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5Institute for the Physics and Mathematics of the Universe (IPMU), the University of Tokyo, Kashiwa, Chiba 277-8568, Japan

Accepted 2010 May 4. Received 2010 May 4; in original form 2010 March 17

ABSTRACT

Comparing clustering of differently biased tracers of the dark matter distribution offers the
opportunity to reduce the sample or cosmic variance error in the measurement of certain cosmo-
logical parameters. We develop a formalism that includes bias non-linearities and stochasticity.
Our formalism is general enough that it can be used to optimize survey design and tracers
selection and optimally split (or combine) tracers to minimize the error on the cosmologically
interesting quantities. Our approach generalizes the one presented by McDonald & Seljak of
circumventing sample variance in the measurement of f ≡ d ln D/d ln a. We analyse how the
bias, the noise, the non-linearity and stochasticity affect the measurements of Df and explore
in which signal-to-noise regime it is significantly advantageous to split a galaxy sample in two
differently biased tracers. We use N-body simulations to find realistic values for the parame-
ters describing the bias properties of dark matter haloes of different masses and their number
density. We find that, even if dark matter haloes could be used as tracers and selected in an
idealized way, for realistic haloes, the sample variance limit can be reduced only by up to a
factor σ 2tr/σ 1tr � 0.6. This would still correspond to the gain from a three times larger survey
volume if the two tracers were not to be split. Before any practical application one should
bear in mind that these findings apply to dark matter haloes as tracers, while realistic surveys
would select galaxies: the galaxy–host halo relation is likely to introduce extra stochasticity,
which may reduce the gain further.

Key words: cosmological parameters – cosmology: theory – large-scale structure of
Universe.

1 IN T RO D U C T I O N

One of the active topics of current research is the formation and growth of large-scale structure in the Universe. Knowledge of the physical
origin of the growth of structure will allow us to know about the origin of dark matter and also provides a useful way to discriminate between
different theories for the origin and evolution of dark energy. In particular, comparing and combining measurements of the Universe expansion
history (as given by e.g. Baryon Acoustic Oscillations, cosmic chronometers and Supernovae) with measurements of the linear growth of
structure can provide a tool to test whether dark energy is an extra component with negative pressure or a manifestation of the breakdown of
general relativity on large scales. To this end, usually, the goal is to measure the f (z) parameter defined as f (z) ≡ d ln D(z)/d ln a(z), where
D(z) is the linear growth factor and a(z) the scalefactor.

The two main approaches to measure the growth of structure are weak gravitational lensing (e.g. Hoekstra et al. 2002; Bacon et al.
2005) and galaxy clustering, which is the technique we consider here. Galaxy clustering is a relatively simple, high signal-to-noise ratio
(S/N) measurement: the angular position of galaxies can be measured using photometry and the radial position using spectroscopy. With this
information the three-dimensional power spectrum of galaxies can be computed as a function of redshift. However, at the two-point level,
the galaxy field can only trace the dark matter field up to a bias factor b, which may depend on scale and redshift. Thus, only once the bias
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Reducing sample variance 773

is known, the galaxy power spectrum Pgg can be related to that of the dark matter Pmm and thus yield the growth of structure. The main
drawback associated to this technique is that the value of this bias cannot readily be predicted from theoretical models of galaxy formation.

There are several observational techniques to measure the bias parameter (Fry 1994; Feldman et al. 2001; Verde et al. 2002; Hawkins
et al. 2003; Seljak et al. 2005; Guzzo et al. 2008). In this work we use the approach that takes advantage of the redshift-space distortions.
Peculiar velocities of dark matter tracers are set by the gravitational field: using the measured redshift as a distance indicator distorts clustering,
enhancing it along the line of sight and the redshift-space distortion parameter is β ≡ f /b (Davis & Peebles 1983; Kaiser 1987; Hamilton
1998). Using measurements in different directions (different Fourier modes), one can compute β. In combination with the galaxy power
spectrum measurement, this approach yields the divergence power spectrum Pθθ = f 2Pmm, which can be directly compared with theory
predictions and encloses the desired dependence on the growth of structure.

There are two sources of errors in the measurement of the galaxy power spectrum: the shot noise and the sample variance (or cosmic
variance). On one hand, the shot noise is due to the fact that we use a discrete set of objects to characterize the matter field. If this noise is
Poisson, it is scale-independent and equal to the reciprocal of the number density of objects (Peebles 1980). On the other hand, the sample
variance effect is due to the fact that the matter field has its origin in a random realization of the underlying cosmology. In a finite survey
volume there are only a finite number of modes present, especially on large scales we only have a few modes to perform the averaging. Thus,
the total error on the power spectrum P at a given scale k, is σP /P = (2/N )1/2 (1 + σn/P ). Here, N is the number of modes measured (at the
scale given by k) and σ n is the shot noise contribution. We see that just reducing the shot noise (increasing the number density of objects)
does not help, as there is a natural limitation on our capacity to measure P [and consequently f (z)], due to sample variance.

In order to reduce this limitation, a multi-tracer technique has been advocated recently (Seljak 2009). It is based on the usage of two
differently biased tracers of the dark matter field. With this method the sample variance limit can be reduced. The effectiveness of this method
depends on a number of factors: the ratio of these different biases; the S/N regime and on the non-linearity of the biases. With the exception
of gravitational lensing, one cannot see the dark matter directly nor the dark matter haloes, so in most practical applications, tracers need to
be used such as galaxies, quasars, clusters or 21-cm emission.

The goal of this paper is to study the possibility of measuring the parameter x(z) ≡ f 2(z)D2(z) using the single- and the multi-tracer
formalism and see whether the reduction of the sample variance is significant. Here, we present a new formalism of how to estimate the error
on x using the multi-tracer formalism, taking into account that the bias may be scale-dependent, non-linear and stochastic. This formalism
may be useful for galaxy surveys, because it has been observed that the galaxy biasing is significantly non-linear and stochastic. N-body
simulations and theoretical models allow us to estimate which are the bias characteristics for dark matter tracers and therefore which precision
can be reached with this model.

In Section 2, we begin by introducing the formalism of our method and analyse how the different parameters affect the reduction of the
sample variance effect. In Section 3 we use both analytical approximations and N-body simulations to obtain physically motivated parameters
for our model and compute realistic expected errors using the single- and multi-tracer formalism. In Section 4 we conclude with a summary
and a discussion of the results.

2 ME T H O D

We start with the basic assumptions that the tracer (galaxies or haloes) number density is given by a Poisson sampling1 of an underlying
continuous field ng(x), with overdensity defined by δg(x) ≡ ng(x)/n̄g − 1, and that the galaxy overdensity field is related to the mass
overdensity field δ by a conditional probability distribution P(δg|δ), including a stochastic element which we will describe later. In addition,
in realistic surveys using the redshift as distance indicator, peculiar velocities distort clustering in a manner dependent on the angle with
respect to the line of sight. In particular, clustering is enhanced – at least on large scales, in the linear regime – along the line of sight. It is
the angular dependence of the effect that yields the signal to extract a measurement of the growth of structure. In this paper, our main goal
is to estimate the error of the growth rate of perturbations, f (z), generalizing the method proposed by McDonald & Seljak (2009) to measure
f (z), reducing the sample variance limit and using redshift-space distortions. The idea is to split the sample of objects into two subsamples
with different biasing properties. In their work, they used a linear bias model and all stochasticity was due to shot noise. Here we generalize
their work to the non-linear bias case and take into account the possibility of having off-diagonal noise terms, which can be introduced, for
example, if there are objects in common in the two samples. In this regime, we compare the multi-tracer with the single-tracer approach, and
we analyse how the noise and non-linearities affect the extent to which the sample variance limit can be improved. We also use results from
simulations to set plausible values for these parameters to see how great the gains may be in practice.

2.1 Modelling of bias

The relation between clustering properties of the dark matter and those of the tracer (haloes or galaxies) goes under the name of ‘bias’. The
simplest, non-trivial bias model is linear bias, δg(x) = b1δ(x), with b1 constant and independent of position and scale. This corresponds to a
deterministic linear biasing, which has little physical motivation and is problematic if b1 > 1 and the field is not very linear, since it allows an

1 This model may be inadequate in details when dealing with real haloes (Smith, Scoccimarro & Sheth 2007; Seljak, Hamaus & Desjacques 2009). We will
return to this point in Section 3.
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774 H. Gil-Marı́n et al.

unphysical δg < −1 in voids. A more complex relation is almost certainly needed to properly describe galaxy clustering. Non-linear biasing
with a bias which is no longer a constant but a function of δ(x) is a common way to improve the model.

Here we adopt the formalism proposed by Dekel & Lahav (1999). We assume that both δ(x) and δg(x) are random fields with one-point
probability distributions functions, P[δ(x)] and P[δg(x)], with zero mean 〈δ(x)〉 = 〈δg(x)〉 = 0 and variances 〈δ2(x)〉 and 〈δ2

g(x)〉, respectively.
We first define the mean biasing function, b[δ(x)], as the conditional mean between the galaxy and the matter field,

b[δ(x)]δ(x) ≡ 〈δg(x)|δ(x)〉 =
∫

dδg(x)P (δg(x)|δ(x))δg(x). (1)

This is the natural generalization of the deterministic linear biasing relation, where the function b[δ(x)] characterizes the non-linear bias
behaviour. Note that P(δg|δ) can have a width (i.e. a scatter) around the mean relation, b(δ), which is however not captured by the function
b(δ). We characterize the function b(δ) by the first- and second-order moments, which are given by b̂(r) and b̃(r) at zero lag (i.e. r = 0),

b̂(r) ≡ 〈δ(x + r)δ(x)b[δ(x)]〉
〈δ(x)δ(x + r)〉 , (2)

b̃2(r) ≡ 〈δ(x + r)δ(x)b[δ(x)]b[δ(x + r)]〉
〈δ(x)δ(x + r)〉 , (3)

where 〈 〉 represents the averaging over the volume of the survey or over different realizations. These two parameters take into account the
non-linearity of the system as long as one is concerned with the two-point correlation function (or the power spectrum) and not higher order
correlations. It is useful to define their ratio as

R(r) ≡ b̂(r)

b̃(r)
, (4)

which is a useful parameter to measure the non-linearity of the bias. In the linear case, b̂(r) = b̃(r) and R(r) = 1, whereas for non-linear
cases, R(r) < 1. Note that b̂(r) is the bias as it would appear in the tracer–dark matter cross-correlation, while b̃2(r) would appear in the tracer
auto-correlation.

We next turn to stochasticity, by which we mean any physical or statistical process that produces a non-deterministic relation between
the dark matter and the galaxy (or halo) field. This may arise from the discrete nature of galaxies, in which case it is called shot noise; if it is
a Poisson process, its expression is inversely proportional to the mean density of objects, 1/n̄g, but the formalism used here allows for other
stochastic processes which are encoded in the width of P(δg|δ).

In order to study the stochasticity of the bias, we define the random bias field ε(x) as the difference between the galaxy field and the
dark matter field once biased by the mean bias relation b[δ(x)],

ε(x) ≡ δg(x) − b[δ(x)]δ(x). (5)

If P(δg|δ) is a univariate Gaussian then b(δ) and σ 2
b(δ), the variance of P(δg|δ) at a given δ, completely specifies P(δg|δ). The variance

of the ε field is given by the average of σ 2
b(δ) over δ.

In general, once δ, δg and ε are defined, the corresponding correlation functions are

ξmm(r) ≡ 〈δ(x)δ(x + r)〉, (6)

ξgm(r) ≡ 〈δg(x)δ(x + r)〉, (7)

ξgg(r) ≡ 〈δg(x)δg(x + r)〉, (8)

ξεε(r) ≡ 〈ε(x)ε(x + r)〉, (9)

ξεm(r) ≡ 〈ε(x)δ(x + r)〉. (10)

In what follows, we are only interested in the two-point correlation function or the power spectrum, thus we do not need to specify
further moments of P(δg|δ) or higher order correlations.

In order to give an illustrative example to the bias formalism, let us consider a simple non-linear bias model given by

b(δ) = b0 + b1δ + b2δ
2. (11)

Let us also assume that this bias model is non-stochastic. Therefore according to equation (5), we have that the galaxy overdensity must be

δg = b0δ + b1δ
2 + b2δ

3. (12)

In order to deal with the simplest scenario, we assume that δ is a Gaussian random field. This means that the n-point correlation function,
〈δn〉, can be expressed as a function of the two-point correlation function, 〈δ2〉.

We have stated above that δg field has to satisfy 〈δg〉 = 0. Provided that 〈δ〉 = 〈δ3〉 = 0, we have that b1 must be null:

b(δ) = b0 + b2δ
2. (13)
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Reducing sample variance 775

Table 1. Different sets of parameters of the non-linear model given by equation (13) and
the corresponding values of b̂, b̃ and R.

Set b0 b2〈δ2〉 b̂ b̃ R

Set 1 1 0 1 1 1
Set 2 2 0 2 2 1
Set 3 0.7 0 0.7 0.7 1
Set 4 1 0.5 2.50 2.78 0.90
Set 5 0.3 0.7 2.40 2.94 0.81
Set 6 2 −0.3 1.1 1.32 0.83
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Figure 1. Different biasing models. Left-hand panel: Set 1 (solid line), Set 2 (dashed line) and Set 3 (dotted line). Middle panel: Set 4 (solid line), Set 5
(dashed line) and Set 6 (dotted line). Right-hand panel: Set 5 with stochasticity component. Sets are detailed in Table 1.

The biasing parameters given by equations (2) and (3) are

b̂ = b0 + 3b2〈δ2〉, (14)

b̃2 = b2
0 + 6b0b2〈δ2〉 + 15b2

2〈δ2〉2, (15)

where we have used 〈δ4〉 = 3〈δ2〉2 and 〈δ6〉 = 15〈δ2〉3, if δ is Gaussian.
As an illustrative example, we consider this simple biasing model with different set of parameters, b0 and b2, listed in Table 1. Set 1,

Set 2 and Set 3 are linear biasing models (b2 = 0), and therefore b̂ = b̃ and R = 1. These models are plotted in Fig. 1 (left-hand panel) with
solid, dashed and dotted lines, respectively. On the other hand, Set 4, Set 5 and Set 6 are non-linear biasing models (b2 �= 0) plotted in Fig. 1
(central panel) with solid, dashed and dotted lines, respectively. In these cases, it is clear that b̂ �= b̃ and therefore R < 1. Note also that R is a
good indicator of how non-linear the model is; the more deviate R is from 1 the more non-linear b(δ) is.

Finally, the stochasticity can easily be included in this formalism just adding a random field, namely ε, in equation (12). The result of
doing this with Set 5 is shown in Fig. 1 (right-hand panel).

2.2 Redshift-space distortions of biased tracers

So far, we have defined the bias model in configuration space. However, to deal with redshift-space distortions, it is more convenient to work
with the galaxy density function δg in k-space. The basic relation for redshift distortions is, assuming the distant observer approximation
(Kaiser 1987),

δs
g(k) = δg(k) + f μ2(k̂)δ(k), (16)

where δg(k) is the Fourier transform of the overdensity of galaxies, δs
g(k) its redshift-space counterpart and δ(k) the real-space transform of

the overdensity of dark matter. μ(k̂) is the cosine of the angle between the line of sight and k. Throughout this section, we consider a single
snapshot at a fixed redshift, usually we take z = 0. Therefore we write, for instance, f instead of f (z) and so on. If we consider that we have
two dark matter tracers, then

δs
gi(k) = δgi(k) + f μ2(k̂)δ(k); i = 1, 2, (17)

with a corresponding covariance matrix

C2tr(k) =
( 〈

δs
g1(k)δs

g1
∗(k)

〉 〈
δs

g1(k)δs
g2

∗(k)
〉

〈
δs

g1(k)δs
g2

∗(k)
〉 〈

δs
g2(k)δs

g2
∗(k)

〉
)

. (18)

We define various power spectra as

〈δgi(k)δ∗
gj (k)〉 ≡ Pgigj (k) (19)

〈δ(k)δ∗
gi(k)〉 ≡ Pmgi(k) (20)

〈δ(k)δ∗(k)〉 ≡ Pmm(k). (21)
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776 H. Gil-Marı́n et al.

Note that these quantities are related to equations (6–8) through their Fourier transforms,

P (k) =
∫

d3r ξ (r) eik·r . (22)

The terms of the covariance matrix of equation (18) can be expressed as,2〈
δs

gi(k)δs
gj

∗(k)
〉 = Pmm(k)

[
Pgigj (k)

Pmm(k)
+ f μ2 Pmgi(k) + Pmgj (k)

Pmm(k)
+ f 2μ4

]
. (23)

In this paper, we will assume that the cross terms between the random field and the matter field are subdominant and can be assumed to
be zero:

〈ε(x)B[δ(x + r)]〉 = 0, (24)

where B[δ] is any function of δ. If we relate these quantities to the bias parameters defined in equations (2) and (3), we obtain

Pmm(k) =
∫

d3r ξmm(r) e−ik·r , (25)

Pmgi(k) =
∫

d3r ξmgi(r) e−ik·r =
∫

d3r b̂i(r)ξmm(r) e−ik·r , (26)

Pgigi(k) =
∫

d3r ξgigi(r) e−ik·r =
∫

d3r b̃2
i (r)ξmm(r) e−ik·r +

∫
d3r ξεiεi(r) e−ik·r , (27)

Pg1g2(k) =
∫

d3r ξg1g2(r) e−ik·r =
∫

d3r 〈δ(x)b1[δ(x)]δ(r + x)b2[δ(r + x)]〉 e−ik·r +
∫

d3r ξε1ε2 (r) e−ik·r , (28)

=
∫

d3r R12(r)b̃1(r)b̃2(r)ξmm(r) e−ik·r +
∫

d3r ξε1ε2 (r) e−ik·r , (29)

where the parameter R12(r) is a new non-linearity parameter between tracers of type 1 and 2, which is defined as

R12(r) ≡ 〈b1[δ(x)]δ(x)b2[δ(x + r)]δ(x + r)〉
〈b1[δ(x)]δ(x)b1[δ(x + r)]δ(x + r)〉1/2〈b2[δ(x)]δ(x)b2[δ(x + r)]δ(x + r)〉1/2

. (30)

For convenience we define new bias parameters,

b̂i(k) ≡
∫

d3r b̂i(r)ξmm(r) e−ik·r∫
d3r ξmm(r) e−ik·r = Pmgi(k)

Pmm(k)
(31)

b̃2
i (k) ≡

∫
d3r b̃2

i (r)ξmm(r) e−ik·r∫
d3r ξmm(r) e−ik·r = Pgigi(k) − Pεiεi(k)

Pmm(k)
(32)

Ri(k) ≡ b̂i(k)

b̃i(k)
= Pmgi(k)

{Pmm(k)[Pgigi(k) − Pεiεi(k)]}1/2
(33)

R12(k) ≡
∫

d3r R12(r)b̃1(r)b̃2(r)ξmm e−ik·r[∫
d3r b̃2

1(r)ξmm(r) e−ik·r]1/2 [∫
d3r b̃2

2(r)ξmm(r) e−ik·r]1/2 = Pg1g2(k) − Pε1ε2(k)

[Pg1g1(k) − Pε1ε1(k)]1/2[Pg2g2(k) − Pε2ε2(k)]1/2
(34)

and the ε field power spectrum,

Pεiεj (k) ≡
∫

d3r ξεiεj (r) e−ik·r . (35)

Thus the covariance matrix reads

C2tr(k, μ) =
(

C11(k, μ) C12(k, μ)

C12(k, μ) C22(k, μ)

)
(36)

with

C11(k, μ) = Pmm(k)
[
b̃2

1(k) + 2f μ2b̃1(k)R1(k) + f 2μ4
] + Pε1ε1 (k), (37)

C12(k, μ) = Pmm(k)
{
R12(k)b̃1(k)b̃2(k) + f μ2

[
b̃1(k)R1(k) + b̃2(k)R2(k)

] + μ4f 2
} + Pε1ε2 (k), (38)

C22(k, μ) = Pmm(k)
[
b̃2

2(k) + 2f μ2b̃2(k)R2(k) + f 2μ4
] + Pε2ε2 (k). (39)

Because b̃i(k) are parameters which cannot be obtained readily from observations, it is preferable to work with the redshift-space distortion
parameter β̃i(k) ≡ f /b̃i(k). Also Pmm(k, z) at a given z is not directly measurable. However, in the linear regime we can write it as

2 In this expression the factor of 2 difference from that appearing in McDonald & Seljak (2009) is due to a different definition of δk; we consider that δk is
complex.
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Reducing sample variance 777

Pmm(k, z) = D2(z) P0
mm(k), where P0

mm(k) is the fiducial power spectrum and D(z) is the linear growth factor. Thus, defining x(z) ≡ D2(z) f 2(z)
the covariance matrix elements are

C11(k, μ) = xP 0
mm(k)

[
β̃−2

1 (k) + 2μ2β̃−1
1 (k)R1(k) + μ4

] + Pε1ε1 (k), (40)

C12(k, μ) = xP 0
mm(k)

{
R12(k)β̃−1

1 (k)β̃−1
2 (k) + μ2

[
β̃−1

1 (k)R1(k) + β̃−1
2 (k)R2(k)

] + μ4
} + Pε1ε2 (k), (41)

C22(k, μ) = xP 0
mm(k)

[
β̃−2

2 (k) + 2μ2β̃−1
2 (k)R2(k) + μ4

] + Pε2ε2 (k). (42)

Note that the quantity x encompasses all the relevant cosmological information about the growth of structure. From equations (40–42)
one can see that the covariance matrix can easily be separated in two parts: a signal part Ŝ and a noise contribution N̂ :

C2tr(k, μ) = Ŝ(k, μ) + N̂(k), (43)

where the noise matrix is

N̂ij (k) = Pεiεj (k). (44)

If the two tracers are both a Poisson sample of the dark matter field and do not overlap then N̂ij (k) is diagonal, scale-independent and its
elements are N̂11 = 1/n̄1; N̂22 = 1/n̄2. This is the case considered by McDonald & Seljak (2009). Any other source of stochasticity would
add to the discreteness effect and, in general, may yield non-zero off-diagonal contributions N̂12 �= 0.

If we can estimate the noise part and P0
mm(k) is given, e.g. by CMB observations, then the covariance matrix depends on six parametric

functions: x, β̃1(k), β̃2(k), R1(k), R2(k) and R12(k).
Considering one dark matter tracer, the covariance matrix is simpler:

C1tr(k, μ) = xP 0
mm(k)

[
β̃−2(k) + 2μ2β̃−1(k)R(k) + μ4

] + Pεε(k), (45)

and depends on only x, β(k) and R(k).
An interesting point is the ‘hidden’ relation between the different variables. For instance, given β1(k), β2(k) and the relative number of

objects of these two tracers, β(k) is constrained. Also, in the two-tracer case, given R1(k) and R2(k), R12(k) is also constrained. We give these
relations in Appendices A and B.

2.3 Forecasting errors

We use the Fisher matrix formalism (Fisher 1935) to estimate errors on x. When the means of the data are fixed (i.e. for a given fiducial
model), the Fisher matrix is given by (Tegmark, Taylor & Heavens 1997)

Fλλ′ = 1

2
Tr

[
C,λC

−1C,λ′C−1
]
, (46)

where C,λ ≡ dC/dλ, C is the covariance matrix and λ the parameters of the model. The marginalized variance of parameter λ is given by

σ 2
λ = (F −1)λλ . (47)

Following e.g. Feldman, Kaiser & Peacock (1994) for a survey volume Vu, in the continuum approximation,

F V
λλ′ = Vu

(2π)3

∫ kmax

kmin

Fλλ′ (k)d3k (48)

which we evaluate by a discrete sum

F V
λλ′ � Vu

(2π)2

+1∑
μ=−1


μ

kmax∑
k=kmin


kFλλ′ (k, μ)k2 . (49)

In this paper, we assume that the fiducial power spectrum, the noise matrix and the R parameters are known and we fix them to their fiducial
values. We will explore the dependence of the results on the assumed fiducial values in the following sections. The lambda parameters are
b̃1, b̃2 and x or, equivalently, β̃1, β̃2 and x for the two-tracers case; when reporting errors on x, we marginalize over β̃1 and β̃2. For the
one-tracer case the parameters are b̃ and x and the reported errors on x are marginalized over b̃.

The specific values of kmin and kmax depend on the features of the survey, kmin being set by the survey volume and kmax is usually set by
the onset of non-linearities. In our case, we set kmin = 2π/V1/3

u and conservatively set kmax = 0.1 Mpc−1 h for z = 0.
In the next section, we will compare the errors of x, obtained using the one- and the two-tracer approaches. To produce the figures,

we assume we have a single snapshot at z = 0, which corresponds to f = 0.483 in a standard � cold dark matter (CDM) universe,
the power spectrum is given by CAMB (Code for Anisotropies in the Microwave Background: Lewis, Challinor & Lasenby 2000), the
sampling volume is set to be Vu = 1 (Gpc h−1)3 and all biases and all R coefficients are taken to be scale-independent. The relative
number of tracers is Y ≡ n̄1/n̄2, and the S/N is S/N ≡ b̃2P 0(k = 0.1 h Mpc−1)n̄. Note that the S/N is defined relative to the com-
bined sample of tracers. The relation between b̃ and b̃1, b̃2 is given in equation (A8). Since the fractional cosmic-variance error on the
power spectrum (in a shell in Fourier space) is constant with redshift, the quantities reported below are valid at different z provided
that the S/N and the various bias parameters are defined at the redshift of interest. Note however that the fiducial value of x (and that
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Figure 2. Left-hand panel: σ x/x versus S/N. Right-hand panel: σ 2tr
x /σ 1tr

x versus S/N. In both panels b̃1 = 1 and (from bottom to top) b̃2 = 1/3 (orange line),
1/2 (green line), 1 (black line), 2 (red line) and 3 (blue line). For the combined sample according to equation (A8) the total bias factors are b̃ = 2/3 (orange
line), b̃ = 3/4 (green line), b̃ = 1 (black line), b̃ = 3/2 (red line) and b̃ = 2 (blue line). In the left-hand panel the solid lines represent the errors for two-tracer
case, the dashed lines for one tracer.

of f ) change with redshift: x increases with redshift up z = 0.5 and decreases for larger z, while f increases with redshift tending to
1 asymptotically. We find that the dependence of the fractional error, σ x/x, and of the ratio of errors, σ 2tr

x /σ 1tr
x , on the value of x is

weak. More importantly, the kmax at which non-linearities become important is expected to depend on redshift and to increase roughly as
(1 + z). The number of independent modes N in a given volume grows roughly like k3

max and the variance scales like 1/N.

2.4 Dependence on bias

Given that the forecasted error on x depends on many variables, we will start by considering the effects of one variable at a time. The first
important effect to be analysed is how the bias of the tracers (absolute and relative) affects the measurements of x (and therefore of f ). For
simplicity, we assume linear biasing (i.e. all R parameters equal to 1) and the same number of objects for two distinct populations (Y = 1)
with diagonal Poisson-like noise.

In Fig. 2, we show σ x/x (left-hand panel) and σ 2tr
x /σ 1tr

x (right-hand panel) versus S/N. The two-tracer case indicates that the two tracers
are treated separately yielding a covariance matrix as in equations (36–42). The one-tracer case indicates that both tracers are included in the
same sample and the covariance matrix is given by equation (45). In both panels, we have set b̃1 = 1 (i.e. tracer 1 is unbiased) and b̃2 ranges
from 0.33 to 3: b̃2 = 1/3 (orange line), 1/2 (green line), 1 (black line), 2 (red line), 3 (blue line). The bias factors for the combined sample
according to equation (A8) are b̃ = 2/3 (orange line), 3/4 (green line), 1 (black line), 3/2 (red line) and 2 (blue line). In the left-hand panel,
the solid lines correspond to the two-tracer case, the dashed lines to the one-tracer case.

From Fig. 2 (left-hand panel), we see that for the single-tracer case (dashed lines), the lower the combined bias b̃, the lower the error σ x.
This can be understood if we recall that to measure f we are using the redshift-space distortion effect. Since this effect is proportional to 1/b̃,
the lower the bias, the larger the redshift-space distortions. As noted in McDonald & Seljak (2009), this means that, slightly counter-intuitively,
low-bias objects may act as useful tracers, even if they are used as a single population. On the other hand, for the two-tracer case (solid lines)
we can see that (i) the improvement (compared to the one-tracer case) is significant only when the signal dominates (log[S/N] � 0.7) and
(ii) the improvement increases as the difference in the biases of the two populations increases, also as noted by McDonald & Seljak (2009).
Note that McDonald & Seljak (2009) measure the normalization of Pθθ (with the shape given by external observables) which is a different
quantity from x considered here. However the fractional forecasted errors in the two quantity are the same, σx/x = σPθθ

/Pθθ as well as the
relative two-tracer versus one-tracer improvement σ 2tr

x /σ 1tr
x = σ 2tr

Pθθ
/σ 1tr

Pθθ
.

Fig. 2 (right-hand panel) further quantifies the effect. The improvement between the two cases depends on the ratio of biases and is only
significant if the S/N is large enough. In particular, for a bias ratio of 3 (blue and orange lines), the improvement is significant (σ 2tr

x /σ 1tr
x ≤

0.5) for log[S/N] ≥ 1.3. However, for ratios of 2 (red and green lines), the improvement starts to be significant only when log[S/N] ≥ 1.5.
Note also that for the special case b̃2 = b̃1 (black line), as expected, there is no improvement. When comparing these results – especially
Fig. 2 (left-hand panel) – with those of McDonald & Seljak (2009), one should keep in mind that they define the S/N at k = 0.4 h Mpc−1

while we use k = 0.1 h Mpc−1, and that P(k = 0.1 h Mpc−1) � 12 P(k = 0.4 h Mpc−1). With this in mind, we reproduce their results.
We also conclude that for surveys with a low S/N (log[S/N] � 0.7), it is better to have a low-bias tracer; splitting the sample and using

two tracers will not yield significant improvement. For example, for a bias of b̃ = 0.75 (green dashed line in left-hand panel of Fig. 2), we
obtain fractional errors of σ x/x � 0.08 for a log[S/N] = 0.7. On the other hand, for surveys with higher S/N (log[S/N] � 0.7), it is better
to use the two-tracer case, choosing two tracers with the highest possible bias ratio. In this case, for biases of b̃1 = 1 and b̃2 = 0.5 (green
solid line in left-hand panel of Fig. 2), we reach σ x/x � 0.04 for log[S/N] = 1.5. In practice, of course, the choice of which tracers to use is
complicated by their number density; a high bias may be desirable, but one probably pays a penalty through low density and high shot noise.

2.5 Effect of bias non-linearities

The second interesting issue is to consider how non-linearities in the bias (i.e. the R parameters) affect σ x. In this case, we fix b̃1 = 1 and
b̃2 = 2 with the same number of objects for each tracer (Y = 1) and Poisson noise. In Fig. 3 and 4 (left-hand panels), we show how σ 1tr

x /x

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 407, 772–790

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/407/2/772/1115972 by U
niversitat de Barcelona user on 28 N

ovem
ber 2018



Reducing sample variance 779

0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log S N

x x

0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

log S N

x2t
r

x1t
r

Figure 3. Left-hand panel: fractional error σ x/x versus S/N. Dashed lines represent the single-tracer case and solid lines the two-tracer case. Right-hand panel:
σ 2tr

x /σ 1tr
x versus S/N. In both panels the colours show different non-linear cases: R1 = 1.00 (black solid line), R1 = 0.99 (red solid line), R1 = 0.90 (blue solid

line) and R1 = 0.80 (green solid line); R2 = 1 and R12 = R1. For dashed lines, R is the corresponding value for the full sample given the above values for R2

and R12 as in equation (A4): R = 1.000 (black dashed line), R = 0.999 (red dashed line), R = 0.989 (blue dashed line) and R = 0.978 (green dashed line).
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Figure 4. Left-hand panel: fractional error σ x/x versus S/N. Dashed lines represent the single-tracer case and solid lines the two-tracer case. Right-hand panel:
σ 2tr

x /σ 1tr
x versus S/N. In both panels, the colours show different non-linear cases: R12 = 1.00 (red solid line), R12 = 0.99 (blue solid line), R12 = 0.95 (green

solid line) and R12 = 0.90 (orange solid line); R1 = R2 = 0.9. The solid black line is the prefect linear case. For dashed lines, R is the corresponding value for
the full sample given the above values for R1, R2 and R12 as in equation (A4): R = 1.000 (black dashed line), R = 0.900 (red dashed line), R = 0.902 (blue
dashed line), R = 0.910 (green dashed line) and R = 0.921 (orange dashed line).

(dashed lines) and σ 2tr
x /x (solid lines) vary with S/N. In both cases, the black line is for the perfect linear bias case R1 = R2 = R12 = 1 and

colour lines show different non-linear cases (see Figs 3 and 4 captions for details). In Figs 3 and 4 (right-hand panels), we show how the ratio
σ 2tr

x /σ 1tr
x varies with S/N.

In general, we see from Figs 3 and 4 (left-hand panels) that the two-tracer case is more sensitive to non-linear bias effects than the
one-tracer case for high S/N (log[S/N] ≥ 1.2). In particular, in Fig. 3, for the single-tracer case a deviation from unity of R1 produces a slight
reduction of the error which is the same for all the S/N range explored. This is due to a reduction of the combined bias b̃: as we reduce R12

(because we set R1 = R12), b̃ is reduced (see equation A7) and therefore the total error is also reduced as we have seen in Section 2.4. On
the other hand, for the two-tracer case, there are two opposite behaviours depending on the value of S/N: for log[S/N] � 1.2, we observe
that non-linearities produce an increase in the error, whereas for log[S/N] � 1.2, they produce a reduction. In the high S/N regime, reducing
R1 reduces the μ2 coefficient in equation (40), and thus reduces the angular dependence. In the low S/N regime, this is compensated by the
fact that the off-diagonal terms of the covariance matrix are reduced by non-linearities (recall that the noise off-diagonal terms are set to zero
here). While this may not be clear at first sight from equation (41), we have verified it numerically.

From Fig. 3 (right-hand panel), we see that the non-linear bias increases the improvement between the two approaches for log[S/N] �
1.2, and limits it for log[S/N] � 1.2. In particular, non-linear bias with R1 = 0.9 and R2 = 1 gives σ 2tr

x /σ 1tr
x � 0.6 for log[S/N] = 1.5,

whereas for the perfect linear bias case it is σ 2tr
x /σ 1tr

x � 0.5. At lower S/N, namely log[S/N] = 0.7, we obtain for the same non-linear bias
case, σ 2tr

x /σ 1tr
x � 0.85, and for the linear bias case, σ 2tr

x /σ 1tr
x � 0.9. Therefore, non-linearities affect the two-tracer approach considerably

more than the single-tracer approach. Non-linearities in the mean bias relation slightly increase the precision of the x measurement for low
S/N regime (log[S/N] � 1.2), but they limit the effectiveness of the two-tracer approach for high S/N (log[S/N] � 1.2).

On the other hand, from Fig. 4 we observe a very similar behaviour. In this case, we have set R1 = R2 = 0.9 and we change the value
of R12. First of all, we observe that the one-tracer case is not very sensitive to non-linearities in this range of Rs. The small changes for one
tracer are mainly due to the change of the combined bias as we have noted above for Fig. 3. The second point is that little deviations from
R12 = 1.0 produce an increase on the fractional error for the two-tracer case for log[S/N] ≥ 1.2, as it can be seen in Fig. 4 (left-hand panel).
Also in Fig. 4 (right-hand panel), we observe that the ratio of errors increases quickly for log[S/N] ≥ 1.2, as we leave R12 = 1.00

In summary, it is important to note (Figs 2, 3 and 4) that the two-tracer method yields a substantial improvement compared to the
one-tracer approach only in the high S/N regime and if the non-linearity parameters R are close to unity. Even if R1 is 0.9, with R2 = 1 or
R1 = R2 = 0.9 with R12 = 0.95, the gain saturates at about a factor of two. In Section 3.2, we will address the issue of whether dark matter
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Figure 5. Left-hand panel: fractional error σ x/x versus S/N. Right-hand panel: σ 2tr
x /σ 1tr

x versus S/N. For both panels, N12/N11 = 0 (black line),
N12/N11 = 0.4 (red line), N12/N11 = 0.8 (blue line), N12/N11 = 0.9 (green line) and N12/N11 = 1.0 (pink line). The dashed line on the left-hand
panel corresponds to the one-tracer case which is not affected by N12.
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Figure 6. Left-hand panel: fractional error σ x/x versus N12/N11. Right-hand panel: σ 2tr
x /σ 1tr

x versus N12/N11. For both panels, log S/N = −0.5 (black line),
log S/N = 0.0 (red line), log S/N = 0.5 (blue line), log S/N = 1.0 (green line), log S/N = 1.5 (pink line) and log S/N = 2.0 (orange line).

haloes, as seen in N-body simulations, trace the underlying dark matter with a bias that is linear enough for two tracers to be significantly
advantageous compared to one.

2.6 Effect of off-diagonal noise terms

So far we have assumed that the noise matrix in equation (43) is diagonal; but any source of stochasticity in addition to Poisson sampling of
two disjunct set of objects will add extra contributions to the noise matrix, which are non necessarily diagonal. Here we explore how σ x/x
and σ 2tr

x /σ 1tr
x change for a non-zero off-diagonal noise term. For simplicity we discuss the linear bias case with b̃1 = 1 and b̃2 = 2 and the

same number of objects for each tracer. Here, for direct comparison with previous examples, we will still set the diagonal elements of the
noise matrix by the number density of the tracers (as if it was Poisson), and since Y = 1, N11 = N22, but we allow N12 �= 0. Note however
that in any realistic application, a process that adds non-zero off-diagonal noise terms will also increase the diagonal matrix elements. This
should be kept in mind during the following discussion.

In Fig. 5, we show how the error σ x/x (left-hand panel) and the ratio of errors σ 2tr
x /σ 1tr

x (right-hand panel) change with S/N for different
values of N12: from the reference case N12 = 0 (black-solid line) to N12 = N11 (pink-solid line).3 The black-dashed line represents the
one-tracer case, which is not affected by changes in N12.

We see a different behaviour in the high S/N regime (log[S/N] � 0) and in the low S/N regime (log[S/N] � 0). In the high S/N regime,
the higher the off-diagonal noise, the lower the error σ x. This can be understood if we imagine the off-diagonal noise term as a correlation
term between the noise terms. The more correlated the noise of the two tracers, the less the total noise; for high values of N12, knowing N11

means knowing N22. In the low S/N regime, we observe the opposite behaviour: the higher the N12, the higher the error. We also observe
that when the value of N12 is very close to N11, then σ x decreases abruptly. In the low-signal case, adding a non-perfect correlation between
noise terms just means adding more noise, and only in the case this correlation between noise terms is nearly perfect (N12 � N11) means an
improvement in the measure.

In Fig. 6, we show the fractional error of x (left-hand panel) and the ratio of errors between two- and one-tracer case (right-hand panel)
versus N12/N11 for different S/N regimes: from log(S/N) = −0.5 (black line) to log(S/N) = 2.0 (orange line). Here, the same effect is
observed. For high S/N (orange, pink and green lines), increasing N12 decreases the error, whereas for low S/N (black, red and blue lines) the
error increases. Here, the effect on the error when N12 → N11 can be seen more clearly.

3 Note that, the maximum value for N12 is
√

N22N11, as can be deduced from the Cauchy–Schwarz inequality: |〈ε1ε2〉|2 ≤ 〈ε2
1〉〈ε2

2〉.
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Figure 7. Left-hand panel: σ x/x versus S/N. Right-hand panel: σ 2tr
x /σ 1tr

x versus S/N. In the left-hand panel, the dashed-lines are the errors for the one-tracer
model and the solid-lines for the two-tracer model. For both panels Y = 1/20 (pink line), Y = 1/10 (green line), Y = 1 (black line), Y = 10 (red line) and Y =
20 (blue line). b̃1 = 1 and b̃2 = 2 are assumed.

On the right-hand panels of Figs 5 and 6, for low S/N and for non-zero values of N12, we have that σ 2tr
x /σ 1tr

x > 1. This effect is due to the
fact that we are using equation (A12) to relate the noise elements of the two-tracer case with the single-tracer case. However equation (A12)
only provides a correct relation among the diagonal noise matrix elements when the off-diagonal noise terms are zero, which is no longer the
case. In fact, the noise for a single tracer built out of two tracers for which the noise matrix is strongly non-diagonal is not strictly Poisson.
Therefore it cannot be fully described by the Poisson noise that it would have if the two tracers had a diagonal noise matrix (as equation A12
assumes). However, we have no other way to model it, and we thus stick to equation (A12). This effect is important only in the low S/N
regime and where N12 is comparable to the diagonal terms (N12 � N11)

2.7 Dependence on the relative number density

Finally it is also interesting to see how the relative number of tracers can affect the error of x. We vary the ratio between the number densities
of tracers, n̄1 and n̄2, namely Y ≡ n̄1/n̄2, keeping the total number of tracers, n̄, fixed. Again, we assume linear bias, Poisson noise and that
the biases are b̃1 = 1 and b̃2 = 2.

In Fig. 7 (left-hand panel), we show the error of x versus S/N for Y = 1/20 (pink line), 1/10 (green line), 1 (black line), 10 (red line)
and 20 (blue line), for the one-tracer model (dashed lines) and for the two-tracer one (solid lines). In the right-hand panel, we show the ratio
σ 2tr

x /σ 1tr
x versus S/N for different values of Y using the same colour scheme.

Note that Y > 1 means that the highly biased tracer has the lower number density; for Y < 1, the highly biased tracer has the higher
number density. From Fig. 7 (left-hand panel), we see that the error on the one-tracer model is as expected from Fig. 2: an increase in Y causes
a reduction in σ x/x, because it is equivalent to reducing the effective bias b̃ (recall that b̃1 < b̃2). On the other hand, for the two-tracer model,
we observe that the fractional error is lower if the low bias tracer is more abundant than the high-bias one. This is also expected because as
we have seen in Fig. 2: the lower the bias, the smaller is the error of x. In Fig. 7 (right-hand panel), we see that the maximal improvement
for the two-tracer approach compared to the one-tracer approach is realized when the two tracers number densities are equal, independently
of the S/N. For unequal number densities, the two-tracer approach gives a better improvement over the one-tracer approach, if the number
density of the highly biased tracer is lower than that of the tracer with lower bias.

3 EXPECTED VA LUES FOR PARAMETERS D ESCRI BI NG BI AS AND STOCHASTI CI TY

As we have seen, the improvements achievable by using two tracers, depend on various features of the tracers population, such as the S/N,
the bias parameters and the amount of bias non-linearity. In the next two sections, we explore what are plausible and realistic values if dark
matter haloes are taken to be the tracers. We first use analytical arguments, and in the next section, N-body simulations.

3.1 Extended Press–Schechter approach

In this section, we identify dark matter haloes with the peaks of an initially Gaussian field, and compute their number densities and biases. We
assume that the tracers (haloes) are linearly biased, as the non-linear corrections to halo bias derived in this frameworks are very small. The
volume effect that may arise in this formalism is due to the z-dependence of the parameters, in particular, the bias. A narrow–deep survey has a
strong z-dependence in the bias and a wide–shallow has a very weak one. It is because of this, that in this section we assume a volume-limited
cubic survey of comoving side 1 Gpc h−1 for all z, and we perform the analysis at different values of z. This way it is easier to understand how
the z-dependence of the bias affects the errors of the one- and two-tracer model. We set kmin = 2π/V1/3

u and kmax = 0.1D(0)/D(z) Mpc h−1.
P0(k) is given by CAMB for a standard � CDM universe. We consider a range of redshift between 0 and 4, and we parametrize the redshift
dependence of f as, f (z) = �m(z)γ , with γ = 0.56. We choose the two tracers to be haloes of masses 1012 M� h−1 < M < 1013 M� h−1 for
tracer 1 and 1013 M� h−1 < M < 1014 M� h−1 for tracer 2.
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The number density of these haloes is related to the halo mass function, given by

n(M, z) = 2ρm

M σ (M)
f (ν)ν

∣∣∣∣dσ (M)

dM

∣∣∣∣ , (50)

where σ (M) is the rms of the power spectrum linearly extrapolated at z = 0 filtered with a top-hat sphere of mass M, ρm is the mean density
of the Universe (we set it at ρm = 7 × 1010 M� h−1 Mpc−3) and ν ≡ δ2

sc(z)/σ 2(M). Here, δsc(z) denotes the critical threshold for collapse and
is given by δsc(z) � 1.686/D(z). We use the Sheth & Tormen (1999) mass function:

νf (ν) = A(p)[1 + (qν)−p]
( qν

2π

)1/2
exp(−qν/2), (51)

where p = 0.3, q = 0.75 and the normalization factor A(p) = [1 + 2−p�(1/2 − p)/�(1/2)]−1. Thus, the number density of objects is

n̄(M1, M2, z) ≡
∫ M2

M1

n(M, z) dM. (52)

Assuming Poisson noise, we can directly relate this to the noise matrix elements,

Nii(z) = 1/n̄(M1i , M2i , z) . (53)

As long as we are considering Poisson noise, the off-diagonal terms of the noise matrix are 0.
For the bias dependence we assume a linear bias (b̃ = b̂ ≡ b). The bias of an object of mass M at redshift z is given by (Kaiser 1984;

Mo, Jing & White 1997; Scoccimarro et al. 2001)

b(M, z) = 1 + 1

D(z)

[
q

δsc(z)

σ 2(M)
− 1

δsc(z)

]
. (54)

The bias of a set of objects with masses between M1 and M2 is given by

b̄(M1, M2, z) ≡
∫ M2

M1
dM n(M, z)b(M, z)

n̄(M1, M2, z)
. (55)

In Fig. 8 (left-hand panel), we show how the bias of tracer 1 (1012 M� h−1 < M < 1013 M� h−1 red-solid line), tracer 2 (1013 M� h−1 <

M < 1014 M� h−1 blue-solid line) and the combined sample (black-dashed line) change as a function of redshift. Bias increases with redshift
roughly as 1/D2(z). As there are many more lower mass haloes, the overall bias is dominated by this population. In Fig. 8 (right-hand panel),
we show the S/N as a function of redshift. As before, we define S/N(z) ≡ b̄2(z)P 0(k = 0.1)D2(z)[n̄1(z) + n̄2(z)], where b̄(z) corresponds to
the bias of the whole sample. Note that b2(z) P0(k = 0.1)D2(z) goes roughly ∝ 1/D(z)2, but the number density of objects (the mass function)
drops exponentially rapidly: the S/N decreases with increasing redshift; the maximum value of S/N is at z = 0, where S/N � 15.

In Fig. 9, we show the errors σ x/x corresponding to the one- and two-tracer case (left-hand panel) and its ratio (right-hand panel) as a
function of the redshift. In Fig. 9 (left-hand panel), we see that there is a minimum in the value of σ x/x at z � 1.5, both for the one- and for
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Figure 8. Left-hand panel: the bias as a function of redshift for tracer 1 (1012 M� h−1 < M < 1013 M� h−1 solid line), tracer 2 (1013 M� h−1 < M <

1014 M� h−1, dotted line) and for the whole sample (black-dashed line). Right-hand panel: S/N for the full sample (see text for definition) as a function of
redshift.
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Reducing sample variance 783

the two-tracer cases. This seems paradoxical (at least for the one-tracer model) because we have seen in Section 2.4 that as we increase the
bias, the error on x increases. Furthermore, shot noise increases with redshift. The explanation of this seemingly paradoxical effect has to do
with the fact that not only the noise and the bias change with z, but also kmax(z) and x(z). Recall that x(z) is our signal and that the fractional
error per interval of k goes like the square root of the number of modes, i.e. k3

max − k3
min. It turns out that, as we increase the available range

of k of equation (49), the error σ x/x is reduced, scaling as these considerations indicate.
The last effect dominate at low z. At higher z, the noise and the bias effect dominate, and therefore σ x/x increases with z as we have

seen in Section 2.4. In Fig. 9 (right-hand panel), we see that only at low redshifts (z < 1), where the S/N is high, the improvement between
the two cases is significant, reaching the minimum value of σ 2tr

x /σ 1tr
x � 0.88 at z = 0. This result may seem worse than that we have shown

in the last section for S/N � 15. However, taking into account that now the ratio of biases is not 2, but �1.5 and also recalling that now Y �=
1, the fractional error increases from �0.7 to �0.88.

From Fig. 9, it is clear that if the survey is dominated by low-redshift objects (wide-shallow surveys), then splitting the sample may
reduce the error of x. However, the higher precision in measuring x is reached with surveys whose volume configuration results in most
objects having z � 1.5)

A mass selection of haloes as here may provide a modelling applicable to Sunyaev–Zel’dovich-selected clusters or, in an idealized way,
to luminous red galaxies. But other type of surveys may select tracers in a radically different way; for example, emission-line-selected blue
galaxies have a bias that evolves with redshift much more slowly than considered above. We therefore also consider a complementary, yet still
highly idealized, way to select haloes and explore whether in that case the improvement in splitting the sample can be much larger. We select
tracers by their peak height, i.e. their ν of equation (50), keeping the maximum and minimum ν (rather than the mass) of each tracer sample
constant in redshift. We have explored different cuts and found the following. (i) The improvement in splitting the sample is maximized when
the two samples have comparable number of objects. When, to maximize the bias difference between the two samples, the highly biased
tracer include objects that are very rare, the shot noise for that sample become important and the gain in splitting the sample decreases. (ii)
By suitably choosing the ν cuts, we have sampled the parameter space and managed to achieve σ 2tr

x /σ 1tr
x � 0.6, but we have not been able to

improve the gain further. For instance, choosing as tracer 1 structures with ν between 0.9 and 1.5 and as tracer 2 structures with ν between
1.5 and 20, we reach a gain of 0.6 at z � 2.

Before any practical application of these findings, one should bear in mind that we have assumed a volume-limited sample (i.e. that all
haloes in the required range are detected). In addition, we have considered a fixed survey volume seen at different redshift: for a given sky
coverage, the volume per unit redshift increases with redshift for z � 2.5. Finally, we have selected haloes in a very idealized way. In practice,
the selection will be likely applied on galaxies, which halo occupation distribution is not straightforward. We will discuss this further in
Section 4.

3.2 Simulations

As we have seen in Figs 3 and 4, the gain of splitting the sample is dependent on the non-linearity parameters, specially for high S/N. In
this case, Rs have to be very close to unity to exhibit substantial gain. In addition we have so far relied on the Poisson sampling assumption,
which may not hold in details. For tracers that can be identified with dark matter haloes, these issues can be addressed by looking at N-body
simulations.

We choose a flat �CDM cosmology with cosmological parameters consistent with current observational data. More specifically, the
cosmological parameters of the simulation are �m = 0.27, �� = 0.73, h = 0.7, �bh2 = 0.023, ns = 0.95 and σ 8 = 0.8. Our cosmological
simulation consists of 10243 particles in a volume of (1 Gpc h−1)3. This results in a particle mass of about 7 × 1010 M� h−1. The initial
conditions of the simulation were generated at redshift z = 65.67, by displacing the particles according to the Zel’dovich approximation from
their initial grid points. The initial power spectrum of the density fluctuations was computed by CAMB (Lewis et al. 2000).

Taking only the gravitational interaction into account, the simulation was performed with GADGET-2 (Springel 2005) using a softening
length of comoving 30 kpc h−1 and a particle mesh grid size of 20483. The chosen mass resolution and force resolution enable us to resolve
haloes with masses above �1012 M� h−1, i.e. each halo contains at least 15 particles. We identify haloes at redshift z = 0 by the friends-of-
friends algorithm with a linking length of 0.2 times the mean interparticle separation. We split the haloes in two mass bins: 1012 M� h−1 < M
< 1013 M� h−1 (M12) and M > 1013 M� h−1 (M13). The mass bins M12 and M13 consist of about 2.1 and 0.4 million haloes, respectively.

In order to derive the mean conditional bias (see equation 1), b(δ), for the two different tracers, we first compute the halo overdensity, δh,
and matter overdensity, δ, by assigning the haloes and particles, respectively, on a 5123 grid using the cloud in cell scheme. The overdensities
are then further smoothed by a Gaussian filter, exp(−k2l2

s /2), where we choose the smoothing length to be ls = 2.5, 5, 10 and 20 Mpc h−1.
One expects that any stochasticity, non-linear or non-local effects on the bias relation should decrease as the field is smoothed with increasing
smoothing lengths. The biased density as a function of the matter overdensity, b(δ)δ, is then computed by averaging the δh in the corresponding
δ bin (see equation 1). Using the mean bias relation so obtained, we can compute the noise field ε on the grid by applying equation (5). After
Fourier transforming the different fields using the same 5123 grid, we can compute the power spectra and cross power spectra of the different
quantities by spherical averaging the product of their Fourier modes, i.e. for example Pεε(k) = 〈ε(k)ε∗(k)〉 and Phm(k) = 〈δh(k)δ∗(k)〉. Note
that, in what follows, in evaluating the bias and R parameters from the simulations we have used explicitly equations (31–35), the noise terms
are not assumed to be Poissonian but are computed directly from the ε field.
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Figure 10. Bias parameters as a function of the scale k obtained from simulations. b̂ are the dashed lines and b̃ the solid lines. The black lines correspond to
the whole sample of haloes, whereas red lines corresponds to sample M12 (1012 M� < M < 1013 M�) and blue lines to sample M13 (M > 1013 M�). The
smoothing length is 2.5 for the top-left panel, 5.0 for the top-right panel, 10.0 for the bottom-left panel and 20.0 Mpc h−1 for the bottom-right panel.

In Fig. 10, we show the bias parameters b̂ (dashed lines) and b̃ (solid lines) versus k, for the whole sample (black lines), for M12 (red
lines) and for M13 (blue lines) for different smoothing lengths.

The vertical dotted line marks k = 0.1 h Mpc−1, which is the typical scale at z = 0 where non-linearities appear. In this paper, we
always work in the linear regime, where k < 0.1 D(0)/D(z) h Mpc−1. From these plots, we can see that b̂ is robust to changes in ls and also
is approximately scale-independent. b̃ is also very close to be scale invariant and varies little with the smoothing scale. In order to have a
numerical reference, b̃ changes by about 7 per cent and b̂ by about 5 per cent compared with their values for ls = 2.5 Mpc h−1, over a range
from kmin = 0.01 h Mpc−1 to kmax = 0.1 h Mpc−1. For ls = 20 Mpc h−1, both parameters change by about 7 per cent in the same k range. On
the other hand, for k � 0.1 h Mpc−1, b̃ changes by about 3 per cent as ls goes from 2.5 to 20.0 Mpc h−1; b̂ changes less than 1 per cent in the
same range.

In Fig. 11, we show the values of the non-linearity parameters versus k obtained from simulations: R(k) (black line), R1(k) (red line), R2(k)
(blue line) and R12(k) (green line). Different panels correspond to different smoothing scales ls, as in Fig. 10. All non-linearity parameters
decrease as the scale decreases, but this trend disappears as we increase the smoothing length. When the smoothing length is large enough
(�20 Mpc h−1), all R parameters are approximately scale-invariant and are very close to 1.

In Fig. 12 (left-hand panel), we show the different noise components obtained from simulations versus k, for different smoothing lengths:
2.5 (red lines), 5.0 (blue lines), 10.0 (green lines) and 20.0 Mpc h−1 (orange lines). The solid lines are 〈ε1(k)ε∗

1(k)〉 (M12), the dashed lines
〈ε2(k)ε∗

2(k)〉 (M13) and the dotted lines the cross terms between the two samples, 〈ε1(k)ε∗
2(k)〉. The noise terms for the whole sample are not

shown for clarity. In order to get a better comparison between all these noise terms, we have removed the effects of the smoothing, dividing
each noise by the filter squared.

The black lines are the noise predictions assuming a Poisson-like noise (〈εi(k)ε∗
i (k)〉 = 1/n̄i). The solid line is for the M12 sample and

the dashed line for M13. The cross term is relatively small (black dotted line). We observe that the M13 noise is sub-Poisson, whereas the
one for M12 is super-Poisson. This is in agreement with the findings of Seljak et al. (2009). It has been noted before (Smith et al. 2007)
that for massive haloes the noise could be sub-Poisson. At scales smaller than the ones of interest here, Smith et al. (2007) ascribe this to
halo-exclusion effects. Noise above the Poisson level is expected if other sources of stochasticity affect halo formation. The formation and
evolution of dark matter haloes is a highly complicated process: dark matter haloes grow through a mixture of smooth accretion, violent
encounters and fragmentation. In the classical extended Press–Schechter/excursion set theory, haloes are identified with initial density peaks
and the computation of the halo mass function (and thus as a derived quantity the halo bias) is mapped into a first passage process in the
presence of a sharp barrier. This yields a deterministic halo bias, but cannot capture the full physical complications inherent to a realistic
description of halo formation. In addition, numerical simulations show that there is not a good correspondence between peaks in the initial
density field and collapsed haloes (see Katz, Quinn & Gelb 1993; Seljak & Warren 2004). Recently Maggiore & Riotto (2009) proposed to
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Figure 11. Non-linearity parameters, R (black line), R1(k) (red line), R2(k) (blue line) and R12(k) (green line), obtained from simulations for different smoothing
lengths, as in Fig. 10. The subscripts 1 and 2 refer to M12 sample and M13 respectively, whereas the no subscript refers to the whole sample. The vertical
dotted line, k = 0.1 h Mpc−1, marks the limit of linear regime. The horizontal dashed line marks the maximum value for all Rs.
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Figure 12. Noise terms (left-hand panel) and power spectrum (right-hand panel) as a function of the scale obtained from simulations. In the left-hand panel,
〈ε1(k)ε∗

1(k)〉 (M12) solid lines, 〈ε2(k)ε∗
2(k)〉 (M13) dashed lines and 〈ε1(k)ε∗

2(k)〉 dotted lines. The black lines are the prediction for a Poisson-like noise. In the
right-hand panel, Pmm(k) from CAMB (black line) and Pmm(k) from simulations (colours lines). In both panels, the colours refer to the smoothing length, 2.5
(red), 5.0 (blue), 10.0 (green) and 20.0 Mpc h−1 (orange).

include these effects, at least at an effective level, by taking into account that the critical value for collapse is not a fixed constant but itself a
stochastic variable. This will naturally lead to an extra ‘noise’ component in the halo bias.

In the Fig. 12 (right-hand panel), we show the signal component, Pmm(k), obtained from simulations for different smoothing lengths.
The colour notation is the same as that in left-hand panel. In this case, the black line is the linear theory prediction for the same cosmological
parameters used in our simulations. The effect of the sampling variance can be clearly seen at large scales. The enhancement of the clustering
at small scales due to the nonlinear gravitational evolution is hidden by the smoothing of the density field.

In order to apply the findings from simulations to our model, we make the following assumptions.

(i) The bias is scale-independent and does not change with the smoothing scale. We take b̃ = 1.05 for the whole sample, b̃1 = 0.97 for
M12 and b̃2 = 1.47 for the M13 sample. This assumption is supported by Fig. 10.

(ii) The non-linearity parameters have a linear dependence with scale k. For each smoothing length, we fitted the best linear relation up to
k = 0.1 h Mpc−1 .

(iii) The noise is Poisson-like. Therefore the diagonal terms of the noise are Nii(k) = αiW
2(k · ls)/n̄i , where αi is a parameter that

takes into account the deviations from the ideal Poisson noise (see Fig. 12, left-hand panel), and W(k · ls) is the smoothing filter. The
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786 H. Gil-Marı́n et al.

Table 2. Parameters values used in plots of Fig. 13 as function of the smoothing scales used.

ls in Mpc h−1 2.5 5.0 10.0 20.0

b̃ 1.05 1.05 1.05 1.05
b̃1 0.97 0.97 0.97 0.97
b̃2 1.47 1.47 1.47 1.47

R(k) 1.0 − 0.39208k 0.99737 − 0.26854k 0.99666 − 0.1585k 0.99587 − 0.01972k
R1(k) 0.99939 − 0.4033k 0.99591 − 0.31089k 0.99567 − 0.18733k 0.99479 − 0.02141k
R2(k) 1.00752 − 0.29446k 1.00145 − 0.22144k 0.99941 − 0.11259k 0.99876 − 0.02276k
R12(k) 0.99922 − 0.16926k 0.99883 − 0.12419k 0.99922 − 0.06535k 0.99905 − 0.01082k

α 1.250 1.325 1.675 2.10
α1 1.365 1.428 1.785 2.100
α2 0.680 0.680 0.760 0.840
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Figure 13. Left-hand panel: error of x as a function of the smoothing length ls. The dashed line is for one-tracer model, whereas the solid line for the two-tracer
one. Right-hand panel: ratio between the two models.

α values used are shown in Table 2. According to the number of haloes of the two tracers and the volume of the simulation, we have
n̄ = 2.5 × 10−3 h3/Mpc3, n̄1 = 2.1 × 10−3 h3/Mpc3 and n̄2 = 4.0 × 10−4 h3/Mpc3.

(iv) We take the off-diagonal noise terms to be zero. This has some support from the simulations (Fig. 12, left-hand panel), where this term
is N12/

√
N11N22 < 0.2

(v) Finally, we assume that the cross-correlation terms between the ε field and the matter field are 0.

We summarize all these assumptions in Table 2. Applying these conditions yield the results shown in Fig. 13. In the left-hand panel, the
fractional errors for one- (dashed line) and two-tracer model (solid line) are shown as a function of the smoothing scale ls, and the ratio of
these two errors is shown in the right-hand panel.

The improvement between the two cases under these assumptions is rather modest: σ 2tr/σ 1tr � 0.9. This is because it is mainly dominated
by the ratio of biases – we have b̃2/b̃1 � 1.5 – if we are in a region where S/N � 10. This result is robust to small changes in the bias
modelling, e.g. perfectly linear bias. We also have tried to fit the off-diagonal term to some non-zero value, but we have found that doing this
does not produce any significant change in the plots of Fig. 13.

There may be some merit in splitting the sample in a different way; by choosing samples with very different biases, the gains should be
larger, but in practice to do this almost certainly requires one sample to be of rare objects, which will have very high shot noise.

4 D ISCUSSION & C ONCLUSIONS

We have revisited the method of circumventing sample variance in the measurement of f = d ln D/d ln a (D being the linear growth factor),
based on comparing the clustering properties of two differently biased tracers of the dark matter distribution. This method was recently
investigated by McDonald & Seljak (2009), although a similar technique in a different context was presented in Pen (2004). Along the
same lines, Slosar (2009) and Seljak (2009) propose to compare clustering of differently biased tracers to circumvent sample variance in the
measurement of primordial non-Gaussianity.

Most of the statistical power of these measurements comes from very large scales where cosmic variance is the dominant contribution
to the statistical error-bars. By suppressing cosmic variance, this approach promises to reduce drastically error-bars on cosmologically very
important quantities; for example it would allow for a high-precision determination of growth of structure as a function of redshift, as encoded
in f D, and an improvement of dark energy figures of merit by large factors.

All these approaches assume that the observed objects (i.e. galaxies) trace the dark matter deterministically; the galaxy density field is
assumed to be proportional to the dark matter field with the constant of proportionality given by a single parameter, the bias. This goes under
the name of the linear bias model. An important underlying assumption is therefore made, that there is no stochasticity between the tracer
field and the dark matter field on the scales of interest, which is expected to breakdown at some level, at least on small scales. While the linear
bias model has been extremely successful in cosmology (e.g. Reid et al. 2010 and references therein), it is well known that the linear bias
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model might provide a good description for the galaxy power spectrum even if the relation between the galaxy and dark matter overdensities
is not that of a linear bias (e.g. Heavens, Matarrese & Verde 1998).

Galaxies are believed to form inside dark matter haloes, but their formation probability as function of halo mass and their exact radial
distribution is still the subject of active research. The process of halo occupation by galaxies is expected to be stochastic to some extent, but
the details of the galaxy distribution within haloes are expected to become increasingly unimportant on large scales. Here, we simplify the
issue by assuming (possibly with an over-simplification) that dark matter haloes can be used as tracers. The linear deterministic bias model
however is known not to be a perfect description of halo clustering and that the relation between dark matter and haloes and between haloes
of different masses is stochastic. For example, Seljak & Warren (2004) point out that ‘the fluctuations between haloes and the initial or final
matter fields are never below 10–20 per cent’ and that ‘the scatter between the fields in individual modes is significant and one cannot assume
that the fields are simply proportional to one another’. This was further explored and quantified by Bonoli & Pen (2009). Note that the halo
overdensity field is expected to have a stochastic component even if it was a perfect Poisson sampling of a linearly biased dark matter field,
but the above references and N-body simulations show that there are additional sources of stochasticity beyond shot noise.

We have thus set out to generalize the approach of McDonald & Seljak (2009), by assuming that the bias of haloes may not be perfectly
linear and allowing for some stochasticity. We have computed the expected error on the quantity fD achievable by comparing clustering of
differently biased tracers (thus suppressing cosmic variance) and by combining the different tracers in a single sample (thus reducing shot
noise and stochasticity but carrying along sample variance in full).

We have analysed how the bias, the noise, the non-linearity and stochasticity affect the measurements of fD and explored in which S/N
regime it is significantly advantageous to split a galaxy sample in two differently biased tracers. We used results from simulations to set
plausible values for these parameters to see how great the gains may be in practice. We find that even small amount of stochasticity (either in
the form of Poisson noise or in more general form) and of non-linearity can limit significantly the performance of the two-tracers approach.
In our analysis, we also have assumed a scale-independent bias. This may be enough, for the mass range studied, if we consider only dark
matter haloes as tracers. This is indeed what we have seen in simulations. On the other hand, it is also true that more realistic approaches,
which account for galaxies as tracers instead of haloes, should include a scale-dependent bias. However, including this in our formalism can
only reduce the gain achievable by splitting the sample. We expect the ratio of errors increases from the current value of 0.9 to even closer
values to 1 if the bias is strongly scale-dependent.

We have shown that only in the very high S/N regime it is significantly advantageous to split the sample and that, even though the gain
is maximized by increasing the ratio of the biases of the two tracers, both tracers should be well sampled. We have explored different ways
of selecting and splitting dark matter haloes obeying a � CDM mass function and found that one can achieve up to a 40 per cent reduction
of the error on f D. While this would correspond to the gain from a three times larger survey volume if the two tracers were not to be split, it
is much smaller that the improvement forecasted in the absence of stochasticity and bias non-linearity.

In addition, we should note that these findings apply to dark matter haloes as tracers, while realistic surveys would select galaxies: the
galaxy–host halo relation is likely to introduce extra stochasticity which would reduce the gain further. The formalism we have developed,
however, is general enough that can be used to optimize survey design and tracers selection and optimally split (or combine) tracers to
minimize the error on the cosmologically interesting quantities.
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APPENDIX A : R ELATIONS BETWEEN ONE-TRAC ER CASE A ND TWO-TRAC ER CASE

The parameters R(r), R1(r), R2(r) and R12(r) are not fully independent, the same is true for the set of parameters β̃(r), β̃2(r) and β̃1(r), and
also the different noise matrices. Here we make explicit their relation.

A1 Relation between the R parameters

Let the tracer (galaxies, haloes. . .) overdensity δg(x) be defined as

δg(x) ≡ ρg(x)

ρ̄g
− 1 = ng(x)

n̄g
− 1, (A1)

where ρg(x) is the tracer density at x. In the second equality, we have used the fact that ρg(x) ∝ ng(x) with ng(x) the number of tracers at x.
The total number density of galaxies is ng(x) = ng1(x) + ng2(x). Defining the ratio of number of galaxies as

Y ≡ n̄1

n̄2
, (A2)

we can write the overdensity of galaxies as

δg(x) = δg1(x)

1 + Y −1
+ δg2(x)

1 + Y
. (A3)

Recalling the definitions of R(r), R12(r), R1(r), R2(r) we find that

R(r) = R1(r)Y β̃2(r) + R2(r)β̃1(r)√
β̃2

2 (r)Y 2 + β̃2
1 (r) + 2R12(r)Y β̃1(r)β̃2(r)

. (A4)

Note that, as expected, when Y → 0, R(r) → R2(r) and when Y → ∞, R(r) → R1(r).
This last equation is also valid in k-space according to the definitions of β̃i(k), b̃i(k), Ri(k) and R12(k). This is because the definitions

of all these parameters are mathematically symmetric in Fourier and configuration space.

A2 Relation between the β̃ parameters

Similarly, we can derive the relation between β̃(r), β̃1(r) and β̃2(r). Recalling the definition of β̃s as,

β̃i(r) ≡ f

b̃i(r)
β̃(r) ≡ f

b̃(r)
(A5)

then the relation between β̃s is

β̃i(r) = β̃(r)

[
b̃2(r)

b̃2
i (r)

]1/2

. (A6)

From this we obtain

β̃−2(r) = β̃−2
1 (r)

(1 + 1/Y )2
+ β̃−2

2 (r)

(1 + Y )2
+ 2R12(r)β̃−1

1 (r)β̃−1
2 (r)

(1 + Y )(1 + 1/Y )
. (A7)
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Again, this relation is valid for both configuration space and k-space because of reasons of symmetry in the definitions of the parameters.
Clearly, we can also write down a relation between the b̃ parameters:

b̃2 = b̃2
1

(1 + 1/Y )2
+ b̃2

2

(1 + Y )2
+ 2R12b̃1b̃2

(1 + Y )(1 + 1/Y )
. (A8)

A3 Relation between the noise terms

Let the noise matrix for one-tracer model be

N1tr = N (A9)

and for the two-tracer model,

N2tr =
(

N11 N12

N12 N22

)
(A10)

both in k-space.
Assuming Poisson noise terms, and distinct populations, the off-diagonal terms are zero, N12 = 0. Setting n̄1 and n̄2 to be the number

density of galaxies of type 1 and 2 respectively, and n̄ = n̄1 + n̄2 the total number of galaxies, we can say that

(N11)−1 = n̄1 (N22)−1 = n̄2 (N )−1 = n̄. (A11)

Finally, we obtain

N11 = N (1 + Y −1) N22 = N (1 + Y ). (A12)

A4 Constraints between the non-linearity parameters

Given the definitions of the non-linearity coefficients, using the Cauchy–Schwarz inequality we find that

−1 ≤ R(r), R1(r), R2(r), R12(r) ≤ 1. (A13)

However, the negative values for these Rs parameters represent a negative bias for tracers relative to the dark matter, with a doubtful physical
connection. For this reason, we restrict the possible values for these parameters to the range

0 ≤ R(r), R1(r), R2(r), R12(r) ≤ 1. (A14)

The parameters R1(r), R2(r) and R12(r) are not totally independent but are related by the condition of equation (B11),

1 − R2
1(r) − R2

2(r) − R2
12(r) + 2R1(r)R2(r)R12(r) ≥ 0 . (A15)

If we isolate R12(r) as a function of R1(r) and R2(r), the last equation becomes

R1(r)R2(r) −
√

R2
1(r)R2

2(r) + 1 − R2
1(r) − R2

2(r) ≤ R12(r) ≤ R1(r)R2(r) +
√

R2
1(r)R2

2(r) + 1 − R2
1(r) − R2

2(r). (A16)

This equation is enough if we are working only with the two-tracer model. However, if we want to compare this model with the one-tracer
model, we have to make sure that also the R(r) parameter is between 0 and 1 (see equation A4):

0 ≤ R1(r)Y β̃2(r) + R2(r)β̃1(r)√
β̃2

2 (r)Y 2 + β̃2
1 (r) + 2R12(r)Y β̃1(r)β̃2(r)

≤ 1. (A17)

Since R1(r), R2(r), Y and β̃i(r) are always positive, the first inequality always holds, and we find that

R12(r) ≥ (R1(r)Y β̃2(r) + β̃1(r)R2(r))2 − Y 2β̃2
2 (r) − β̃2

1 (r)

2Y β̃1(r)β̃2(r)
(A18)

to satisfy the second.
This minimum value could be lower or higher than the one given by the equation (A16) depending on the values of the other parameters.
Therefore, the limits for R12(r) are

R12(r) ≥ max

{
R1(r)R2(r) −

√
R2

1(r)R2
2(r) + 1 − R2

1(r) − R2
2(r),

[R1(r)Y β̃2(r) + β̃1(r)R2(r)]2 − Y 2β̃2
2 (r) − β̃2

1 (r)

2Y β̃1(r)β̃2(r)

}

R12(r) ≤ R1(r)R2(r) +
√

R2
1(r)R2

2(r) + 1 − R2
1(r) − R2

2(r). (A19)

As we said before, also this last equation is valid for k-space parameter because of reasons of symmetry in the definitions.
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APPENDIX B: C ONSTRAINTS O N THE NO N-LI NEAR C OEFFI CI ENTS

Suppose there are three possibly correlated fields, x, y, z (in our application these would correspond to δg1, δg2, δm), and the corresponding
non-linear coefficients are

r2
1 = 〈xz〉2

〈x2〉〈z2〉 , (B1)

r2
2 = 〈yz〉2

〈y2〉〈z2〉 , (B2)

r2
3 = 〈xy〉2

〈x2〉〈y2〉 . (B3)

Using the Cauchy–Schwarz inequality, we can state that

0 ≤ r2
i ≤ +1. (B4)

We want to know what are the constraints on the triplet r1, r2 and r3. To solve this, consider

C ≡ 〈(x + λy + μz)2〉 ≥ 0. (B5)

This is at least zero for all λ and μ, and in particular for the values which minimize C, namely λ′ and μ′:

∂C

∂λ

∣∣∣∣
λ′,μ′

= 〈(x + λ′y + μ′z)y〉 = 0, (B6)

∂C

∂μ

∣∣∣∣
λ′,μ′

= 〈(x + λ′y + μ′z)z〉 = 0. (B7)

The system has an unique solution if and only if r2
1 ≤ 1. In that case, the values are

λ′ = 1

D

(〈yz〉〈xz〉 − 〈xy〉〈z2〉) (B8)

μ′ = 1

D

(〈y2〉〈xz〉 − 〈xz〉〈yz〉) , (B9)

where D = 〈y2〉〈z2〉 − 〈yz〉2. Substituting these values into equation (B5) for C gives

(1 − r2
1 )(1 − r2

1 − r2
2 − r2

3 + 2r1r2r3) ≥ 0. (B10)

Provided that r2
1 �= 1, we can write

1 − r2
1 − r2

2 − r2
3 + 2r1r2r3 ≥ 0. (B11)

Because of symmetry reasons we can say that this last equation holds if at least one of the rs is different from ±1. Note that if two of the rs
are equal to one, so is the third. In our application, r1, r2, r3 correspond to R1, R2, R12.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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