
COMPUTATION OF MARKET RISK MEASURES WITH STOCHASTIC

LIQUIDITY HORIZON

GEMMA COLLDEFORNS-PAPIOL AND LUIS ORTIZ-GRACIA

Abstract. The Basel Committee of Banking Supervision has recently set out the revised standards
for minimum capital requirements for market risk. The Committee has focused, among other things,
on the two key areas of moving from Value-at-Risk (VaR) to Expected Shortfall (ES) and considering
a comprehensive incorporation of the risk of market illiquidity by extending the risk measurement
horizon. The estimation of the ES for several trading desks and taking into account different liquidity
horizons is computationally very involved. We present a novel numerical method to compute the
VaR and ES of a given portfolio within the stochastic holding period framework. Two approaches
are considered, the delta-gamma approximation, for modelling the change in value of the portfolio
as a quadratic approximation of the change in value of the risk factors, and some of the state-of-
the-art stochastic processes for driving the dynamics of the log-value change of the portfolio like
the Merton jump-diffusion model and the Kou model. Central to this procedure is the application
of the SWIFT method developed for option pricing, that appears to be a very efficient and robust
Fourier inversion method for risk management purposes.
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1. Introduction

The Basel Committee of Banking Supervision states in the consultative documents [3, 4] that “the
financial crisis exposed material weaknesses in the overall design of the framework for capitalising
trading activities. The level of capital required against trading book exposures proved insufficient to
absorb losses”. Within the mentioned documents, the Basel Committee initiated a fundamental
review of the trading book regime, beginning with an assessment of those things that went wrong.
The revised standards for minimum capital requirements for market risk were recently established
in [5].

The Committee has focused, among other things, on the two key areas of moving from VaR to ES
and considering a comprehensive incorporation of the risk of market illiquidity. In regard to the first
issue, a number of weaknesses have been identified with using VaR for determining regulatory capital
requirements, including its inability to capture the risk in the tail. For this reason, the Committee
has considered alternative risk metrics like, in particular, the ES, which measures the riskiness of a
position by considering both the size and the likelihood of losses above a certain confidence level.
The second issue relies on the importance of incorporating the risk of market illiquidity as a key
consideration in banks’ regulatory capital requirements for trading portfolios. The assumption that
trading book risk positions where liquid, i.e., that banks could exit or hedge these positions over
a ten-day horizon proved to be false during the recent crisis. As liquidity conditions deteriorated
during the crisis, banks were forced to hold risk positions for much longer than originally expected
and incurred in large losses due to fluctuations in liquidity premia and associated changes in market
prices.

In its deliberations on revising the prudential regime for trading activities, the Committee has
drawn on lessons both from the academic literature (see [2]) and banks’ current and emerging
risk management practices. One of the important messages from the academic literature on risk
measurement in the trading book is that there are limitations of VaR models that rely on the use of
continuous stochastic processes with only deterministic volatility assumptions. Introducing either
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stochastic volatility assumptions or stochastic jump process into modelling of risk factors will help
to overcome these shortcomings. Another message of paramount importance is that the time it
takes to liquidate a risk position varies, depending on its transactions costs, the size of the risk
position in the market, the trade execution strategy and market conditions. Some studies suggest
that, for some portfolios, this aspect of liquidity risk could also be addressed by extending the VaR
risk measurement horizon. These findings are in accordance with those derived from a survey of
industry practices in risk management for the trading book carried out by the Committee. As for
the length of the holding period, that poll reveals that for day-to-day risk management the use
of one-day VaR is universal among banks surveyed. However, for internal capital adequacy and
strategic risk management, banks are generally moving beyond short-horizon models (e.g. one-day
and 10-day VaR). It is now acknowledged that, to determine the level of capital necessary to remain
in business after sustaining a large loss, risk must be assessed over a longer period. Shorter horizons
do not address the liquidity risk for all exposures and do not capture tail events that are important
for capital adequacy. Further, almost all banks’ VaR models capture non-linearities at a local level
(i.e. small price changes) for much of their market risk exposure, but many banks’ VaR models
fail to capture non-linearity at a global level (i.e., large price changes). A common weakness in the
capture of non-linearity is the use of scaling of one-day VaR to estimate exposures at longer holding
periods. Such scaling only captures local non-linearity in the range of one-day price changes and
can underestimate non-linear exposure over longer horizons. The Committee has agreed that the
differentiation of market liquidity across the trading book will be based on the concept of liquidity
horizons1. It proposes that banks’ trading book exposures be assigned to a small number of liquidity
horizon categories ranging from ten days to one year. The shortest liquidity horizon (most liquid
exposures) is in line with the current 10-day VaR treatment in the trading book. The longest
liquidity horizon (least liquid exposures) matches the banking book horizon at one year.

The estimation of the ES for several trading desks and taking into account different liquidity
horizons is computationally very involved. In this work we present efficient and robust numerical
techniques to address the aforementioned challenges. We compute the VaR and ES risk measures
of a market portfolio and we assume that the holding period follows a certain positive stochastic
process to account for liquidity risk. We will therefore measure the risk in the situation where the
holding period is the liquidity horizon, and we will use these two terms interchangeably throughout
the paper. While the regulatory capital calculation is based on a series of increasing deterministic
liquidity horizons for different assets in the trading book, our approach does not distinguish between
asset classes and is therefore more suitable for an internal risk management assessment. To our best
knowledge, this idea was first introduced in [6] as a proposal to open a research effort in stochastic
holding period models for risk measures. In that paper the authors assume that the log-return on
the portfolio value is normally distributed, which facilitates the calculation of the risk measures.
Within this work, we go a step further by considering more realistic models for the log-value of
the portfolio. On the one hand we propose the use of the delta-gamma approach [19], where it
is assumed that the change in portfolio value is a quadratic function of the changes in the risk
factors. On the other hand, we consider the Merton jump diffusion (MJD) model [18] and the Kou
model [14] to drive the log-return on the portfolio value. Under any of these scenarios, the closed
formulae to compute the risk measures within the Gaussian setting in [6] are not available anymore.
However, the characteristic function2 of the change in (log-)value of the portfolio is known in closed
form for most of the interesting processes in finance, in particular for the two models mentioned
above. We therefore recover the density function from its Fourier transform and then we calculate
the VaR and the ES values. Among the methods available in the literature for Fourier inversion,
we choose the SWIFT method originally developed in [21] for option pricing, where the density
function is approximated by a finite combination of Shannon wavelets. A Haar wavelets-based
procedure as well as a cosine series expansion have been previously used in the literature in [20]

1The definition of liquidity horizon given in [5] is: “the time required to exit or hedge a risk position without
materially affecting market prices in stressed market conditions.”

2We define the characteristic function of a random variable X as the Fourier transform of its density function fX ,

i.e. f̂X(u) =
∫

R e
−iuxfX(x)dx.
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to recover the density function within the delta-gamma approach with the multivariate Gaussian
model for the individual risk factors. The most important feature of the present method is that the
scale of approximation is estimated a priori by means of the characteristic function, and this makes
this method a real applicable one in practice, as opposed to the aforementioned numerical methods
based on trial and error.

The layout of the paper is as follows. We define the risk measures and introduce the concept
of stochastic liquidity horizon (SLH) in Section 1.1. In Section 2, we give a brief overview about
Shannon wavelets theory and recall the details on the SWIFT method. Section 3 is devoted to
explaining the methodology to calculate the VaR and ES risk measures. A complete error analysis
is presented in Section 4 as well as the way to select the parameters of the numerical method. A
wide variety of examples is given in Section 5, and finally Section 6 concludes.

1.1. Risk measures and stochastic liquidity horizon. We build upon the work in [6] and
devote this section to provide the mathematical framework and basic definitions that we will use in
subsequent sections.

Let us assume that the liquidity horizon follows a certain stochastic process {H(t)}t≥0 where H(t)
is a positive random variable associated to the liquidity horizon at time t ≥ 0. Let V (t) be the value
of the portfolio under consideration at time t. We are interested in measuring the change in value of
the portfolio within the SLH framework. To do this, we consider two different approaches. The first
one is the well-known delta-gamma approximation [19], which assumes that the change in value of
the portfolio is a quadratic function of the change in value of the risk factors. We recently proposed
an efficient numerical method to compute the VaR and ES with a deterministic holding period (see
[20] for details). Within the present context of stochastic liquidity horizon, the change in value of
the portfolio under the delta-gamma approach is defined as ∆V := V (t + H(t)) − V (t). To our
best knowledge, this is the first time that the delta-gamma approach is considered with a stochastic
holding period. The second approach consists of assuming that the value of the portfolio follows a
certain stochastic process and we are therefore interested in measuring the change in the log-value
of the portfolio rather than in the value itself. Then, we define X := ln (V (t+H(t))) − ln (V (t)).
Let f∆V (respectively fX) be the probability density function (PDF) of ∆V (respectively X) and
F∆V (respectively FX) its cumulative distribution function (CDF). If we assume that we short the
portfolio, then the right tail of fX represents losses. Given some confidence level α ∈ (0, 1), the
VaR to measure the risk of holding the portfolio during the stochastic period H(t) is given by the
smallest number l such that the probability that the loss X exceeds l is no larger than 1−α, where
typically α ≥ 0.95. Formally,

(1) VaR(α) := inf{l ∈ R : P(X > l) ≤ 1− α} = inf{l ∈ R : FX(l) ≥ α}.

By definition, ES is related to VaR by,

ES(α) :=
1

1− α

∫ 1

α
VaR(u) du.

Instead of fixing a particular level α, we average VaR over all levels u ≥ α and thus, as pointed
out in [17], we “look further into the tail” of the loss distribution. Obviously, ES(α) depends only
on the distribution of X, and ES(α) ≥ VaR(α). For continuous loss distributions an even more
intuitive expression can be derived that shows that ES can be interpreted as the expected loss that
is incurred in the event that VaR is exceeded. For an integrable loss X with continuous distribution
function FX and for any α ∈ (0, 1) we have,

ES(α) = E(X|X ≥ VaR(α)),

or, in integral form,

(2) ES(α) =
1

1− α

∫ +∞

VaR(α)
xfX(x) dx.

Note that when we work under the delta-gamma approach, then we replaceX,FX , fX by ∆V, F∆V , f∆V

in (1) and (2). It is worth remarking that ES is a coherent measure of risk, satisfying in particular,
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the axiom of sub-additivity in line with the concept of diversification. For more details we refer the
reader to [1] and [17].

In practice, analytical expressions are not available, and Monte Carlo (MC) simulation is often
used to compute the risk measures, being the main drawback the computational effort. From this
point of view, the situation worsens when we consider a stochastic liquidity horizon H(t), since an
extra source of randomness is introduced and must be simulated as well. For this reason, there is
an increasing interest in looking for alternative and more efficient methods. Here we propose the
SWIFT method, which was originally developed for European options pricing in [21] and further
extended to price Bermuda options ([15]), European options under high dimensional stochastic
models ([10]) and two-dimensional options ([8]). The SWIFT method gives us an accurate and
extremely fast recovery of the density function and we give a prescription on how to select the
parameters appearing in the numerical method. All these features make our proposal efficient,
robust and reliable for practical implementation.

2. Shannon wavelets and SWIFT method

In this section we give a brief review on the SWIFT method [21], since this is the method that
we have selected to carry out the computation of the risk measures. For sake of completeness we
devote a section to the basic theory on Shannon wavelets.

2.1. Multi-resolution analysis and Shannon wavelets. Consider the space of square-integrable
functions, denoted by L2(R), where,

L2(R) =

{
f :

∫ +∞

−∞
|f(x)|2 dx <∞

}
.

A general structure for wavelets in L2(R) is called a multi-resolution analysis. We start with a
family of closed nested subspaces in L2(R),

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

where, ⋂
m∈Z

Vm = {0} ,
⋃
m∈Z

Vm = L2(R) ,

and,

f(x) ∈ Vm ⇐⇒ f(2x) ∈ Vm+1.

If these conditions are met, then there exists a function ϕ ∈ V0 that generates an orthonormal basis,
denoted by {ϕm,k}k∈Z, for each Vm subspace, where,

ϕm,k(x) = 2m/2ϕ(2mx− k).

The function ϕ is usually referred to as the scaling function or father wavelet.
For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by Pm : L2(R)→ Vm, is defined

by means of,

(3) Pmf(x) =
∑
k∈Z

cm,kϕm,k(x).

Here,

(4) cm,k = 〈f, ϕm,k〉 ,

where < f, g >:=
∫

R f(x)g(x) dx denotes the inner product in L2 (R), with g being the complex
conjugate of g.

Considering higher m values (i.e. when more terms are used), the truncated series representation
of the function f improves. As opposed to Fourier series, a key fact regarding the use of wavelets is
that wavelets can be moved (by means of the k value), stretched or compressed (by means of the
m value) to accurately represent the local properties of a function. A basic reference on wavelets is
[11].
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In this paper, we employ Shannon wavelets [7]. A set of Shannon scaling functions ϕm,k in the
subspace Vm is defined as,

(5) ϕm,k(x) = 2m/2
sin(π(2mx− k))

π(2mx− k)
= 2m/2ϕ(2mx− k), k ∈ Z,

where,

(6) ϕ(x) = sinc(x) =


sin(πx)

πx
if x 6= 0,

1 if x = 0,

is the basic (Shannon) scaling function.

2.2. SWIFT method. Given a function f ∈ L2 (R), we consider its expansion in terms of Shannon
scaling functions at the level of resolution m. Our aim is to recover the coefficients cm,k of this

approximation from the Fourier transform of the function f , denoted by f̂ , which is assumed to be
known in closed-form. Here,

(7) f̂(ξ) =

∫
R
e−iξxf(x) dx .

The SWIFT method [21] can effectively achieve this purpose. In the present context, the SWIFT
method is used to obtain an approximation of the density function of the random variable associated
to the change in value (or log-value) of a certain portfolio within a period of time, as introduced in
Section 1.1.

Following wavelets theory, a function f ∈ L2 (R) can be approximated at the level of resolution
m by,

(8) f(x) ≈ Pmf(x) =
∑
k∈Z

cm,kϕm,k(x),

where Pmf converges to f in L2 (R), i.e. ‖f − Pmf‖2 → 0, when m → +∞. Here, the coefficients
cm,k and the scaling functions ϕm,k are defined in (4) and (5), respectively.

The infinite series in (8) is well-approximated (see Lemma 1 of [21] for details) by a finite sum-
mation without loss of considerable density mass,

(9) Pmf(x) ≈ fm(x) :=

k2∑
k=k1

cm,kϕm,k(x),

for certain accurately chosen values k1 and k2.
The next step is the computation of the coefficients in (9). Recalling (4) and (5), we have that,

(10) cm,k = 〈f, ϕm,k〉 =

∫
R
f(x)ϕm,k(x) dx = 2m/2

∫
R
f(x)ϕ(2mx− k)dx.

Using the classical Vieta’s formula [12], the cardinal sine can be expressed as the following infinite
product,

(11) ϕ(t) = sinc(t) =

+∞∏
j=1

cos

(
πt

2j

)
.

If we truncate the infinite product (11) to a finite product with a total of J terms, then, thanks to
the cosine product-to-sum identity [22], we have

(12)
J∏
j=1

cos

(
πt

2j

)
=

1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
.

By (11) and (12) the sinc function can thus be approximated as,

(13) ϕ(t) = sinc(t) ≈ sinc∗(t) :=
1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
.
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Replacing the function ϕ in (10) by the approximation (13) we obtain,

(14) cm,k ≈ c∗m,k :=
2m/2

2J−1

2J−1∑
j=1

∫
R
f(x) cos

(
2j − 1

2J
π(2mx− k)

)
dx.

Next, by taking into account that <
(
f̂(ξ)

)
=
∫

R f(x) cos(ξx) dx in (7), where <(z) denotes the real

part of z, and observing that,

f̂(ξ)e
ikπ 2j−1

2J =

∫
R
e
−i

(
ξx− kπ(2j−1)

2J

)
f(x)dx,

we can simplify (14) to,

(15) cm,k ≈ c∗m,k =
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1)π2m

2J

)
e
ikπ(2j−1)

2J

]
.

Putting everything together gives the following approximation of f ,

(16) f(x) ≈ f∗m(x) :=

k2∑
k=k1

c∗m,kϕm,k(x),

where ϕm,k and c∗m,k are defined in (5) and (15), respectively.

Remark 1. Formula (15) can be conveniently rearranged to compute the coefficients with the use
of the fast Fourier transform (FFT). We will give a review on the use of the FFT in this context
in Section 4, along with the way to select the parameters m and J in (15) and k1, k2 in (16).

3. Risk Measures

In this section we present formulae to calculate the VaR and ES risk measures. The strategy that
we follow consists of recovering the density function of the change in value (or log-value) of a certain
portfolio from its Fourier transform, which is known in many situations of interest. To simplify the
notation, we assume along the present section that f is the unknown density function while f̂ is its
known Fourier transform. Let us assume that f is well approximated at scale of resolution m in a
finite interval [a, b] ⊂ R. We define k1 := b2mac and k2 := d2mbe, where bxc denotes the greatest
integer less than or equal to x, and dxe denotes the smallest integer greater than or equal to x. In
Section 4 we give an explanation on the selection of the scale and the interval of approximation as
well as the algorithm to get the VaR and ES values.

3.1. Value-at-Risk. From the definition of VaR in (1) we have to compute the value lα := VaR(α),
with a < lα < b such that I − α = 0, where,

(17) I :=

∫ lα

−∞
f(x)dx.

We truncate the infinite integration domain (−∞, lα] in (17) into a finite domain [a, lα],

(18) I1 :=

∫ lα

a
f(x)dx,

and we replace f in (18) by its approximation f∗m in terms of Shannon scaling wavelets as in (16),
this is,

(19) I∗m :=

∫ lα

a
f∗m(x)dx =

k2∑
k=k1

c∗m,k

∫ lα

a
ϕm,k(x)dx = 2m/2

k2∑
k=k1

c∗m,k

∫ lα

a
sinc(2mx− k)dx.
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Now, if we make the change of variables y = 2mx − k and replace sinc by its approximation sinc∗

in (13), we end up with the expression,

I∗m(J) : =
1

2m/2
1

2J−1

k2∑
k=k1

c∗m,k

2J−1∑
j=1

∫ 2mlα−k

2ma−k
cos

(
2j − 1

2J
πy

)
dy

=
2

π

1

2m/2

k2∑
k=k1

c∗m,k

2J−1∑
j=1

1

2j − 1

[
sin

(
2j − 1

2J
π(2mlα − k)

)
− sin

(
2j − 1

2J
π(2ma− k)

)]
.

(20)

Finally, we use a root-finding method to determine the value lα such that I∗m(J) − α = 0 and we
call it VaR∗(α).

Remark 2. We see that the area underneath f is tightly related to the computation of the density
coefficients c∗m,k in (15), and we provide an alternative method to calculate the VaR. Although this
method is extremely fast in terms of CPU time, we perform all the numerical experiments with the
method presented above since it is more accurate and keeps a good balance between CPU time and
accuracy. We define,

(21) I1(m,h) :=

∫ h/2m

−∞
f(x)dx,

where h ∈ Z, and we truncate the infinite integration domain (−∞, h/2m] into a finite domain
[k1/2

m, h/2m],

(22) I1(m,h) ≈ I2(m,h) :=

∫ h
2m

k1
2m

f(x)dx.

If we apply the trapezoidal rule with step 1/2m, then we end up with the following formula,

(23) I2(m,h) ≈ S1(m,h) :=
1

2m+1

2

h−1∑
k=k1+1

f

(
k

2m

)
+ f

(
k1

2m

)
+ f

(
h

2m

) .
From (5) and (9) we have that f

(
l

2m

)
≈ 2m/2cm,l, for all l ∈ Z, and therefore, applying this to the

expression (23) gives us,

S1(m,h) ≈ S2(m,h) : =
1

2m+1

2m/2+1
h−1∑

k=k1+1

cm,k + 2m/2cm,k1 + 2m/2cm,h


=

1

2m/2

cm,k1

2
+

h−1∑
k=k1+1

cm,k +
cm,h

2

 .
(24)

Finally, the coefficients cm,k in (24) are approximated by c∗m,k in expression (15). Then,

(25) S2(m,h) ≈ S3(m,h) :=
1

2m/2

c∗m,k1

2
+

h−1∑
k=k1+1

c∗m,k +
c∗m,h

2

 .
Note that the VaR can be calculated just by adding density coefficients until the value of S3(m,h)

reaches (or is approximately equal to) the confidence level α. We add terms until the condition
S3(m,h∗) ≤ α ≤ S3(m,h∗ + 1) is satisfied for a certain h∗ ∈ Z and we select the VaR value as the
midpoint of the interval [ h

∗

2m ,
h∗+1
2m ], this is,

(26) ṼaR(α) :=
2h∗ + 1

2m+1
.
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3.2. Expected Shortfall. The ES can be determined once we obtain the VaR value as detailed in
Section 3.1. From (2), we have to compute the integral,

(27) ES(α) =
1

1− α

∫ +∞

lα

xf (x) dx.

We replace lα by the VaR value computed in the previous section, and we define l∗α := VaR∗(α).
Now, we focus on the calculation of the following integral,

(28) ES1(α) :=
1

1− α

∫ +∞

l∗α

xf (x) dx,

and truncate the infinite integration domain [l∗α,+∞) into the finite domain [l∗α, b], this gives us,

(29) ES2(α) :=
1

1− α

∫ b

l∗α

xf (x) dx.

The last step consists of replacing the function f in (29) by its approximation f∗m, and making the
change of variables y = 2mx− k, we obtain,

ES∗m(α) : =
1

1− α

∫ b

l∗α

xf∗m (x) dx =
2m/2

1− α

k2∑
k=k1

c∗m,k

∫ b

l∗α

x
sin ((2mx− k)π)

(2mx− k)π
dx

=
2
m
2

(1− α) 22m

k2∑
k=k1

c∗m,k

∫ 2mb−k

2ml∗α−k
(y + k)

sin (πy)

πy
dy

=
1

(1− α) 2
3
2
m

k2∑
k=k1

c∗m,k

[
1

π

∫ 2mb−k

2ml∗α−k
sin (πy) dy + k

∫ 2mb−k

2ml∗α−k
sinc(y)dy

]
.

(30)

The first integral of the right hand side in (30) is solved analytically,∫ 2mb−k

2ml∗α−k
sin (πy) dt =

1

π
[cos (π (2ml∗α − k))− cos (π (2mb− k))] ,(31)

while for the second integral I :=
∫ 2mb−k

2ml∗α−k
sinc(y)dy we use the formula in (13) to approximate the

cardinal sine function and I can be replaced by,

I1 : =
1

2J−1

∫ 2mb−k

2ml∗α−k

2J−1∑
j=1

cos

(
2j − 1

2J
πy

)
dy =

1

2J−1

2J−1∑
j=1

∫ 2mb−k

2ml∗α−k
cos

(
2j − 1

2J
πy

)
dy

=
2

π

2J−1∑
j=1

1

(2j − 1)

[
sin

(
2j − 1

2J
π (2mb− k)

)
− sin

(
2j − 1

2J
π (2ml∗α − k)

)]
.

(32)

Finally, by (30), (31) and (32), the Expected Shortfall ES(α) can be calculated with the formula,

ES∗ (α) : =
1

(1− α) 2
3
2
m

k2∑
k=k1

c∗m,k

[
1

π2
(cos (π (2ml∗α − k))− cos (π (2mb− k)))

+
2

π
k

2J−1∑
j=1

1

(2j − 1)

(
sin

(
2j − 1

2J
π (2mb− k)

)
− sin

(
2j − 1

2J
π (2ml∗α − k)

))]
.

(33)

Remark 3. Note that we can speed up the evaluation of (20) and (33) by means of a discrete sine
transform.

4. Error analysis and selection of parameters

In this section we perform an error analysis on the SWIFT method when it is used to calculate
the risk measures, and explain how to determine the value of the parameters that intervene in the
numerical method.



COMPUTATION OF MARKET RISK MEASURES WITH STOCHASTIC LIQUIDITY HORIZON 9

4.1. Error estimation in the computation of VaR. Let us define E := |I−I∗m(J)|, E1 := |I−I1|,
E2 := |I1 − I∗m| and E3 := |I∗m − I∗m(J)|. Then, the overall error when approximating I in (17) by
I∗m(J) in (20) can be bounded by,

(34) E ≤ E1 + E2 + E3.

From (17) and (18) we have,

(35) E1 ≤
∫ a

−∞
f(x)dx.

We can make this integral arbitrarily small by selecting a appropriately, since f is a density function.
We define the projection error, denoted by εp, as,

(36) εp := |f(x)− Pmf(x)| = |f(x)−
∑
k∈Z

cm,kϕm,k(x)| .

We also define the truncation error, denoted by εt, as,

εt := |Pmf(x)− fm(x)| = |
∑

k/∈{k1,...,k2}

cm,kϕm,k(x)| .

We denote by εc the error arising from using approximated coefficients c∗m,k instead of the exact
ones cm,k. We have,

εc := |fm(x)− f∗m(x)| = |
k2∑

k=k1

(cm,k − c∗m,k)ϕm,k(x)|.

Then, we have,

(37) |f(x)− f∗m(x)| ≤ εp + εt + εc ,

and,

(38) E2 ≤
∫ lα

a
|f(x)− f∗m(x)|dx ≤ (lα − a)(εp + εt + εc) ≤ (b− a)(εp + εt + εc).

First, we consider the projection error εp. The projection Pmf can be written as [15],

(39) Pmf(x) =
1

2π

∫ 2mπ

−2mπ
f̂(ξ)eiξxdξ .

By definition of the inverse Fourier transform of f , we have,

(40) f(x) =
1

2π

∫
R
f̂(ξ)eiξxdξ .

Let,

(41) K(v) =
1

2π

∫
|ξ|>v

|f̂(ξ)|dξ ,

then,

(42) εp ≤ K(2mπ) .

Next, we consider the truncation error εt. We observe that,

(43) εt = |Pmf(x)− fm(x)| ≤ 2m/2
∑

k/∈{k1,...,k2}

|cm,k| .

since |ϕm,k(x)| ≤ 2m/2. The following theorem allows us to give an estimation of the size of the
coefficients cm,k in terms of the rate of decay of the density function f .
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Theorem 1 (Theorem 1.3.2 of [23]). Let f be defined on R, and let f̂ be its Fourier transform such
that for some positive constant d,

(44) |f̂(y)| = O
(
e−d|y|

)
, |y| → ±∞.

Then, as h→ 0,

(45)
1

h

∫
R
f(t)S(j, h)(t)dt− f(jh) = O

(
e−

πd
h

)
,

where S(j, h)(t) := sinc
(
x
h − j

)
.

If we consider h = 1
2m , then by Theorem 1, the terms |cm,k| can be well approximated by

1
2m/2

f
(
k

2m

)
provided that |f̂ | decays like in (44). As pointed out in [15], this rate of decay is

typically encountered in most of the interesting processes in finance, like for instance the GBM,
MJD and Kou models, to name just a few. Then, we can assume a certain rate of decay for f to
conclude that the series in (43) is a convergent series of terms which decrease very fast in value
when k goes to minus and plus infinity.

Finally, we consider εc. The coefficients cm,k are to be calculated by means of Vieta’s formula
and the numerical error can be estimated as,

(46) εc ≤
k2∑

k=k1

|cm,k − c∗m,k||ϕm,k(x)| ≤ 2m/2
k2∑

k=k1

|cm,k − c∗m,k| .

The coefficients approximation error is studied in Theorem 1 of [21] and it states the following
theorem.

Theorem 2 (Theorem 1 of [21]). Let F (x) be the distribution function of a random variable X and
define H(x) := F (−x) + 1− F (x). Let A > 0 be a constant such that H(A) < ε, for ε > 0. Define
Mm,k := max (|2mA− k|, |2mA+ k|) and consider J ≥ log2 (πMm,k). Then,

(47) |cm,k − c∗m,k| ≤ 2m/2

(
2ε+

√
2A‖f‖2

(πMm,k)
2

22(J+1) − (πMm,k)
2

)
,

and limJ→+∞ c
∗
m,k = cm,k.

If we define A := max(|a|, |b|) and assume that H(A) < ε, then we can apply Theorem 2 with
 ≥ log2(πMm), where Mm := maxk1<k<k2 Mm,k. Finally,

(48) εc ≤ 2m/2
k2∑

k=k1

|cm,k − c∗m,k| ≤ 2m(k2 − k1 + 1)

(
2ε+

√
2A‖f‖2

(πMm)2

22(+1) − (πMm)2

)
.

Next we consider,

(49) E3 := |I∗m − I∗m(J)| ≤ 2m/2
k2∑

k=k1

|c∗m,k|
∫ lα

a
|sinc(2mx− k)− sinc∗(2mx− k)|dx.

If we make the change of variables y = 2mx− k, then,

(50) E3 ≤
1

2m/2

k2∑
k=k1

|c∗m,k|
∫ 2mlα−k

2ma−k
|sinc(y)− sinc∗(y)|dy.

We observe from (14) that |c∗m,k| ≤ 2m/2. Further, we will use the following lemma to get an upper

bound of the integral in (50).

Lemma 1 (Lemma 2 of [21]). Define the absolute error EV (t) := sinc(t)− sinc∗(t). Then,

|EV (t)| ≤ (πc)2

22(J+1) − (πc)2
,

for t ∈ [−c, c], where c ∈ R, c > 0 and J ≥ log2(πc).
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Since −2mA− k ≤ 2ma− k ≤ y ≤ 2mlα − k ≤ 2mA− k, then from (50) and Lemma 1 we have,

(51)

∫ 2mlα−k

2ma−k
|sinc(y)− sinc∗(y)|dy ≤

∫ Mm

−Mm

|sinc(y)− sinc∗(y)|dy ≤ 2π2 (Mm)3

22(+1) − (πMm)2 .

Finally,

(52) E3 ≤ (k2 − k1 + 1)
2π2 (Mm)3

22(+1) − (πMm)2 .

4.2. Error estimation in the computation of ES. Let us define Ē := |ES1(α) − ES∗(α)|,
Ē1 := |ES1(α)−ES2(α)|, Ē2 := |ES2(α)−ES∗m(α)| and Ē3 := |ES∗m(α)−ES∗(α)|. Then, the overall
error when approximating ES1(α) in (28) by ES∗(α) in (33) is bounded by,

(53) Ē ≤ Ē1 + Ē2 + Ē3.

The error Ē1 can be bounded following an analogous argument as in Section 4.1. Let us study Ē2

in detail,

(54) Ē2 = |ES2(α)− ES∗m(α)| =

∣∣∣∣∣ 1

1− α

∫ b

l∗α

x (f(x)− f∗m (x)) dx

∣∣∣∣∣ ≤ 1

1− α

∫ b

l∗α

x |f(x)− f∗m (x)| dx.

Then, from (37) we have,

(55) Ē2 ≤

[
1

1− α

∫ b

l∗α

x dx

]
(εp + εt + εc ) =

b2 − (l∗α)2

2(1− α)
(εp + εt + εc) .

Regarding Ē3, we observe that the source of error is the replacement of sinc by sinc∗ in I :=∫ 2mb−k
2ml∗α−k

sinc(y)dy. Thus, we can consider a similar argument as in the last part of Section 4.1 to

get the same bound given in (51) for the error |I − I1|.

4.3. Choice of m, J and the truncation interval [a, b]. Looking at expressions (20) and (33)
for computing the VaR and ES values respectively, we can observe that the parameters m and J
must be selected before we carry out the approximation. As we have shown in Section 4.1, the
projection error (36) is bounded by,

(56) εp ≤ K(2mπ),

where,

(57) K(v) =
1

2π

∫
|ξ|>v

|f̂(ξ)|dξ.

In our setting, the characteristic function f̂ is known in closed form and we can therefore calculate
the value of m that makes the projection error smaller than a certain tolerance εm. In general, the
integral in (57) cannot be solved analytically and we compute the value of m that satisfies,

(58)
1

2π

(
|f̂(−2mπ)|+ |f̂(2mπ)|

)
≤ εm.

Note that a more accurate method can be used to compute the integral in (57) based on numerical
integration. Moreover, we can make a more conservative selection of the scale m, when computing
the ES, by considering the error amplifying factor 1/(1− α) in (55), this is,

(59)
1

1− α
· 1

2π

(
|f̂(−2mπ)|+ |f̂(2mπ)|

)
≤ εm.

By selecting m as in (59), we typically get a higher scale leading to more accurate results at the
cost of extra computational time. We therefore use (58) to compute only the VaR and we use (59)
when we desire both, the VaR and the ES values (since the computation of ES implicitly involves
the computation of VaR).

Once the scale of approximation m, we provide a strategy to determine the interval [a, b]. At the
beginning of Section 3 we assume that f is well approximated at scale of resolution m in a finite
interval [a, b] ⊂ R, and then we defined k1 := b2mac and k2 := d2mbe. Thus, the determination of
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an appropriate truncation interval is an important issue. We use the cumulants3 to determine an
initial guess for the domain [a, b].

Next we set the parameter J . Although a different J can be selected for each k, we prefer to
consider a constant J , defined here by  := dlog2(πMm)e (in accordance with the error analysis
performed before), where Mm := maxk1<k<k2 Mm,k. The reason is that, in practice, the computa-

tionally most involved part in (15) is the evaluation of f̂ at the grid points. Those values can be
computed only once and used by the FFT algorithm, as follows. From expression (15),
(60)

c∗m,k =
2m/2

2−1

2−1∑
j=1

<
[
f̂

(
(2j − 1)π2m

2

)
e
ikπ(2j−1)

2

]
=

2m/2

2−1
<

e ikπ2

2−1−1∑
j=0

f̂

(
(2j + 1)π2m

2

)
e

2πikj
2

 .
Finally, we assume that f̂

(
(2j+1)π2m

2

)
= 0, from 2−1 to 2 − 1, so that the last equality in (60) is

equivalent to,

(61) c∗m,k =
2m/2

2−1
<

e ikπ2

2−1∑
j=0

f̂

(
(2j + 1)π2m

2

)
e

2πikj
2

 ,
and therefore the FFT algorithm can be applied to compute the density coefficients c∗m,k. The error

analysis reveals that the same  is used to compute the risk measures in (20) and (33). As pointed
out in Remark 3, this choice of J =  allows the acceleration of the evaluation of these risk measures
by means of a discrete sine transform.

As stated in Remark 2 and shown in Section 4.1, we have that f
(
l

2m

)
≈ 2m/2cm,l, for all l ∈ Z

provided that the modulus of the Fourier transform f̂ of f decays sufficiently fast. We can therefore
control the quality of the truncated interval by evaluating the density f at a and b, since f(a) ≈
2m/2cm,k1 and f(b) ≈ 2m/2cm,k2 . We summarize the overall process in Algorithm 1. It is worth
remarking that with all the parameters fixed beforehand, this methodology is reliable and directly
applicable in practice.

1: Select the value of m such that a certain accuracy εm is reached, according to (58);
2: Determine [a, b] by means of the cumulants;
3: Set k1 = ba/2mc and k2 = db/2me;
4: Set J =  where  := dlog2(πMm)e, Mm := maxk1<k<k2 Mm,k,
Mm,k := max (|2mA− k|, |2mA+ k|) and A := max(|a|, |b|);

5: Compute the density coefficients c∗m,k with the inversion formula (15) (use FFT optionally);

6: Given a tolerance εz, use a root-finding method to determine the VaR value VaR∗(α) such
that I∗m(J)− α = 0, where I∗m(J) is taken from (20);

7: Calculate the ES value using (33) and the VaR value computed in the former step;

Algorithm 1: Algorithm to calculate VaR∗(α) and ES∗(α).

5. Numerical Examples

In this section, we present a wide variety of numerical examples4 to illustrate the accuracy, speed
and robustness of SWIFT method when it is used to compute the risk measures VaR and ES within
the stochastic liquidity horizon framework. We divide this section into five subsections. Section 5.1
and Section 5.2 are devoted to the delta-gamma approach, where we measure the change in value
of the portfolio as a quadratic function of the change in value of the risk factors. We assume in
Section 5.1 that the change in risk factors follow a Gaussian distribution and we move on to a more

3Given a random variable X, the cumulants are the power series coefficients of the cumulant generating function
κ(s) = logE(esX).

4The programs have been coded in MATLAB and run under Linux OS on a laptop with Intel Core i7-5500U 2.40
GHz processor and 7.7 GB of memory.
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challenging problem in Section 5.2 by assuming that these changes are driven by the heavy-tailed
t distribution. In Section 5.3, Section 5.4 and Section 5.5 we consider the log-value change when
the dynamics of the portfolio is driven by the Geometric Brownian motion (GBM), the Merton
jump diffusion model and the Kou model respectively. The root-finding method that we pick for
all the numerical examples is the bisection algorithm with the stopping criterion εz = 1.0e − 06.
Regarding the liquidity horizon process, we consider the type of distributions used in [6]. We select
the Bernoulli distribution for the delta-gamma approach under the Gaussian model, the exponential
distribution for the delta-gamma under the t distribution, the exponential distribution for the GBM,
the generalised Pareto distribution for the Merton jump diffusion model and the inverse gamma
distribution for the Kou model. See Table 1 and Figure 1 for a complete definition of the last
three distributions and the selection of parameters in each case. We run Monte Carlo simulations
as a benchmark, with one million scenarios for the risk factors and one hundred scenarios for the
SLH. We consider εm = 1.0e−02. The reason for this choice of εm is that we can expect, in the
deterministic case, at most two or three digits of accuracy due to the slow convergence of MC
methods. The stochastic case is less encouraging with MC simulation, since there is an additional
source of randomness when considering a stochastic holding period, and these two or three digits
of accuracy are not guaranteed any more.

Distribution Parameters PDF

Exponential λ f(x) = λe−λx

Generalised Pareto k, σ, θ f(x) =



(
1
σ

) (
1 + k x−θ

σ

)−1− 1
k , for θ ≤ x when k > 0,

for θ ≤ x ≤ θ − σ
k

when k < 0.

1
θ
e−

x−θ
σ , for θ ≤ x when k = 0.

Inverse gamma α, β f(x) = βα

Γ(α)
x−α−1e−

β
x

Table 1. Continuous distributions considered for the stochastic liquidity horizon.
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Figure 1. Exponential density with λ = 10 (left plot), generalised Pareto with k = 0, σ = 0.1, θ =
0.1 (central plot) and inverse gamma with α = 6, β = 0.5 (right plot).

5.1. Delta-gamma approach with multivariate Gaussian model for the individual risk
factors. The delta-gamma method is a well-known approach used in market risk problems (see
for instance [19]). It is based on the assumption that the change in portfolio value is a quadratic
function of the changes in the risk factors, typically assumed normally distributed.

We therefore consider p risk factors S(t) = (S1(t), · · · , Sp(t))T at time t. We define ∆S =
S(t+ ∆t)−S(t) as the change in value of the risk factors during the time interval [t, t+ ∆t]. Then,
the change in value ∆V := V (t+H(t))− V (t) defined in Section 1.1 is approximated by,

(62) ∆V ≈ ∆Vγ := Θ∆t+ δT∆S +
1

2
∆STΓ∆S,
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where Θ = ∂V
∂t , δi = ∂V

∂Si
and Γi,j = ∂2V

∂Si∂Sj
are the Greeks evaluated at time t, and the random

variable H(t) is the constant ∆t in the deterministic case. If we assume that ∆S follows a normal
distribution, then the following proposition gives us the characteristic function of ∆Vγ .

Proposition 1 (Theorem 3.2a.2 of [16]). Assume that ∆S ∼ N (0,Σ) for some positive definite
matrix Σ. Let λ1, · · · , λp be the eigenvalues of ΣΓ, and let Λ be the diagonal matrix with these
eigenvalues on the diagonal. There is a matrix C satisfying CCT = Σ and CTΓC = Λ. Let
d = CT δ. Then, the characteristic function corresponding to f∆V is given by,

(63) f̂∆Vγ (u) = E
(
e−iu∆Vγ

)
= exp

−iuΘ∆t− u2

2

p∑
j=1

d2
j

1 + iλju

 p∏
j=1

(1 + iλju)−
1
2 ,

where u ∈ R.

Without loss of generality, we restrict ourselves to the univariate case p = 1, since the proce-
dure to recover the density function from its characteristic function is the same. In that case the
characteristic function reads,

(64) f̂∆V γ (u; ∆t) = exp

(
−iuΘ∆t− d2

1

2
· u2

1 + iλ1u

)
(1 + iλ1u)−

1
2 .

Let us first perform a consistency check for the SWIFT method by taking a base portfolio from
[20] and considering three different deterministic holding periods ∆t = 1/365, 10/365, 30/365. Note
that we assume 365 days per year instead of trading days per year. Our portfolio is made of one
short European call and half a short European put with maturity 60 days. The underlying asset
at time t is 100 with volatility level σ = 0.3, interest rate 0.1 and strike price 101 for each option.
Following similar steps than in [20] we select,

Σ =
(
S(t)σ

√
∆t
)2

, Γ =
n∑
i=1

xi
∂2υi
∂S2

, C = S(t)σ
√

∆t, δ =
n∑
i=1

xi
∂υi
∂S

,

where n represents the number of assets in the portfolio, xi is the amount of asset i and vi the value
of asset i. Finally,

(65) [a, b] = [κ1 − L
√
κ2, κ1 + L

√
κ2],

where κ1 and κ2 stand for the first and second cumulants5 respectively,

(66)
κ1 =

1

2
tr (ΓΣ) + Θ∆t,

κ2 =
1

2
tr
(

(ΓΣ)2
)

+ δTΣδ.

The Greeks are computed using the Black-Scholes formula and L = 10 in all the numerical examples
hereinafter. As stated in Section 4.1, the coefficients |cm,k| can be well approximated by 1

2m/2
f
(
k

2m

)
.

We can therefore assess the suitability of the selected interval [a, b] by evaluating the value of the

density at the extremes of the interval, this is, f
(
k1
2m

)
≈ 2m/2cm,k1 and f

(
k2
2m

)
≈ 2m/2cm,k2 since

these two coefficients have been already calculated. As pointed out in [20], when p = 1 we know
the shape of the density and the number of modes (Corollary 1 of [20]). Further, from Corollary 1
and Corollary 2 of [20], we know that if Γ1,1 > 0 then the density function is supported on [B,+∞),

with B := − d2
1

2λ1
+ Θ∆t, while when Γ1,1 < 0 then the density function is supported on (−∞,B].

Thus, we select the interval [B, κ1 + L
√
κ2] in the first case and [κ1 − L

√
κ2,B] in the second case.

We present the results of our numerical experiments in Table 2. The benchmark solution is calcu-
lated by means of Partial Monte Carlo (PMC) simulation, which basically means that we simulate
∆S and use the approximation in (62). For sake of completeness we give the results corresponding
to Full Monte Carlo (FMC) where we revaluate the portfolio with Black-Scholes formula for each

5Look at Theorem 3.3.2 of [16] for details.
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new value of the underlying risk factor. We show the scale of approximation calculated with the er-
ror formula (58). We observe that the absolute error reported is in accordance with εm. It is worth
remarking that for the cases ∆t = 10/365 and ∆t = 30/365 the VaR computation is somewhat
more challenging than in the case ∆t = 1/365, due to the asymptotic behaviour of the densities
at B (see Figure 2 and the details provided in Section 4.4 and Section 5 of [20]). In these two
extreme cases the bisection method does not work properly, since the condition g(a) · g(b) < 0 with
g(lα) = I∗m(J)− α is not satisfied. When this situation occurs, we set VaR∗(α) = B.

∆t PMC FMC SWIFT Absolute error m
1/365 0.9024 0.8792 0.9038 1.4e− 03 2
10/365 1.7044 1.5430 1.7050 5.3e− 04 6
30/365 3.0434 2.8148 3.0439 5.0e− 04 6

Table 2. Absolute errors with respect to Partial Monte Carlo simulation, corresponding to the
computation of VaR with deterministic holding period ∆t and α = 0.99.
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Figure 2. Density plots for ∆t = 1/365 (left), ∆t = 10/365 (central) and ∆t = 30/365 (right).

Next, we study the performance of SWIFT method within the SLH framework. We assume that
H(t) follows the Bernoulli distribution and we distinguish the three different cases represented in
Table 3, whereH(t) takes the value h1 = 10/365 with probability p and h2 = 30/365 with probability
1 − p. The only different issue within the SLH framework with respect to the deterministic case
is the need of computing the appropriate characteristic function to be used by SWIFT method.
Since we know the characteristic function in the deterministic case, we apply the law of iterated
expectations,

(67) f̂∆Vγ (u) = E[e−iu∆Vγ ] = E[E[e−iu∆Vγ |H(t)]] = pf̂∆Vγ (u;h1) + (1− p)f̂∆Vγ (u;h2).

The interval of approximation in this case is calculated as,

[a, b] = [min{ah1 , ah2},max{bh1 , bh2}],
where [ah1 , bh1 ] and [ah2 , bh2 ] correspond to the intervals calculated in the deterministic case with
h1 = 10/365 and h2 = 30/365 respectively. We observe that again, the absolute error is in accor-
dance with εm and the scale calculated with formula (58) is m = 5 in all three cases.

H(t) PMC SWIFT Absolute error m
P(h1) = 0.25,P(h2) = 0.75 3.0430 3.0439 8.3e− 04 5
P(h1) = 0.5,P(h2) = 0.5 3.0415 3.0425 1.0e− 03 5
P(h1) = 0.75,P(h2) = 0.25 3.0312 3.0327 1.5e− 03 5

Table 3. Absolute errors with respect to Partial Monte Carlo simulation, corresponding to the
computation of VaR with stochastic holding period driven by a Bernoulli distribution and α =
0.99.
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5.2. Delta-gamma approach with multivariate t distribution for the individual risk fac-
tors. Next, we consider the delta-gamma approach presented in [13] where the underlying risk
factors are heavy-tailed distributed by means of the t distribution. We build upon the work ex-
posed in [13] for the deterministic case and we extend that approach to the stochastic liquidity
horizon framework. A t distribution is characterized by the number of degrees of freedom ν. The
tails of its density decay at a polynomial rate of x−ν , so the parameter ν determines the heaviness
of the tail and the number of finite moments. Let tν be the univariate t distribution with ν degrees
of freedom, which has density,

(68) ftν (x) =
Γ
(

1
2(ν + 1)

)
√
νπΓ

(
1
2ν
) (1 +

x2

ν

)−(ν+1)/2

, −∞ < x <∞,

where Γ (·) denotes the gamma function. The multivariate t distribution has density,

(69) fν,Σ(x) =
Γ
(

1
2(p+ ν)

)
(νπ)p/2Γ

(
1
2ν
)
|Σ|1/2

(
1 +

1

ν
xTΣ−1x

)− 1
2

(p+ν)

, x ∈ Rp,

where Σ is a symmetric, positive definite matrix. If ν > 2, then νΣ/(ν−2) is the covariance matrix
of fν,Σ. The multivariate tν,Σ density (69) belongs to the class of scale mixtures of normals. Thus,
it has representation as the distribution of the product of a multivariate normal random vector and
a univariate random variable independent of the normal. If (X1, · · · , Xp) has density fν,Σ, then,

(70) (X1, · · · , Xp) ∼
(ξ1, · · · , ξp)√

Y/ν
,

where ξ = (ξ1, · · · , ξp) ∼ N (0,Σ), Y ∼ χ2
ν (chi-square with ν degrees of freedom), and ξ and Y are

independent.
If we assume within this section that ∆S in (62) follows the multivariate t distribution in (69),

then ∆S ∼ ξ√
Y/ν

, thanks to the ratio representation (70), and ∆S is therefore modelled as a

scale mixture of normals. For sake of simplicity in the exposition, we give a brief summary of the
methodology developed in [13], where the authors define the loss L = −∆V and,

(71) L ≈ a0 + aT∆S + ∆STA∆S ≡ a0 +Q,
with a0 = −Θ∆t, a = −δ and A = −1

2Γ.
By defining,

(72) Qx :=

(
Y

ν

)
(Q− x),

and observing that P(Q ≤ x) = P(Qx ≤ 0) ≡ Fx(0), we can compute P(Q ≤ x) by finding the
characteristic function of Qx and then we invert it to find P(Qx ≤ 0). The following theorem gives
us the characteristic function of Qx.

Theorem 3 (Theorem 3.1 of [13]). Let λ1 ≥ λ2 ≥ · · · ≥ λp be the eigenvalues of ΣA and let Λ be the
diagonal matrix with these eigenvalues on the diagonal. There is a matrix C satisfying CCT = Σ
and CTAC = Λ. Let b = aTC. Then P(Q ≤ x) = Fx(0), where the distribution Fx has moment
generating function,

(73) φx(θ) =

1 +
2θx

ν
−

p∑
j=1

θ2b2/ν

1− 2θλj

−ν/2 p∏
j=1

1√
1− 2θλj

.

The characteristic function of Qx is given by f̂Qx = E[exp(−iωQx)] = φx(−iω).

We can easily obtain a closed-form expression for the Fourier transform F̂Qx of FQx from f̂Qx
integrating by parts. If we use the SWIFT method to recover FQx from F̂Qx , and we have into
account that,

(74) F∆V (y) = 1− FL(−y) = 1− FQ(−y − a0) = 1− FQ(−y−a0)
(0),
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then we can compute the VaR value by applying a bisection method to to find l such that,

(75) 1− α− FQ−(l+a0)
(0) = 0.

Whilst in Section 5.1 only one Fourier inversion was performed, it is worth remarking that, in this
case, each step in the bisection method involves a Fourier inversion by means of SWIFT method.
This is clearly a challenge in terms of computation and we can tackle this problem only with a very
efficient numerical method to avoid the propagation of the error.

As in Section 5.1 and without loss of generality, we restrict ourselves to the univariate case p = 1.
We use first a deterministic holding period ∆t = 1/365. Our portfolio is the same as in Section
5.1, made of one short European call and half a short European put with maturity 60 days. The
underlying asset at time t is 100 with volatility level σ = 0.3, interest rate 0.1 and strike price 101
for each option. Note that the scale parameter m is recalculated at each bisection step following
the tolerance error εm = 1.0e− 02 set at the beginning of Section 5. We present the results of the
numerical experiments in Table 4 for values of ν ∈ {3, 5, 7}. The benchmark solution is calculated
by means of PMC with one million scenarios as mentioned at the beginning of Section 5. To show
the accuracy of the proposed numerical method, we have added some extra numerical experiments
in Table 5 with ten million scenarios for PMC to be used as a benchmark for SWIFT method with
εm = 1.0e− 03 and εm = 1.0e− 04 respectively.

ν PMC (106) SWIFT Absolute error (εm = 10−2)

3 0.9438 1.0201 7.6e− 02
5 0.9562 1.0119 5.6e− 02
7 0.9456 0.9678 2.2e− 02

Table 4. Absolute errors with respect to Partial Monte Carlo simulation, corresponding to the
computation of VaR with deterministic holding period ∆t = 1/365, α = 0.99 and ν = 3, 5, 7.

ν PMC (107) Absolute error (εm = 10−3) Absolute error (εm = 10−4)

3 0.9438 5.2e− 03 2.7e− 04
5 0.9548 2.9e− 03 1.6e− 04
7 0.9447 3.8e− 03 2.6e− 04

Table 5. Absolute errors with respect to Partial Monte Carlo simulation, corresponding to the
computation of VaR with deterministic holding period ∆t = 1/365, α = 0.99 and ν = 3, 5, 7.

Next we study the performance of SWIFT method within the SLH framework. We consider
the same portfolio as in the deterministic case and we assume that H(t) follows an exponential
distribution with parameter λ = 10. Since the holding period is not deterministic, we cannot apply
directly the bisection method in (75). To circumvent this problem, we condition on a realization of
H and use the law of iterated expectations,

FQ−(l+ΘH(t))
(0) = P(Q−l−ΘH(t) ≤ 0) = E

[
1{Q−(l+ΘH(t))≤0}

]
= E

[
E
[
1{Q−(l+ΘH(t))≤0}|H(t) = h

]]
=

∫
R

E
[
1{Q−(l+Θh)≤0}

]
fH(h)dh =

∫
R
FQ−(l+Θh)

(0)fH(h)dh,

(76)

where fH(h) = 10 exp(−10h) is the probability density function of the stochastic holding period.
Now we can apply the bisection method to find l such that,

(77) 1− α− FQ−(l+ΘH(t))
(0) = 0.

The integral in the right-hand side of (76) must be calculated at each iteration of the bisection
method. The integral is evaluated by means of the trapezoidal rule and the infinite integration
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domain is replaced by the finite domain [0, h∗], where h∗ is such that FH(h∗) < 1.e − 06, being
FH the CDF of H(t). Note that for each quadrature point h, we calculate FQ−(l+Θh)

(0) as in the
deterministic case. The results are shown in Table 6. We run one hundred times the PMC method
and we consider the average as the benchmark solution, giving also a 95% confidence interval. It is
worth remarking that Monte Carlo simulation is extremely demanding in terms of computing due
to the heavy-tailed distribution combined with the stochastic holding period.

ν PMC 95% CI SWIFT Absolute error

3 10.1776 [8.0220, 13.5035] 10.0803 9.7e− 02
5 9.8275 [7.4039, 13.2777] 9.5490 2.8e− 01
7 9.7135 [7.6791, 12.5971] 9.5047 2.1e− 01

Table 6. Absolute errors with respect to Partial Monte Carlo simulation, corresponding to the
computation of VaR with stochastic holding period driven by an exponential distribution with
λ = 10 and α = 0.99.

5.3. Geometric Brownian Motion. In this section we consider that our portfolio Vt follows GBM
dynamics,

(78) dVt = µVt dt+ σVt dWt,

where, as usual, µ represents the drift and σ the volatility. As it was stated in Section 1.1, we are
interested in measuring the change in the log-value of the portfolio rather than in the value itself.
Thus, we consider X = ln (V (t+H(t))) − ln (V (t)), where H(t) is the constant value ∆t in the

deterministic case. It is well known that X follows a normal distribution with mean
(
µ− σ2

2

)
∆t

and variance σ2∆t, its characteristic function reads,

(79) f̂X(u; ∆t) = exp

(
−i
(
µ− σ2

2

)
∆tu− σ2∆t

2
u2

)
.

The first two cumulants are κ1 =
(
µ− σ2

2

)
∆t and κ2 = σ2∆t, and we determine the interval of

approximation [a, b] following the rule-of-thumb (65). In this particular case there are closed form
solutions for VaR and ES values,

(80) VaR(α) =

(
µ− σ2

2

)
∆t+ σ

√
∆tΦ−1(α), ES(α) =

(
µ− σ2

2

)
∆t+

σ
√

∆tφ(Φ−1(α))

1− α
,

where φ stands for the PDF of a normal standard and Φ is its CDF, and we use them as the
benchmark solution. We present the numerical experiments in Table 7. We consider three different
confidence levels α, where α = 0.99 is the traditional regulatory confidence level to measure the
VaR while α = 0.975 has become the new regulatory confidence level to measure the ES. Since we
aim at computing both risk measures, we use the error formula (59) to estimate the parameter m.
We see again that the ES error is in accordance with the fixed tolerance εm. We observe that the
VaR error is extremely small due to the the fact that formula (59) is equivalent to use formula (58)
with a tolerance error of (1 − α)εm. To show the power of approximation of SWIFT method, we
note that when εm = 1.e− 05 and α = 0.99 then m = 7 and the ES error is 5.1e− 06.

VaR ES

α m Exact SWIFT Absolute Error Exact SWIFT Absolute error
0.95 6 0.0430 0.0430 1.5e− 07 0.0539 0.0594 5.4e− 03
0.975 6 0.5012 0.0512 2.8e− 07 0.0611 0.0720 1.1e− 02
0.99 6 0.0608 0.0608 1.9e− 07 0.0697 0.0969 2.7e− 02

Table 7. Absolute errors for VaR and ES values with respect to the exact formula (80) when Vt
follows a GBM dynamics with µ = 0.1, σ = 0.5 and ∆t = 1/365.



COMPUTATION OF MARKET RISK MEASURES WITH STOCHASTIC LIQUIDITY HORIZON 19

Next, we consider the GBM dynamics in combination with an exponential random variable to
drive the SHL. In this case,

(81) f̂X(u) = E[e−iuX ] = E[E[e−iuX | H(t)]] = E[f̂X(u;h)] =

∫
R+

f̂X(u;h)fH(h)dh,

where fH(h) = λ exp(−λh). The integral in (81) can be solved analytically yielding,

(82) f̂X(u) =
−λ

λ+ i
(
µ− σ2

2

)
u+ 1

2σ
2u2

.

We use the expression (82) to calculate the scale of approximation m. We can also use the same
expression to compute the cumulants. However, if we observe the cumulants in the deterministic
case, we realize that they are increasing functions of ∆t. We therefore consider the union of the
two intervals corresponding to the minimum (h1 = 0) and maximum holding period, where the
maximum is determined by h2 such that FH(h2) < 1.e− 06, and FH stands for the CDF of H(t),

(83) [a, b] = [min{ah1 , ah2},max{bh1 , bh2}],

where ah1 = bh1 = 0, ah2 =
(
µ− σ2

2

)
h2 − Lσ

√
h2 and bh2 =

(
µ− σ2

2

)
h2 + Lσ

√
h2. We consider

two benchmark solutions in this case. First of all, we run MC simulations like in Section 5.1 with
the initial value of the portfolio V0 = 100. The results are presented in Table 8, where in general
the absolute error is of order 1.e− 02.

VaR ES

α m MC SWIFT Absolute Error MC SWIFT Absolute error
0.95 7 0.2331 0.2533 2.0e− 02 0.3378 0.3638 2.6e− 02
0.975 7 0.3064 0.3300 2.4e− 02 0.4103 0.4404 3.0e− 02
0.99 8 0.4005 0.4313 3.1e− 02 0.5049 0.5418 3.7e− 02

Table 8. Absolute errors for VaR and ES values with respect to MC simulation when Vt follows
a GBM dynamics with µ = 0.1, σ = 0.5. The SLH is driven by an exponential distribution with
λ = 10.

However, in order to really assess the accuracy of SWIFT method, we use a second benchmark
solution. We consider the numerical formulae employed in [6] for VaR value,

(84)

∫ ∞
0

Φ

VaR(α)−
(
µ− σ2

2

)
h

σ
√
h

 fH(h)dh = α,

and ES value,

(85) ES(α) =
1

1− α

∫ ∞
0

(µ− σ2

2

)
hΦ


(
µ− σ2

2

)
h−VaR(α)

σ
√
h

+ σ
√
hφ

VaR(α)−
(
µ− σ2

2

)
h

σ
√
h

 fH(h)dh.

We use the MATLAB function integral to numerically solve the integrals in (84) and (85), and
the MATLAB function fzero as a root-finding method in (84). The results are presented in Table
9, where we can observe very accurate results for VaR as well as for ES values.

5.4. Merton jump-diffusion model. As pointed out in [9], jump-diffusion models assume that
the evolution of prices is given by a diffusion process, punctuated by jumps at random intervals.
Here the jumps represent rare events like crashes and large drawdowns. Such an evolution can be
represented by modelling the log-price as a Lévy process with a nonzero Gaussian component and
a jump part, which is a compound Poisson process with finitely many jumps in every time interval.
Examples of such models are the MJD model with Gaussian jumps [18] and the Kou model with
double exponential jumps [14]. In this section we consider the MJD model for driving the dynamics
of the value of the portfolio Vt, whilst next section is devoted to the Kou model.
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VaR ES

α m Reference SWIFT Absolute Error Reference SWIFT Absolute error
0.95 7 0.2533 0.2533 1.2e− 06 0.3639 0.3638 6.2e− 05
0.975 7 0.3300 0.3300 3.2e− 06 0.4405 0.4404 1.3e− 04
0.99 8 0.4313 0.4313 8.5e− 06 0.5418 0.5418 5.5e− 05

Table 9. Absolute errors for VaR and ES values with respect to the formulae (84) and (85)
when Vt follows a GBM dynamics with µ = 0.1, σ = 0.5. The SLH is driven by an exponential
distribution with λ = 10.

The process Vt is assumed to follow the stochastic differential equation,

(86) dVt = (µ− λκ)Vtdt+ σVtdWt + (eJ − 1)Vtdqt,

where qt represents a Poisson process with mean arrival rate λ, J has normally distributed jumps
with mean µJ and standard deviation σJ , κ = E[eJ − 1] and Wt is a standard Brownian motion
process. The characteristic function of X = ln (V (t+H(t))) − ln (V (t)) in the deterministic case
when H(t) is ∆t reads,

(87) f̂X(u; ∆t) = exp

(
−i
(
µ− λκ− σ2

2

)
∆tu− σ2∆t

2
u2 + λ∆t

(
e−iµJu−

σ2
Ju

2

2 − 1

))
,

and we use the cumulants,

κ1 = µJλ∆t+

(
µ− λκ− σ2

2

)
∆t,

κ2 =
(
σ2 + λ

(
µ2
J + σ2

J

))
∆t,

κ4 =
(
µ4
J + 6σ2

Jµ
2
J + 3σ4

J

)
λ∆t.

(88)

To be more precise, the initial guess that we use for the MJD and Kou models to determine the
truncation interval is,

(89) [a, b] =

[
κ1 − L

√
κ2 +

√
κ4, κ1 + L

√
κ2 +

√
κ4

]
.

The benchmark solution is MC with V0 = 100, since there are not closed form solutions in this case
to compute the risk measures. We present the results in Table 10, where we illustrate both, the
deterministic case with ∆t = 5/365, and the stochastic case with the SLH driven by a generalised
Pareto distribution. We chose the regulatory level α = 0.975. The characteristic function within
the stochastic case is obtained numerically solving the integral in (81) by means of the trapezoidal
rule. The truncation of the integration domain and the determination of the interval [a, b] follows an
entirely analogous process as in Section 5.3. We observe that SWIFT method performs well working
at a low scale m = 3 in the challenging stochastic case. We measure the CPU time in seconds of
the overall process, including the VaR as well as the ES computation. This measurement reveals
the efficiency of the methodology capable to accurately estimate the risk measures in less than 0.1
second. We note that the stochastic case is more involved, since in this case, the characteristic
function is obtained numerically.

VaR ES

H(t) m MC SWIFT Absolute Error MC SWIFT Absolute error CPU time (sec.)
5/365 5 0.1171 0.1172 8.2e− 05 0.1601 0.1555 4.6e− 03 0.02
SLH 3 0.4726 0.4730 3.7e− 04 0.6081 0.5557 5.2e− 02 0.08

Table 10. Absolute errors for VaR and ES values with respect to MC simulation when Vt follows
a MJD dynamics with µ = 0.1, σ = 0.5, λ = 0.6, µJ = 0.1, σJ = 0.2. In the deterministic case
∆t = 5/365. The SLH is driven by a generalised Pareto distribution with k = 0, σ = 0.1, θ = 0.1.
The confidence level is α = 0.975.
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5.5. Kou model. Finally, we consider that the portfolio Vt follows the dynamics of the Kou model.
This model is also called the double exponential jump-diffusion model and it can reproduce the
leptokurtic feature of the return distribution, which has semi-heavy (exponential) tails. Given a
process Vt, it is modelled as,

(90) dVt = (µ− λκ)Vtdt+ σVtdWt +
(
eJ − 1

)
dqt,

where qt is a Poisson process with mean arrival rate λ and J has double exponentially distributed
jumps with density,

(91) fJ (y) = pη1e−η1y1y≥0 + qη2eη2y1y<0,

with η1 > 1, η2 > 0 governing the decay of the tails and p, q ≥ 0, p + q = 1, with p repre-
senting the probability of an upward jump, and κ = E[eJ − 1]. The characteristic function of
X = ln (V (t+H(t)))− ln (V (t)) in the deterministic case when H(t) is ∆t reads,

(92) f̂X(u) = exp

(
−i
(
µ− λκ− σ2

2

)
∆tu− σ2∆t

2
u2 − iλ

(
p

η1 + iu
+

q

η2 − iu

)
∆tu

)
,

and the cumulants are,

κ1 =

(
µ− λκ− σ2

2

)
∆t+

(
p

η1
+

q

η2

)
λ∆t,

κ2 =

(
p

η2
1

− q

η2
2

)
λ∆t+ σ2∆t,

κ4 =

(
p

η4
1

− q

η4
2

)
λ∆t.

(93)

In Table 11 we present the VaR and ES values computed at the regulatory level α = 0.975. In the
deterministic case we consider ∆t = 5/365 and the inverse gamma distribution is used for governing
the SLH dynamics. The benchmark solution is MC and V0 = 100. We observe that the absolute
errors are in line with those obtained in the former sections when comparing with MC.

VaR ES

H(t) m MC SWIFT Absolute Error MC SWIFT Absolute error
5/365 5 0.1109 0.1110 1.3e− 04 0.2225 0.1670 5.6e− 02
SLH 4 0.3262 0.3335 7.4e− 03 0.8129 0.8058 7.1e− 03

Table 11. Absolute errors for VaR and ES values with respect to MC simulation when Vt follows
a Kou dynamics with µ = 0.1, σ = 0.5, λ = 0.6, η1 = 1.5, η2 = 1.8, p = 0.5. In the deterministic
case ∆t = 5/365. The SLH is driven by an inverse gamma distribution with α = 6, β = 0.5.
The confidence level is α = 0.975.

6. Conclusions

In this work we present a numerical method to efficiently calculate VaR and ES values within
a stochastic liquidity horizon framework. We therefore focus on two aspects underlined as key
regulatory changes by the Basel Committee of Banking Supervision, like moving from VaR to ES and
considering the incorporation of the risk of market illiquidity. The estimation of the risk measures
with a stochastic holding period appears to be particularly challenging in terms of computational
power.

For the aforementioned reasons, we employ the SWIFT method, which recovers the density
function of the change in value of a certain portfolio from its characteristic function. The density
function is approximated by a finite expansion in terms of Shannon wavelets and the coefficients
of the approximation are readily obtained by a Fourier transform inversion. This method relies on
the availability of the characteristic function, which is known in closed form for many interesting
processes in finance. We consider the well-known delta-gamma approach for modelling the change
in value of the portfolio under normal and t-distributed risk factors, as well as the GBM, MJD
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and Kou models for the log-value change of the portfolio, where these two last models incorporate
a jump component in the dynamics. As for the dynamics of the SLH, we consider the Bernoulli
distribution, the exponential, the generalised Pareto and the inverse gamma in combination with
the delta-gamma approach, and the GBM, MJD and Kou dynamics. We carry out a detailed error
analysis and we provide a prescription on how to select the parameters of the numerical method,
making this technique more robust, reliable and applicable in practice. We leave for future work
the calibration of the parameters of the models employed, as well as the SLH, with real market
data. Another interesting extension of the present work would be the consideration of different risk
factors having different liquidity horizons in line with the regulatory rules of the Basel Committee
on Banking Supervision. The modelling of dependence between the stochastic holding period and
log-returns of assets is a topic of interest in practice for future developments.
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