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3 Max Planck Institute for Astrophysics, P.O. Box 1317, D85741 Garching, Germany
4 Dipartimento di Fisica “G. Galilei”, Università degli Studi di Padova, via Marzolo
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Abstract. The strong dependence of the large-scale dark matter halo bias on
the (local) non-Gaussianity parameter, fNL, offers a promising avenue towards
constraining primordial non-Gaussianity with large-scale structure surveys. In
this paper, we present the first detection of the dependence of the non-Gaussian
halo bias on halo formation history using N-body simulations. We also present an
analytic derivation of the expected signal based on the extended Press-Schechter
formalism. In excellent agreement with our analytic prediction, we find that
the halo formation history-dependent contribution to the non-Gaussian halo bias
(which we call non-Gaussian halo assembly bias) can be factorized in a form
approximately independent of redshift and halo mass. The correction to the non-
Gaussian halo bias due to the halo formation history can be as large as 100%,
with a suppression of the signal for recently formed halos and enhancement for
old halos. This could in principle be a problem for realistic galaxy surveys if
observational selection effects were to pick galaxies occupying only recently formed
halos. Current semi-analytic galaxy formation models, for example, imply an
enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1
selected by stellar mass and star formation rate, respectively.

1. Introduction

Placing constraints on deviations from Gaussian primordial fluctuations offers the
possibility to test inflationary models [1, 2] and probes aspects of inflation (namely
the interactions of the inflaton) that are difficult to probe by other means.

In this paper we focus on the so-called local non-Gaussianity, which describes
inflation-motivated departures from Gaussian initial conditions and is parameterized
by [3, 4, 5, 6]:

Φ = φ+ fNL(φ
2 −

〈

φ2
〉

) . (1)

Here φ denotes a Gaussian field and Φ denotes Bardeen’s gauge-invariant
potential, which on sub-Hubble scales reduces to the usual Newtonian peculiar
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gravitational potential, up to a minus sign. The parameter fNL is the amplitude of
the non-Gaussian correction; since φ ∼ 10−5 and current observational limits restrict
|fNL| < 100 [7, 8], we are considering corrections of order 10−3.

Recently, Refs. [9, 10] showed that primordial non-Gaussianity affects the
clustering of dark matter halos (i.e., density extrema), inducing a scale-dependent
bias for halos on large scales. The strong scale-dependence of halo bias (∝ 1/k2)
predicted for non-Gaussianity of the local type [9] can provide constraints on fNL

competitive with those available from the Cosmic Microwave Background [9, 11, 12].
Analytic estimates of the amplitude of the scale-dependent bias show good agreement
with results from N -body simulations [9, 13, 14, 15].

Slosar et al. (2008) [7] argue that the amplitude of the non-Gaussian halo bias
should depend on the halo merger history. Motivated by the idea that quasar
activity is triggered by recent mergers, they estimate the amplitude of the non-
Gaussian halo bias for recent mergers. In this paper we extend their reasoning to
a more general dependence on the halo merger history through the halo formation
redshift zf . We compare this analysis with the dependence of the non-Gaussian
halo bias on halo merger history detected in the N -body simulations of Grossi et
al. (2009) [13]. By comparison with the halo merger history dependence of the halo
occupation distribution of certain galaxies in semi-analytic models of galaxy formation,
we estimate the possible impact of these results on predictions for the amplitude of
the non-Gaussian bias in upcoming large scale structure surveys.

This paper is organized as follows. In Section 2 we first revisit the extended Press
Schechter non-Gaussian halo merger bias derivation of Ref. [7] and then generalize
it to arbitrary halo formation redshifts. In Section 3 we detect the effect in N -
body simulations and show the agreement with the analytic description, including
the simple halo mass and redshift dependence predicted by the model. We explore
the consequences for practical determination of fNL in Section 4 and we conclude in
Section 5. The appendix presents our methodology for fitting our simulation results for
the amplitude of the non-Gaussian halo bias mode by mode, i.e. without computing
a binned power spectrum.

2. Theory

It has been shown [16] that for non-Gaussianity of the local type considered here, the
bispectrum is dominated by the so-called squeezed configurations, triangles where one
wavevector length is much smaller than the other two. In other words, local non-
Gaussianity introduces strong coupling between large and small scales. It is this
coupling that alters halo clustering on large scales (and the halo mass function).
In the peak-background split framework, for Gaussian initial conditions, the short-
wavelength modes of the density field are responsible for halo collapse and virialization,
while the long wavelength ones modulate halo counts. The Lagrange bias of halos of
mass M at redshift zo relates their number density (in Lagrange coordinates) to the
long wavelength matter overdensity field δl(x) at redshift zo:

nh(M, zo,x) = n̄(M, zo)(1 + bL(M, zo)δl(x, zo)). (2)

Upon rearranging this equation, the large scale Lagrange halo bias bL for halos of
mass M arising from Gaussian initial conditions is related to the halo number density
as

bGL = n̄−1 ∂n

∂δl
= n̄−1 ∂n

∂δc
, (3)
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because in the Gaussian case the effect of modulating the density field by a long
wavelength mode δl in some volume of the Universe can be rexpressed simply as an
additive change in the effective critical density for collapse δc in that region. In the
presence of mode coupling due to primordial non-Gaussianity, large-scale modes affect
the statistical properties of small-scale modes (and vice-versa). For special types of
non-Gaussianity (i.e. the local case) it is possible to generalize the Gaussian peak-
background split derivation of halo clustering to non-Gaussian initial conditions. This
was done in Slosar et al. (2008) [7], which we now summarize.

2.1. Review of Slosar et al. (2008) theoretical results

Slosar et al. (2008) [7] re-cast previous results on non-Gaussian halo bias [9, 10, 17]
by instead using a peak-background split of the Gaussian field φ in Equation 1, where
long and short wavelength modes are independent:

φ = φl + φs. (4)

The long wavelength density and potential fluctuations are related by the Poisson
equation, which can be expressed in Fourier space using δl(k, z0) = D(z0)M(k)Φ(k)
with

M(k) =
2c2k2T (k)

3ΩmH2
0

, (5)

where T (k) is the transfer function and D(z) = g(z)(1 + z)−1 is the linear growth
function normalized to (1 + z)−1 in the matter-dominated epoch. That is, g(z) is the
growth suppression due to non-zero Λ, for which g(zCMB) = 1 and g(z = 0) ≈ 0.75
in a concordance cosmology. We note here that while in this paper Φ(k) refers
to the potential in the matter dominated epoch, other authors (e.g., Ref. [13])
have chosen to work with Φ̃(k) normalized at z = 0, the “LSS convention.” The
gravitational potential depends on redshift in a non Einstein-de Sitter universe:
Φ̃(k) = Φ(k)g(z = 0)/g(zCMB). We can see from Equation 1 that fNL also depends
on this choice, so that fLSS

NL = fCMB
NL g(zCMB)/g(z = 0) ≈ 1.3fCMB

NL . Throughout
this section, fNL refers to fCMB

NL .
The effect of the non-Gaussianity described by Equation 1 (and its induced mode

coupling) is to modulate the amplitude of small-scale density fluctuations δs with the
long wavelength potential fluctuations. This can be viewed as a change in the local
value of σ8, σ

local
8 , due to φl:

δs(zo) = D(zo)M(k)
[

(1 + 2fNLφl)φs + fNLφ
2
s

]

. (6)

In this picture, the Lagrangian halo bias becomes

bL(M,k, zo) = bGL(M, z0) + 2fNL
dφl(k)

dδl(k, zo)

∂ ln n

∂ ln σlocal
8

. (7)

The final expression for the non-Gaussian scale-dependent component of the halo bias
on large scale is

∆bNG(M,k, zo) =
2fNL

D(zo)M(k)

∂ ln n(M, zo)

∂ ln σ8
, (8)

where we have dropped the “local” label. That is, under the assumptions of [7], the
non-Gaussian scale-dependent halo bias can be predicted from determination of the
dependence on σ8 of the mass function of the desired objects in cosmologies with



Non-Gaussian halo assembly bias 4

Gaussian initial conditions. In particular, to determine ∆bNG for halos of mass M0

that have undergone a recent merger, they write

∂ ln nmerger(Mo, zo)

∂ ln σ8
=

∂ ln n(Mo, zo)

∂ ln σ8
+

∂ ln P (M1|Mo, zo)

∂ ln σ8
(9)

where M1 is the progenitor mass for a halo of mass M0 that has undergone a recent
merger, and P (M1|Mo, zo) is the probability that a halo of mass Mo at zo has a recent
progenitor of mass M1. For a universal mass function, the first term evaluates to
δcb

G
L (or qδcb

G
L [13]). Using the extended Press-Schechter (ePS) formalism, the second

term evaluates to -1 (independent of M1), in good agreement with the dependence of
merger rates on σ8 found in N -body simulations during the matter-dominated epoch
[7]. Ref. [18] finds that in the ePS formalism, the Gaussian halo bias is independent
of its formation history. While “halo assembly bias” is the subject of a lot of current
theoretical effort (e.g.,[19, 20] and references therein) it appears to be substantial only
at the lowest halo masses. N -body simulations show that the dependence of halo bias
on secondary paremeters is relatively small for the massive halos on very large scales
of interest in this work [21, 22, 23, 24, 20, 25]. In particular, Ref. [24] find that for
M ≥ 10M⋆, the 20% youngest halos have a 10% larger Gaussian halo bias than the
20% older halos. Here we concentrate instead on the formation history dependence of
the non-Gaussian correction to the halo bias, which, as we show below, is much larger.

2.2. General dependence of ∆bNG on zf using ePS

In the formalism of ePS, we can easily generalize the results of [7] to express the
dependence of ∆bNG on the halo formation history, which we define by the “formation
redshift” zf . In the original formulation of ePS [26], zf is the redshift at which the halo
contains half of its current mass; on the other hand Ref. [27] suggests that, at least for
the observational properties of clusters, this should rather be defined as Mf = fM0,
with f ≈ 0.75. In this section we leave f as a free parameter. We can therefore write
∆bNG explicitly in terms of the halo mass M observed at redshift z0 with formation
redshift zf , and fraction of the halo mass at zf , f .

∆bNG(M,k, zo, zf , f) =

2fNL

D(zo)M(k)

(

∂ ln n(M, zo)

∂ ln σ8
+

∂ ln Pzf (fM, zf |M, z0)

∂ ln σ8

)

(10)

Here Pzf is the conditional mass function – the probability that a halo with mass
M at zo has a mass fM at an earlier redshift between zf and zf + dzf . With the
same approximations as in Sec 2.5.2 of [26], but generalizing to arbitrary fraction f
defining the epoch of formation, an analytic expression for the probability distribution
of formation redshifts Pzf (fM, zf |M, zo) can be derived as follows. We start by
defining the amplitude of fluctuations in the linear density field evolved to z = 0,
as usual:

σ2(M) =
1

2π2

∫

P(k)k2Ŵ 2
M (k)dk = σ2

8

∫

P(k)k2Ŵ 2
M (k)dk

∫

P(k)k2Ŵ 2
R=8(k)dk

(11)

where ŴM is the Fourier transform of a top-hat filter with radius R = (3M/4πρ̄m)1/3,
ρ̄m denotes the matter background density at z = 0, and P(k) is the linear matter
power spectrum at z = 0. The second equality makes explicit how we define the σ8 in
Equation 10 that we differentiate with respect to. That is, σ8 defines the amplitude of
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σ2(M), while the mass dependence is held fixed. Following Ref [26] we also introduce
the quantity

ω̃f =
δc(zf)− δ(z0)

√

σ2(fM)− σ2(M)
. (12)

At fixed final halo mass M at zo, the probability that the halo formed between zf and
zf + dzf is simply expressed in terms of ω̃f :

Pzf dzf = Pω̃f

dω̃f

dzf
dzf =

[

√

2

π

(

1

f
− 2

)

e−ω̃2

f/2 − 2ω̃f

(

1

f
− 1

)

Erfc(ω̃f/
√
2)

]

dω̃f

dzf
dzf (13)

where δc(z) = ∆c(z)D(z)/D(z = 0) (with ∆c(z) ≈ 1.686) is the critical overdensity
for collapse at redshift z and Erfc denotes the complementary error function. The
halo mass, redshift, and σ8 dependencies of Pzf are absorbed into the variable ω̃f . To
compute the second term in Equation 10, we must differentiate the formation redshift
probability distribution Pzf at fixed halo mass M with respect to σ8:

∂ ln Pzf (fM, zf |M, zo)

∂ ln σ8
= −1− ω̃f

Pω̃f

dPω̃f

dω̃f
. (14)

Therefore, the ePS formalism predicts that the amplitude of the merger history
dependent contribution to ∆bNG depends on M , zo, and zf only through a single
variable, ω̃f . Note that Equation 14 approaches ω̃2

f − 1 in the limit of large ω̃f . In
Section 3, we test Equation 14 explicitly by dividing our simulated halo sample into
bins in ω̃f . Correspondingly, we must average Equation 14 over the same bins. To
reduce the impact of known discrepancies between the ePS prediction for Pzf and
those measured in N -body simulations (e.g., [28]), we express the ePS predictions in
terms of the fraction x of halos with the lowest or highest values of ω̃f . For the lowest,
we set ω̃1 = 0 and solve for ω̃2 such that

∫ ω̃2

0

dω̃fPω̃f
= x . (15)

For the highest values of ω̃f , we set ω̃2 = ∞ and we solve similarly for ω̃1. The final
expression for the mean value of Equation 14 in the range [ω̃1(x), ω̃2(x)] as a function
of halo fraction x is

〈

∂ ln Pzf (fM, zf |M, zo)

∂ ln σ8

〉

= (16)

∫ ω̃2(x)

ω̃1(x)
dω̃fPω̃f

(

−1− ω̃f

Pω̃f

dPω̃f

dω̃f

)

∫ ω̃2(x)

ω̃1(x)
dω̃fPω̃f

=

[

−ω̃fPω̃f

]ω̃2(x)

ω̃1(x)
∫ ω̃2(x)

ω̃1(x)
dω̃fPω̃f

.

One may worry that the expression for the conditional probability (Equation 13)
was derived within the Press-Schecter [29] framework: an approximation yielding an
expression for the halo mass function which does not reproduce well N-body simulation
results especially at small and big masses and which has been significantly improved
(e.g., [30, 31]). Unfortunately there is no analytical expression for the conditional
probability in the context of these improvements. However, van den Bosch et al. [28]
found relatively good agreement between Equation 13 and their N -body simulation
results, though for the massive halos of interest in this work, the simulated halos
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Figure 1. Each point in the figure represents a halo in our mass-limited
M ≥ 2× 1013h−1M⊙ sample at z = 0. Each color band represents a subsample
of the full distribution that reproduces the mass function of the full sample but
has different formation redshift distributions; each subsample contains 10% of the
total halos in the sample. The black lines dividing two colors define our cumulative
samples. For instance, all halos below the third black line from the bottom of the
plot enter our x = 0.3 “low zf” sample, while all halos above the third black line
from the top enter our x = 0.3 “high zf” sample.

formed somewhat earlier than Equation 13 predicts. Moreover, here we are only
interested in how dP/dzf changes as σ8 is varied; we therefore expect ePS to fare
better in this respect. We will show in section that the ePS approach adopted here is
a remarkably good description of the dependence of dP/dzf on σ8 as measured from
N-body simulations.

3. Simulation Results

We use the Grossi et al. (2009) [13] set of 5 simulations (fLSS
NL = 0,±100,±200,

or equivalently, fCMB
NL = 0,±75,±151), where all simulations use the same initial

condition field φ in Equation 1 to suppress cosmic variance. These simulations have
Lbox = 1200 h−1 Mpc and particle mass mp = 1.4× 1011 h−1M⊙. We generate halo
merger trees at z = 0 with the SUBFIND code [32], based on simulation outputs at
z = (0, 0.137, 0.283, 0.441, 0.613, 0.804, 1.017, 1.258, 1.535, 1.857, 2.236, 2.688, 3.235,
3.907, 4.749, 5.822). To define a halo’s formation redshift zf , we interpolate between
the progenitor masses at the available redshifts.
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Figure 2. Halo-halo power spectra from the fLSS
NL

= −200 (dashed) and

fLSS
NL = 200 (solid) simulations for halos with M ≥ 2 × 1013h−1M⊙ for 25%

subsamples of halos with the highest (green) and lowest (blue) zf values. No shot
noise correction has been applied, and so for comparison we produce a random
subsample of the full mass-limited sample with the same number density as the
other samples (red). The left panel uses halos at z = 0, while the right panel uses
halos at z = 0.8.

The first term in Equation 10 is proportional to the Gaussian Lagrange halo
bias bGL , which depends on halo mass. To separate the dependence of ∆bNG on
halo formation redshift from its dependence on halo mass, we create zf -dependent
subsamples of the full mass-limited halo sample at fixed observed redshift zo that
match the halo mass function of the full sample. To do this, we sort the Nhalos halos
by mass, and form groups of Ngroup ≪ Nhalos halos closest in mass. We sort these
Ngroup halos by zf , or equivalently by ω̃f (since the halo mass is nearly constant in
the Ngroup halo subsample). The highest and lowest fraction x of these Ngroup halos
enter the zf -dependent subsamples that by design have matching mass functions.
The full M ≥ 2 × 1013h−1M⊙ sample has Nhalos ≈ 250, 000 at z = 0, while we
use Ngroup = 10, 000 throughout the main text; in the Appendix we demonstrate
that our results are unchanged if Ngroup = 100 is used instead. Figure 1 illustrates
the sample selection scheme more clearly, where we plot each halo in our z = 0,
M ≥ 2× 1013h−1M⊙ sample in the two dimensional space zf -M , with the formation
in this case defined by M(zf) = fMo for f = 0.5. Note the relatively mild trend that
the average zf decreases with M , and also the large spread in zf at fixed M . At each
small halo mass bin defined by Ngroup halos, we divide the sample into 10 bins based
on zf , and the zf bins from different mass bins are combined to produce halo samples
with matching mass functions but different formation redshift distributions. The
result is 10 distinct samples represented by the color bands in Figure 1. To increase
the signal to noise ratio of our measurements, we do not present non-Gaussian halo
bias measurements for the 10 disjoint samples represented in Figure 1, but instead
present results for cumulative samples defined by the 9 lines which each divide two
colors in the figure. That is, samples labelled as x = 0.3 contain either the three lowest
or three highest color bands in the figure; the black lines divide the different samples.
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Figure 2 illustrates the signal we quantify in this section. We plot the halo-halo
power spectrum for halos with M ≥ 2× 1013h−1M⊙ at z = 0 (left panel) and z = 0.8
(right panel) for two subsamples of the parent sample with the 25% highest (blue) and
lowest (green) formation redshifts zf for f = 0.5, selected as described in the previous
paragraph. For reference we plot a random subsample of the halo population with
the same number density as the zf -dependent subsamples in red. This should have
approximately the same noise properties as the other two samples, but reflects the
clustering properties of the full halo population. Dashed lines are for fLSS

NL = −200
and solid lines are for fLSS

NL = 200. In the region of the spectrum where ∆bNG is
important (restricted to k ≤ 0.03 h/Mpc in our analysis), the power spectrum is
noisy but appears to depend on zf . Because the spectra show good agreement at
higher k where ∆bNG is small, our scheme to match the first term in Equation 10
between samples is successful, and the difference between the spectra at small k can
be attributed to the second (zf -dependent) term in Equation 10, rather than the term
proportional to the Gaussian Lagrange bias bLG.

We assume the following relation between halo (δh(k)) and dark matter (δm(k))
individual Eulerian density modes observed at redshift zo, in order to fit for the
amplitude of the non-Gaussian halo bias, ANG:

δh(k) =

(

bG +ANG
2fNL

D(zo)M(k)

)

δm(k) + n(k). (17)

Here bG = 1 + bGL represents the Eulerian scale-independent contribution to the halo
bias (first term in Equation 7). ANG describes the amplitude of the non-Gaussian halo
bias, and Equation 10 predicts that ANG is the logarithmic derivative of the Gaussian
mass function of the halo sample with respect to σ8, i.e., ANG should be given by
∂ ln n(M, zo)/∂ ln σ8 + ∂ ln Pzf (fM, zf |M, z0)/∂ ln σ8. We assume the noise n(k)
to be Poissonian. For the results presented in this section, we first use the fLSS

NL = 0
simulation to determine the scale-independent halo bias bG for each mass, redshift,
and zf -dependent halo subsample while holding ANG = 0. We then assume the fNL

and k dependence in Equation 17, and fit the four simulations with non-zero fNL for a
single number, ANG, for each halo subsample. This accounts for any small dependence
of bG on zf in the Gaussian case. In the Appendix we present further details of this
fitting procedure and compare this approach with a more conservative one, where
separate values of bG are fit simultaneously for each fNL 6= 0 when fitting for ANG.
An advantage over previous approaches is that our fit is performed mode by mode for
the 366 available modes, rather than to a power spectrum where an effective value of
k must be chosen for each bin; this choice seemed to impact the results of Ref. [14].
Note that in the model given by Equation 17, σ2

ANG
∝ 1/Nhalos, so our measurement

error is smallest at z = 0 where there are the most halos above our fixed mass limit
available from our simulations.

Equation 16 predicts that, when written as a function of the variable x, the zf -
dependent fractional contribution to ∆bNG is independent of both halo mass M and
observed redshift zo; we will check these predictions explicitly later in this section. We
begin with a mass-limited halo sample M ≥ 2×1013 h−1 M⊙ at each snapshot redshift
zo available from our simulations and measure the amplitude of its non-Gaussian bias

term, Aall
NG(zo). To quantify the dependence of ANG on zf , we measure ∆A

h/l
NG(x, zo):

∆A
h/l
NG(x, zo) = A

h/l
NG(x, zo)−Aall

NG(zo), (18)

where x is the fraction of halos with the highest (lowest) formation redshifts entering
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Figure 3. ∆A
h/l
NG

(x) = A
h/l
NG

(x) − Aall
NG

averaged over simulation snapshots
between z = 0 and z = 2.23 for subsamples of M ≥ 2 × 1013 h−1 M⊙ halos
of the highest (lowest) fraction x of halo formation redshifts (black points with
errors). The left panel uses f = 0.5 to define the formation redshift zf , while
the right panel uses f = 0.75. The ePS prediction (Equation 16) for the high zf
(red) and low zf (green) subsamples provides an excellent fit to the simulation
measurements.

the h (l) subsamples at each zo. In Figure 3 we plot ∆A
h/l
NG(x) after performing an

error-weighted average over all zo values between z = 0 and z = 2.23 for two definitions
of the halo formation redshift, f = 0.5 and f = 0.75. Note that ∆Ah

NG(x) is positive,
while ∆Al

NG(x) is negative for both values of f . Conservatively, we show the errors
from the zo = 0 sample only, since the halo samples at different redshifts will be
correlated. Moreover, note that for two values of x, x1 < x2, the first subsample is
contained in the second. Therefore, the error bars at different x are highly correlated
as well. The agreement with the ePS prediction given by Equation 16 is excellent for
both the low zf (green curve) and high zf (red curve) subsamples. Note that the ePS
prediction is:

∆ANG =
∂ ln Pzf (fM, zf |M, zo)

∂ ln σ8
= −1− ω̃f

Pω̃f

dPω̃f

dω̃f
. (19)

For the finite binning used in the simulations, the plotted theory line uses Equation
16.

The essential features of the non-Gaussian halo assembly bias we quantify here
are:

• The left panel of Figure 4 shows how the relative importance of the first and second
term in Equation 10 evolves with redshift, for our mass-limited halo sample; the
amplitude of the zf -dependent contribution is potentially large compared to the
first term in Equation 10, ∂ ln n(M, zo)/∂ ln σ8 ∼ 1.68(bG − 1). For instance,
if we split the z = 0, M ≥ 2 × 1013 h−1 M⊙ halo sample in two as a function
of zf (i.e., x = 0.5), the ANG predictions differ from the mean (Aall

NG = 1.12)
by ±(1.28 ± 0.2). That is, the more recently formed halos have a factor of
∼ 7 smaller expected signal than the full halo sample (and with opposite sign:
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Figure 4. Left panel: Best fit ANG for the full mass-limited sample M ≥
2 × 1013 h−1 M⊙ (points with errors) as a function of redshift, as well as for
subsamples split in half on zf (x = 0.5) for f = 0.5 (dotted) and f = 0.75
(dashed). The zf -dependent correction is well described as an additive correction

as in Equation 10. Right panel: |A
h/l
NG

(x = 0.5)−Aall
NG| as a function of redshift for

f = 0.5 (diamonds) and f = 0.75 (squares). Points are offset from the snapshot
redshift by ±0.02 for clarity, and the ePS predictions are shown as a straight lines
for f = 0.5 (dotted) and f = 0.75 (dashed). There is no clear redshift dependence,
though the errors are large so our measurement is not very constraining.

Al
NG/A

all
NG ≃ −0.16/1.12), while the older halos have a factor of ∼ 2 larger signal

than the full halo sample (Ah
NG/A

all
NG ≃ 2.3/1.12).

• The effect is asymmetric between old and young halos. Even if the tracer
population excludes only the 10% oldest halos, the value of ANG for the remaining
90% of the halos differs from the full sample by ≈ 0.44; at z = 0, this amounts
to a change of 0.44/1.12 = 40%.

• Figures 4 and 5 support the ePS prediction expressed in Equation 16 that there
is no mass or redshift dependence to the zf -dependent term, when expressed in
terms of the variable x. However, note that we are restricted to studying massive
halos M ≥ 2× 1013 h−1 M⊙, and that our errors on ∆ANG rapidly increase with
z.

Finally, we generate the closest possible sample to recent major mergers available from
our simulations at z = 0, where the errors on ∆ANG are smallest. We sort the halo
sample not on zf but on the first progenitor’s mass at the previous snapshot output,
z = 0.137 (1.7 Gyr earlier). For x ≤ 0.4 (i.e., for the 40% of halos with the lowest
progenitor masses) we find a ∆ANG(x) consistent with −1, the ePS prediction derived
in Slosar et al. 2008 [7], and the limit of our ePS predictions for large values of f .

4. Implications for upcoming galaxy surveys

Non-Gaussianity constraints achievable from forthcoming and planned surveys using
halo bias are very promising [11, 33]; these forecasts are obtained using the mean
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Figure 5. The average profile measured using all halos with M ≥ 2 ×
1013 h−1 M⊙ (black points with error bars, same as in Figure 3) plotted with
three subsamples in mass containing equal numbers of halos. The blue curve
uses halos with M ∈ [2.0, 2.82] × 1013 h−1 M⊙, the green curve uses halos
with M ∈ [2.82, 4.88] × 1013 h−1 M⊙, and the red curve uses halos with
M ≥ 4.88×1013 h−1 M⊙. For the mass range probed here, ∆ANG is independent
of mass.

non-Gaussian halo bias relation and therefore assume that these surveys will select
galaxies that provide a fair sample of the underlying dark matter halo population in
the suitable mass range. However, if the survey selection were to preferentially select
galaxies occupying dark matter halos with zf lower than the mean or were to miss
e.g., the 10% of dark matter halos with the highest zf , this, if unaccounted for, would
introduce a significant bias in the measured fNL parameter. As shown in Section 3, in
principle, for some extreme cases, this bias could be as large as 40-100% of the (mean)
signal.

As alarming as this may seem, it is important to bear in mind that the results
of the previous section only affect the predictions of ∆bNG for galaxy redshift surveys
if the probability of a halo of hosting a galaxy in the survey sample depends on
the formation history of the halo, at fixed halo mass M . Within the halo-model
framework [34], the standard implementation of the halo occupation distribution
approach describes the bias of specific galaxy types with respect to the underlying
dark matter by assuming that the probability for a halo to host a galaxy depends only
on the halo mass. While for many galaxy types the impact of secondary parameters
appears small (e.g., [35, 36, 37] and references therein), there are some indications of
halo-assembly bias and evidence for secondary parameters [38, 39, 40]. Semi-analytic
models of galaxy formation are dependent on the entire dark-matter halo-merger
history and can, in principle, include the full dependence of galaxy properties on
secondary parameters. Ref. [41] assessed the impact of Gaussian halo assembly bias
for Millenium simulation galaxy samples with two different magnitude cuts, and found
changes to the Gaussian bias of . 10%. However, this change was not explained by
the addition of any simple secondary parameter, like zf=0.5 or halo concentration.
Therefore, by considering zf in what follows, we may be underestimating the possible
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signal from other properties of halo formation that correlate more closely with galaxy
properties.

In this section we use galaxies selected from the Bertone et al. (2007) [42]
semi-analytic galaxy–formation model implemented on the Millenium simulation halo
merger trees [32]. In order to estimate the order of magnitude of this effect, we consider
realistic but simply selected galaxy populations relevant to upcoming galaxy surveys,
and ask whether these galaxies occupy dark matter halos with specific formation
histories, in such a way to introduce a marked non-Gaussian halo assembly bias
contribution. Note that the same procedure can be followed to study the impact
of halo assembly bias on galaxy clustering in Gaussian initial conditions; in fact, in
both cases, we only need to quantify how different the formation redshift distribution
of the halo population hosting the selected galaxies is from the full halo population,
for a given halo mass M (or small dM around M).

The procedure in the context of a mock galaxy sample embedded in an N -body
simulation is as follows:

• Select a galaxy sample (e.g., based on observational selection criteria) and identify
their host dark matter halos (host halo sample).

• Identify the host dark matter halos’ mass range and select the full dark matter
halo sample in that mass range (full halo sample). The halos containing the
galaxy sample are a subset of this set.

• Measure the formation-dependent quantity of interest, such as zf , for the full halo
sample.

• Determine the dependence of the zf distribution on halo mass M ; in practice we
do this exactly as for the sample shown in Figure 1. That is, we determine the
dividing lines between 10 bins in zf (black lines in Figure 1) as a function of halo
mass.

• Determine how the halos containing the galaxy sample occupy these 10 bins,
summarized by Pgal(ybin); here we use ybin to denote the bin number or transversal
band in Figure 1. ybin = 1 corresponds to halos with 10% lowest zf for each mass
bin and the ybin = 10 corresponds to halos with the 10% highest zf for each mass
bin. If galaxies were hosted in a random sample of the full halos, P (ybin) would
be a constant. Any deviation from a constant indicates a correlation between
the galaxy selection and the host halo formation history. We have chosen the
normalization such that

∑

bins P (ybin) = 1.

• Determine the halo assembly bias correction factor. For our application this is
∆Agal

NG:

∆Agal
NG =

∫

∆ANG(y)Pgal(y)dy ≈
10
∑

i=1

∆ANG(yi)Pgal(yi) . (20)

To evaluate ∆Agal
NG, in practice we break the halos into 10 bins as shown in

Figure 1 and sum the expected signal, ∆ANG(yi), over the fraction of galaxies in
these discrete bins, Pgal(yi). We compute ∆ANG(yi) using Equation 16. For
this application we are considering disjoint halo subsamples rather than the
cumulative bins considered in Figure 3. In the right panel of Figure 6 we show
the theory curves for 10 disjoint bins, where we have used f = 0.5 (f = 0.75) to
define zf in the solid (dashed) curve.
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Non-Gaussian assembly bias in the Bertone et al. (2007) mock galaxy catalogs

n̄ (h−1Mpc)−3 selection criteria ∆Agal
NG bG δc(bG − 1) ≈ Atot

NG % change
4.5× 10−4 ≥ 8× 1010 h−1 M⊙ 0.51 2.3 2.2 23%
4.5× 10−4 ≥ 24 M⊙/yr 0.24 1.3 0.51 48%

Table 1. We select two galaxy samples from the semi-analytic model of Bertone
et al. (2007) [42], which have been run on the Millenium simulation [32]. Both
samples are selected to have the same number density, and roughly the value that
would be targeted for upcoming BAO surveys. The first sample is selected based
on stellar mass, and the second based on star formation rate. Both galaxy samples
preferentially occupy halos that formed earlier than average (see Figure 6), which

translates into non-zero values of ∆Agal
NG

. We measure the Gaussian Eulerian bias
bG from the galaxy clustering amplitude in the Millenium for both samples in
order to infer the expected ANG for each sample in the absence of non-Gaussian
halo assembly bias.

If for some sample galaxies ∆Agal
NG is not negligible compared to Aall

NG ≈ 1.68(bG − 1),
then the effect of non-Gaussian assembly bias cannot be ignored. In particular recall
that for recently formed halos, ∆ANG can even cancel out ANG, erasing any non-
Gaussian signature, if present.

BigBOSS [43] plans to select luminous red galaxies out to z ∼ 1 and emission-line
galaxies at higher redshift; other proposed surveys (e.g., Euclid [44]) will also target
emission-line galaxies out to z ∼ 2. Emission-line galaxies are thought to have high
star formation rates, possibly triggered by mergers. Should galaxy mergers trace the
host dark matter halo mergers, this selection effect could greatly reduce the expected
signal for a given value of fNL. Another large future survey suitable for this study is
LSST; LSST will select all galaxies above a given magnitude cut, and thus its selection
criterion should be less correlated to the host halos accretion history than the other
two surveys.

As an example, we consider two distinct galaxy samples from Ref. [42] semi-
analytic catalogs at z = 0.99, one selected on large stellar mass (Mstellar > 8 ×
1010 h−1 M⊙) and the other on large star formation rate (Ṁstellar > 24M⊙/yr), where
both samples are chosen to have number densities of 4.5 × 10−4 (Mpc/h)−3, i.e., in
the right ballpark for a BAO-focused survey. Pgal(y) for these samples is shown by
the solid green and red dashed lines in Figure 6 for stellar mass and star formation
rate selected samples, respectively; the figure is normalized such that Pgal(y) = 0.1
corresponds to a uniform sampling of the underlying halo distribution. For both
samples, galaxies occupy halos across the distribution of zf , but with a preference for
halos that formed early (high ybin), though the trend is stronger with stellar mass.

Using Eq. 20, this preference translates to ∆Agal
NG = 0.51 for the stellar mass selected

sample, while their Gaussian bias is ≈ 2.3, as measured from their power spectrum on
large scales. For the star formation rate-selected sample, ∆Agal

NG = 0.24, while their
bias is ≈ 1.3. Since Aall

NG ≈ δc(bG − 1), accounting for the non-Gaussian assembly
bias amounts to a boost of the expected scale-dependent halo bias of 23% and 48%,
respectively. Results for these galaxy samples are summarized in Table 1.
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Figure 6. The solid (dashed) black curves in the right panel show ∆ANG(y)
for 10 bins in ω̃f for f = 0.5 (f = 0.75) using Equation 16. Each bin contains
10% of halos, in contrast to the theory curves in Figure 3, where the “high”
and “low” curves considered cumulative samples (i.e., 30% lowest and highest).
The solid green curve in the left panel shows Pgal(y) for the stellar mass selected
sample described in the text (where zf has been defined using f = 0.5), while
the dashed red curve shows Pgal(y) for the star formation rate selected galaxies
(where zf has been defined using f = 0.75). The normalization is chosen such
that Pgal(y) = 0.1 represents a sampling of the underlying halo distribution which
is independent of halo formation redshift zf . The integral over the product of the
solid (dashed) curves gives the assembly bias contribution to the non-Gaussian
halo bias (Equation 20) for the stellar mass (star formation rate) selected galaxy

samples. The result is ∆Agal
NG

= 0.51 for the stellar mass selected sample, and
∆ANG = 0.24 for the star formation rate selected sample. See Table 1 for more
details.

5. Conclusions

We have demonstrated that the impact of assembly bias on the amplitude of the non-
Gaussian halo bias can be quite strong. We have expanded the arguments in Slosar et
al. (2008) [7] using extended Press-Schechter theory to express non-Gaussian assembly
bias in terms of halo formation redshift zf for arbitrary f ≥ 0.5, where zf is the redshift
at which a halo has accreted a fraction f of its final mass. This theory predicts that
halo subsamples containing a fraction x of the earliest (latest) forming halos (compared
with other halos with the same mass) have a non-Gaussian halo bias that differs from
the full parent halo sample by a fractional correction dependent only on x; when
using this variable, the non-Gaussian assembly bias correction is independent of halo
mass and redshift. The N -body simulations of Grossi et al. (2009) [13] are in good
agreement with these ePS predictions.

The implications of these results for galaxy redshift surveys are extremely
uncertain. If the commonly adopted assumption that the probability of a halo hosting
a particular type of galaxy only depends on the halo mass, then there will be no
non-Gaussian halo assembly bias contribution to the galaxy sample’s non-Gaussian
bias. However, in principle, galaxy formation depends on the entire history of host
dark matter halos to some degree, and semi-analytic models of galaxy formation
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attempt to account for this dependence. In Section 4, we found that a relatively mild
preference for early-forming halos for both stellar mass and star formation rate selected
z = 1 samples translates into an increase in the expected non-Gaussian galaxy bias of
∼ 23 − 48% compared with the average signal expected from the samples’ Gaussian
bias values. This result is particularly counter-intuitive for star-forming galaxies, since
star formation is triggered by galaxy mergers in these models. One should bear in mind
that a galaxy merger does not necessarily correspond to a major merger of the host
dark matter halo, and that it is reasonable to expect some time-lag between the dark
matter halo merger and the merger of the galaxies populating them. Furthermore, we
caution that we have not been extensive in our exploration of galaxy sample selection
space, or precise enough to make predictions for upcoming experiments. There may
be certain populations for which this effect may be much larger or much smaller. On
the other hand, it is possible that in an analysis aimed at constraining fNL, one may
be able to weight galaxies by some color or spectral property in order to enhance the
non-Gaussian signal in the survey. More work is needed to further quantify the impact
of such an approach on the recovered constraints on fNL from realistic surveys.
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Appendix A. Fitting non-Gaussian bias

We wish to construct a χ2 to estimate the amplitude of halo assembly-bias in non-
Gaussian simulations; in principle this would require knowledge of a 4-point function
in the non-Gaussian theory. We begin considering the expected errors in linear theory
for Gaussian initial conditions, and linearly biased tracers that Poisson-sample the
continuous matter density field. Our model for the relation between the halo density
field and the matter density field for each mode k is given by Equation 17, and
Poisson sampling implies 〈n(k)n⋆(k)〉 = n̄−1. We will keep the k-dependence of the
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non-Gaussian component of the bias fixed, M−1(k), and fit for an amplitude of the
non-Gaussian component, ANG, and scale-independent component, bG. Under these
assumptions, the variance about the model is

〈(

δ⋆hδm−
(

bG +ANG
2fNL

D(zo)M(k)

)

δ⋆mδm

)

2

〉

=〈n(k)n⋆(k)〉δ⋆mδm (A.1)

Here the average is over the Poisson noise, and the matter field is considered fixed. For
our χ2 calculation, we will only consider the real component of δ⋆hδm. Since the noise
is assumed uncorrelated with δm, the noise associated with only the real component is
smaller by a factor of 2 than in Equation A.1, which counts both real and imaginary
components.

χ2 =
∑

n

(

Re[δ⋆hδm]−
(

bG +ANG
2fNL

D(zo)M(k)

)

δ⋆mδm

)2

Pmm(k)/2n̄
(A.2)

Because there may be a slight dependence of bG on fNL, we consider two distinct
fitting procedures for ANG. In both, we assume the k and fNL dependence in Equation
10 and define one and two sigma errors by changes in the χ2 value of 1 and 4
in Equation A.2, where the sum is performed over the density modes of interest
in each different fNL simulation. Following Ref. [13], we limit all fits to modes
with k ≤ 0.03h/Mpc, which after discarding modes with wavenumber 2π/Lbox and√
2× 2π/Lbox, amounts to 366 modes. We find that for the massive halos considered

here, χ2 can be substantially smaller than the number of degrees of freedom (see
[45, 46] for other recent evidence for sub-Poissonian sampling). Therefore, our error
bars may be overestimated.

In the first approach applied in the main text, we first fit the model with ANG = 0
to the fNL = 0 simulation to determine bG and its uncertainty for each mass, redshift,
and zf -dependent halo subsample. Next we fit for ANG using the four fNL 6= 0
simulations, assuming that the scale-independent contribution, bG, is independent of
fNL. Therefore we use the measurement in the fNL = 0 simulation to marginalize over
a bG common to all values of fNL, integrating over the probability distribution P (bG)
derived from the fNL = 0 result.

In the second, more conservative approach, we fit our simulation data to a five
parameter model: the scale-independent bG in each non-zero fNL simulation, and a
single amplitude ANG for the non-Gaussian signal. Because of the limited range of
k values over which to fit, the non-Gaussian amplitude ANG can be degenerate with
the scale-independent bias bG in Equation 17. Figure A1 shows an example of this.
We first fit the fNL = 0 simulation for bG,fNL=0 in the same k range we use to fit
the non-Gaussian bias (k ≤ 0.03h/Mpc), holding ANG = 0. To illustrate the non-
Gaussian signal, we plot the halo-matter cross power spectrum Phm normalized by
bG,fNL=0Pmm for fLSS

NL = 200, 100,−100,−200 (blue, green, red, light blue). We plot
the best fit five parameter model in black for k ≤ 0.03h/Mpc, and we plot the value of
bG for each fNL value at k ≥ 0.03h/Mpc. The best fit values of bG are anti-correlated
with the value of fNL in the z = 0.8 sample, which could in principle affect the best
fit value for ANG. We compare the results of the five and one parameter fits to ANG

in Figure A2. The two approaches give consistent results, though the errors are much
larger as expected when bG is fit separately for each value of fNL.

In Section 3 we introduce the parameter Ngroup, which determines how many
halos are grouped together before dividing into subsamples based on zf . If Ngroup

is too small, one expects to introduce sample variance, in that halos are scattered
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Figure A1. The colored dashed curves show Phm/bG,fNL=0Pmm − 1 for

fLSS
NL

= 200, 100,−100,−200 (top to bottom, blue, green, red, light blue) for
the high zf subsample with M ≥ 2 × 1013h−1M⊙ at z = 0 (left panel) and
z = 0.8 (right panel). The colored solid lines show the 5 parameter fit to the
modes below k = 0.03 h Mpc−1 for each value of fLSS

NL . For k > 0.03 h Mpc−1

we show the best fit values of bG for each fLSS
NL

simulation. In the right panel,

bG appears anti-correlated with fLSS
NL

.

across boundaries because each Ngroup set of halos is a finite sampling of the true zf
distribution. However, if Ngroup is too large, then one will introduce a spurious zf
dependence through the dependence of Pzf on halo mass. In Figure A3 we compare
∆ANG values for Ngroup = 100 and Ngroup = 10000, and demonstrate that our results
are insensitive to this choice.
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Figure A2. Same as Figure 3, with f = 0.5 in the left panel, and f = 0.75 in
the right panel. We compare fits to ∆ANG with five parameters (green, larger
errors) with one parameter (blue, smaller error bars and offset from x by 0.01 for
clarity) as described in the text. The black curve shows the ePS prediction.

Figure A3. ∆ANG(x) measured from subsamples defined with Ngroup =
100 (green) and Ngroup = 10000 (blue). The results are insensitive to this
parameter entering how we select zf -dependent halo subsamples with identical
mass functions. See the text for details.
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