Biomimetic Construction of the Hydroquinoline Ring

System. Diastereodivergent Enantioselective Synthesis

 of 2,5-Disubstituted cis-Decahydroquinolines ${ }^{\dagger}$Mercedes Amat, ${ }^{*, \ddagger}$ Robert Fabregat, ${ }^{\ddagger}$ Rosa Griera, ${ }^{\ddagger}$ Pedro Florindo, ${ }^{\ddagger}$ Elies Molins, ${ }^{\varsigma}$ and Joan Bosch ${ }^{*, \ddagger}$
${ }^{\ddagger}$ Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB),
University of Barcelona, 08028 Barcelona, sInstitut de Ciència de Materials de Barcelona (CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola, Spain.
amat@ub.edu; joanbosch@ub.edu
${ }^{\dagger}$ Dedicated to Prof. José Barluenga on the occasion of his $70^{\text {th }}$ birthday
${ }^{\ddagger}$ Laboratory of Organic Chemistry
${ }^{s}$ Institut de Ciència de Materials

Graphical Abstract

[^0]The process mimics the key steps believed to occur in nature in the biosynthesis of amphibian decahydroquinoline alkaloids. Diastereodivergent routes to enantiopure cis-2,5-disubstituted decahydroquinolines, including the alkaloid pumiliotoxin C (cis-195A), are developed.

Introduction

2,5-Disubstituted decahydroquinolines (Figure 1) represent one of the major classes of amphibian alkaloids, ${ }^{1}$ which were first isolated from the skin extracts of dendrobatid frogs. ${ }^{2}$ These biologically active natural products, unprecedented in the plant kingdom, also occur in bufonid toads, ${ }^{3}$ tunicates, ${ }^{4}$ marine flatworms, ${ }^{4 \mathrm{~b}}$ and myrmicine ants. ${ }^{5}$ The biosynthetic origin of decahydroquinoline amphibian alkaloids remains an intriguing question and a major research challenge for chemical ecologists, ${ }^{1}$ particularly since the isolation of some of these alkaloids from ants has opened a dietary hypothesis for their presence in frogs. ${ }^{5}$

(-)-Pumiliotoxin C

2-epi-cis-219A

cis-233C

2-epi-cis-275B

FIGURE 1. Amphibian cis-decahydroquinoline alkaloids.

The structural diversity and pharmacological activities of these alkaloids, as well as the limited amounts available from natural sources, have stimulated considerable synthetic effort in this area, ${ }^{6}$ including some biomimetic approaches. ${ }^{7}$ Although there are no conclusive studies concerning their biosynthesis, it is thought that decahydroquinoline alkaloids might derive from the polyketide pathway, by aminocyclization of straight-chain 1,5-polycarbonyl derivatives A, via cyclohexenone intermediates, as outlined in Scheme 1. ${ }^{8}$

SCHEME 1. Biogenetic Hypothesis

Mimicking these key steps believed to occur in nature, we present here a straightforward enantioselective construction of the hydroquinoline ring system from 1,5-polycarbonyl derivatives, using (R)-phenylglycinol as a chiral latent form of ammonia. Appropriate elaboration of the resulting tricyclic lactams results in diastereodivergent routes to enantiopure cis-2,5-disubstituted decahydroquinolines, including the most representative alkaloid of this group, pumiliotoxin C (cis-195A).

Results and discussion

Our biomimetic approach was inspired by a serendipitous observation when attempting a double phenyglycinol-induced cyclocondensation from the polycarbonyl derivative $\mathbf{2 a}$ in the context of model studies on the synthesis of (+)-anaferine (Scheme 2).

SCHEME 2. Discovery of the Biomimetic Aminocyclization

Thus, treatment of diketo diester 2a, which was prepared in excellent yield (82\%) by Pd-catalyzed coupling of glutaryl dichloride with the functionalized organozinc derivative $\mathbf{1}$ (Scheme 3), with (R) phenylglycinol in refluxing benzene containing AcOH unexpectedly led to the tricyclic hydroquinoline lactam 5a (37\% yield) instead of the desired bis(oxazolopiperidone) lactam $\mathbf{3}(\mathrm{X}=\mathrm{H}, \mathrm{H})$. Cyclohexenone 4a (22\% yield, see Scheme 4) and enaminone 6 (25% yield; ~1:1 mixture of stereoisomers) were also isolated.

SCHEME 3. Synthesis of 1,5-Polycarbonyl Derivatives 2

The formation of $\mathbf{5 a}$ can be rationalized by considering that the starting symmetrical diketone $\mathbf{2 a}$ undergoes an aldol cyclocondensation leading to cyclohexenone $\mathbf{4 a}$, which then undergoes an in situ phenylglycinol-promoted cyclocondensation reaction in an overall process that parallels the biogenetic postulate outlined in Scheme 1.

In accordance with this interpretation, diketo diester 2a was first converted to the intermediate cyclohexenone 4a (Scheme 4) in excellent yield (90\%) by sequential treatment with aqueous LiOH and TMSCl-EtOH, and then this ketone was satisfactorily cyclized (60% yield) to lactam $\mathbf{5 a}$ by treatment with (R)-phenylglycinol. ${ }^{9}$

SCHEME 4. Biomimetic Construction of the Hydroquinoline Ring System

The application of this biomimetic double cyclocondensation methodology to the enantioselective synthesis of the decahydroquinoline alkaloid cis-195A, which incorporates a C-5 methyl substituent, required starting from a diketoester $\mathbf{2 b}$, bearing a methyl ketone moiety. This 1,5-polycarbonyl derivative was prepared in 65\% yield by Pd-catalyzed coupling of the organozinc derivative $\mathbf{1}$ with 5oxohexanoyl chloride. In this series, the initial aldol cyclocondensation to $\mathbf{4 b}$ took place in 82% yield, whereas the phenylglycinol-promoted cyclocondensation stereoselectively provided tricyclic lactam 5b in 70% yield. The configuration of the stereogenic ring fusion carbon atoms generated in this step was unambiguously established by X-ray crystallographic analysis.

The conversion of lactam $\mathbf{5 b}$ to the target alkaloid required the stereoselective hydrogenation of the carbon-carbon double bond, the introduction of the propyl substituent at C-2, and the reductive removal of the chiral inductor. The catalytic hydrogenation of $\mathbf{5 b}$ using PtO_{2} as the catalyst took place in nearly quantitative yield and complete selectivity from the most accessible face to give lactam 6, whose absolute configuration was unambiguously established by X-ray crystallographic analysis (Scheme 5).

SCHEME 5. Enantioselective Synthesis of Pumiliotoxin C

The lactam carbonyl present in tricyclic lactam $\mathbf{6}$ allows the introduction of substituents at the 2-position of the hydroquinoline ring, ultimately leading to enantiopure 2,5-disubstituted cis-decahydroquinolines. Thus, lactam 6 was converted into the corresponding thioamide, which was then subjected to Eschenmoser sulfide contraction ${ }^{10}$ conditions $\left(\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right.$; then $\left.(\mathrm{MeO})_{3} \mathrm{P}, \mathrm{Et}_{3} \mathrm{~N}\right)$ to give β enamino ester 8 in 50\% overall yield.

At this point, the complete relative stereochemistry of the target alkaloid cis-195A was installed by hydrogenation of $\mathbf{8}$ in the presence of PtO_{2} under acidic conditions ($\mathrm{AcOH}, \mathrm{MeOH}, 24 \mathrm{~h}$), which brought about both the stereoselective reduction of the vinylogous urethane double bond ${ }^{11}$ and the cleavage of the oxazolidine $\mathrm{C}-\mathrm{O}$ bond. A subsequent debenzylation with hydrogen and $\mathrm{Pd}(\mathrm{OH})_{2}$ in the presence of $\mathrm{Boc}_{2} \mathrm{O}$ led to the protected cis-decahydroquinoline $\mathbf{1 0}$.

Finally, the conversion of ester $\mathbf{1 0}$ into pumiliotoxin C was accomplished in satisfactory overall yield by LiAlH_{4} reduction to alcohol 11, followed by methylenation of the corresponding aldehyde, subsequent catalytic hydrogenation of the resulting N-Boc-2-allyldecahydroquinoline, and finally deprotection of the piperidine nitrogen. The NMR spectroscopic data and $[\alpha]^{22}$ D value ($-15.3, c=0.5$ in MeOH) of cis-195A (pumiliotoxin C) hydrochloride were consistent with those reported in the literature. ${ }^{12,13}$

Unexpectedly, reversing the order of the catalytic hydrogenation of the endocyclic double bond and the Eschenmoser sulfide contraction reactions resulted in a dramatic change in the overall stereochemical
outcome of the process. Thus, catalytic hydrogenation of enamino ester $13\left(\mathrm{PtO}_{2}, \mathrm{AcOH}, \mathrm{MeOH}, 16 \mathrm{~h}\right)$, which was prepared in 76% overall yield from lactam $\mathbf{5 b}$ as outlined in Scheme 6, followed by reaction of the resulting secondary amine with $\mathrm{Boc}_{2} \mathrm{O}$ did not lead to the expected decahydroquinoline-2-acetate derivative 10, but to a stereoisomer, ent-2-epi-10, instead (45% overall yield). ${ }^{14}$ The configuration of this ester was initially misassigned as that of 2 -epi-10 on the basis of the $2,8 \mathrm{a}-\operatorname{trans}, 4 \mathrm{a}, 5$-trans, $4 \mathrm{a}, 8 \mathrm{a}-$ cis relationship (evident by X-ray crystallography) of the alcohol resulting from its LiAlH_{4} reduction and bearing in mind the known C-4a absolute configuration of the starting material 13.

The correct absolute configurations of the above ester and alcohol were only unambiguously established as those depicted in Scheme 6 for ent-2-epi-10 and ent-2-epi-11, respectively, once this alcohol was converted to ent-2-epi-cis-195A ${ }^{15}$ following a synthetic sequence similar to that previously developed in the above pumiliotoxin C series. This compound showed NMR spectroscopic data ${ }^{16}$ and an $[\alpha]^{22}{ }_{D}$ value ${ }^{12 \mathrm{f}}$ consistent with those reported in the literature for (-)-4a,5,8a-epipumiliotoxin C. ${ }^{17}$

SCHEME 6. Enantioselective Synthesis of ent-2-Epi-cis-195A

The formation of ent-2-epi-10 from 13 involves six chemical transformations: stereoselective hydrogenation of two carbon-carbon double bonds, reductive cleavage of the oxazolidine ring,
epimerization at the perhydroquinoline C-4a position, debenzylation and, finally, introduction of the protective group.

The hydrogenation of the exocyclic $\mathrm{C}-\mathrm{C}$ double bond of $\mathbf{1 3}$ is the first event of this multistep sequence, as evidenced by the rapid disappearance (3h) of the NMR singlet at $\delta 4.38$ attributable to the vinyl proton α to the carbonyl group when operating under neutral conditions ($\mathrm{PtO}_{2}, \mathrm{MeOH}$). The resulting intermediate \mathbf{B} is then converted to the perhydro derivative \mathbf{C}, as indicated by the successive disappearance of the NMR signals due to the exocyclic and endocyclic (broad singlet at $\delta 5.42$) double bonds, when the hydrogenation was effected using Pd / C as the catalyst in methanol. Under acidic conditions $\left(\mathrm{PtO}_{2}, \mathrm{MeOH}\right.$, excess AcOH$)$, this intermediate was formed in 30 min , and after prolonged reaction times it evolved into the secondary amine precursor of ent-2-epi-10.

A similar stereochemical result was obtained starting from diester 16. Catalytic hydrogenation of $\mathbf{1 6}$ in the presence of PtO_{2} under acidic conditions $(\mathrm{AcOH}, \mathrm{EtOH})$, followed by protection of the resulting secondary amine with $\mathrm{Boc}_{2} \mathrm{O}$, led to the cis-decahydroquinoline 17 (Scheme 7). Diester 16 was prepared in 71% overall yield from lactam 5 a by Eschenmoser sulfide contraction of the corresponding thiolactam 15.

SCHEME 7.

The stereochemical outcome of the hydrogenation of 13 was quite surprising because two configurationally related substrates (5b and 13) lead to two diastereoisomers (10 and ent-2-epi-10, respectively) differing in the absolute configuration of three stereocenters. This result can be rationalized by considering that the hydrogenation of the endocyclic $\mathrm{C}-\mathrm{C}$ double bond of the conformationally rigid tricyclic derivatives $\mathbf{5 b}$ and \mathbf{B} occurs with differing facial selectivity and that the absolute configuration of the stereocenter generated in this step (C-5) determines the stereochemistry of the configurationally labile C-4a stereocenter under the acidic conditions required for the reductive cleavage of the oxazolidine ring.

A reasonable explanation for the contrasting stereoselectivity in the above hydrogenation step can be obtained by analyzing the most stable conformations of $\mathbf{5 b}$ and \mathbf{B} obtained by molecular orbital calculations (Scheme 8). Thus, although the presence of an axial $\mathbf{C}-\mathrm{O}$ bond in $\mathbf{5 b}$ directs the uptake of hydrogen to the opposite α face to give 6, the axial acetate chain on the concave face of the hydroquinoline moiety in \mathbf{B} reverses this situation and the hydrogenation occurs on the less hindered β face to provide the intermediate \mathbf{C}.

SCHEME 8. Stereochemical Outcome of the C-C Double Bond Hydrogenation

On the other hand, the C-4a configuration in ent-2-epi-10, opposite to that in 13, can be accounted for by considering that the acid-promoted opening of the oxazolidine ring in \mathbf{C} leads to an intermediate
iminium salt Xa (Scheme 9), which is in equilibrium via the corresponding enamine with the most stable epimer Ya (equatorial methyl group) in a process involving the inversion of the configuration at the C-4a stereocenter. A subsequent stereoselective hydrogenation of the iminium function and debenzylation, followed by protection with $\mathrm{Boc}_{2} \mathrm{O}$, leads to cis-decahydroquinoline ent-2-epi-10. ${ }^{18}$

In contrast, the C-4a epimerization does not occur in the pumiliotoxin C series, in which the iminium intermediate Xb (equatorial methyl group), generated after an initial stereoselective reduction of the exocyclic double bond of $\mathbf{8}$, is directly converted to the cis-decahydroquinoline $\mathbf{1 0}$.

SCHEME 9. The Configuration of the Ring Junction

Conclusion

In summary, starting from an easily accessible (R)-phenylglycinol-derived tricyclic lactam $\mathbf{5 b}$, depending on the order of the synthetic transformations (paths \mathbf{A} or \mathbf{B}), it is possible to enantioselectively access 5-substituted cis-decahydroquinoline-2-acetate derivatives that differ in the configuration of the $4 \mathrm{a}, 5$, and 8a stereocenters (Scheme 10).

SCHEME 10. Diastereodivergent Enantioselective Synthesis of 2,5-Disubstituted cisDecahydroquinolines

The results reported in this paper not only provide experimental support for the presumed biosynthetic pathway to amphibian decahydroquinoline alkaloids but also open general enantioselective routes to both the cis and the 2-epi-cis- series of these alkaloids, which differ in the nature of the substituents at the 2 and 5 positions and in the relative C-2 configuration (see Figure 1). Starting from an appropriate (R)-phenyglycinol-derived tricyclic lactam, the above path A provides access to the normal cis-series, whereas when using an (S)-phenylglycinol-derived lactam, the above path \mathbf{B} would lead to decahydroquinoline alkaloids of the 2-epi-cis series (Scheme 11).

SCHEME 11. A Synthetic Approach to cis-Decahydroquinoline Alkaloids Epimeric at C-2

5b

ent-5b

cis series

Experimental Section

Diethyl 5,9-dioxotridecanedioate (2a). $\operatorname{Pd}\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}(2.9 \mathrm{~g}, 2.5 \mathrm{mmol}) \text { was added to a solution of 4- }-2 .}\right.$ ethoxy-4-oxobutylzinc bromide (1; 100 mL of a 0.5 M solution in THF, 50 mmol) in THF (150 mL), and the mixture was stirred at rt for 30 min . Glutaryl dichloride ($3.2 \mathrm{~mL}, 25 \mathrm{mmol}$) was added, and the mixture was stirred at rt for additional 90 min . The mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with saturated aqueous NaCl , dried, and concentrated to give a solid. Flash chromatography (from 9:1 to 8:2 hexane-EtOAc) afforded 2a (6.7 g, 82\%): mp 73-74 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26$ (m, 6H, 2CH3), 1.88 (m, 6H), 2.32 (m, 4H), 2.45 (m, 8H), 4.12 (m, 4H, 2CH2-ethyl); ${ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2\left(2 \mathrm{CH}_{3}\right), 17.6$ $\left(\mathrm{CH}_{2}\right), 18.8\left(2 \mathrm{CH}_{2}\right), 33.3\left(2 \mathrm{CH}_{2}\right), 41.4\left(2 \mathrm{CH}_{2}\right), 41.5\left(2 \mathrm{CH}_{2}\right), 60.3\left(2 \mathrm{CH}_{2}\right), 173.0(2 \mathrm{COO}), 209.4$ (2CO); IR (NaCl) 1735, $1721 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{6}$: C 71.52, H 7.37, N 3.79; found: C 71.50, H 7.42, N 3.84.

Ethyl 5,9-dioxodecanoate (2b). A mixture of oxalyl chloride ($38 \mathrm{~mL}, 0.44 \mathrm{~mol}$) and 5-oxohexanoic acid ($12 \mathrm{~mL}, 0.1 \mathrm{~mol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was stirred at rt for 6 h . The solution was concentrated, and the resulting residue was dried to give the acid chloride, which was used in the next step without further purification. A solution of 4-ethoxy-4-oxobutylzinc bromide (1; 200 mL of a 0.5 M solution in THF, 0.1 mol) and $\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}(5.8 \mathrm{~g}, 5 \mathrm{mmol})$ in THF $(400 \mathrm{~mL})$ was stirred at rt for 30
min. Then, the above acid chloride was added, and the resulting mixture was stirred at rt for 16 h . The mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with saturated aqueous NaCl , dried, and concentrated to give an oil. Flash chromatography (from 9:1 to 8:2 hexane-EtOAc) afforded diketoester $\mathbf{2 b}$ ($14.8 \mathrm{~g}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-ethyl), 1.76-1.96(m, 4H), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84-2.36(\mathrm{~m}$, 2H), 2.41-2.51 (m, 6H), 4.12 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-ethyl); ${ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2$ $\left(\mathrm{CH}_{3}\right.$-ethyl), $17.6\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 41.4\left(2 \mathrm{CH}_{2}\right), 42.4\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}-\right.$ ethyl), 172.9 (COO), 208.1 (CO), 209.4 (CO); IR (NaCl) $1715 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}$: C 63.14, H 8.83; found: C 63.05, H 8.91.

Ethyl 2-(2-ethoxycarbonylethyl)-3-oxocyclohexenebutyrate (4a). A solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(8 \mathrm{~g}, 0.2$ mol) in water (125 mL) was added to a solution of $\mathbf{2 a}(6 \mathrm{~g}, 18.3 \mathrm{mmol})$ in THF (300 mL) and EtOH (350 mL), and the mixture was stirred at rt for 3 h . The mixture was concentrated, and the residue was taken up in 2 N aqueous HCl and extracted with EtOAc. The combined organic extracts were dried and concentrated to give 2-(2-carboxyethyl)-3-oxocyclohexenebutyric acid, which was used in the next step without further purification. $\mathrm{Me}_{3} \mathrm{SiCl}(10 \mathrm{~mL}, 80 \mathrm{mmol})$ was added to a solution of the acid in EtOH (105 mL), and the mixture was stirred at rt for 16 h . The mixture was concentrated, and the residue was taken up in EtOAc and washed with saturated aqueous NaHCO_{3}. The combined organic extracts were dried and concentrated to give ketodiester $\mathbf{4 a}(5.1 \mathrm{~g}, 90 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.41(\mathrm{~m}, 10 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1\left(2 \mathrm{CH}_{3}\right), 20.7$ $\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 60.0$ $\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}\right), 133.9(\mathrm{C}), 158.7(\mathrm{C}), 172.6(\mathrm{COO}), 172.8(\mathrm{COO}), 198.4(\mathrm{CO}) ; \mathrm{IR}(\mathrm{NaCl}) 1778$, $1664 \mathrm{~cm}^{-1}$; HRMS calcd for [$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}$]: 310.1780, found: 310.1778.

Methyl 2-methyl-6-oxocyclohexenepropionate (4b). Operating as in the above preparation of 4a, from diketoester 2b ($7.5 \mathrm{~g}, 33 \mathrm{mmol}$), $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~g}, 0.35 \mathrm{~mol})$, and $\mathrm{EtOH}(375 \mathrm{~mL})$ for 5 h , and then
$\mathrm{Me}_{3} \mathrm{SiCl}(13 \mathrm{~mL}, 0.1 \mathrm{~mol})$ and $\mathrm{MeOH}(80 \mathrm{~mL})$, ketoester 4b ($5.5 \mathrm{~g}, 85 \%$) was obtained as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.88-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33-2.40(\mathrm{~m}, 6 \mathrm{H}), 2.59-2.64(\mathrm{~m}, 2 \mathrm{H})$, $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.0\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 51.4\left(\mathrm{CH}_{3} \mathrm{O}\right), 133.6(\mathrm{C}), 156.5(\mathrm{C}), 173.5(\mathrm{COO}), 198.2(\mathrm{CO}) ; \mathrm{IR}(\mathrm{NaCl}) 1738$, $1663 \mathrm{~cm}^{-1}$; HRMS calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{Na}\right]$: 219.100, found 219.099.

Ethyl
 (3R,7aS,11aS)-5-oxo-3-phenyl-2,3,5,6,7,7a,10,11-octahydrooxazolo[2,3-j]quinoline-8-

butyrate (5a). (R)-Phenylglycinol ($466 \mathrm{mg}, 3.4 \mathrm{mmol}$) was added to a solution of ketodiester 4a (350 $\mathrm{mg}, 1.1 \mathrm{mmol})$ and $\mathrm{AcOH}(0.2 \mathrm{~mL}, 3.4 \mathrm{mmol})$ in benzene $(15 \mathrm{~mL})$. The mixture was heated at reflux for 48 h with azeotropic elimination of water produced by a Dean-Stark apparatus. The resulting mixture was cooled and concentrated. Flash chromatography (from 3:2 to 1:1 hexane-EtOAc) afforded lactam 5a (253 mg, 60\%) as a solid and its $3 R, 7 \mathrm{a} R, 11 \mathrm{a} R$ diastereomer ($76 \mathrm{mg}, 18 \%$). 5a (higher R_{f}): $\mathrm{mp} 89-91{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}\right) \delta 1.26\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65-1.92(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-$ 2'), 2.07-2.11 (m, 7H, H-7a, H-10, H-11, H-1'), 2.18-2.76 (m, 4H, H-6, H-3'), 3.89 (t, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.13$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-ethyl), $4.56(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.30-5.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9)$, 7.17-7.37 (m, 5H, H-Ar); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 25.1$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 33.7\left(2 \mathrm{CH}_{2}\right), 43.3(\mathrm{C}-7 \mathrm{a}), 58.5(\mathrm{C}-3), 60.2\left(\mathrm{CH}_{2}\right.$-ethyl), $69.5(\mathrm{C}-2)$, 94.3 (C-11a), 121.0 (C-9), 125.3 (CH-o), 127.1 (CH-p), 128.6 (CH-m), 136.4 (C-8), 140.3 (C-i), 169.6 (COO), 173.5 (COO); IR (NaCl) 1731, $1655 \mathrm{~cm}^{-1}$; $[\alpha]^{22}$ D -97.3 (c 1.0, MeOH). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$: C 72.04, H 7.62, N 3.65; found: C 71.63, H 7.62, N 3.53. 7aR,11aR-epi-5a (lower R_{f}): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.97(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.48(\mathrm{~m}, 11 \mathrm{H}), 3.93$ (dd, $J=9.2,1 \mathrm{H}, 1.8 \mathrm{~Hz}, \mathrm{H}-2$), 4.15 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-ethyl), 4.41 (dd, $J=9.2,1 \mathrm{H}, 7.2 \mathrm{~Hz}, \mathrm{H}-2$), 4.98 (dd, $J=7.2,1 \mathrm{H}, 1.8 \mathrm{~Hz}, \mathrm{H}-3$), 5.45 (s, 1H, H-9), 7.26-7.31 (m, 5H, H-Ar); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 33.9$ $\left(\mathrm{CH}_{2}\right), 42.3$ (C-7a), 59.3 (C-3), 60.1 (CH_{2}-ethyl), 70.9 (C-2), 93.6 (C-11a), 120.0 (C-9), 126.1 (CH-o),
127.2 (CH-p), 128.4 (CH-m), 137.5 (C-8), 141.6 (C-i), 167.1 (COO), 173.4 (COO); IR (NaCl) 1731, $1657 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}+53.1$ (c 0.9, MeOH); HRMS calcd for [$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$]: 383.2097, found: 383.2099.
(3R,7aS,11aS)-8-Methyl-5-oxo-3-phenyl-2,3,5,6,7,7a,10,11-octahydrooxazolo[2,3-j]quinoline (5b). Operating as in the above preparation of $\mathbf{5 a}$, from ketoester $\mathbf{4 b}$ ($9.5 \mathrm{~g}, 48 \mathrm{~mol}$), (R)-phenylglycinol (20 g, 145 mol), and $\mathrm{AcOH}(8.3 \mathrm{~mL}, 145 \mathrm{~mol})$ in benzene (750 mL), lactam $5 \mathbf{b}(9.5 \mathrm{~g}, 70 \%$) and its $3 R, 7 \mathrm{a} R, 11 \mathrm{a} R$ diastereomer ($2.4 \mathrm{~g}, 19 \%$) were obtained after flash chromatography (from 3:2 to $1: 1$ hexane-EtOAc). 5b (higher R_{f}): mp 115-120 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 1.59$ 1.79 (m, 2H, H-7, H-11), 1.78 (s, 3H, CH3), 1.86 (dd, $J=13.2,1 \mathrm{H}, 6.6 \mathrm{~Hz}, \mathrm{H}-11$), 1.96-2.13 (m, $3 \mathrm{H}, \mathrm{H}-$ 7a, H-10), 2.20-2.29 (m, 1H, H-7), 2.44-2.56 (m, 1H, H-6), 2.70 (dd, J = 18.6, 1H, $6.0 \mathrm{~Hz}, \mathrm{H}-6$), 3.91 (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.57(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.44-5.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9), 7.18-7.36$ (m, 5H, H$\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 22.9(\mathrm{C}-10), 24.7(\mathrm{C}-7), 25.7(\mathrm{C}-11), 31.3(\mathrm{C}-6), 44.8$ (C-7a), 58.3 (C-3), 69.4 (C-2), 94.3 (C-11a), 120.9 (C-9), 125.1 (CH-o), 127.0 (CH-p), 128.4 (CH-m), 133.0 (C-8), 140.2 (C-i), 169.6 (NCO); IR (NaCl) $1657 \mathrm{~cm}^{-1} ;[\alpha]^{22} \mathrm{D}-102.6$ (c 1.1, MeOH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C 76.29, H 7.47, N 4.94; found: C 76.60, H 7.52, N, 4.92. 7aR,11aR-epi-5b (lower R_{f}): ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.56-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.96-2.45(\mathrm{~m}, 7 \mathrm{H}), 3.94(\mathrm{dd}, J=$ 9.0, 2.0 Hz, 1H, H-2), 4.42 (dd, $J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.98 (dd, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.45 (s, $1 \mathrm{H}, \mathrm{H}-9), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 30.7(\mathrm{C}-6), 43.9(\mathrm{C}-7 \mathrm{a}), 59.4(\mathrm{C}-3), 71.1(\mathrm{C}-2), 93.8(\mathrm{C}-11 \mathrm{a}), 120.2(\mathrm{C}-9), 126.2$ (CH-o), 127.4 (CH-p), 128.5 (CH-m), 134.4 (C-8), 141.8 (C-i), 167.3 (NCO); IR (NaCl) $1657 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }_{\mathrm{D}}+13.7$ (c 1.2, MeOH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C 76.29, H 7.47, N 4.94; found: C 76.25, H 7.54, N 4.83.
(3R,7aS,8R,11aS)-8-Methyl-5-oxo-3-phenyldecahydrooxazolo[2,3-j]quinoline (6). A solution of lactam 5b (2 g, 7.1 mmol$)$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ containing $40 \% \mathrm{PtO}_{2}(0.8 \mathrm{~g})$ was stirred under hydrogen at rt for 24 h . The catalyst was removed by filtration and washed with MeOH . The combined organic solutions were concentrated, and the resulting oil was chromatographed (98:2 hexane- $\mathrm{Et}_{2} \mathrm{O}$) affording
pure compound 6 ($1.98 \mathrm{~g}, 98 \%$) as a colorless solid: mp $81-84{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}$, HSQC) $\delta 1.21$ (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.35-1.44 (m, 2H, H-10, H-11), 1.57-1.83 (m, 6H, H-7, H7a, H-9, H-10, H-11), 1.90-1.98 (m, 1H, H-8), 2.08-2.19 (m, 1H, H-7), 2.46 (ddd, $J=18.4,11.2,7.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 2.63 (dd, $J=18.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.84(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.52(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), $5.30(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.15-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7(\mathrm{C}-$ 10), 20.2 (CH_{3}), 24.8 (C-7), 26.4 (C-11), 30.3 (C-9), 31.2 (C-6), 34.2 (C-8), 45.2 (C-7a), 57.9 (C-3), 69.7 (C-2), 95.5 (C-11a), 125.3 (CH-o), 127.0 (CH-p), 128.5 (CH-m), 140.3 (C-i), 169.4 (NCO); IR (NaCl) $1654 \mathrm{~cm}^{-1} ;[\alpha]^{22} \mathrm{D}_{\mathrm{D}}-113.5$ (c 1.0, MeOH); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$: C 75.76, H 8.12, N 4.91 ; found: C 75.86, H 8.06, N 4.88 .
(3R,7aS,8R,11aS)-8-Methyl-3-phenyl-5-thiodecahydrooxazolo[2,3-j]quinoline (7). Lawesson's reagent ($640 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to a solution of saturated lactam 6 ($718 \mathrm{mg}, 2.5 \mathrm{mmol}$) in benzene (50 mL). The resulting mixture was heated at reflux for 3 h , cooled, and concentrated to give an oil. Flash chromatography (9:1 hexane-EtOAc) afforded 7 ($500 \mathrm{mg}, 66 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, HSQC) $\delta 1.20$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.37-1.47 (m, 2H, H-10, H-11), 1.58-1.79 (m, 5H, H-7, H-7a, H-9, H-10, H-11), 1.84-1.90 (m, 1H, H-9), 1.92-1.98 (m, 1H, H-8), 1.99-2.11 (m, 1H, H-7), 3.083.26 (m, 2H, H-6), 3.94 (t, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.59 (t, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.79 (t, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 7.10-7.12$ (m, 2H, H-Ar), 7.22-7.34 (m, 3H, H-Ar); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 17.6$ (C-10), $20.0\left(\mathrm{CH}_{3}\right), 24.7$ (C-7), 26.0 (C-11), 29.2 (C-9), 34.2 (C-8), 40.7 (C-6), 44.2 (C-7a), 63.5 (C-3), 69.2 (C2), 97.6 (C-11a), 125.4 (CH-o), 127.1 (CH-p), 128.5 (CH-m), 138.7 (C-i), 198.3 (NCS); IR (NaCl) 1452 $\mathrm{cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}-138.1$ (c 1.5, MeOH); HRMS calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NSO}+\mathrm{H}\right]$ 302.1579; found: 302.1573.
(3R,7aS,8R,11aS)-5-(Methoxycarbonylmethylene)-8-methyl-3-phenyldecahydrooxazolo[2,3-
j]quinoline (8). A solution of $7(1.4 \mathrm{~g}, 4.7 \mathrm{mmol})$ and methyl bromoacetate ($4.3 \mathrm{~mL}, 46.5 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(18 \mathrm{~mL})$ was stirred at rt for 17 h in the dark. The mixture was concentrated, and the residue was taken up with $\mathrm{CHCl}_{3}(18 \mathrm{~mL})$. Trimethyl phosphite ($2.2 \mathrm{~mL}, 18.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL})$ were added, and the resulting solution was heated at reflux for 24 h . The mixture was allowed to cool to rt and
concentrated. The residue was chromatographed (9:1 hexane-EtOAc) to afford $\mathbf{8}(1.2 \mathrm{~g}, 75 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}\right) \delta 1.18\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10$, H-11), 1.56-1.99 (m, 8H, H-7, H-7a, H-8, H-9, H-10, H-11), 3.11-3.21 (m, 1H, H-6), 3.25-3.37 (m, 1H, H-6), 3.49 (s, 3H, CH3O), $3.70(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1$ '), $4.51(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 4.73 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.11-7.17 (m, 2H, H-Ar), 7.23-7.36 (m, 3H, H-Ar); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.9(\mathrm{C}-10), 20.2\left(\mathrm{CH}_{3}\right), 23.9(\mathrm{C}-7), 26.1(\mathrm{C}-6), 26.2(\mathrm{C}-11), 30.2(\mathrm{C}-9), 34.5(\mathrm{C}-8), 44.7(\mathrm{C}-$ 7a), $49.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 61.7$ (C-3), 70.2 (C-2), 84.7 (C-1’), $96.0(\mathrm{C}-11 \mathrm{a}), 125.3(\mathrm{CH}-o), 127.4(\mathrm{CH}-p), 128.8$ (CH-m), 139.2 (C-i), 159.0 (C-5), 169.0 (COO); IR (NaCl) $1788 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }^{\mathrm{D}}$-132.2 (c 0.5, MeOH); HRMS calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}+\mathrm{H}\right]$: 342.2069; found: 342.2063.

(2R,4aS,5R,8aR)-1-[(R)-2-Hydroxy-1-phenylethyl]-2-(methoxycarbonylmethyl)-5-

methyldecahydroquinoline (9). A solution of $\mathbf{8}(340 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{AcOH}(2.5 \mathrm{~mL}, 44 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ containing $40 \% \mathrm{PtO}_{2}(14 \mathrm{mg})$ was stirred under hydrogen at rt for 24 h . The catalyst was removed by filtration through a Celite pad, the filtrate was concentrated, and the residue was taken up with EtOAc. The organic solution was washed with 10% aqueous KOH , dried, and concentrated. The resulting oil was chromatographed (from 9:1 to 8:2 hexane-EtOAc) to afford 9 ($170 \mathrm{mg}, 50 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}\right) ~ \delta 0.91\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12-1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6, \mathrm{H}-7)$, 1.24-1.33 (m, 1H, H-8), 1.35-1.51 (m, 5H, H-3, H-4a, H-6, H-7, H-8), 1.52-1.67 (m, 2H, H-3, H-5), 1.74 (qd, $J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.49(\mathrm{dd}, J=14.4,9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ '’), 2.68 (dd, $J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1'’), 2.86-2.96 (m, 1H, H-8a), 3.54-3.63 (m, 1H, H-2), 3.64-3.71 (m, 1H, H-1'), 3.70 (s, 3H, CH3), 3.843.94 (m, 1H, H-1'), 7.21-7.38 (m, 5H, H-Ar); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 19.2\left(\mathrm{CH}_{3}\right), 20.9(\mathrm{C}-7)$, 21.4 (C-4), 27.1 (C-6), 28.5 (C-3), 29.3 (C-8), 34.5 (C-5), 39.2 (C-1’’), 42.0 (C-4a), 49.3 (C-2), 51.6 $\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.5$ (C-8a), 62.5 (C-2’), 68.9 (C-1'), 127.6 (CH-o), 128.3 (CH-p), 128.4 (CH-m), 140.6 (NCO), 173.4 (COO); IR (NaCl) 2925, $1736 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}-10.9$ (c 1.4, MeOH); HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}+\mathrm{H}\right]: 346.2376$; found: 346.2387.
methyldecahydroquinoline (10). A solution of $\mathbf{8}(560 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{AcOH}(4.1 \mathrm{~mL}, 69 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ containing $40 \% \mathrm{PtO}_{2}(230 \mathrm{mg})$ was stirred under hydrogen at rt for 24 h . The catalyst was removed by filtration through a Celite pad, the filtrate was concentrated, and the residue was taken up with EtOAc. The organic solution was washed with 10% aqueous KOH , dried, and concentrated, affording an oil, which was used without further purification in the next step. A solution of the oil and di-tert-butyl dicarbonate ($700 \mathrm{mg}, 3.2 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{ml})$ containing $40 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(200 \mathrm{mg})$ was stirred under hydrogen at rt for 16 h . The catalyst was removed by filtration through a Celite pad, and the filtrate was concentrated. The residue was chromatographed (9:1 hexane-Et ${ }_{2} \mathrm{O}$) to afford unsaturated ester 10 ($280 \mathrm{mg}, 54 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 1.06$ (d, J $\left.=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 1.44-1.53$ (m, 6H, H-3, H-4a, H-6, H-7), 1.46 (s, 9H, $\left.{ }^{t} \mathrm{Bu}\right), 1.67-1.71$ (m, 2H, H-8), 1.78-1.84 (m, 2H, H-4, H-5), 2.45 (dd, $J=14.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 2.63 (dd, $J=14.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.17-4.21 (m, 1H, H-8a), 4.48-4.55 (m, 1H, H-2); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3\left(\mathrm{CH}_{3}\right), 20.3(\mathrm{C}-7), 20.9(\mathrm{C}-4), 26.7(\mathrm{C}-3), 28.4(\mathrm{C}-6), 28.5\left(\mathrm{CH}_{3}-\right.$ $\left.{ }^{t} \mathrm{Bu}\right), 28.5$ (C-8), 34.4 (C-5), 39.6 (C-1'), 41.6 (C-4a), 47.1 (C-2), $49.3(\mathrm{C}-8 \mathrm{a}), 51.6\left(\mathrm{CH}_{3} \mathrm{O}\right), 79.5(\mathrm{C}-$ $\left.{ }^{t} \mathrm{Bu}\right), 155.0(\mathrm{NCO}), 172.1$ (COO); IR (NaCl) 1740, $1687 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }^{\mathrm{D}}-25.9$ (c 0.9, MeOH); HRMS calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{4}+\mathrm{H}\right]$: 326.2331; found: 326.2335.

(2R,4aS,5R,8aR)-1-(tert-Butoxycarbonyl)-2-(2-hydroxyethyl)-5-methyldecahydroquinoline

$\mathrm{LiAlH}_{4}(200 \mathrm{mg}, 5.3 \mathrm{mmol})$ was slowly added to a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $\mathbf{1 0}(173 \mathrm{mg}, 0.53 \mathrm{mmol})$ in anhydrous THF (5 mL), and the mixture was stirred at rt for 1 h . The reaction was quenched with water, and the resulting mixture was extracted with EtOAc. The organic extracts were dried and concentrated, and the resulting residue was chromatographed (8:2 hexane-EtOAc) to give alcohol 11 (150 $\mathrm{mg}, 94 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}\right) \delta 1.06\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.31(\mathrm{~m}$, 3H, H-3, H-4), 1.42-1.53 (m, 5H, H-3, H-4a, H-6, H-7), 1.48 (s, 9H, 'Bu), 1.59-1.65 (m, 3H, H-1’, H-6, H-8), 1.75-1.86 (m, 4H, H-1', H-5, H-8), 3.40 (br s, 1H, H-2'), 3.58 (br s, 1H, H-2'), 4.20 (br s, 1H, H-

8a), 4.33 (br s, 1H, H-2); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 19.1\left(\mathrm{CH}_{3}\right), 20.3$ (C-7), 21.4 (C-4), 26.7 (C3), $28.3\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 28.7(\mathrm{C}-6), 30.1(\mathrm{C}-8), 34.3(\mathrm{C}-5), 38.4(\mathrm{C}-1$ '), $42.0(\mathrm{C}-4 \mathrm{a}), 45.8(\mathrm{C}-2), 49.8(\mathrm{C}-8 \mathrm{a})$, 58.9 (C-2'), 80.0 (C-'Bu), 156.8 (NCO); IR (NaCl) 3449, $1659 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }^{\mathrm{D}}+15.5$ (c 1.0, MeOH); HRMS calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3}+\mathrm{H}\right]$: 298.2382; found: 298.2376.
(-)-Pumiliotoxin C. Dess-Martin reagent ($360 \mathrm{mg}, 0.86 \mathrm{mmol}$) was added to a solution of alcohol 11 ($180 \mathrm{mg}, 0.61 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$), and the mixture was stirred at rt for 2.5 h . Then, $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL}), 1 \mathrm{M}$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(2 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ were added, and the resulting mixture was stirred for 45 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic extracts were washed with brine, dried, and concentrated to give the corresponding aldehyde as an oil, which was used without further purification in the next step. $\mathrm{BuLi}(0.9 \mathrm{~mL}$ of a 1.6 M solution in hexane, 1.4 mmol) was added to a solution of methyltriphenylphosphonium bromide (535 $\mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1.5 h . Then, a solution of the above aldehyde in THF (2 mL) was added, and the resulting mixture was stirred at rt for 16 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated aqueous NaCl , dried, and concentrated. The residue was chromatographed (95:5 hexane-EtOAc) to give (2R,4aS,5R,8aR)-2-allyl-1-(tert-butoxycarbonyl)-5methyldecahydroquinoline (114 mg, 64\%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 1.07$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.20-1.37 (m, 3H, H-3, H-7), 1.42-1.50 (m, 5H, H-3, H-4, H-4a, H-6), 1.46 (s, 9H, 'Bu), 1.50-1.84 (m, 4H, H-5, H-6, H-8), 2.23-2.32 (m, 2H, H-1'), 4.02-4.10 (m, 1H, H-2), 4.18-4.25 (m, 1H, H-8a), 4.99-5.05 (m, 2H, H-3’), 5.70-5.81 (m, 1H, H-2’); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 19.4$ $\left(\mathrm{CH}_{3}\right), 20.4(\mathrm{C}-4), 21.1(\mathrm{C}-7), 26.8(\mathrm{C}-3), 27.2(\mathrm{C}-6), 28.5\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 28.6(\mathrm{C}-8), 34.5(\mathrm{C}-5), 40.0(\mathrm{C}-$ 1’), 41.9 (C-4a), 49.3 (C-2), 50.2 (C-8a), 79.1 (C-'Bu), 116.5 (C-3’), 136.7 (C-2’), 155.7 (NCO); IR (NaCl) $1686 \mathrm{~cm}^{-1} ;[\alpha]^{22} \mathrm{D}+4.7(c 0.8, \mathrm{MeOH})$; HRMS calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2}+\mathrm{Na}\right]$: 316.2252; found: 316.2247. A solution of the above alkene ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}\left(7 \mathrm{~mL}\right.$) containing $40 \% \mathrm{PtO}_{2}$ (25 mg) was stirred under hydrogen at rt for 1 h . The catalyst was removed by filtration and washed with

MeOH . The combined organic solutions were concentrated, and the resulting oil was chromatographed (98:2 hexane-Et ${ }_{2} \mathrm{O}$) affording pure (2S,4aS,5R,8aR)-1-(tert-butoxycarbonyl)-5-methyl-2propyldecahydroquinoline ($56 \mathrm{mg}, 95 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 0.92$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3$ '), 1.06 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.20-1.26 (m, 3H, H-3, H-4), 1.40-1.56 (m, 9H, H-1', H-2', H-3, H-4a, H-7, H-8), 1.46 (s, 9H, 'Bu), 1.62-1.67 (m, 2H, H-6), 1.77-1.84 (m, 2H, H-4, H5), 4.00 (br s, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.20 (br s, $1 \mathrm{H}, \mathrm{H}-2$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2$ (C-3’), 19.3 $\left(\mathrm{CH}_{3}\right), 20.4$ (C-2’), 20.8 (C-7), 21.4 (C-4), 26.8 (C-3), $28.0(\mathrm{C}-6), 28.5(\mathrm{C}-8), 28.5\left(\mathrm{CH}_{3}-{ }^{-} \mathrm{Bu}\right), 34.6$ (C5), 37.9 (C-1'), 42.1 (C-4a), 49.2 (C-2), 50.3 (C-8a), 78.9 (C- ${ }^{-} \mathrm{Bu}$), 155.4 (NCO); IR (NaCl) $1686 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }_{\mathrm{D}}+18.8$ ($\left.с 1.5, \mathrm{MeOH}\right)$; HRMS calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{2}+\mathrm{H}\right]: 296.2590$; found: 296.2584. To a solution of the above saturated compound ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) was added TFA ($0.5 \mathrm{~mL}, 6.5 \mathrm{mmol}$), and the mixture was stirred at rt for 15 min . Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added, and the solution was washed with 10% aqueous KOH , dried, and filtered. 1 M HCl in MeOH was added to the filtrate, and the solution was concentrated to give (-)-pumiliotoxin C hydrochloride (39 mg, 99%) as a colorless solid: mp $248-250{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 0.90(\mathrm{~d}, \mathrm{~J}$ $\left.=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 0.92$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3$ '), 0.97-1.03 (m, 1H, H-6), 1.22-1.27 (m, 1H, H-2’), 1.40-1.45 (m, 4H, H-2', H-3, H-4a, H-7), 1.46-1.62 (m, 2H, H-4, H-8), 1.76-1.88 (m, 2H, H-4, H-6), 2.07-2.17 (m, 4H, H-1', H-3, H-5), 2.33-2.50 (m, 2H, H-7, H-8), 2.98 (br s, 1H, H-2), 3.32 (br s, 1H, H8a), 8.40 (br s, 1H, NH), 9.45 (br s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3} \square \square \square$ d13.7 (C-3'), 19.1 (C-2'), $19.7\left(\mathrm{CH}_{3}\right), 20.4(\mathrm{C}-7), 23.1(\mathrm{C}-4), 25.1(\mathrm{C}-3), 27.1(\mathrm{C}-5), 29.1(\mathrm{C}-8), 34.3(\mathrm{C}-1$) $), 34.8$ (C-6), 40.8 (C-4a), 58.0 (C-8a), 60.1 (C-2); IR (NaCl) 2930, $2872 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }_{\mathrm{D}}-15.3$ (c 0.5, MeOH).
(3R,7aS,11aS)-8-Methyl-3-phenyl-5-thio-2,3,5,6,7,7a,10,11-octahydrooxazolo[2,3-j]quinoline (12). Operating as in the preparation of 7, from lactam $5 \mathbf{b}(2.4 \mathrm{~g}, 8.5 \mathrm{mmol})$ and Lawesson's reagent (2.1 g , 5.3 mmol), thiolactam 12 ($2.35 \mathrm{~g}, 93 \%$) was obtained as a solid after flash chromatography ($9: 1$ hexaneEtOAc): mp 117-122 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HETCOR}$) $\delta 1.57-1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7$), 1.76-1.81 (m, 1H, H-11), 1.78 (s, 3H, CH3), 1.85-1.98 (m, 1H, H-11), 1.98-2.18 (m, 2H, H-10), 2.20-
2.28 (m, 2H, H-7, H-7a), 3.03-3.19 (m, 1H, H-6), 3.21-3.38 (m, 1H, H-6), 4.00 (dd, J = 8.8, 7.8 Hz, 1H, $\mathrm{H}-2), 4.63(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 5.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.11-7.16(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{Ar}), 7.26-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 22.8(\mathrm{C}-10), 25.0(\mathrm{C}-11)$, 25.3 (C-7), 40.7 (C-6), 44.1 (C-7a), 64.1 (C-3), 69.0 (C-2), 96.0 (C-11a), 120.4 (C-9), 125.2 (CH-o), 127.1 (CH-p), 128.5 (CH-m), 133.5 (C-8), 138.6 (C-i), 199.0 (NCS); IR (NaCl) $1450 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}$ -209.1 (с 0.6, MeOH); HRMS calcd for [$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NOS}$]: 299.1344; found: 299.1347.
(3R,7aS,11aS)-5-(Methoxycarbonylmethylene)-8-methyl-3-phenyl-2,3,5,6,7,7a,10,11-
octahydrooxazolo[2,3-j]quinoline (13). Operating as in the preparation of 8, from thiolactam 12 (700 $\mathrm{mg}, 2.34 \mathrm{mmol}$), methyl bromoacetate ($2 \mathrm{~mL}, 23.4 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, and then trimethyl phosphite ($1.1 \mathrm{~mL}, 9.4 \mathrm{mmol}$) and $E t_{3} \mathrm{~N}(3 \mathrm{~mL})$, compound $13(650 \mathrm{mg}, 82 \%)$ was obtained as an oil after flash chromatography (7:3 hexane-EtOAc): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}$, HETCOR) δ 1.45-1.59 (m, 1H, H-7), 1.72-1.83 (m, 1H, H-11), 1.77 (s, 3H, CH3), 1.80-2.10 (m, 4H, H-7a, H-10, H11), 2.20-2.30 (m, 1H, H-7), 3.15-3.39 (m, 2H), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.77(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.38$ (s, 1H, CH=), $4.55(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.86(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 7.15-7.18$ (m, 2H, H-Ar), 7.27-7.38 (m, 3H, H-Ar); ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6\left(\mathrm{CH}_{3}\right), 23.0(\mathrm{C}-10), 24.4$ (C-7), 25.9 (C-11), 26.4 (C-6), 44.7 (C-7a), $49.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 62.6$ (C-3), $70.0(\mathrm{C}-2), 85.3(\mathrm{CH}=), 94.5(\mathrm{C}-$ 11a), 120.2 (C-9), 125.2 (CH-o), 127.5 (CH-p), 128.9 (CH-m), 134.2 (C-8), 139.2 (C-i), 159.3 (C-5), 168.8 (COO); IR (NaCl) $1739 \mathrm{~cm}^{-1} ;[\alpha]^{22} \mathrm{D}^{2}-155.2$ (c $0.8, \mathrm{MeOH}$); HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}\right]$: 339.1834; found: 339.1832.
(2R,4aR,5S,8aS)-1-(tert-Butoxycarbonyl)-2-(methoxycarbonylmethyl)-5-
methyldecahydroquinoline (ent-2-epi-10). A solution of 13 ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) and AcOH (0.9 mL , 15 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ containing $40 \% \mathrm{PtO}_{2}(40 \mathrm{mg})$ was stirred under hydrogen at rt for 16 h . The catalyst was removed by filtration, the filtrate was concentrated, and the residue was taken up with EtOAc and extracted with 2 N aqueous HCl . The aqueous solution was basified with saturated aqueous NaHCO_{3} and extracted with EtOAc. These organic extracts were dried and concentrated to give an oil,
which was used without further purification in the next step. A solution of the oil and di-tert-butyl dicarbonate ($65 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(50 \mu \mathrm{l}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was stirred under hydrogen at rt for 16 h . The solution was washed with 2 N aqueous HCl , dried, and concentrated. The resulting residue was chromatographed (9:1 hexane-EtOAc) to afford ent-2-epi-10 (43 mg, 45\%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HETCOR}$) $\delta 0.78-0.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 0.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.14-1.23 (m, 2H, H-6), 1.39 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.48-1.91 (m, 8H, H-3, H-4a, H-5, H-7, H-8), 2.40 (dd, $\left.J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.65\left(\mathrm{dd}, J=15.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.84(\mathrm{dt}, J=$ 12.0, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.12-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.0\left(\mathrm{CH}_{3}\right), 19.7(\mathrm{C}-$ 4), 19.9 (C-7), 24.0 (C-3), 25.9 (C-6), 28.5 ($3 \mathrm{CH}_{3}{ }^{-\mathrm{t}} \mathrm{Bu}$), 29.7 (C-8), 33.2 (C-5), 36.8 (C-4a), 39.9 (C-1’), 48.0 (C-2), 50.1 (C-8a), 51.5 ($\mathrm{CH}_{3} \mathrm{O}$), 79.4 (C-'Bu), 154.8 (COO), 172.1 (COO); IR (NaCl) 1740, 1690 $\mathrm{cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}-5.1(c \mathrm{c} 0.9, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{4}$: C 66.43, H 9.60, N 4.30; found: C 66.79, H 9.90, N 4.26.
(2R,4aR,5S,8aS)-1-(tert-Butoxycarbonyl)-2-(2-hydroxyethyl)-5-methyldecahydroquinoline (ent-2-epi-11). Operating as in the preparation of 11, from ent-2-epi-10 (1.4 g, 4.3 mmol$)$ and $\mathrm{LiAlH}_{4}(1.7 \mathrm{~g}$, 43.8 mmol), alcohol ent-2-epi-11 (1.2 g, 94\%) was obtained as a solid after flash chromatography (from 9:1 to $8: 2$ hexane-EtOAc): mp $85-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \operatorname{COSY}, \operatorname{HETCOR}$) $\delta 1.05$ (d, $J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.13-1.27 (m, 3H, H-6, H-8), 1.41-1.45 (m, 3H, H-4, H-7), 1.48 (s, 9H, ${ }^{t} \mathrm{Bu}$), 1.581.78 (m, 5H, H-3, H-4, H-5, H-1'), 1.84-1.94 (m, 2H, H-4a, H-8), 1.96-2.06 (m, 1H, H-3), 3.47-3.65 (m, $2 \mathrm{H}, \mathrm{H}-2$ '), 3.80 (dt, $J=12,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.06-4.16 (m, 1H, H-2); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) δ $19.1\left(\mathrm{CH}_{3}\right), 19.5(\mathrm{C}-4), 19.7(\mathrm{C}-7), 25.0(\mathrm{C}-3), 25.9(\mathrm{C}-6), 28.4\left(3 \mathrm{CH}_{3}-\mathrm{t} \mathrm{Bu}\right), 29.9(\mathrm{C}-8), 32.8(\mathrm{C}-5), 35.9$ (C-4a), 39.6 (C-1'), 46.8 (C-2), 50.8 (C-8a), 59.1 (C-2'), 79.7 (C-'Bu), 156.7 (NCO); IR (NaCl) 3450, $1662 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}-0.8$ (c 1.0, MeOH). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3}$: C 68.65, H 10.51, N 4.71; found: C 68.62, H 10.85, N 4.62.
ent-2-epi-Pumiliotoxin C. Operating as in the pumiliotoxin C series, from alcohol ent-2-epi-11 (180 $\mathrm{mg}, 0.61 \mathrm{mmol}$) and Dess-Martin reagent (365 mg, 0.86 mmol$),(2 R, 4 \mathrm{a} R, 5 S, 8 \mathrm{aS})-1$-(tert-
butoxycarbonyl)-5-methyl-2-(2-oxoethyl)decahydroquinoline (140 mg, 78\%) was obtained as a solid after flash chromatography (95:5 hexane-EtOAc): mp 81-85 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}$, HETCOR) δ 0.85-0.93 (m, 1H, H-4), 1.07 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.19-1.34 (m, 3H, H-6, H-8), 1.45 (s, 9H, ${ }^{\text {tBu}}$), 1.58-2.06 (m, 8H, H-3, H-4, H-4a, H-5, H-7, H-8), 2.56 (ddd, $J=16.0,7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1^{\prime}), 2.78 (ddd, $J=16.0,5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.94 (dt, $J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.28-4.35 (m, 1H, $\mathrm{H}-2), 9.75\left(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.0\left(\mathrm{CH}_{3}\right), 19.7(\mathrm{C}-4), 20.3(\mathrm{C}-7)$, 25.7 (C-3), 25.9 (C-6), 28.4 (3CH3- $\left.{ }^{-1} \mathrm{Bu}\right), 29.4$ (C-8), 33.2 (C-5), 37.1 (C-4a), 46.0 (C-2), 50.1 (C-1’), 50.4 (C-8a), 79.6 (C- ${ }^{-1} \mathrm{Bu}$), 154.9 (NCO), 200.7 (CO); IR (NaCl) 1725, $1686 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }_{\mathrm{D}}-5.2$ (c 0.9, MeOH); HRMS calcd for [$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3}+\mathrm{Na}$]: 318.2045; found: 318.2040. Operating as in the previous series, from the above aldehyde ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{BuLi}(0.4 \mathrm{~mL}$ of a 1.6 M solution in hexane, 0.63 mmol), and methyltriphenylphosphonium bromide ($243 \mathrm{mg}, 0.68 \mathrm{mmol}$) in THF (2.7 mL), (2R,4aR,5S,8aS)-2-allyl-1-(tert-butoxycarbonyl)-5-methyldecahydroquinoline (70 mg, 70\%) was obtained as an oil after flash chromatography (95:5 hexane-EtOAc): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, COSY, HETCOR) $\delta 0.81-0.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 0.99\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03-1.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-$ 8), $1.40\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.42-1.88$ (m, $8 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5, \mathrm{H}-7, \mathrm{H}-8$), 2.03-2.22 (m, 1H, H-1'), 2.322.40 (m, 1H, H-1’), 3.66 (m, 1H, H-2), 3.82 (dt, $J=12.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.92-5.01 (m, 2H, H-3’), 5.62-5.76 (m, 1H, H-2'); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 19.1\left(\mathrm{CH}_{3}\right), 19.6(\mathrm{C}-4), 19.7(\mathrm{C}-7), 22.1$ (C3), 25.9 (C-6), 28.5 ($3 \mathrm{CH}_{3}{ }^{-\mathrm{E}} \mathrm{Bu}$), 29.9 (C-8), 33.2 (C-5), 36.6 (C-4a), 39.9 (C-1'), 49.9 (C-8a), 50.8 (C2), $78.9(\mathrm{C}-\mathrm{-t} \mathrm{Bu}), 116.4\left(\mathrm{C}-3^{\prime}\right), 136.2\left(\mathrm{C}-2^{\prime}\right), 155.0(\mathrm{NCO}) ; \mathrm{IR}(\mathrm{NaCl}) 1688 \mathrm{~cm}^{-1}$; $[\alpha]^{22}{ }_{\mathrm{D}}-2.1$ (c 1.0, MeOH); HRMS calcd for [$\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2}+\mathrm{Na}$: 316.2247; found: 316.2236. A solution of the above alkene ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(7 \mathrm{~mL})$ containing $40 \% \mathrm{Pd}-\mathrm{C}(25 \mathrm{mg})$ was stirred under hydrogen at rt for 1 h . After the usual work-up, flash chromatography ($98: 2$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) afforded pure (2S,4aR,5S,8aS)-1-(tert-butoxycarbonyl)-5-methyl-2-propyldecahydroquinoline (57 $\mathrm{mg}, 97 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HETCOR}$) $\delta 0.92$ (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}, \mathrm{H}-4$), 1.05 (d, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.17-1.38 (m, 5H, H-6, H-8, H-2’), 1.42-1.52 (m, 3H, H-4, H-7, H-1'), 1.46 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.53-1.94 (m, 7H, H-3, H-4a, H-5, H-7, H-8, H-1'), 3.70-3.76 (m, 1H, H-2), 3.88 (dt, $J=12.0,4.4 \mathrm{~Hz}$,

1H, H-8a); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 19.8(\mathrm{C}-4), 19.9(\mathrm{C}-7), 20.4(\mathrm{C}-2$ '), 22.6 (C-3), 26.0 (C-6), 28.6 ($3 \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}$), 29.9 (C-8), 33.1 (C-5), 36.5 (C-4a), 37.6 (C-1’), 49.9 (C-2), 50.9 (C-8a), $78.6(\mathrm{C}-\mathrm{tBu}), 155.1(\mathrm{NCO})$; IR (NaCl) $1688 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}+14.7$ (c 0.9, MeOH); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{2}$: C 73.17, H 11.26, N 4.74 ; found: C 72.84, H 11.65, N 4.74 . To a solution of the above saturated compound ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(0.5 \mathrm{~mL}, 26$ mmol), and the mixture was stirred at rt for 15 min . Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added, and the solution was washed with 10% aqueous KOH , dried, and concentrated to give ent-2-epi-pumiliotoxin C (65 mg , 100%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{HSQC}$) $\delta 0.88-0.92(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-$ 3'), 0.98-1.00 (d, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06-2.05(\mathrm{~m}, 16 \mathrm{H}), 2.79-2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.10-3.15(\mathrm{dt}, J=$ 10.8, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a})$; ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 14.2(\mathrm{C}-3$) $) 19.2(\mathrm{C}-4), 19.3\left(\mathrm{CH}_{3}\right), 20.5(\mathrm{C}-$ 7), 25.2 (C-3), 28.3 (C-8), $29.7\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 32.5(\mathrm{C}-5), 38.3(\mathrm{C}-1$) $), 41.8(\mathrm{C}-4 \mathrm{a}), 49.6(\mathrm{C}-2), 50.0$ (C-8a); IR (NaCl) $2859 \mathrm{~cm}^{-1} ;[\alpha]^{22}{ }_{\mathrm{D}}-22.2$ (c $\left.0.6, \mathrm{MeOH}\right)$. For the hydrochloride: $\mathrm{mp} 230-235{ }^{\circ} \mathrm{C}$; $[\alpha]^{22}{ }_{D}-13.3$ (c 1.1, MeOH).

Acknowledgment: Financial support from the Ministry of Science and Innovation, Spain (Project CTQ2009-07021 BQU) and the AGAUR, Generalitat de Catalunya (Grant 2009-SGR-1111) is gratefully acknowledged.

Supporting Information Available: Experimental procedures for compounds 14-17, copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds, and X-ray crystallographic data for compounds $5 \mathbf{b}, \mathbf{6}$ and ent-2-epi-11. This material is available free or charge via the Internet at http://pubs.acs.org.

References and Footnotes

(1) (a) Witkop, B.; Gössinger, E. In The Alkaloids; A. Brossi, Ed.; Academic Press: New York, 1983; Vol. 21, pp. 139-253. (b) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; S. W. Pelletier, Ed.; Wiley: New York, 1986; Vol. 4, pp. 1-274. (c) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In The Alkaloids; G. A. Cordell, Ed.; Academic Press: San Diego,

1993, Vol. 43, pp. 185-288. (d) Daly, J. W. In The Alkaloids; G. A Cordell, Ed.; Academic Press: New York, 1998, Vol. 50, pp. 141-169. (e) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; S. W. Pelletier, Ed.; Pergamon, New York, 1999, Vol. 13, pp. 1-161. (f) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556-1575.
(2) (a) Tokuyama, T.; Nishimori, N.; Karle, I. L.; Edwards, M. W.; Daly, J. W. Tetrahedron 1986, 42, 3453-3460. (b) Tokuyama, T.; Tsujita, T.; Shimada, A.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Tetrahedron 1991, 47, 5401-5414. (c) Garraffo, H. M.; Caceres, J.; Daly, J. W.; Spande, T. F.; Andriamaharavo, N. R.; Andriantsiferana, M. J. Nat. Prod. 1993, 56, 1016-1038.
(3) Garraffo, H. M.; Spande, T. F.; Daly, J. W.; Baldessari, A.; Gros, E. G.; J. Nat Prod. 1993, 56, 357-373.
(4) (a) Steffan, B. Tetrahedron 1991, 47, 8729-8732. (b) Kubanek, J.; Williams, D. E.; Dilip de Silva, E.; Allen, T.; Andersen, R. J. Tetrahedron Lett. 1995, 36, 6189-6192. (c) Davis, R. A.; Carroll, A. R.; Quinn, R. J. J. Nat. Prod. 2002, 65, 454-457. (d) Wright, A. D.; Goclik, E.; König, G. M.; Kaminsky, R. J. Med. Chem. 2002, 45, 3067-3072.
(5) (a) Spande, T. F.; Jain, P.; Garraffo, H. M.; Pannell, L. K.; Yeh, H. J. C.; Daly, J. W.; Fukumoto, S.; Imamura, K.; Tokuyama, T.; Torres, J. A.; Snelling, R. R.; Jones, T. H. J. Nat. Prod. 1999, 62, 5-21. (b) Jones, T. H.; Gorman, J. S. T.; Snelling, R. R.; Delabie, J. H. C.; Blum, M. S.; Garraffo, H. M.; Jain, P.; Daly, J. W.; Spande, T. F. J. Chem. Ecol. 1999, 25, 1179-1193. (c) Daly, J. W.; Garraffo, H. M.; Jain, P.; Spande, T. F.; Snelling, R. R.; Jaramillo, C.; Rand, A. S. J. Chem. Ecol. 2000, 26, 73-85.
(6) For a review, see: Kibayashi, C.; Aoyagi, S. In Studies in Natural Products Chemistry, Atta-urRahman, Ed.; Elsevier Science B. V.: Netherland, Vol. 19, 1997, pp. 3-88.
(7) (a) Glanzmann, M.; Karalai, C.; Ostersehlt, B.; Schön, U.; Frese, C.; Winterfeldt, E. Tetrahedron 1982, 38, 2805-2810. (b) Bonin, M.; Royer, J.; Grierson, D. S.; Husson, H.-P. Tetrahedron Lett. 1986, 27, 1569-1572. For reviews, see: (c) Scholz, U.; Winterfeldt, E. Nat. Prod. Rep. 2000, 17, 349-366. (d) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551-564. (e) De la Torre, M. C.; Sierra, M. A. Angew. Chem. Int. Ed. 2004, 43, 160-181.
(8) Winterfeldt, E. Heterocycles 1979, 12, 1631-1650. See also: ref 1a,b,7c.
(9) For related cyclocondensation reactions, see: (a) Amat, M.; Bassas, O.; Llor, N.; Cantó, M.; Pérez, M.; Molins, E.; Bosch, J. Chem. Eur. J. 2006, 12, 7872-7881. (b) Amat, M.; Fabregat, R.; Griera, R.; Bosch, J. J. Org. Chem. 2009, 74, 1794-1797. For reviews on the use of phenylglycinol-derived lactams, see: (c) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843-9873. (d) Escolano, C.; Amat, M.; Bosch, J. Chem. Eur. J. 2006, 12, 8198-8207.
(10) Shiozaki, K. In Comprehensive Organic Synthesis; B. M. Trost, Ed.; Pergamon Press: Oxford, 1991, pp. 865-892.
(11) Calvet-Vitale, S.; Vanucci-Bacqué, C.; Fargeau-Bellassoued, M.-C.; Lhommet, G. Tetrahedron 2005, 61, 7774-7782.
(12) For previous enantioselective syntheses of cis-195A ((-)-pumiliotoxin C), see: (a) Oppolzer, W.; Flaskamp, E. Helv. Chim. Acta 1977, 60, 204-207. (b) Murahashi, S.-I.; Sasao, S.; Saito, E.; Naota, T. Tetrahedron 1993, 49, 8805-8826. (c) Comins, D.L.; Dehghani, A. J. Chem. Soc. Chem. Commun. 1993, 1838-1839. (d) Naruse, M.; Aoyagi, S.; Kibayashi, C. J. Chem. Soc. Perkin Trans. 1 1996, 1113-1124. (e) Riechers, T.; Krebs, H. C.; Wartchow, R.; Habermehl, G. Eur. J. Org. Chem. 1998, 2641-2646. (f) Oppolzer, W.; Flaskamp, E.; Bieber, L. W. Helv. Chim. Acta 2001, 84, 141-145. (g) Dijk, E. W.; Panella, L.; Pinho, P.; Naasz, R.; Meetsma, A.; Minaard, A. J.; Feringa, B. L. Tetrahedron 2004, 60, 9687-9693. For the synthesis of (+)pumiliotoxin C, see: (h) Dieter, R. K.; Fishpaugh, J. R. J. Org. Chem. 1983, 48, 4441-4444. (i)

Schultz, A. G.; McCloskey, P. J.; Court, J. J. J. Am. Chem. Soc. 1987, 109, 6493-6502. (j) Toyota, M.; Asoh, T.; Matsuura, M.; Fukumoto, K. J. Org. Chem. 1996, 61, 8687-8691. (k) Lauzon, S.; Tremblay, F.; Gagnon, D.; Godbout, C.; Chabot, C.; Mercier-Shanks, C.; Perrault, S.; DeSève, H.; Spino, C. J. Org. Chem. 2008, 73, 6239-6250.
(13) For a preliminary account on the synthesis of pumiliotoxin C, see: Amat, M.; Griera, R.; Fabregat, R.; Molins, E.; Bosch, J. Angew. Chem. Int. Ed. 2008, 47, 3348-3351.
(14) In some runs, the seven-membered lactone 14 was isolated as a by-product, which was subsequently converted to ent-2-epi-10 by catalytic hydrogenation ($\mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$) in the presence of $\mathrm{Boc}_{2} \mathrm{O}$.
(15) For a previous enantioselective synthesis, see: ref 12 f .
(16) (a) Polniaszek, R. P.; Dillard, L. W. J. Org. Chem. 1992, 57, 4103-4110. (b) Meyers, A. I.; Milot, G. J. Am. Chem. Soc. 1993, 115, 6652-6660. (c) Back, T. G.; Nakajima, K. Tetrahedron Lett. 1997, 38, 989-992. (d) Lebrun, M.-E.; Pfeiffer, J. Y.; Beauchemin, A. M. Synlett 2009, 7, 1087-1090. See also: ref 12f.
(17) For a previous enantioselective synthesis of 2-epi-cis-195A, see: Back, T. G.; Nakajima, K. J. Org. Chem. 1998, 63, 6566-6571.
(18) For related examples on the reduction of 5 -substituted-1,2,3,4,5,6,7,8-octahydroquinoline derivatives to give 4a,5-trans cis-decahydroquinolines, see: (a) Murahashi, S.-I.; Sasao, S.; Saito, E.; Naota, T. Tetrahedron 1993, 49, 8805-8826. (b) Padwa, A.; Heidelbaugh, T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65, 2368-2378. (c) Akashi, M.; Sato, Y.; Mori, M. J. Org. Chem. 2002, 66, 7873-7874.

[^0]: Abstract: The straightforward enantioselective construction of the hydroquinoline ring system from 1,5-polycarbonyl derivatives, using (R)-phenyglycinol as a chiral latent form of ammonia, is reported.

