and (3.2). We find that adding more
lags leads to a higher AIC and BIC, and so the formulation in (3.1)
and (3.2) with only one lag is preferred. We analyse the AIC and BIC
levels for the models in (3.1) and (3.2) with one lag, and find that the
model (3.1) is preferred (Model (3.1): AIC= −2, 040.6, BIC=−2, 020.5;
Model (3.2): AIC= −2, 038.1, BIC=−2, 011.4). For Model (3.3) and
Model (3.4), we find the same model selection conclusion, the model
without exogenous variable is preferred (Model (3.3): AIC= 10, 364.5,
BIC=10, 404.6; Model (3.4): AIC= 10, 366.4, BIC=10, 416.5).

As the dimensions of the dependent variables are not equal for
models based on compositions and models based on absolute values,
the AIC/BIC criteria is not used in the selection of models in (3.1)
and (3.2) with models in (3.3) and (3.4). To compare these two model
design strategies, we test their forecast accuracy. First, however, we
show in Table 3 the number of (unknown) parameters to be estimated
that are involved in each model specification.

Model (3.1) Model (3.2) Model (3.3) Model (3.4)

Regression 6 8 12 15
Covariance 3 3 6 6
Total 9 11 18 21

Table 3: Number of (unknown) parameters in Models (3.1), (3.2), (3.3) and
(3.4).

In Table 3, we show that Model (3.1) is a sparse model. We believe
that the advantage of having less parameters than other models makes
this choice particularly suitable.

Next, we test our forecast accuracy via backtesting. Recall that our
data-set contains 210 periods. For a jump-off period k ∈ {160, . . . , 209},
we study the forecast performance using MADPE defined in (3.5). For
models in (3.3) and (3.4), compositions are obtained with the closing

function, as xt = C(Wt) and x̂k,mt = C(Ŵ k,m
t ), m ∈ {3, 4}. The

forecast performance of four models is shown in figure 4.
The plot in Figure 4 shows that Model (3.1) has a relative small er-

ror compared to the other models and therefore, we believe this model
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provides a suitable combination of sparsity and precision.

4.4 Causality test

A frequent task in the context of multivariate time series analysis is
testing for causality. For that reason, Granger causality was intro-
duced, which represents a statistical concept that is based on pre-
diction. This is a pairwise time series analysis that indicates if past
values of a time series contain information to predict future values
of another time series. In other words, we are interested in testing
whether one variable could help to improve predictions of the variable
of interest. This is done by including the variable with several lags, and
test whether it improves statistically the predictions of the variable of
interest. We check Granger causality of our ilr-transformed data and
the aggregate risk level Wt in Table 4. We only find statistical evidence
that ilr(xt)1 Granger causes Wt. So, effects of Wt are partially caused
by changes in the composition ilr(xt), but not the other way around.
Therefore, we have no evidence that Wt has an explanatory effect on
ilr(xt). That is, information of the proportion of the 95%-VaR risk
portfolio value associated to the investment in the S&P 500 index in
relation to the investment in the DAX and CAC 40 indices is infor-
mative to predict the size of the 95%-VaR risk portfolio. The inverse
does not hold2.

Null hypothesis p-value

ilr(xt)1 does not Granger cause ilr(xt)2 0.534
ilr(xt)2 does not Granger cause ilr(xt)1 0.201

ilr(xt)1 does not Granger cause Wt 0.007∗

ilr(xt)2 does not Granger cause Wt 0.098
Wt does not Granger cause ilr(xt)1 0.746
Wt does not Granger cause ilr(xt)2 0.335

Table 4: Tests for Granger causality of the compositional data, and the
variable Wt.

4.5 Coefficient estimates

We did not find indicators to prefer Model (3.2) above Model (3.1).
We proceed our analysis with focusing only on Model 3.1. Table 5
shows the parameter estimates for the model in (3.1). The coefficient
associated with the lag is statistically significant at the 0.05 significance
level. So, information of the value of the balance at time t − 1 has
explanatory capacity on the estimation of its value at time t.

2The same conclusions are obtained when log(Wt) is considered rather than Wt.
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However, the coefficient estimate of the balance z1 is not statis-
tically significant at the 0.05 significance level when the dependent
variable is the balance z2 (and vice versa). According to this result,
the relative information (ratio) of the part x1 to the parts x2 and x3, at
time (t− 1) would be not relevant to estimate the relative information
of the part x2 to the part x3 at time t. That is, the proportion of the
95%-VaR risk portfolio value associated to the investment in the S&P
500 index in relation to the investment in the DAX index and in the
CAC 40 index would be not informative to estimate in the next month
the proportion of the 95%-VaR risk portfolio value associated to the
investment in the DAX index in relation to the investment in the CAC
40 index.

Parameter Model (3.1)

b1 0.003 (0.003)
b2 0.001 (0.002)
B1,1 0.965 (0.018)∗

B2,1 0.012 (0.009)
B1,2 0.008 (0.012)
B2,2 0.999 (0.006)∗

Table 5: Parameter estimates of Model (3.1) and their standard errors (in
brackets). ∗ refers to significance at the 0.05 significance level.

4.6 Confidence interval of predictions

We study the confidence intervals of the forecasted relative risk cap-
ital allocations for Model 3.1. We apply the simulation approach of
Section 3.2. In Figure 5, we display a three-dimensional scatter-plot
of compositional simulations for the ten projected periods3. Moreover,
the 5% simulated forecasts with the highest Mahalanobis distance to
the point forecast in the simplex are shown in Figure 6.

The scatter-plots show that the projections present an elliptical
shape. These simulations can be used to select worst-case scenarios,
when using the boundaries of the resulting region. For instance, one
can select four cases in the boundary of the projection and take them as
extreme situations. Note that compositional simulations seem to be in
the shape of ellipsoids with axes increasing with time projected periods.
The center of the ellipsoids are the point compositional forecasts. We
see that all simulations are compositional, as they are elements of S3.

Some descriptive statistics can be computed for simulated forecasts.
In Table 6 we compare at each projection period the correlation be-
tween simulated compositional forecasts expressed in ilr coordinates
(all simulated balances) and the correlation between the 5%-of simu-

3Alternatively, simulations could be represented in a two-dimensional contour ternary
diagram.
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Figure 5: A scatter-plot of the simulated compositional forecasts for ten
projected periods. Here, t = 210 is the last sample period.

Figure 6: A scatter-plot of the 5% simulated compositional forecasts with
the highest Mahalanobis distance for 10-projected periods. Here, t = 210 is
the last sample period.
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lated balances with the associated highest Mahalanobis distance (sim-
ulated balances in the 95% confidence region).

Forecasting period Correlation Correlation
(all simulations) (5% simulations)

t+ 1 -0.200 -0.423
t+ 2 -0.199 -0.410
t+ 3 -0.187 -0.390
t+ 4 -0.180 -0.387
t+ 5 -0.170 -0.374
t+ 6 -0.162 -0.357
t+ 7 -0.153 -0.325
t+ 8 -0.144 -0.296
t+ 9 -0.136 -0.277
t+ 10 -0.125 -0.250

Table 6: Correlation between simulated balances for all simulations and for
the 5% simulations with the highest Euclidean distance. Here, t = 210 is
the last sample period.

The estimated correlation is weaker as the forecasting period is
farther in the future. This result is expected. Note that balance z1 is
based on the ratio of x1 with x2 and x3 and balance z2 on the ratio
of x2 with x3. The projected value of z1 provides less information on
the projected value of z2 as the projection is further in the future, and
inverse.

In fact, a weak estimated correlation is observed in all periods when
all simulations are considered. The proportion of the 95%-VaR risk
portfolio value associated to the investment in the S&P 500 index in
relation to the investment in the DAX index and in the CAC 40 index
would be weakly correlated with the simulated prediction of the propor-
tion of the 95%-VaR risk portfolio value associated to the investment
in the DAX index in relation to the investment in the CAC 40 index.
However, this conclusion varies when simulations in the confidence re-
gion are considered. In this case, a stronger correlation is observed
in all periods (more than the double value). That is, the simulated
projections of balances are more correlated in extreme scenarios.

5 Conclusion

We have presented a method that is useful to analyse panels of data
that represent proportions of risk allocated to a give number of risk
sources. In this article we present an application in risk capital allo-
cation. For risk capital allocation problem, the firm needs to allocate
proportions of the firm’s risk capital to the different risk units within
the firm. Of our interest is to predict the proportion of risk for each
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unit in the next periods, and to analyse which factors influence the
vector of proportions. There are many other examples where this is
applicable.

The accuracy of the compositional risk allocation forecasts shown
in the applications is heavily reliant on the quality of the data that the
time series regression model is fitted on. For instance, in our appli-
cation of risk capital allocation, we assume normality of the portfolio
values within a month. A misspecification can introduce prediction
errors.

Although it is less frequent, in some contexts the risk allocations
can result in negative or null values (Panjer and Jing, 2001). Compo-
sitional data analysis cannot be applied in contexts involving negative
values. However, compositional techniques can be still valid in case of
components with zero values. The presence of zero components rep-
resents an obstacle in the application of log-ratio analysis. To solve
it, alternative replacement strategies are usually applied to deal with
zeros. This would then also solve the problem of having a source of
risk that suddenly disappears from the scene due to a default.
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Kynclová, P., P. Filzmoser, and K. Hron (2015). Modeling compo-
sitional time series with vector autoregressive models. Journal of
Forecasting 34 (4), 303–314. for.2336.

Panjer, H. and J. Jing (2001). Solvency and Capital allocation. Tech-
nical report, Institute of Insurance and Pension Research Research
Report 01-14, Univerisity of Waterloo.

Pawlowsky-Glahn, V., J. Egozcue, and R. Tolosana-Delgado (2011).
Lecture Notes on Compositional Data Analysis. Univeristy of
Girona.

Perez-Foguet, A., R. Gine-Garriga, and M. Ortego (2017). Composi-
tional data for global monitoring: The case of drinking water and
sanitation. Science of The Total Environment 590 (Supplement C),
554 – 565.

Pfaff, B. and M. Stigler (2013). vars: VAR Modelling. R package
version 1.5–2.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics 6 (2), 461–464.

Snyder, R. D., J. K. Ord, A. B. Koehler, K. R. McLaren, and A. N.
Beaumont (2017). Forecasting compositional time series: A state
space approach. International Journal of Forecasting 33 (2), 502 –
512.

Tasche, D. (1999). Risk contributions and performance measurement.
Preprint, TU Munich.

Templ, M., K. Hron, and P. Filzmoser (2017). robComposition: Robust
Estimation for Compositional Data. R package version 2.0.6.

Tsanakas, A. (2004). Dynamic capital allocation with distortion risk
measures. Insurance: Mathematics and Economics 35 (2), 223–243.

Tsanakas, A. (2009). To split or not to split: Capital allocation
with convex risk measures. Insurance: Mathematics and Eco-
nomics 44 (2), 268–277.

22



Urbina, J. and M. Guillen (2014). An application of capital allocation
principles to operational risk and the cost of fraud. Expert Systems
with Applications 41 (16), 7023–7031.

van den Boogaart, K. G., R. Tolosana, and M. Bren (2015). composi-
tions: Compositional Data Analysis. R package version 1.40–1.

van den Boogaart, K. G. and R. Tolosana-Delgado (2013). Analyzing
Compositional Data with R. Springer-Verlag Berlin Heidelberg.

Verbelen, R., K. Antonio, and G. Claeskens (2018). Unravelling the
predictive power of telematics data in car insurance pricing. Forth-
coming in the Journal of the Royal Statistical Society: Series C.

Yang, Y. (2005). Can the strengths of aic and bic be shared? a
conflict between model indentification and regression estimation.
Biometrika 92 (4), 937–950.

Zaks, Y. and A. Tsanakas (2014). Optimal capital allocation in a
hierarchical corporate structure. Insurance: Mathematics and Eco-
nomics 56, 48–55.

23


