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Abstract 

Single-case experimental designs meeting evidence standards are useful for identifying 

empirically-supported practices. Part of the research process entails data analysis, which can be 

performed both visually and numerically. In the current text we discuss several statistical 

techniques focusing on the descriptive quantifications that they provide on aspects such as 

overlap, difference in level and in slope. In both cases, the numerical results are interpreted in 

light of the characteristics of the data as identified via visual inspection. Two previously 

published data sets from patients with traumatic brain injury are re-analyzed, illustrating several 

analytical options and the data patterns for which each of these analytical techniques is especially 

useful, considering their assumptions and limitations. In order to make the current review 

maximally informative for applied researchers, we point to free user-friendly web applications of 

the analytical techniques. Moreover, we offer up-to-date references to the potentially useful 

analytical techniques not illustrated in the article. Finally, we point to some analytical challenges 

and offer tentative recommendations about how to deal with them.   

Keywords: single-case experimental designs, statistical analysis, level, trend, variability  
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Single-case experimental designs (SCEDs) are strategies capable of meeting criteria for 

experimental quality (Smith, 2012) and useful for identifying evidence-based practices 

(Schlosser, 2009). SCEDs entail the study of a single participant in different conditions, 

manipulated by the researcher, and gathering repeated measurements in each of these conditions. 

However, it should be noted that most SCED studies involve studying separately more than one 

participant (Shadish & Sullivan, 2011; Smith, 2012), especially in relation to the importance of 

replicating the effects of the intervention (Kratochwill et al., 2010). The data obtained are 

represented graphically and the assessment of the difference between conditions has traditionally 

been performed visually (e.g., Parker & Brossart, 2003; Smith, 2012). The continued use of 

visual analysis is likely due to the amount of data features that need to be taken into account 

(Kratochwill et al., 2010; Parker, Cryer, & Byrns, 2006) and the need to understand well the 

behavioral process (Fahmie & Hanley, 2008). However, statistical analyses are already part of 

neuropsychological rehabilitation SCED studies (Perdices & Tate, 2009), probably in relation to 

the evidence of insufficient interrater agreement between visual analysts (Ninci, Vannest, 

Willson, & Zhang, 2015), the need to take into account spontaneous improvement during the 

baseline and/or excessive variability (Kazdin, 1978), and the importance of objectively 

documenting intervention effectiveness and making SCD studies eligible for meta-analyses 

(Jenson, Clark, Kircher, & Kristjansson, 2007). 

In order to illustrate the application and interpretation of several analytical techniques, we re-

analyze the data from two SCEDs studies, including a variety of data features, such as baseline 

stability vs. variability vs. spontaneous improvement. We show that it is possible to express the 

results in the same metric as the outcome variable, as a percentage, or in standard deviations. 

Additionally, we will also rely heavily on visual representations of the data to enhance the 
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interpretation of the numerical results. Finally, we provide references to analytical techniques not 

covered here. (Note that the Special Issue in which the current text is included also covers 

structured visual analysis and the meta-analytical integration of individual studies).  

 

A Comment on Terminology 

Rationale for the comment on terminology. We consider that the readers of Brain 

Impairment are likely to be familiar with the Risk of Bias in N-of-1 Trials (RoBiNT) 

methodological quality scale (Tate et al., 2013) and with the fact that in its data analysis item the 

terms “statistical and quasi-statistical” techniques are used. In that sense, we would like to 

provide a brief discussion of these terms and the ones we used in throughout the paper (i.e., 

descriptive and inferential). 

Available examples. In the expanded manual of the RoBiNT scale (Tate et al., 2015), the 

examples of statistical analyses include randomization tests and effect size indices, whereas the 

examples of quasi-statistical techniques include the two-standard deviations (2 SD) method and 

celeration (trend) lines with Bayesian probability analysis. In relation to these examples, trend 

lines and the 2 SD method are referred to as “visual aids” (rather than “quasi-statistical 

techniques”) by Fisher, Kelley, and Lomas (2003), who propose one of the supported (Young & 

Daly, 2016) methods for performing structured visual analysis. Additionally, the 2 SD bands are 

based on the normal probability model and are part of “statistical process control” (Callahan & 

Barisa, 2005), which suggests that they can be called a “statistical technique”. Analogously, 

split-middle trend line has been used with binomial (rather than Bayesian) probability analysis 

(Crosbie, 1987) and referring to a probability model indicates that such a use of the trend line is 
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“statistical” in nature. Finally, regarding nonoverlap indices, there have been arguments for 

considering them as “effect size” measures (Carter, 2013) and thus “statistical” according to the 

RoBiNT scale or for including them in the steps outlined for visual analysis (Lane & Gast, 

2014), which can be interpreted as nonoverlap indices being part of “systematic visual analysis” 

in terms of the RoBiNT scale.  

Terminology in the current text. According to the distinction we establish here, “statistical 

techniques” are the ones that are based on statistical theory and make possible obtaining 

confidence intervals and p values on the basis of the knowledge of the sampling distribution of 

the statistic, whereas “quasi-statistical techniques” are the descriptive measures or ad hoc 

quantifications for which the precision of the quantifications cannot be assessed, as there is no 

expression available for estimating their standard error.  

In summary, keeping the terms used in the RoBiNT scale, we do not claim that our distinction 

is flawless, because it can also be argued that according to our definition “statistical techniques” 

refer to inferential statistics, whereas “quasi-statistical techniques” refer to descriptive statistics, 

with both being “statistical”. Moreover, an “effect size” may not be clearly classifiable, 

considering that the definition and facets of effect size provided by Kelly and Preacher (2012) 

potentially includes a variety of descriptive (“quasi-statistical”) indices, but these authors also 

stress the importance of having appropriate indicators of measurement error or uncertainty and 

reporting confidence intervals (as for “statistical techniques”). In any case, we remark that the 

use of terms such as “visual aid”, “effect size”, “quasi-statistical techniques” and “statistical 

analysis” may not have a universally accepted meaning and it is therefore necessary that in each 

report it is specified exactly what is being done with the data and that a justification is provided. 
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Description of a Selection of Techniques 

Table 1 includes a simplified description of several analytical techniques applicable to SCED 

data, specifically focusing on the techniques mentioned in the current text. Nevertheless, it is 

necessary to underscore that we do not present a comprehensive list of techniques and we do not 

claim that the techniques illustrated are the optimal ones for all data sets. Different applied 

researchers, methodologists, and statisticians may choose different analytical techniques as 

optimal ones. We suggest that the reader interested in further options should consult the list 

available in the Appendix to the SCRIBE explanation and elaboration document (Tate et al., 

2016); more references for an in-depth study of the analytical alternatives are provided in the 

“Analytical Challenges and Recommendations” section. 
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Table 1. Summary of the main features of several analytical techniques applicable to single-case 

experimental designs data 

Name of the 

technique 

Description Use of the technique Advantages Disadvantages 

Split-middle trend Visual aid: adds 

elements to the 

graphical 

representation 

Fitting a straight line to 

the data within a 

phase; extending 

baseline trend 

Easy to obtain even 

with hand calculation 

The associated 

binomial test has 

not control Type I 

error rates with 

autocorrelation 

Standard 

deviations band 

Visual aid: adds 

elements to the 

graphical 

representation 

Describing the typical 

variability within a 

phase, for comparing 

with the subsequent 

phase 

Widely used in 

statistics for identifying 

values that do not 

conform to the 

variability expected 

Correctness of the 

interpretation 

depends on 

assuming normality 

and lack of 

autocorrelation 

Percentage of 

nonoverlapping 

data 

Descriptive 

index focusing 

on overlap 

Quantifying the % of 

intervention data 

improving the best 

baseline measurement 

Easy to obtain. 

Widely used in single-

case research 

Requires lack of 

trend and outliers; 

uses one baseline 

datum only 

Nonoverlap of all 

pairs 

Descriptive 

index, with a 

possibility of 

inferential use 

Quantifying the % of 

intervention data 

improving the baseline 

data 

Uses all data. 

Closely related to the U 

test and probability of 

superiority 

Assumes lack of 

trend. The p value 

assumes lack of 

autocorrelation 

Percentage change 

index 

Descriptive 

index 

Compares the averages 

of two phases 

Easy to interpret: % of 

change with respect to 

baseline mean 

Assumes lack of 

trend or stability in 

the last three data 

points. 
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Slope and level 

change 

Two descriptive 

indices 

Quantifies the change 

in slope and the net 

average change in level 

Controls for baseline 

trend; two separate 

quantifications 

Only useful for 

linear trends; does 

not model 

autocorrelation 

Generalized least 

squares regression 

Descriptive 

index 

Quantification of the 

difference between 

baseline and 

intervention fitted data  

Controls for baseline 

trend and 

autocorrelation 

More complex; 

May require 

iterative application 

Piecewise 

regression 

Descriptive 

estimates of 

regression 

coefficients 

Quantifies the change 

in slope and the 

immediate change in 

level 

Controls for baseline 

trend; two separate 

quantifications 

Only useful for 

linear trends; does 

not model 

autocorrelation 

Between-cases 

standardized mean 

difference 

Descriptive 

index with a 

possibility of 

inferential use (p 

value) 

Quantifies the average 

difference between 

baseline and 

intervention data for 

several participants 

Applicable beyond AB 

designs; controls for 

autocorrelation 

Assumes lack of 

trend; requires 

several participants 

Multilevel 

analysis 

Descriptive 

procedure with a 

possibility of 

inferential use 

May quantify average 

different in level or in 

slope 

Applicable beyond AB 

designs; Flexibility in 

modelling several data 

aspects (e.g., variance, 

trend, autocorrelation) 

More complex; 

requires several 

participants 

Randomization 

test 

Inferential 

technique 

Quantifies the 

probability of the 

difference being 

observed by chance 

Applicable beyond AB 

designs; Flexible 

choice of test statistic 

Requires 

randomization in 

the design 
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The reasons for choosing the techniques were to illustrate (a) the variety of data aspects 

modelled: level, trend, overlap, immediacy, all mentioned as relevant when performing visual 

analysis (Kratochwill et al., 2010); (b) the variety of ways of estimating trend: ordinary least 

squares regression, split-middle, average of the differences between consecutive measurements; 

and (c) the fact that both descriptive and inferential techniques can be used. In absence of a 

clearly stated expectation about whether the effect should be an immediate change in the average 

performance or a progressive or delayed change, we followed the idea (Manolov & Moeyaert, 

2017b) that the analytical technique can be chosen in such a way as to represent better the 

features of the data at hand. Therefore, for each example we further justify the choice of the 

techniques.  

 

Quantifications of Overlap 

Nonoverlap of all pairs (NAP). A technique that is not easily classifiable as quasi-statistical 

or statistical is NAP (Parker & Vannest, 2009). Given that the result is expressed as a percentage 

of nonoverlap between conditions, NAP is apparently similar to the Percentage of 

nonoverlapping data (PND; Scruggs & Matropieri, 2013) for which the sampling distribution is 

not known, but it is also possible to derive the standard error for NAP on the basis of its 

equivalence with the Mann-Whitney U test or the probability of superiority (Grissom & Kim, 

2001). In the current text we focus on the descriptive (not inferential) use of NAP. The strengths 

of NAP are: (a) it uses all data unlike the PND, which is one of the reasons for its proposal; (b) it 

is not based on representing the data via a mean or a trend line; (c) under the assumption of 

independent data it is possible to obtain a p value; (d) among the techniques mentioned here, 
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NAP, is the only one applicable to ordinal data; and (e) it can be applied using a website 

http://www.singlecaseresearch.org/calculators/nap. As limitations, NAP does not control for 

baseline trend and does not quantify the amount of difference once complete nonoverlap is 

achieved: it may present ceiling effects, not distinguishing between treatments with different 

degree of effectiveness.  

Other nonoverlap indices. Parker, Vannest, and Davis (2011) compare several nonoverlap 

measures and conclude that NAP is among the most powerful ones and it also yields similar 

results to other nonoverlap indices. Nonoverlap indices can be computed via 

https://jepusto.shinyapps.io/SCD-effect-sizes/, http://manolov.shinyapps.io/Overlap/ and 

http://ktarlow.com/stats/. 

 

Quantifications of the Difference in Level 

Percentage change index (PCI). A numerical summary expressed as the average difference 

between conditions in relation to the baseline level has been named “mean baseline difference” 

(Campbell & Herzinger, 2010), “percent reduction” (Olive & Smith, 2005), or “percentage 

change” index (Pustejovsky, 2015). The mean baseline difference usually refers to the difference 

between the intervention phase mean and the baseline phase mean, expressed as a percentage of 

the baseline phase mean. The PCI is usually computed following the same logic, but using only 

the last three baseline measurements and the last three intervention phase measurements. For the 

latter case, Hershberger, Wallace, Green, and Marquis (1999) present an expression for 

estimating its variance. According to whether such an expression is accepted as valid or not, the 

PCI could be considered a statistical or quasi-statistical technique. It is mainly useful when a 

http://www.singlecaseresearch.org/calculators/nap
https://jepusto.shinyapps.io/SCD-effect-sizes/
http://manolov.shinyapps.io/Overlap/
http://ktarlow.com/stats/
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mean line represents well the data (i.e., there are no trends and the variability is not excessive) 

and when the baseline data are not all equal to zero (as it would impede obtaining a 

quantification). The PCI can be computed using https://manolov.shinyapps.io/Change/. 

Between-cases standardized mean difference (BC-SMD). A statistical technique 

developed specifically for SCEDs is the BC-SMD or d-statistic (Shadish, Hedges, & 

Pustejovsky, 2014). The BC-SMD was developed to provide a quantification comparable to the 

ones from group-comparison studies, making possible the meta-analytical integration of results 

from different designs, given that the within-case SMD does not allow for that (Beretvas & 

Chung, 2008). Other strengths of the BC-SMD include taking autocorrelation into account, the 

attainment of an overall quantification of intervention effect across cases, the comparability 

across studies measuring outcomes in different measurement units, and the possibility to obtain 

confidence intervals and to use inverse variance weight in meta-analysis. Moreover, note that the 

BC-SMD takes into account both the variability of the data within a case and between-cases, 

whereas the PCI is based only on quantifications of the average level. The BC-SMD can be 

applied via the website https://jepusto.shinyapps.io/scdhlm/. The BC-SMD is only applicable 

when there are several cases in the same study and it is also mainly applicable to stable data 

(although detrending is possible, Shadish et al., 2014) and when the intervention effect is an 

immediate change in level. In order to illustrate this assumption, we refer to two data sets 

presented later in the text. For instance, the data depicted on the upper panel of Figure 1 can be 

considered to represent stable data (no trend in the baseline or in the intervention phase) and the 

intervention effect can be understood as immediate1, because difference between the two 

conditions takes place already in the beginning of the intervention phase. These data would fit 

                                                           
1 Kratochwill et al. (2010) refer to the assessment of immediacy as a comparison between the last three baseline 
measurements and the first three intervention phase measurements. 

https://manolov.shinyapps.io/Change/
https://jepusto.shinyapps.io/scdhlm/


12 

Running head: SINGLE-CASE STATISTICAL ANALYSES 

the assumptions of the BC-SMD. As a different example, Figure 2 also shows an immediate 

difference, but the data is not stable and the trends are not comparable (i.e., there is both a 

change in level and in slope). These data would not fit the assumptions of the BC-SMD. 

Additional assumptions include the homogeneity of the effect across cases, the normal 

distribution of within-case errors and the autocorrelation process being first-order autoregressive, 

although the estimates of effect are robust to violating these assumptions, which are mostly 

important for its small-sample correction (Valentine, Tanner-Smith, & Pustejovsky, 2016).   

  



13 

Running head: SINGLE-CASE STATISTICAL ANALYSES 

 

 

Figure 1. Application of the percentage change index (PCI, computed on the last three measurements per phase; 

dotted horizontal line) and the mean baseline difference (computed on all measurements; solid horizontal line). The 

upper panel refers to Samantha and the lower panel to Thomas; data gathered by Douglas et al. (2014). Graphs 

obtained from https://manolov.shinyapps.ioChange/. For each of the two plots, the data to the left of the vertical line 

belong to the baseline (A) phase and the data to the right belong to the intervention (B) phase. 

https://manolov.shinyapps.iochange/
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Figure 2. Application of Piecewise regression (upper panel) and generalized least squares regression (GLS; lower 

panel) to the data gathered by Ownsworth et al. (2006) on the frequency of errors in a cooking task. Graphs obtained 

from https://manolov.shinyapps.io/Regression/. For each of the two plots, the data to the left of the vertical line 

belong to the baseline (A) phase, and the data to the right belong to the intervention (B) phase. On the upper panel, 

for both phases, b0 denotes the within-phase intercept and b1 the within-phase slope. 

https://manolov.shinyapps.io/Regression/
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Quantifications of the Differences in Level and in Slope 

Slope and level change (SLC). The SLC (Solanas, Manolov, & Onghena, 2010) is a 

descriptive technique not based on statistical theory. It entails: (1) quantifying baseline trend: 

how much spontaneous improvement is there per measurement occasion; (2) removing baseline 

trend from the baseline and intervention phase data: how would the data look like without the 

spontaneous improvement; (3) quantifying the amount of change in slope: to what extent is the 

progressive change in the intervention greater than the spontaneous change in the baseline; and 

(4) quantifying the amount of net change in level: apart from the difference in trends, how much 

is the average difference between conditions. The SLC presents the following strengths: (a) it 

provides a quantification in the same measurement units as the outcome variable, which aids the 

interpretation in meaningful terms; (b) it allows taking into account linear baseline trend; (c) it 

quantifies change in slope (as the average change between consecutive measurements) and 

change in level (as a mean difference, once change in slope is taken into account) separately, 

which is the reason for its development, following the recommendation by Beretvas and Chung 

(2008); (d) its descriptive purpose entails that there are no assumptions regarding normality or 

lack of serial dependence; and (e) it can be applied using a website 

(http://manolov.shinyapps.io/Change/) which offers both numerical and graphical output. Among 

the limitations of the SLC, its quantifications are: (a) mostly meaningful when the data are stable 

or present linear trends; (b) not comparable across studies using different outcome variables; and 

(c) not accompanied by indicators of precision such as confidence intervals.  

Piecewise regression. Piecewise regression (Center, Skiba, & Casey, 1985-1986) offers the 

possibility to quantify separately the immediate effect of the intervention and the difference in 

slopes. The descriptive quantification of these data aspects does not require the parametric 

http://manolov.shinyapps.io/Change/
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assumptions of regression analysis (normally, homogeneously, and independently distributed 

residual), but the interpretation of their statistical significance is subjected to these assumptions. 

Note that Piecewise regression can be applied beyond AB-comparisons, as described in 

Moeyaert, Ugille, Ferron, Beretvas, and Van Den Noortgate (2014). In order to deal with 

autocorrelation, a regression-based analysis using generalized least squares estimation (GLS; 

Swaminathan, Rogers, Horner, Sugai, & Smolkowski, 2014) was proposed. In GLS, an overall 

quantification of the difference between conditions is obtained after fitting trend lines separately 

to the baseline and intervention phase data; this quantification can be raw or standardized. These 

regression techniques are mainly applicable when the data in the two conditions compared are 

either stable or exhibiting an approximately linear trend. Moreover, the tests2 for autocorrelation 

performed by the GLS require that the autocorrelation and the error variances are homogeneous 

across the conditions being compared. Both regression approaches can be applied via a website 

https://manolov.shinyapps.io/Regression/.  

 

Other Analytical Options 

The list of techniques presented is not comprehensive. Further options for statistical analysis 

include: (a) randomization tests (Heyvaert & Onghena, 2014), if randomization is present in the 

design and a p value is desired; (b) log response ratio measures (Pustejovsky, 2015) for data 

gathered via direct observation and interpretations desired in terms of percentage change; and (c) 

multilevel models (Moeyaert, Ferron, Beretvas, & Van Den Noortgate, 2014), if data are 

                                                           
2 Swaminathan et al. (2014) propose performing iteratively the Durbin-Watson test for autocorrelation and data 
transformation, if necessary, until not significant autocorrelation is obtained; the GLS implemented in the 
https://manolov.shinyapps.io/Regression/ however performs a single test and transformation. 

https://manolov.shinyapps.io/Regression/
https://manolov.shinyapps.io/Regression/
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available for several participants and average estimates of effect are of interest, besides 

quantifying the amount of variation across individuals.  

 

Illustrations in the Context of Brain Impairment 

First Example: Stable Baselines and Replication 

Data. Douglas, Knox, De Maio, and Bridge (2014) report a study on two participants 

(Samantha and Thomas) with traumatic brain injury, treated with Communication-specific 

coping intervention. The design is referred to as an “A–B–A design with follow-up using 

multiple probes” (Douglas et al., 2014, p. 194). Nevertheless, there are three reasons for 

assuming that the design is probably better conceptualized as an AB design with a follow-up: (a) 

the time intervals in the last phase are farther apart in time, (b) the intervention is not strictly 

speaking withdrawable; and (c) the performance is not expected (or desired) to revert to the 

initial baseline levels. Among the outcomes of interest, quantifications were obtained using a 

visual analogue scale, ranging from 0 to 10 cm with greater values representing better 

communicative performance.  

Visual inspection. Figures 3 and 4 present, in their left panels and with filled black dots, the 

original data for Samantha and Thomas, respectively. The asterisks in the left panels show how 

the data look like when removing baseline trend, which is done in the context of the SLC in 

order to represent how much of an improvement is there with the introduction of the 

intervention, beyond the improvement already taking place during the baseline. The middle 

panels of Figures 3 and 4, show the trends in the original data (thin dashed lines) and the trends 

in the transformed data (thick solid lines). Given that the slope of baseline trend is close to zero 
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(i.e., almost flat), the baselines are relatively stable. Therefore, detrending does not affect greatly 

the values. The intervention phase measurements are more variable and show certain increasing 

trend, indicative of change in slope (which can also be called change in trend). The right panels 

of Figures 3 and 4 show the net (pure) change in level, after controlling for the intervention 

phase trend. The amount of vertical distance between the dashed lines representing the within-

phase means is indicative of a change in level.
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Figure 3. Application of the percentage change index to the data gathered by Douglas et al. (2014): participant called Samantha. Graphs obtained from 

https://manolov.shinyapps.io/Change/. For each of the three plots, the data to the left of the vertical line belong to the baseline (A) phase and the data to the right 

belong to the intervention (B) phase.  

 

https://manolov.shinyapps.io/Change/
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Figure 4. Application of the percentage change index to the data gathered by Douglas et al. (2014): participant called Thomas.  Graphs obtained from 

https://manolov.shinyapps.io/Change/. For each of the three plots, the data to the left of the vertical line belong to the baseline (A) phase and the data to the right 

belong to the intervention (B) phase.

https://manolov.shinyapps.io/Change/
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Justification of the choice of the analytical techniques. The absence of clear baseline trend 

makes applicable the PCI and the BC-SMD, as both compare mean levels. The possible presence 

of intervention phase trend makes useful the application of the SLC in order to quantify the 

progressive change (i.e., the slope change). Moreover, the SLC is more meaningful when the 

baseline data are well represented by the trend line. We did not use NAP, for instance, given that 

the result would be 100% in both cases, therefore, not distinguishing between the different 

distances between the baseline and intervention phase measurements for the two participants.  

Slope and level change. The application of the SLC to Samantha’s data (Figure 3) shows that 

there is a slightly improving baseline trend (0.15), and that beyond this initial trend, after the 

intervention there is an average increase of the communication score of 0.53 per measurement 

occasion (i.e., a gradual 1cm increase for each two sessions). Additionally, there is an average 

difference increase in level of 0.75cm in the intervention phase. Considering that the scale ranges 

from 0 to 10 cm, that baseline values are around 4-5cm, and that by the end of the intervention 

Samantha’s scores are near 9cm, the improvement seems relevant.  

For Thomas (Figure 4), the baseline data are practically stable (trend=−0.03) and the average 

gradual increase appears to be quantitatively small (0.19) due to the fact that the there is a 

marked decrease from the first to the second measurement in the intervention phase. However, 

from the second intervention phase data point onwards a marked gradual improvement is 

visually clear. In that sense, we recommend using visual analysis to help interpreting the 

quantitative results. The net average difference is considerable: almost 3.5cm, with the final two 

measurements being close to 10cm, indicative of the effectiveness of the intervention. Note that 

in this example the interpretability is not necessarily aided by the fact that the SLC summarizes 

the results in the same measurement units as the outcome variable, because the centimeters of the 
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visual analogue scale are not as readily interpreted as would be, for instance, the number of 

errors in a speech. For that reason, we offer further quantifications.  

Percentage change index. Figure 1 focuses on the within-phase means, with a solid 

horizontal line representing the mean of all the measurements in each phase and the dashed 

horizontal line representing the mean of only the last three measurements per phase. For 

Samantha (upper panel of Figure 1), the percentage increase for Samantha is approximately 60% 

regardless of whether all data or only the last three measurements per phase are considered. For 

Thomas (Figure 1; lower panel), PCI=73.66% considering all data and 91.39% focusing on the 

last three data points per condition. For both participants, NAP=100%. However, as shown using 

the PCI, for Thomas the difference between conditions is larger than for Samantha, despite the 

fact that there is complete nonoverlap for both, illustrating one of NAP’s limitations.  

Between-cases standardized mean difference. Apart from obtaining separate quantifications 

for each participant, another analytical option would be to obtain an overall quantification 

computing the BC-SMD. According to Zelinsky and Shadish (2016, p. 5) “one case allows 

computing the numerator of d, two cases allow computing the denominator, and three cases are 

needed to compute the standard error of d” and thus we would obtain d = 3.51, which can be 

interpreted as the communication score being, on average for both participants, three and a half 

standard deviations better during the intervention than before. On the basis of the graphical 

representation3 that can be obtained from https://jepusto.shinyapps.io/scdhlm/, it can be visually 

assessed to what extent the effect can be considered homogeneous for both participants. 

Additionally, the aforementioned website provides the standard error (SE=1.26), despite having 

only two cases, and a 95% confidence interval ranging from 1.65 to 6.16 and illustrating the low 

                                                           
3 It is practically identical to Figure 3, introduced later in the text. 

https://jepusto.shinyapps.io/scdhlm/
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precision of the estimate. Nevertheless, Valentine et al. (2016) recommend applying the BC-

SMD when there is a minimum of three cases. Thus, the result of d and especially its standard 

error reported should be interpreted with caution. 

Overall assessment of intervention effectiveness. All the quantifications reflect the 

effectiveness of the intervention. Beyond the current (quasi)statistical analyses, the qualitative 

feedback provided by both participants and reported in Douglas et al. (2014) is crucial for a 

comprehensive assessment of intervention effectiveness. In general, the numerical results 

provided here agree with Douglas et al.’s (2014, p. 199) conclusion of “clinically significant 

improvements on expression and comprehension discourse tasks in participants”. 

Second Example: Spontaneous Improvement and Unstable Baseline 

Data. Ownsworth, Fleming, Desbois, Strong, and Kuipers (2006) report a study on a 

participant with traumatic brain injury, presenting long-term awareness deficits and treated with 

a metacognitive contextual intervention. The outcomes included the numbers of errors in a 

cooking task (AB plus maintenance design) and in volunteering work (AB design), with lower 

values being more desirable.  

Cooking task: visual inspection and justification of the choice of the analytical 

techniques.  For the cooking task, visually there is a clear improving baseline trend. Therefore, 

this trend has to be taken into account when performing the analysis, in order to explore to what 

extent the intervention exceeds the spontaneous improvement. In that sense, the SLC is 

applicable to these data, but we want to illustrate further analytical options here: Piecewise and 

GLS regression. Both analytical options fit trend lines separately to each phase and in case the 

serial dependence is not statistically significant (and GLS does not lead to transforming the data) 
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these trend lines are the same; that is, Piecewise and GLS yield identical results4. What is 

different is the focus of the analysis. In Piecewise regression the main quantifications are the 

immediate change (difference between the last predicted baseline measurement and the first 

predicted intervention phase measurement) and the change in slope (difference between the 

slopes of the trend lines). In GLS the baseline trend line is extrapolated into the intervention 

phase and is compared to the trend line fitted to the intervention phase data; a comparison 

between the two sets of predicted data points is performed.  

Regarding alternative analytical approaches, the PCI is not meaningfully applicable here, 

given that mean differences are less informative when trend is present in both phases. NAP is 

also not appropriate, because it does not control for baseline trend. 

Cooking task: regression analyses. According to Piecewise regression (see Figure 4; upper 

panel), the initial baseline level is 23.5 and, more importantly, baseline trend is equal to −1.5 

(i.e., there are three errors less every two measurement occasions). After the intervention, 

Piecewise regression indicates an immediate decrease of 3.4 errors, but the improving trend is 

not as steep as in the baseline (−0.87, which is 0.63 less than −1.5). According to GLS, the 

overall average difference, considering the different levels (intercepts by b1) and slopes (denoted 

by b0), would be a reduction of almost three errors as indicated in the foot of Figure 4 (lower 

panel). Therefore, both analytical options suggest a considerable reduction in the target behavior, 

beyond the spontaneous improvement. 

INSERT FIGURE 4 ABOUT HERE 

                                                           
4 Note that the intercept estimate for the baseline phase is different only because for Piecewise regression the 
intercept refers to the first baseline measurement occasion, whereas for GLS it refers to the (imaginary) previous 
measurement occasion: 25−1.5=23.5. 
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Volunteering work: visual inspection, justification of the choice of the analytical 

techniques, and numerical results.  For volunteering work, the baseline data are more variable 

and not readily represented by a mean line (see the solid horizontal line in the upper panel of 

Figure 5) or by a trend line5 (see the solid line in the lower panel of Figure 5). Therefore, the 

application of the SLC and regression analysis is less justified. The PCI, focusing on the last 

three measurements per phase, is more meaningful than the mean baseline difference, given that 

the last three measurements are better represented by their mean (dashed lines) than the whole of 

the baseline data (Figure 5, upper panel). The PCI indicates a reduction of more than 40%. NAP 

is also especially useful for the volunteering work data, given that it does not require the data to 

be summarized by a mean or a trend line; NAP=100%. Additionally, the assessment of trend 

stability (Lane & Gast, 2014, using split middle trend ±20% within-phase median; Figure 5, 

lower panel) suggests that the performance became more stable after the intervention. 

Overall assessment of intervention effectiveness. Considering all numerical results, the 

intervention seems effective in reducing the frequency of errors. However, the global evaluation 

of the effectiveness of the intervention, as performed by Ownsworth et al. (2006), also includes 

the assessment of awareness of deficits via a questionnaire and an interview, for which the 

results were not clinically significant. In that sense, the (quasi)statistical information obtained on 

directly observable behaviors is only part of the evidence when assessing intervention 

effectiveness. 

 

 

                                                           
5 When fitting a regression line to the baseline data for volunteering we obtained R2=.038 (suggesting very poor 
fit), whereas for cooking task the fit was clearly better: baseline data R2=.882 and intervention phase data R2=.453. 
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Figure 5. Upper panel obtained via https://manolov.shinyapps.io/Change: application of the percentage change 

index (PCI; based on the dotted horizontal line representing the mean of the last three measurements per phase) and 

the mean baseline difference (based on the solid horizontal line representing the phase means). Lower panel 

obtained via https://manolov.shinyapps.io/Overlap: trend stability envelope, with the solid line representing split-

middle trend. Data gathered by Ownsworth et al. (2006) on the frequency of errors in volunteering work. For each of 

the two plots, the data to the left of the vertical line belong to the baseline (A) phase and the data to the right belong 

to the intervention (B) phase. 

https://manolov.shinyapps.io/Change
https://manolov.shinyapps.io/Overlap
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Additional Remarks 

Ideally, statistical analysis should focus on quantifying the type of change (in level, trend, or 

variability) expected for the intervention. In absence of explicitly stated expectations, looking for 

a change in level (e.g., using BC-SMD, SLC, PCI) seems most parsimonious and we proceeded 

accordingly with the Douglas et al. (2014) data. However, the obtained data pattern needs to be 

considered as well, which is why we took into account the spontaneous improvement and the 

variable baseline in the Ownsworth et al. (2006) data when selecting the analytical techniques. 

It has to be noted that we relied on descriptive measures in our analyses, given that p values 

are not readily interpretable in terms of population inference, because it is not justified in 

absence of random sampling and the articles whose data is re-analyzed here did not sample the 

participants at random from a population of individuals with similar characteristics. Moreover, 

tentative causal inference on the basis of a randomization test (Edgington & Onghena, 2007) is 

not possible for the data re-analyzed here, given the absence of random assignment of 

measurement times to conditions. Nevertheless, we encourage researchers to implement 

randomization and replication to enhance internal and external validity (Kratochwill et al., 2010; 

Tate et al., 2013). 

 

Analytical Challenges and Recommendations 

Lack of a Gold Standard 

The number of analytical techniques reviewed and the absence of a specific requirement about 

data analysis in the RoBiNT scale (Tate et al., 2013) illustrate the lack of consensus on a data 
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analytical gold standard. This can be seen both as a limitation (any kind of analysis can be 

criticized by a reviewer more in favor of an alternative analytical approach) and as an advantage 

(several analytical options are acceptable if duly justified). Actually, there have already been 

efforts to summarize the variety of alternatives available (Campbell & Herzinger, 2010; Gage & 

Lewis, 2013; Manolov & Moeyaert, 2017a; Perdices & Tate, 2009), to offer criteria that 

researchers can use when deciding which technique to use (Manolov, Gast, Perdices, & Evans, 

2014; Wolery, Busick, Reichow, & Barton, 2010), and to provide guidance regarding the choice 

of analytical techniques (Manolov & Moeyaert, 2017b). Regardless of the choice made, in order 

to make possible future analysis with different analytical techniques and future meta-analysis, it 

is recommended (Tate et al., 2013) to make raw data available in either tabular or graphical 

form. 

 

Different Techniques for Different Aims and Data Patterns 

The lack of a gold standard is arguably due to the fact that there is no single data analytical 

technique appropriate for all aims, treatment effects, and datasets. A myriad of factors may affect 

the adequacy of a technique, such as the use of randomization in the design, the amount of cases 

and measurements per case available, the presence of trend, the amount of variability around a 

mean or a trend line, the presence of autocorrelation or of a floor or ceiling effect in the outcome. 

Ideally, the way in which the data are to be analyzed depends on the type of effect expected 

(Edgington & Onghena, 2007): for instance, compute a mean difference when an immediate 

change in level is expected or use Piecewise regression when progressive change or change in 

slope is expected, after a possible spontaneous improvement. Also relevant are the measurement 
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units used: if they are directly meaningful such as the number of behaviors exhibited, a raw 

quantifications such as the ones provided by the SLC are reasonable. However, an analytical 

technique determined prior to gathering the data may provide misleading results for the specific 

data at hand. In such situations, visual analysis is recommended as a validation tool (Parker et al., 

2006) in order to assess how meaningful a quantification is. As a consequence, all illustrations 

provided here include visual representation of the specific data features included in the 

quantification.   

 

Looking for Meaningful Comparisons 

It is much clearer how to analyze an AB pair of phases when they belong to a multiple baseline 

design than exactly how to integrate the information from withdrawal designs (ABAB) and 

designs that do not include the same number and sequence of A and B phases (e.g., ABA, 

ABCB). Methodological proposals for the ABAB design include: to use only the A1-B1 

comparison (Strain, Kohler, & Gresham, 1998), to compare A1-B2 (Olive & Smith, 2005), and to 

compare adjacent phases (Lane & Gast, 2014). As an applied example of the difficulty, Zelinsky 

and Shadish (2016) describe the decisions made when applying the BC-SMD to different 

designs: “[b]ecause the SPSS macro required pairs of baseline and treatment phases, we 

excluded any extra nonpaired baseline or maintenance phases at the end of studies (e.g., 

excluding the last A-phase from an ABA design). Finally, if the case started with a treatment 

phase, we paired that treatment phase with the final baseline phase from the end of that case.” (p. 

5).  
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Due to the importance of transparent reporting (Tate et al., 2016), we recommend that 

researchers: (a) clearly specify which phases are compared in every quantification provided; (b) 

provide a justification for the choice of phase (e.g., compare A1-B1, B1-A2, and A2-B2 instead of 

A1-B2 due to the phases being adjacent; compare only A1-B1 and A2-B2 without including  B1-A2 

in order to avoid using the data from the same B1 phase more than once and assigning a greater 

weight to them); (c) provide the quantification for all separate comparisons performed; (d) 

clearly specify how an overall quantification is obtained from the separate quantifications; and 

(e) reflect, if possible, whether the comparisons and the integration method chosen are similar or 

different from previous studies on the same substantive topic.   

 

Formal Criteria for All Data Features 

Kratochwill et al. (2010) mention six data features object of visual analysis. However, there have 

been more statistical developments for level (BC-SMD, SLC, PCI), trend (SLC, regression 

analyses), and overlap (NAP) than for assessing (changes in) variability, the immediacy of effect, 

and the consistency of data patterns across similar conditions. Kratochwill et al. (2010) suggest 

evaluating the presence of an immediate change as the difference in level between the last three 

data points in one phase and the first three data points of the next, which could be extended to 

considering the slopes in these same measurements. Regarding the assessment of the (change in) 

variability, proposals such as the stability envelope (Lane & Gast, 2014) become useful, but 

more research is necessary to assess their performance. Finally, for evaluating the consistency of 

data patterns, for ABAB designs, the examples provided by Moeyaert, Ugille, et al. (2014; 

design matrices 5, 6, and 7) are relevant. For multiple-baseline designs, the quantification of the 



31 

Running head: SCED ANALYTICAL OPTIONS 

 

proportion of between-case variance incorporated in the BC-SMD (Shadish et al., 2014) is a 

useful indicator.  

 

Concluding Remarks 

Applied researchers should feel encouraged by the amount of analytical options and software 

implementations available (see https://osf.io/t6ws6/ for a list of tools), as they are intended to 

bring statistical developments closer to the professionals gathering SCED data. Until applied 

researchers start feeling comfortable choosing an analytical technique, performing the analysis, 

and interpreting the output by themselves, they can collaborate with methodologists and 

statisticians. In our experience, such collaborations are the best possible way to make the 

available statistical contributions practically (and not only academically) useful and to prompt 

future developments tackling the challenges encountered in real-life data.     
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