
Treball final de grau

GRAU DE MATEMÀTIQUES

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

QUASI-PERIODIC SOLUTIONS
IN QUASI-PERIODIC SYSTEMS
VIA FOURIER TRANSFORMS

Autor: Eric Sandín Vidal

Director: Dr. Alex Haro Provinciale

Realitzat a: Departament de Matemàtica

Aplicada i Anàlisi

Barcelona, 27 de juny de 2018

Contents

Abstract iii

Acknowledgements v

Introduction vii

1 Skew-product Dynamical Systems 1
1.1 Introductory Definitions . 1
1.2 Skew-product Dynamical Systems . 4

2 The Kantorovich-type Validation Theorem 7
2.1 Fixed Point Theorems . 7
2.2 Validation Theorem . 9

3 On the Notion of Fiberwise Hyperbolicity 15
3.1 Dynamical Definition of Fiberwise Hyperbolicity 15

3.1.1 Relation between Hyperbolicity Definitions 16
3.2 Hyperbolicity Bound . 18

4 Fourier Transforms and Approximation Results 21
4.1 Analytic Functions, Norms and Strips . 21
4.2 The FT and the DFT . 22
4.3 Error Estimates on Approximations . 24

4.3.1 Analytic Periodic Functions . 24
4.3.2 Matrices of Periodic Functions . 27

4.4 The FFT . 28

5 Effective Calculation of the Error Bounds 31
5.1 The Invariance Error Bound . 31
5.2 The Hyperbolicity Bound . 33

6 The Reducibility Method 37
6.1 Reducibility Method . 37
6.2 Reducibility Method Algorithm . 39

i

7 The Quasi-periodically Forced Standard Map 41
7.1 Quasi-periodically Forced Standard Map . 41
7.2 Programming Procedure . 42
7.3 Computation Results . 45

Conclusions 49

Annex 51

Bibliography 68

Abstract

Within the field of dynamical systems, one shall find a special sort of systems, systems
that revolve around external perturbations, either periodic or quasi-periodic, the so called
skew-product dynamical systems. Even though the study of these systems can be a very
helpful source of tools for an engineering or more practical work that may present systems
alike, the main focus of this project is of a more theoretical nature. What is about to be
presented is an approach to response solutions of such perturbated systems and the proof of
existence and uniqueness of invariant fiberwise hyperbolic tori given an approximate torus of
such characteristics, and the further expression of the proof’s conditions in computable terms
via Fourier transforms. Besides the theoretical part, it is also provided an algorithm and its
respective computational implementation that allows to simplify the expression of the linear
dynamics of a system under a quasi-periodic perturbation into a diagonal matrix at the cost
of an error that will significantly decrease at each step of the algorithm.

2010 Mathematics Subject Classification. 37C55, 37D10, 65P99

iii

iv Abstract

Acknowledgements

It has been a great journey writing this project, as well as my pass through the whole
degree. Throughout the years I have met tons of great people who, in one way or another,
have helped me succesfully understand so many concepts and develop so many tasks. Between
all of them, I would specially like to thank my beloved friend Sergio Gor for always offering his
help for programming or harmonic analysis issues and for our long talks about general science
topics, my fellow Pol Casellas for being with me during the whole degree and supporting me
in tough academic times, my colleague Alexis Arraz for helping me countless times in several
subjects and without whom I might not have completed my degree, and Andrea Ruiz for, as
always, helping me designing and drawing the graphics of this project with her great artistic
skills.
And al last but not least, Doctor Alex Haro, for his never-ending patience and endless dedica-
tion to me despite his incredibly tight agenda, as well as for all the talks about movies, sports
and mostly, progressive music.

v

vi Acknowledgements

Introduction

It is beyond argument that dynamical systems have resulted one of the most prolific areas
in mathematics, allowing us to predict events that might go from natural phenomena such as
meteorological behavior or the development and population growth of a given species, to more
artificial and human made situations, such as economic operations or particle movements in
physics or engineering experiments. As a result, the research and development of this field
have become more and more important, leading to a considerably large range of topics within
this area itself.

One type of dynamical system is the skew-product dynamical system, and is the one we
are treating in this project. These kinds of system usually appear in models that operate
under external perturbations, that is why the proper understanding of them can be the key
for solving all sort of problems that may arise in other areas like Physics or Engineering. One
aspect that is crucial when studying any kind of dynamical system, is the search for invariant
objects, and for our case we will not proceed otherwise. In skew-product systems, the simplest
invariant object is called invariant section, and is considered to be the response to external
perturbations. These external perturbations can be of all kind, but this time we will deal
with the ones where the external forcing is a rigid rotation in a torus. Systems under such
forcing are called quasi-periodic dynamical systems, and hence, an invariant tori will carry a
quasi-periodic dynamics.
In order to compute invariant objects or merely prove its existence, one shall start off with an
initial data which, if the proper conditions are fulfilled, may induce that an invariant object
must exist. Such conditions are robustness and hyperbolicity, among others, which, in some
sense, guarantee the presence of a true invariant object near an approximate one. Though it
is not a trivial task, there are validation theorems that allow the user to prove the existence
and local uniqueness of a true solution, given that the initial data, as we have said, satisfies
non-degeneracy conditions and its error of invariance is properly bounded. This theorem also
provides a rigorous upper bound of the distance of our true solution to the approximate one
and a rigorous lower bound of the distance of other possible solutions. The non-degeneracy
condition implies the existence of a hyperbolicity bound, and, in the same way as the invari-
ance error bound, it can be explicitly calculated.

In order to perform this task in a practical situation, we will consider the case in which the
external perturbation is quasi-periodic. In such case, Fourier methods are specially tailored to

vii

viii Introduction

the problem at hand. Then, we will introduce a way to express any periodic function in terms
of values that can be calculated by a computer, and this procedure is the Fourier Transform.
Fourier Transforms are operations that are able to take values of a function and turn them
into the so called Fourier coefficients, that will make the expression of the function in terms
of a trigonometric polynomial possible. These resulting series are called Fourier series.
Historically, Fourier series were discovered by Joseph Fourier when trying to solve problems
related to the heat equation (a very important subject in differential equations), and nowadays
are commonly used in harmonic analysis (in mathematics) and in sound engineering, given
that a Fourier Transform is the perfect tool to transform a signal represented in time domain,
in frequency domain.
In the current context, we will use the discrete version of the Fourier Transform, the Discrete
Fourier Transform for a further implementation into a computer. This version, of course,
lacks of information that the continuous version has, and therefore, there is an error commit-
ted when using the discrete transform instead of the regular transform. The bound for this
error will become the key for computing the invariance and hyperbolicity errors, since it will
provide a very suitable and computable value for said bounds.

Understanding now the bigger picture, coming up next we will provide a rigorous and ex-
plicit calculation of the error comitted when discretizing the Fourier Transform, which will
directly lead us to find a computable expression for both invariance error and the hyperbol-
icity bound, giving first the preparatory definitions and the proof of a validation theorem,
and explaining right afterwards a method to simplify the expression of the linearized dynam-
ics of a system, providing as well an effective algorithm and an explanation of the computer
implementation in C language that can be found in the Annex.

Chapter 1

Skew-product Dynamical Systems

In this very first chapter, we are going to present the basic notions of what a skew-product
dynamical system is, as well as some other useful properties and definitions that will be used
further ahead in the project. But before diving directly in, we will need some general notions
about bundles, fiber bundles and other concepts in order to fully understand the particular
case that a skew-product system is.

1.1 Introductory Definitions

Definition 1.1. A bundle is a triple (E, π,B) where E is a set called the total space, B is a
set called the base space of the bundle and π : E → B is the projection map.[1]

Definition 1.2. Let (E1, π1, B) and (E2, π2, B) be bundles and f : B1 → B2 a map. Then a
bundle map F : E1 → E2 covering f is a map such that π2 ◦ F = f ◦ π1, that is

E1 E2

B1 B2

F

π1 π2

f

Definition 1.3. Let (E1, π1, B1) and (E2, π2, B2) be bundles and F : E1 → E2 be a bundle
map covering f : B1 → B2. If B1 = B2 and f = id, then F is a bundle map over B = B1 = B2

such that π2 ◦ F = π1. That is, the following diagram should commute

E1 E2

B

F

π1
π2

Equivalently, for any point x ∈ B, F maps the fiber E1x = π−11 ({x}) of E1 over x to the fiber
E2x = π−12 ({x}) of E2 over x.[2]

1

2 Skew-product Dynamical Systems

Definition 1.4. Let (E, π,B) be a bundle, then a section of that bundle is a continuous map
σ : B → E such that π(σ(x)) = x for all x ∈ B. That is, π ◦ σ = id which means that the
following diagram commutes [8]

E B

B

π

σ
id

Definition 1.5. Let (E, π,B) be a bundle, given a bundle map F : E → E covering f :

B → B, an F-invariant section is a section that satisfies that F ◦ σ = σ ◦ f , which means the
following diagram commutes

E E

B B

F

f

σ σ

Figure 1.1: A section σ of a bundle π : E → B. A section σ allows the base space B to be identified with a subspace
σ(B) of E.[14]

Definition 1.6. A fiber bundle is a structure (E, π,B, P), where E, B and P are topological
spaces and π : E → B is a continuous surjection satisfying a local triviality outlined below.
The space B is called the base space of the bundle, E the total space, and P the fiber. The
map π is called the projection map (or bundle projection). From now on, we will assume the
base space B is connected.
We require that for every x ∈ E, there is an open neighborhood U ⊂ B of π(x) (which will be
called a trivializing neighborhood) such that there is a homeomorphism ϕ : π−1(U) → U × P
(where U × P is the product space) in such a way that π agrees with the projection onto the
first factor. That is, the following diagram should commute

π−1(U) U × P

U

ϕ

π
proj1

1.1 Introductory Definitions 3

where proj1 : U × P → U is the natural projection and ϕ : π−1(U)→ U × P is a homeomor-
phism. The set of all {(Ui, ϕi)} is called a local trivialization of the bundle.
Thus for any y ∈ B, the preimage π−1({y}) is homeomorphic to P (since proj−11 ({y}) clearly
is) and is called the fiber over y. Every fiber bundle π : E → B is an open map, since projec-
tions of products are open maps. Therefore B carries the quotient topology determined by the
map π.

For a better understanding of the fiber bundle concept, one shall see E locally like the
product B × P , except that the fibers π(x)−1 for x ∈ B may be a bit "twisted".[5]
Notice that a bundle is a generalization of a fiber bundle but with the sets lacking of a topology,
which makes the condition of a local product structure drop.[1]

Figure 1.2: A fiber bundle.[12]

Remark 1.7. Let E = B×P and let π : E → B be the projection onto the first factor. Then
E is a fiber bundle (of P) over B. Here E is not just locally a product but globally one. Any
such fiber bundle is called a trivial bundle.[5]

Definition 1.8. A real vector bundle consists of a fiber bundle (E, π,B, P) with P = Rk,
where the compatibility condition is satisfied, that is, ∀p ∈ B, there is an open neighborhood
U ⊆ B, and a homeomorphism ϕ : U × Rk → π−1(U), such that ∀x ∈ U ;

1. (π ◦ ϕ)(x, v) = x ∀v ∈ Rk.

2. The map v 7→ ϕ(x, v) is a linear isomorphism between the vector spaces Rk and π−1({x}).

Remark 1.9. The open neighborhood U together with the homeomorphism ϕ is called a
local trivialization of the vector bundle. The local trivialization shows that, locally, the map
π looks like the projection of U × Rk on U .[13]

We can extend some standard operations between vector spaces such as the direct sum to
the context of vector bundles.

Definition 1.10. A Whitney sum is an operation that takes two vector bundles over a fixed
space and produces a new vector bundle over the same space. If E1 and E2 are vector bundles
over B, then the Whitney sum E1 ⊕ E2 is the vector bundle over B such that each fiber over
B is naturally the direct sum of the E1 and E2 fibers over B.
The Whitney sum is therefore the fiber for fiber direct sum of the two bundles E1 and E2.[15]

4 Skew-product Dynamical Systems

1.2 Skew-product Dynamical Systems

There are lots of things in mathematics that work perfectly in the context introduced by
the previous definitions, but in order to simplify and focus on our main topic, we will consider
in the whole project the "trivial" case, which takes Td×Rn as a trivial vector bundle over Td

and π : Td × Rn → Td the corresponding bundle projection.
We consider in Td × Rn the product topology, so that the bundle projection is continuous.
Coming up next, we introduce the concept of Finsler norm.

Definition 1.11. Let Td × Rn be a trivial fiber bundle with projection π : Td × Rn → Td. A
Finsler norm in the bundle is a continuous map

| · | : Td × Rn −→ R+

(θ, x) −→ |(θ, x)| = |x|θ

such that, for each θ ∈ Td, | · |θ : Rn → R+ is a norm.

In simpler terms, a Finsler norm in Td × Rn is a norm | · |θ on each fiber {θ} × Rn that
depends continuously on θ. Examples of Finsler norms are the constant Finsler norm | · |,
independent of θ, or given a norm | · | on Rn, and a continuous matrix map P : Td → GL(Rn),
the Finsler norm |x|θ = |P (θ)x|. We will usually eliminate the dependence on θ of | · |θ when
it is clear from the context.[10]

Definition 1.12. An annulus A is an open set A ⊂ Td × Rn that is homotopic to Td × U ,
where U ⊂ Rn is an open set.

Definition 1.13. (Skew-product Dynamical System) Let f : Td → Td be a homeomor-
phism. A skew-product dynamical system in Rn over f is a bundle map

(f, F) : A ⊂ Td × Rn −→ Td × Rn

(θ, y) −→ (f(θ), F (θ, y))

where F : A → Rn is C1 with respect to y.

From now on, we will refer to a continuous torus as a continuous section on the bundle
Td × Rn, that is, a continuous map of the form (id,K) : Td → Td × Rn, where K : Td → Rn

is continuous. The torus K = graph(K) := {(θ,K(θ)) | θ ∈ Td} is said to be graphed by K.
Hence, from the triviality of the bundle Td ×Rn, we identify the space of continuous sections
of the bundle, Γ(Td × Rn), with the space of continuous functions, C0(Td,Rn). These are
endowed with the supremum norm: ‖(id,K)‖ = ‖K‖ = supθ∈Td |K(θ)|θ.
The set of continuous sections with image in the annulus A is denoted by Γ(A), and we note
C0

A (Td,Rn) = {K ∈ C0(Td,Rn) | (id,K) ∈ Γ(A)}.
A section σ = (id,K) is invariant under the skew-product (f, F) if

F (θ,K(θ)) = K(f(θ)) (1.1)

for all θ ∈ Td. The Equation (1.1) is the so called invariance equation.

1.2 Skew-product Dynamical Systems 5

Figure 1.3: A continuous torus.

Another way to see this is by looking atK as a fixed point of the graph transform functional
G : C0

A (Td,Rn)→ C0(Td,Rn) defined by

G (K)(θ) = F (f−1(θ),K(f−1(θ))),

which satisfies that G (σ) = F ◦ σ ◦ f−1.

The corresponding graph, K = graph(K), is invariant under (f, F), which means that K

is an invariant manifold of (f, F), modeled by Td, for which the internal dynamics is f (as
shown in [10]).

It is interesting to introduce some concepts concerning the linear dynamics of our system
that will help us to understand the following validation theorem and the forthcoming Chapter
3. The linearized dynamics around the torus K is given by the vector bundle map

(f,M) : Td × Rn −→ Td × Rn

(θ, x) −→ (f(θ),M(θ)x)

where M(θ) = DyF (θ,K(θ)) is called the transfer matrix.[10]
The linear skew-product (f,M) induces a transfer operator M : C0(Td,Rn) → C0(Td,Rn),
defined as

M (ξ)(θ) = M(f−1(θ))ξ(f−1(θ))

for ξ ∈ C0(Td,Rn). The operator norm of the transfer operator M is

‖M ‖ = sup{‖M ξ‖∞ : ξ ∈ C0(Td,Rn), ‖ξ‖∞ = 1},

where ‖ξ‖∞ = max
θ∈Td
|ξ(θ)|θ. Remarkably, the transfer operator’s norm coincides with the norm

of the matrix M , which is

‖M‖ = sup
θ∈Td
‖M(θ)‖ = sup

θ∈Td
sup
|v|θ≤1

|M(θ)v|f(θ).

Following up, we are giving a general definition of what a (functionally) fiberwise hyperbolic
torus is in order to understand one of the validation theorem’s hypotheses. A deeper approach

6 Skew-product Dynamical Systems

into fiberwise hyperbolicity will be carried out in its corresponding Section 5.2. This definition
extends naturally from the definition of hyperbolicity of a fixed point of an autonomous dis-
crete dynamical system to hyperbolicity of an invariant section of a non-autonomous discrete
dynamical system.

Definition 1.14. An invariant torus K of the skew-product (f, F) in (1.13), graphed by
K ∈ C0

A (Td,Rn), is said to be (functionally) fiberwise hyperbolic if the corresponding transfer
operator M is hyperbolic. That is, if the spectrum of M has empty intersection with the unit
circle {z ∈ C : |z| = 1}.

In other words, hyperbolicity means that for all z such that |z| = 1, and for all w ∈
C0

A (Td,Rn) there exists a unique v ∈ C0
A (Td,Rn) such that

M(f−1(θ))v(f−1(θ))− zv(θ) = w(θ),

for all θ ∈ Td. That is, v = (M − zId)−1w. In virtue of the Open Mapping Theorem
(see below), there exists a positive constant cH , the so called hyperbolicity bound, such that
‖(M − zId)−1‖ ≤ cH . That is, ‖v‖ ≤ cH‖w‖.[10]

Theorem 1.15. (Banach Open Mapping Theorem) If X and Y are Banach spaces and
T : X → Y is a surjective continuous linear operator, then T is an open map. If moreover,
T : X → Y is bijective, then T −1 : Y → X.[7]

Chapter 2

The Kantorovich-type Validation
Theorem

As the main result in this project, in this chapter we are going to deal with the validation
theorem that proves the existence and uniqueness of a fiberwise hyperbolic invariant torus
provided that there exists an approximately invariant one. Said theorem also provides lower
and upper bounds for how close the effectively invariant torus is to the approximate one and
for the radius of an annalus wherein there is only one fiberwise hyperbolic invariant torus.

2.1 Fixed Point Theorems

Theorem 2.1. (Banach Fixed Point Theorem) Let (X, d) be a complete metric space and
f : X → X a contractive map with contraction factor K ∈ [0, 1), then exists a unique x∗ ∈ X
such that f(x∗) = x∗.

Proof. Start by taking a x0 ∈ X, and then defining the sequence (xn)n as xn = fn(x0). Since
our metric space is complete, it suffices to prove that our sequence is a Cauchy one. ∀n and
∀p ≥ 0

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + . . .+ d(xn+1, xn)

≤ (Kn+p−1 +Kn+p−2 + . . .+Kn)d(x1, x0)

≤ Kn(1 +K + . . .+Kp−1)d(x1, x0) ≤
Kn

1−K
d(x1, x0).

Where, in the third step, we have applied that

d(xm+1, xm) ≤ Kd(xm, xm−1) ≤ . . . ≤ Kmd(x1, x0)

using the contractive property and a geometric sum in the last step. From the inequality we
obtain lim

n→∞
sup
p≥0

d(xn+p, xn) = 0, since sup
p≥0

d(xn+p, xn) ≤ Kn

1−K d(x1, x0), hence it is a Cauchy

sequence and therefore (xn)n converges to a certain x∗. Thus xn+1 = f(xn) −−−→
n→∞

x∗ = f(x∗)

7

8 The Kantorovich-type Validation Theorem

and x∗ is a fixed point of f .

The uniqueness is easily proved by assuming there are two different fixed points, x∗, y∗, and
therefore

0 < d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ Kd(x∗, y∗)→ d(x∗, y∗) ≤ Kd(x∗, y∗)

which is a contradiction since K ∈ [0, 1).

Theorem 2.2. (Rigorous Fixed Point Theorem) Let X be a Banach space and and
let x0 ∈ X. Let now T : BR(x0) ⊂ X → X be a map in the open set BR(x0) such that
∀ r ∈ (0, R), T∣∣Br(x0) is Lipschitz, where Br(x0) = {x ∈ X : ‖x− x0‖ ≤ r} and

L : (0, R) −→ R+

r 7−→ L(r) = sup
x1,x2∈Br(x0)

x1 6=x2

‖T (x2)−T (x1)‖
‖x2 − x1‖

.

Notice that L is an increasing function.
Assume that ‖T (x0) − x0‖ ≤ ε, where ε > 0 is the error bound of the fixed point condition,
and pick r ∈ (ε,R). Then if ε

r + L(r) − 1 ≤ 0, there exists a unique x∗ ∈ Br(x0) such that
T (x∗) = x∗.

Proof. Since X is a Banach space, and therefore a complete space, Theorem 2.1 allows us to
reduce the proof to the following two steps:

1. T (Br(x0)) ⊆ Br(x0), so the image of the ball won’t escape the ball itself and Br(x0)

will become a complete subspace.

2. T∣∣Br(x0) is contractive.
For the first step we pick x ∈ Br(x0) and we see

‖T (x)− x0‖ ≤ ‖T (x)−T (x0)‖+ ‖T (x0)− x0‖ ≤ L(r)‖x− x0‖+ ε

≤ L(r)r + ε = r
(
L(r) +

ε

r

)
≤ r

which means that T (x) is in Br(x0).

Since our function T is already Lipschitz, we only need to see if the Lipschitz constant L(r)

dwells in the (0, 1) interval. By hypothesis, εr+L(r)−1 ≤ 0 which leads to L(r) ≤ 1− ε
r < 1.

2.2 Validation Theorem 9

2.2 Validation Theorem

The last two results will be very useful to help us prove the validation theorem, which
claims as follows.

Theorem 2.3. Let (f, F) : A ⊂ Td × Rn → Td × Rn be a skew-product on the annulus A ,
with F being of class C1+Lip with respect to the fiber variable y. This means that F (θ, y) is of
class C1 with respect to y and DF (θ, y) is Lipschitz with respect to y. Assume we are given:

1.1) an approximately invariant torus K0 = graph(K0) with (id,K0) ∈ Γ(A);

1.2) a Finsler norm | · | : Td × Rn −→ R+;

1.3) a closed annulus around K0 of radius R inside A :

Ā (K0, R) := {(θ, y) ∈ Td × Rn | ∀θ ∈ Td, |K(θ)− y|θ ≤ R} ⊂ A .

Let ε̂ be an error bound of the invariance equation for K0, cH be a hyperbolicity bound of the
transfer operator M0 associated to the linear skew-product (f,M0) given by the transfer matrix
M0(θ) = DyF (θ,K0(θ)), and b be the Lipschitz constant of the differential of the skew-product
with respect to y in Ā (K0, R). That is,

2.1) for each θ ∈ Td, |F (θ,K0(θ))−K0(f(θ))|f(θ) ≤ ε̂;

2.2) for each z ∈ C with |z| = 1, ‖(M0 − zId)−1‖ ≤ cH ;

2.3) for each (θ, y1), (θ, y2) ∈ Ā (K0, R), x ∈ Rn,

|(DyF (θ, y1)−DyF (θ, y2))x|f(θ) ≤ b |y1 − y2|θ |x|θ.

Assume that

3.1) c2Hb ε̂ ≤ h <
1
4 ;

3.2) (1−
√

1− 4h)(2cHb)
−1 ≤ r0 ≤ r1 < min((1 +

√
1− 4h)(2cHb)

−1, R).

Then there exists a unique torus K∗ = graph(K∗) with (id,K∗) ∈ Γ(A) such that:

a.1) for each θ ∈ Td, F (θ,K∗(θ))−K∗(f(θ)) = 0, that is, K∗ is invariant;

a.2) for each θ ∈ Td, |K∗(θ)−K0(θ)|θ ≤ r1, which means it is locally unique.

Moreover:

a.3) for each θ ∈ Td, |K∗(θ)−K0(θ)|θ ≤ r0, which means K∗ is close to K0;

a.4) K∗ is a fiberwise hyperbolic invariant torus.

10 The Kantorovich-type Validation Theorem

Remark 2.4. Keep in mind that the ε̂ from the theorem is different than the ε from Theorem
2.2.

Remark 2.5. In hypothesis (3.1), we could take c2Hb ε = h and the result would hold true as
well, but we take the inequality given that works better when bounding in validations.

Remark 2.6. In Ā (K0, r1) there is a unique invariant graph which, in fact, is contained in
Ā (K0, r0).

Proof. We look for a solution (id,K) ∈ Γ(Ā (K0, R)) of the invariance equation

F (θ,K(θ))−K(f(θ)) = 0 (2.1)

of the form
K(θ) = K0(θ) + ξ(θ). (2.2)

Wrapping up a bit, what we know so far is that we are looking for the exact solution K(θ)

of the Equation (2.1), knowing K0(θ), our approximate solution. Expressing K(θ) such as in
(2.2), permits us to turn the current problem into proving the existence of a correction function
ξ(θ) for the K0(θ) function. The proof of existence of such object can be performed taking
profit of the previous Theorem 2.2, noticing that our current objects satisfy the theorem’s
hypotheses.
Let us define the closed set for r ≤ R

Xr = {ξ ∈ C0(Td,Rn) | ‖ξ‖ ≤ r}.

Notice Xr is shaped as a closed ball Br(0) in C0(Td,Rn).
Substituting the expression (2.2) into the invariance equation (2.1), we obtain

F (θ,K0(θ) + ξ(θ))−K0(f(θ))− ξ(f(θ)) = 0. (2.3)

Using Taylor’s Theorem, we have

F (θ,K0(θ) + ξ(θ)) = F (θ,K0(θ)) +DyF (θ,K0(θ)) ξ(θ)

+

∫ 1

0
(DyF (θ,K0(θ) + sξ(θ))−DyF (θ,K0(θ))) ξ(θ)ds.

Then equation (2.3) is equivalent to

M0(θ) ξ(θ)− ξ(f(θ)) = N (ξ)(f(θ))

where M0(θ) = DyF (θ,K0(θ)), and

N (ξ)(f(θ)) =− [F (θ,K0(θ))−K0(f(θ))]

−
∫ 1

0
(DyF (θ,K0(θ) + sξ(θ))−DyF (θ,K0(θ))) ξ(θ)ds.

We now push forward, obtaining

M0(f
−1(θ)) ξ(f−1(θ))− ξ(θ) = N (ξ)(θ).

2.2 Validation Theorem 11

Furthermore, we can express the equation in terms of the transfer operator

M0(ξ)(θ) = M0(f
−1(θ))ξ(f−1(θ)).

Now, by the hypothesis of fiberwise hyperbolicity, M0(ξ)(θ) is an invertible operator, so we
can rewrite the invariance equation as a fixed point equation for ξ:

ξ = (M0 − Id)−1 ◦N (ξ).

Now that we have turned our problem into an explicit fixed point finding problem, we shall
follow the notation of the previous theorem and consider the operator

T = (M0 − Id)−1 ◦N : XR = BR(0)→ C0(Td,Rn).

For ξ0 = 0, we evaluate ‖T (ξ0) − ξ0‖ = ‖(M0 − Id)−1 ◦N (0)‖ ≤ cH ε̂ = ε, where ε is the
actual ε from Theorem 2.2 and N (0) = − [F (θ,K0(θ))−K0(f(θ))].
Recalling that R is the radius of the closed annulus Ā wherein the approximate torus K0 is
contained, we shall now define the following increasing function

L : (0, R) −→ R+

r 7−→ L(r) = sup
ξ1,ξ2∈Xr
ξ1 6=ξ2

‖T (ξ2)−T (ξ1)‖
‖ξ2 − ξ1‖

.

Let’s then calculate the Lipschitz constant for the operator T

‖(M0 − Id)−1 ◦N (ξ2)− (M0 − Id)−1 ◦N (ξ1)‖ ≤
‖(M0 − Id)−1 ◦ (N (ξ2)−N (ξ1))‖ ≤
‖(M0 − Id)−1‖ · ‖N (ξ2)−N (ξ1)‖.

Since we know by hypothesis that ‖(M0 − Id)−1‖ ≤ cH , we calculate the other term of the
expression separatedly. In the following calculation we will be using the Finsler norm evaluated
over f(θ), that is | · |f(θ), but for the sake of the reader and the writer’s convenience, we shall

12 The Kantorovich-type Validation Theorem

omit the f(θ) subindex.

|N (ξ2)(f(θ))−N (ξ1)(f(θ))|

=
∣∣∣ ∫ 1

0

(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))

)
ξ2(θ)

−
(
DyF (θ,K0(θ) + sξ1(θ))−DyF (θ,K0(θ))

)
ξ1(θ) ds

∣∣∣
=
∣∣∣ ∫ 1

0

(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))

)
ξ2(θ)

+
(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))

)
ξ1(θ)

−
(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))

)
ξ1(θ)

−
(
DyF (θ,K0(θ) + sξ1(θ))−DyF (θ,K0(θ))

)
ξ1(θ) ds

∣∣∣
≤
∣∣∣ ∫ 1

0

(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))

)
(ξ2(θ)− ξ1(θ)) ds

∣∣∣
+
∣∣∣ ∫ 1

0

(
DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ) + sξ1(θ))

)
ξ1(θ) ds

∣∣∣
≤
∫ 1

0
|DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ))| ds |ξ2(θ)− ξ1(θ)|

+

∫ 1

0
|DyF (θ,K0(θ) + sξ2(θ))−DyF (θ,K0(θ) + sξ1(θ))| ds |ξ1(θ)|

≤
∫ 1

0
bs |ξ2(θ)| ds |ξ2(θ)− ξ1(θ)|+

∫ 1

0
bs |ξ2(θ)− ξ1(θ)| ds |ξ1(θ)|

≤ 1

2
br |ξ2(θ)− ξ1(θ)|+

1

2
b |ξ2(θ)− ξ1(θ)| r ≤ br |ξ2(θ)− ξ1(θ)|.

For some of the final steps we have used the fact that ξ1, ξ2 ∈ Xr and therefore |ξi(θ)| ≤ r for
i = 1, 2, and the hypothesis (2.3) of the theorem. Joining results we finally obtain

‖(M0 − Id)−1 ◦N (ξ2)− (M0 − Id)−1 ◦N (ξ1)‖ = ‖T (ξ2)− T (ξ1)‖ ≤ cHbr ‖ξ2 − ξ1‖.

And so, the Lipschitz factor of the operator is L(r) = cHbr. Our goal is to prove there exists
at least one r that satisfies ε

r + cHbr − 1 ≤ 0 in order to apply Theorem 2.2.
The r’s that satisfy ε

r + cHbr − 1 = 0 are the x-axis cutpoints of the r function described by
the equation, which are

r+ =
1 +
√

1− 4c2Hb ε̂

2cHb
, r− =

1−
√

1− 4c2Hb ε̂

2cHb
.

Picking an arbitrary r∗ ∈ (r−, r+) (r∗ ≤ R) such as r∗ = 1
2cHb

is easy to see that indeed
ε
r∗

+ cHbr∗ − 1 ≤ 0 and hence, the T operator is well defined in Xr∗ and, by Theorem 2.2,
there exists a unique fixed point of T , and that is ξ(θ). Notice that T is also well defined in
Xr∗ for r∗ ∈ [r0, r1] under the hypotheses (3.1) and (3.2).

2.2 Validation Theorem 13

What we have left to prove is that K∗ is fiberwise hyperbolic. Let M∗ be the transfer op-
erator associated to the linear skew-product (f,M∗) given by the transfer matrix M∗(θ) =

DyF (θ,K∗(θ)). Notice that M0 is a hyperbolic operator, and that M∗ is close to M0. Then,
for any z ∈ C with |z| = 1,

M∗ − zId = (M0 − zId)(Id+ (M0 − zId)−1(M∗ −M0)) (2.4)

Since
‖(M0 − zId)−1(M∗ −M0)‖ ≤ cHb‖ξ∗ − 0‖ ≤ cHb r− < 1,

given that r− < 1. And following standard Neumann series arguments, the right-hand side
of (2.4) is invertible, and so then M∗ − zId is invertible, which proves the theorem (adapted
from [10]).

Even though this is a very useful theoretical result, one might consider the idea of imple-
menting this on a numerical level. If this is the case, other questions may arise, for instance,
which is the best way to express computer-wise our skew-product system or its linearized
dynamics, how can we calculate a continuous torus, or most importantly, how do we calculate
or find explicit and computable expressions for the conditions of the previous theorem, such
as the invariance equation error bound or the hyperbolicity bound.
A great approach for tackling this matter is by using the language of Fourier series, a lan-
guage that a computer understands and is comfortable working with. Nonetheless, one must
proceed with caution, because taking the regular Fourier series of a function will not answer
our questions since it will still be a continuous object that a computer cannot deliberately use
without committing any truncation error. That is why, our main interest will be focused on
the ways of expressing our objects via finite Fourier series with Fourier coefficients calculated
using discrete methods. The process we will explain is called the Discrete Fourier Transform.
This process turns function evaluated points over a grid into Fourier coefficients, and, unlike
the regular continuous Fourier Transform, it does it through a sum of elements instead of an
integral.

In Chapter 4, we are going to give the main definitions and results regarding the Fourier
Transform, the Discrete Fourier Transform and the error produced when applying a Discrete
Fourier Transform in comparison with a regular Fourier Transform. We will also give a very
efficient algorithm to calculate a Discrete Fourier Transform. This process is called the Fast
Fourier Transform and provides a computation time of the order of N logN in contrast with
the N2 of a direct Discrete Fourier Transform.
But before that, we are going to dive in the study of the linearized dynamics before using
Fourier series to calculate the hyperbolicity bound of the theorem.

14 The Kantorovich-type Validation Theorem

Chapter 3

On the Notion of Fiberwise
Hyperbolicity

In Section 1.2 we introduced the concept of fiberwise hyperbolicity of an invariant torus
in functional terms. We will introduce here the dynamical sense of the concept.

3.1 Dynamical Definition of Fiberwise Hyperbolicity

In this section we will work with the linearized dynamics around an invariant torus K of
a skew-product dynamical system, which is given by a vector bundle map

(f,M) : Td × Rn −→ Td × Rn

(θ, x) −→ (f(θ),M(θ)x).

The condition of (uniform) hyperbolicity of the vector bundle map (f,M) assumes that
there exists a continuous decomposition of Td × Rn in Whitney sum of two vector bundles,
a stable one, BS , and an unstable one, BU . Given v ∈ BS

θ and since F moves a point
(θ,K(θ)) in the invariant torus to another one F (θ,K(θ)) in the same torus K (condition
of invariance), the differential matrix of F , DF (θ,K(θ)) will send v ∈ BS

θ to a v̄ ∈ BS
f(θ),

that is M(θ)vSθ ∈ BS
f(θ). Iterating the process for a vSθ ∈ BS

θ we obtain M(θ)vSθ ∈ BS
f(θ),

M(f(θ))M(θ)vSθ ∈ BS
f2(θ) and for any l ≥ 0 M(f l−1(θ)) · · ·M(θ)vSθ ∈ BS

f l(θ)
. Since we are

working with the stable bundle, the differential operation we do as M(θ)vSθ is a contractive
operation because of the eigenvalues of M being in the (0, 1) interval. At this point we finally
can introduce the cocycle notation defined as M(θ, l) = M(f l−1(θ)) · · ·M(θ).
The procedure for the unstable bundle is slightly different given that applying the differential
matrix is an expansive operation (the eigenvalue is greater than 1). For a clearer view of the
argument we shall express it in terms of matrices(

v

θ

)
→

(
M(θ)v

f(θ)

)
=

(
v̄

θ̄

)

15

16 On the Notion of Fiberwise Hyperbolicity

and by isolating v we obtain (
v

θ

)
=

(
M(f−1(θ))−1 v̄

f−1(θ̄)

)
.

Hence, we shall dub M(θ,−l) = M(f−l(θ))−1 · · ·M(f−1(θ))−1.
In the l = 0 case, M(θ, l) = Id. [10]

Figure 3.1: Schematic representation of the stable and unstable bundles and the action of the differential matrix over
vectors from the bundles.

Wrapping up this section, we introduce the formal definition of a (dynamically) fiberwise
hyperbolic invariant torus.

Definition 3.1. An invariant torus K of a skew-product dynamical system (f, F), graphed
by K ∈ C0

A (Td,Rn), is said to be (dynamically) fiberwise hyperbolic if the corresponding
linear skew-product (f,M) is uniformly hyperbolic. Specifically, if there exist a continuous
decomposition Td × Rn = BS ⊕ BU in Whitney sum of two vector bundles, and constants
C > 0 and 0 < λS < 1 < λU such that:

1. v ∈ BS
θ if and only if |M(θ, l) vθ| ≤ CλlS |vθ| , ∀l ≥ 0.

2. v ∈ BU
θ if and only if |M(θ,−l) vθ| ≤ Cλ−lU |vθ| , ∀l ≥ 0.

3.1.1 Relation Between Functional and Dynamical Definition of Fiberwise
Hyperbolicity

So far we have introduced two concepts of fiberwise hyperbolicity, a functional one and
a dynamical one. The relation between the two concepts has been object of study by many
authors since J. Mather. It turns out that both concepts end up being equivalents, although
we will focus in just one implication.

3.1 Dynamical Definition of Fiberwise Hyperbolicity 17

Theorem 3.2. If an invariant torus K of a skew-product dynamical system (f, F) is dynam-
ically fiberwise hyperbolic, then it is functionally fiberwise hyperbolic.

Proof. We have to prove that for any z ∈ C such that |z| = 1, the operator M − zId is
bijective, that is, for any w ∈ C0(Td,Rn) there exists a unique v ∈ C0(Td,Rn) such that

M(f−1(θ))v(f−1(θ))− zv(θ) = w(θ).

Let’s then prove the existence of such v. First we write the previous cohomological equation
in terms of the stable and unstable components via projection to their respective bundles.{

M(f−1(θ)) vS(f−1(θ))− zvS(θ) = wS(θ)

M(f−1(θ)) vU (f−1(θ))− zvU (θ) = wU (θ).

Let’s pick first the stable one. One shall write the equation as a fixed point type equation as
follows

vS(θ) =
1

z

(
− wS(θ) +M(f−1(θ)) vS(f−1(θ))

)
.

And substituting iteratively we obtain

vS(θ) =
1

z

(
− wS(θ) +M(f−1(θ))

1

z

[
−wS(f−1(θ)) +M(f−2(θ)) vS(f−2(θ))

])
= −1

z
wS(θ)− 1

z2
(f−1(θ)) wS(f−1(θ))− 1

z2
(f−1(θ))M(f−2(θ)) vS(f−2(θ))

= −
∞∑
k=0

[
M(f−1(θ)) · · ·M(f−k+1(θ))M(f−k(θ))

] 1

zk+1
wS(f−k(θ))

= −
∞∑
k=0

1

zk+1
M(f−k(θ), k) wS(f−k(θ)).

We know wS(f−k(θ)) ∈ BS
f−k(θ)

, hence

|vS(θ)| ≤
∞∑
k=0

1

|z|k+1
|M(f−k(θ), k) wS(f−k(θ))| ≤ C

∞∑
k=0

λkS |wS(f−k(θ))|

≤ C
∞∑
k=0

λkS ‖wS‖∞ =
C

1− λS
‖wS‖∞ <∞

since λS ∈ (0, 1), and by the Weierstrass M-test, the original series also converges and there-
fore exists the solution vS(θ) for the equation.

Let’s prove it now for the unstable one. This time we will isolate vU (f−1(θ)) from the unstable
projection of the cohomological equation since it models the backwards dynamics. Thus, from

M(f−1(θ)) vU (f−1(θ))− zvU (θ) = wU (θ)

18 On the Notion of Fiberwise Hyperbolicity

will be more useful to compose with f(θ) in order to operate with vU (θ). This way, isolating,
we finally obtain the fixed point type equation

vU (θ) = M(θ)−1 wU (f(θ)) + zM(θ)−1 vU (f(θ)).

Now we shall proceed as we did with the stable bundle, iterating.

vU (θ) = M(θ)−1 wU (f(θ)) + zM(θ)−1[M(f(θ))−1 wU (f2(θ)) + zM(f(θ))−1 vU (f2(θ))]

= M(θ)−1wU (f(θ)) + zM(θ)−1M(f(θ))−1wU (f2(θ)) + zM(θ)−1M(f(θ))−1vU (f2(θ))

=

∞∑
k=0

[
M(θ)−1 M(f(θ))−1 · · ·M(fk(θ))−1

]
zkwU (fk+1(θ)) =

=

∞∑
k=0

zkM(fk(θ),−(k + 1)) wU (fk+1(θ)).

We know wU (fk+1(θ)) ∈ BU
fk+1(θ)

, hence

|vU (θ)| ≤
∞∑
k=0

|z|k|M(fk(θ),−(k + 1)) wU (fk+1(θ))| ≤ C
∞∑
k=0

λ
−(k+1)
U |wU (fk+1(θ))|

≤ C
∞∑
k=0

λ
−(k+1)
U ‖wU‖∞ =

C

λU − 1
‖wU‖∞ <∞

since λU > 1 and then λ−(k+1)
U < 1 for any k > 0. Using the Weierstrass M-test as before, we

prove the convergence of the original series as well as the existence of such a solution vU (θ).
Having at last the two of them, vS(θ) and vU (θ), our solution for the whole cohomological
equation is v(θ) = vS(θ) + vU (θ). Thus, the operator is hyperbolic.

Remark 3.3. If M is a hyperbolic transfer operator with spectrum inside the unit circle,
then we say that the torus K is an attractor. If the spectrum of M is outside the unit circle,
then the torus K is a repeller. Otherwise we say that the torus K is a saddle.

3.2 Hyperbolicity Bound

One of the hypothesis required in Theorem 2.3 is the hyperbolicity property of the linear
skew-product (f,M0) associated to the approximate invariant torus (id,K0). As it is normal,
we have to verify such property and even more, calculate the hyperbolicity bound used in
the aforementioned theorem. To do so, we approximate the stable and unstable bundles and
construct adapted frames in which it is easier to measure the hyperbolicity property. The
simplest case is the one we are treating in this section, which is when the invariant bundles
are trivial (or easily trivializable), and we can construct global frames.

Assume we are capable of defining a matrix-valued map P : Td → GL(Rn) (the adapted
frame), whose first nS columns parametrize an approximation of the stable bundle BS (of

3.2 Hyperbolicity Bound 19

rank nS) and the last nU columns parametrize an approximation of the unstable bundle BU

(of rank nU). In particular, assume that

P (f(θ))−1M0(θ)P (θ)− Λ(θ) = Ered(θ),

where (f,Λ) is a block-diagonal linear skew-product

Λ(θ) =

(
ΛS(θ) 0

0 ΛU (θ)

)
and (f,Ered) is the error in the reducibility. Also assume that the dynamics of (f,ΛS) (in

Td × RnS) is uniformly contracting and the dynamics of (f,ΛU) (in Td × RnU) is uniformly
expanding.

Summing up, the main assumption of this section is that the linear skew-product (f,M0)

is approximately reducible to a block-diagonal linear skew-product (f,Λ) that is uniformly
hyperbolic.

From now on, in order to simplify the manipulation of transfer operators, we will use the fol-
lowing notation; P := (id, P), L := (f,Λ), LS := (f,ΛS), LU := (f,ΛU), Ered := (f,Ered).
The fact that the dynamics of (f,ΛS) and (f,ΛU) are uniformly contracting and expand-
ing, respectively, are rephrased by saying that the spectra of L S and (LU)−1 are inside the
unit circle. Therefore there exist λS < 1 < λU , respectively, such that ‖ΛS‖ρ ≤ λS and
‖(ΛU)−1‖ρ ≤ λ−1U (as shown in [10]).

Theorem 3.4. Let (f,M0) : Td × Rn → Td × Rn be a linear skew-product. Assume we are
given:
1.1) a continuous matrix-valued map P : Td → GL(Rn), defining a linear skew-product (id, P)

in Td × Rn;
1.2) a continuous matrix-valued map Λ = ΛS × ΛU : Td → L(RnS) × GL(RnU), defining a
block-diagonal linear skew-product (f,Λ) in Td × RnS × RnU ;
1.3) a norm ‖ · ‖ρ over Tdρ, with ρ ≥ 0.

Let (f,Ered) be the error in the reducibility equation, where

Ered(θ) = P (f(θ))−1M0(θ)P (θ)− Λ(θ).

Let λ be the hyperbolicity constant and σ be the error bound of the reducibility equation for Λ

and P . This means that:
2.1) ‖LS‖ρ ≤ λ , ‖(LU)−1‖ρ ≤ λ;
2.2) ‖Ered‖ρ ≤ σ;
2.3) λ+ σ < 1.

Then, the linear skew-product (f,M0) is uniformly hyperbolic and for all z ∈ C with |z| = 1,

‖(M0 − zId)−1‖ρ ≤
1

1− λ− σ
.

20 On the Notion of Fiberwise Hyperbolicity

This means that we can take cH ≥ 1
1−λ−σ as the hyperbolicity bound.

Proof. Using Theorem’s 3.4 proof, we can see that for each z ∈ C with |z| = 1 and for each
η ∈ C0(Td,Rn), there exists a unique ξ ∈ C0(Td,Rn) solving the cohomological equation

Λ(θ)ξ(θ)− zξ(f(θ)) = η(f(θ))

such that (L − zId) is invertible and ξ = (L − zId)−1 η.
Recalling the last part of the theorem’s proof, we can now write

‖(L − zId)−1‖ρ ≤
1

1− λ
.

Consider
M0 − zId = P(L − zId)(Id+ (L − zId)−1Ered)P

−1.

Since ‖(L − zId)−1Ered‖ρ ≤ (1−λ)−1σ < 1 thanks to hypothesis 2.3), M0− zId is invertible
and

(M0 − zId)−1 = P(I + (L − z)−1Ered)−1(L − zId)−1P−1.

Then, for any η ∈ C0(Td,Rn):

‖(M0 − zId)−1 η‖ρ = ‖P−1(M0 − zId)−1 η‖ρ ≤ ‖P−1(M0 − zId)−1 P‖ρ ‖P−1η‖ρ
≤ ‖(I + (L − z)−1Ered)−1‖ρ ‖(L − zId)−1‖ρ ‖P−1η‖ρ

≤ 1

1− 1
1−λσ

1

1− λ
‖η‖ρ =

1

1− λ− σ
‖η‖ρ.

Finally ‖(M0 − zId)−1‖ρ ≤ 1
1−λ−σ (as shown in [10]).

Chapter 4

Fourier Transforms and
Approximation Results on the One
Dimensional Case

As we have seen in Theorem 2.3, there are some hypotheses that need to be satisfied in
order to ensure the existence and uniqueness of a fiberwise hyperbolic invariant torus, and
some of them require an explicit bound to express its true meaning, such as the invariance
error for approximate invariant torus or the hyperbolicity bound. In order to compute those
values, we must first think of a way to express all the information we have of our system in
computable terms, and that way is Fourier series.
In this chapter we introduce a very basic notion of analytic functions followed by the concepts
of Fourier Transform and Discrete Fourier Transform as well as the error committed when
using one instead of the other. This leads to the main result of the chapter, which consists in
a computable expression of the error produced when using approximate Fourier series. This
method will be the leading force to calculate the validation theorem’s bounds, which will be
presented in the forthcoming chapters.

4.1 Analytic Functions, Norms and Strips

Definition 4.1. A function f is real analytic on an open set D ⊂ R if for any x0 ∈ D one
can write

f(x) =
∞∑
n=0

an(x− x0)n

where ai ∈ R and the series is convergent to f(x) for x in a neighborhood of x0.

Now we will work with Banach spaces of real analytic functions in complex neighborhoods
of real domains, which is perfectly tailored for our context.

A complex strip of T of width ρ > 0 is defined as

Tρ = {θ ∈ C�Z : |Im θ| < ρ}.

21

22 Fourier Transforms and Approximation Results

A function defined on T is real analytic if it can be analytically extended to a complex strip
Tρ, whose boundary is ∂ Tρ = {θ ∈ C�Z : |θ| = ρ}.
We consider analytic functions u : Tρ → C such that they can be continuously extended
up to the boundary of Tρ. We endow these functions with the norm ‖u‖ρ = sup

θ∈Tρ
|u(θ)| =

max
θ∈Tρ
|u(θ)| = max

θ∈∂Tρ
|u(θ)|, where the last equality holds by the maximum modulus principle.

Moreover, we write the Fourier expansion

u(θ) =
∑
k∈Z

ûk e
2πikθ, ûk =

∫ 1

0
u(θ) e−2πikθdθ

and we note the average of u as < u >= û0 =
∫ 1
0 u(θ)dθ. Notice that û∗k = û−k, where û∗k

denotes the complex conjugate of ûk.
Then we consider the Fourier norm

‖u‖F, ρ =
∑
k∈Z
|ûk| e2π|k|ρ.

We observe that ‖u‖ρ ≤ ‖u‖F, ρ , ∀ρ > 0.

Given an annulus A ⊂ T × R, a complex strip of A is a complex connected open neigh-
borhood B ⊂

(
C�Z

)
× C of A that projects surjectively on T. A function on A is real

analytic if it can be analytically extended to a complex strip B. Given a bounded analytic
function u : B → C, we introduce the norm ‖u‖B = sup

z∈B
|u(z)|.[9]

4.2 The Fourier Transform and the Discrete Fourier Transform

Now that we are ready to introduce the Discrete Fourier Transform and its properties, we
provide (once again) the definition of Fourier series given a function f : T −→ C;

f(θ) =
∑
k∈Z

f̂k e
2πikθ

where the Fourier coefficients are given by the Fourier Transform (FT)

f̂k =

∫ 1

0
f(θ) e−2πikθdθ. (4.1)

We consider a sample of points on the regular grid of size N ∈ N, θj := j
N , where 0 ≤ j < N .

This defines a sampling {fj}, with fj = f(θj) and a total number of points N.
The integrals in (4.1) are approximated using the trapezoidal rule on the regular grid, obtaining
the Discrete Fourier Transform (DFT)

f̃k =
1

N

N−1∑
j=0

fj e
−2πikθj .

4.2 The FT and the DFT 23

Remark 4.2. f̃k can be defined for all k ∈ Z. Moreover, they are periodic with period N ,
f̃k+N = f̃k.

The function f is approximated by the discrete Fourier approximation

f̃(θ) =

[N−1
2]∑

k=−[N2]

f̃k e
2πikθ.

Along this section, we will use the standard notation [x] = max{j ∈ Z : j ≤ x} for the integer
part of x.[9]

Remark 4.3. The DFT approximation f̃(θ) interpolates the data on the grid. That is
∀j = 0, . . . , N − 1, f̃(θj) = f(θj).

Notice that the stated process turns the sampling of points on the grid onto the Fourier
coefficients for the DFT. The inverse process will get the Fourier coefficients for the DFT and
turn them onto the values on the grid. This process is called the Inverse Discrete Fourier
Transform (IDFT) and uses the following formula

fj =

N−1∑
k=0

f̃k e
2πi
N
jk.

Remark 4.4. As we have previously stated, the Fourier coefficients are symmetrical, that
is, f̂∗k = f̂−k, which holds for the DFT coefficients as well, f̃∗k = f̃−k. This presents a
problem regarding the way we have defined the DFT. See that since we are treating the real
analytic case, our function f evaluated over the points of the grid will acquire real values,
but depending on the parity of the size of the grid, N , the discrete approximation will not.
The reason behind this phenomenon lies on the fact that if N is odd, due to the coefficients’
symmetry, the resulting function will remain real, but if N is even, then N − 1 is odd, which
means that the term −

[
N
2

]
of the sum, called the Niquish term, will be unpaired. The lack of

its symmetrical pair results on a complex function whose derivative will have the imaginary
term i. This does not present a major issue since the Niquish term will naturally be very
small. Nonetheless, if it is desired to look for a way to express the function f in terms of its
DFT without this little problem, one shall eliminate the Niquish term, thus obtaining

p(θ) =

[N−1
2]∑

k=−[N−1
2]

f̃k e
2πikθ.

Although this solves the previous issue, it presents another one, the main reason why we are
not taking p in our process. Since we have set the Niquish term to 0, this approximation will
not interpolate the data on the grid, which is a property of great use to us. Thus we will keep
using f̃ .

24 Fourier Transforms and Approximation Results

4.3 Error Estimates on Approximations

4.3.1 Analytic Periodic Functions

As we have seen, there are discrete ways of expressing a function in terms of a trigonometric
polynomial. The DFT supposes a great advantage for computing Fourier series with a machine.
But of course, the loss of exact information when interpolating between grid points produces
an approximation error. Coming up next we present the error between DFT coefficients and
FT coefficients and the error when approximating a function with the DFT approximation.

Lemma 4.5. The coefficients of the DFT are obtained from the coefficients of the FT by

f̃k =
∑
m∈Z

f̂k+Nm.

Proof. The proof for the Lemma starts by substituting fj by its aforementioned Fourier series
expression

f̃k =
1

N

N−1∑
j=0

fj e
−2πikθj =

1

N

N−1∑
j=0

∑
l∈Z

f̂l e
2πilθj e−2πikθj =

∑
l∈Z

f̂l

 1

N

N−1∑
j=0

e2πi(l−k)
j
N

 .

Notice that 1
N

N−1∑
j=0

e2πi(l−k)
j
N = 1 if l − k is a multiple of N since l−k

N , j ∈ Z and then

e2πi(l−k)
j
N = 1 and 1

N

N−1∑
j=0

e2πi(l−k)
j
N = 1

N

N−1∑
j=0

1 = 1.

Let’s see now the case where l − k is not a multiple of N .

1

N

N−1∑
j=0

e2πi(l−k)
j
N =

1

N

N−1∑
j=0

(e2πi
(l−k)
N)j =

1

N

1− (e2πi
(l−k)
N)N

1− e2πi
(l−k)
N

=
1

N

1− e2πi(l−k)

1− e2πi
(l−k)
N

.

Since l − k ∈ Z, e2πi(l−k) = 1 and 1− e2πi(l−k) = 0. By hypothesis, l − k is not a multiple of
N , which means that 1− e2πi

(l−k)
N 6= 0.

Wrapping up, we have

1

N

N−1∑
j=0

e2πi(l−k)
j
N =

{
1 if l − k is a multiple of N

0 otherwise
.

This means that the first sum will only have terms if l − k = Nm for m ∈ Z, that is for the
terms l = k +Nm and hence

f̃k =
∑
l∈Z

f̂l

 1

N

N−1∑
j=0

e2πi(l−k)
j
N

 =
∑
m∈Z

f̂k+Nm.

4.3 Error Estimates on Approximations 25

Proposition 4.6. Let f : Tρ̂ −→ C be a real analytic and bounded function in the complex
strip Tρ̂ of size ρ̂ > 0. Let f̃ be the discrete Fourier approximation of f in the regular grid of
size N ∈ N with Fourier coefficients f̃k. Then for k = −

[
N
2

]
, · · · ,

[
N−1
2

]
,

|f̃k − f̂k| ≤ S∗N (k, ρ̂) · ‖f‖ρ̂

where

S∗N (k, ρ̂) =
e−2πρ̂N

1− e−2πρ̂N
(
e−2πρ̂k + e2πρ̂k

)
.

Proof. Let k ∈ Z. From Lemma 4.5 and standard bounds of the Fourier coefficients of analytic
functions, we obtain

|f̃k − f̂k| =
∣∣∣ ∑
m∈Z

f̂k+Nm − f̂k
∣∣∣ =

∣∣∣ ∑
m∈Z\{0}

f̂k+Nm

∣∣∣ ≤
≤

∑
m∈Z\{0}

|f̂k+Nm| ≤
∑

m∈Z\{0}

e−2πρ̂|k+Nm| · ‖f‖ρ̂.

Then, we define
S∗N (k, ρ̂) =

∑
m∈Z\{0}

e−2πρ̂|k+Nm|

so we have |f̃k − f̂k| ≤ S∗N (k, ρ̂) · ‖f‖ρ̂. Notice that if m > 0, k + Nm > 0, and if m < 0,
k +Nm < 0. We must find then a suitable expression for S∗N (k, ρ̂), so

S∗N (k, ρ̂) =
∑
m>0

e−2πρ̂(k+Nm) +
∑
m<0

e−2πρ̂(−k−Nm) = e−2πρ̂k
∑
m>0

e−2πρ̂Nm + e2πρ̂k
∑
m<0

e2πρ̂Nm

≤ e−2πρ̂k
∑
m>0

e−2πρ̂Nm + e2πρ̂k
∑
m>0

e−2πρ̂Nm =
e−2πρ̂N

1− e−2πρ̂N
(
e−2πρ̂k + e2πρ̂k

)
.

Theorem 4.7. Let f : Tρ̂ −→ C be a real analytic and bounded function in the complex strip
Tρ̂ of size ρ̂ > 0. Let f̃ be the discrete Fourier approximation of f in the regular grid of size
N . Then, for 0 ≤ ρ < ρ̂, we have

‖f̃ − f‖ρ ≤ CN (ρ, ρ̂) · ‖f‖ρ̂

where
CN (ρ, ρ̂) = S∗1N (ρ, ρ̂) + S∗2N (ρ, ρ̂) + TN (ρ, ρ̂)

with

S∗1N (ρ, ρ̂) =
e−2πρ̂N

1− e−2πρ̂N
e−2π(ρ̂+ρ) − 2e2π(ρ̂+ρ)[

N−1
2] + e2π(ρ̂+ρ)([

N
2]−1) − e2π(ρ̂+ρ)[

N
2] + 1

e−2π(ρ̂+ρ) − 1

S∗2N (ρ, ρ̂) =
e−2πρ̂N

1− e−2πρ̂N
e2π(ρ̂−ρ) − 2e−2π(ρ̂−ρ)[

N−1
2] + e−2π(ρ̂−ρ)([

N
2]−1) − e−2π(ρ̂−ρ)[

N
2] + 1

e2π(ρ̂−ρ) − 1

TN (ρ, ρ̂) =
e−2π(ρ̂−ρ)[

N
2] + e−2π(ρ̂−ρ)([

N
2]+1)

1− e−2π(ρ̂−ρ)
.

26 Fourier Transforms and Approximation Results

Proof. From the definition of the discrete Fourier approximation f̃ of f , we have

‖f̃ − f‖ρ ≤
[N−1

2]∑
k=−[N2]

|f̃k − f̂k| e2πρ|k| +
−[N+1

2]∑
k=−∞

|f̂k| e2πρ|k| +
∞∑

k=[N2]

|f̂k| e2πρ|k|.

From Proposition 4.6 and the growth rate properties of the Fourier coefficients of an analytic
function, we get

‖f̃ − f‖ρ ≤ (S∗N (ρ, ρ̂) + TN (ρ, ρ̂)) · ‖f‖ρ̂
where

S∗N (ρ, ρ̂) =

[N−1
2]∑

k=−[N2]

S∗N (k, ρ̂) e2πρ|k|

and

TN (ρ, ρ̂) =

−[N+1
2]∑

k=−∞
e2π(ρ−ρ̂)|k| +

∞∑
k=[N2]

e2π(ρ−ρ̂)|k|.

Let’s express TN (ρ, ρ̂) in computable terms. Notice that

TN (ρ, ρ̂) =
∞∑

k=[N+1
2]

e2π(ρ−ρ̂)k +
∞∑

k=[N2]

e2π(ρ−ρ̂)k = 2
∞∑

k=[N2]

e2π(ρ−ρ̂)k − e2π(ρ−ρ̂)[
N
2]

=
2e−2π(ρ̂−ρ)[

N
2]

1− e−2π(ρ̂−ρ)
− e−2π(ρ̂−ρ)[

N
2] =

e−2π(ρ̂−ρ)[
N
2] + e−2π(ρ̂−ρ)([

N
2]+1)

1− e−2π(ρ̂−ρ)
.

To obtain a suitable expression for S∗N (ρ, ρ̂), it will be useful to define

SN (k, ρ̂) =
∑
m∈Z

e−2πρ̂|k+Nm|,

such that, in the same way we did in the previous proposition,

SN (k, ρ̂) =
∑
m≥0

e−2πρ̂(k+Nm) +
∑
m<0

e−2πρ̂(−k−Nm) =
e2πρ̂(k−N) + e−2πρ̂k

1− e−2πρ̂N
.

And so, we compute

SN (ρ, ρ̂) =

[N−1
2]∑

k=−[N2]

SN (k, ρ̂) e2πρ|k| =

[N−1
2]∑

k=−[N2]

e−πρ̂N
e2πρ̂(|k|−N/2) + e−2πρ̂(|k|−N/2)

1− e−2πρ̂N
e2πρ|k|

=
e−πρ̂N

1− e−2πρ̂N
∑

σ∈{−1,1}

[N−1
2]∑

k=−[N2]

e−2π(σρ̂−ρ)|k| eπσρ̂N

=
e−πρ̂N

1− e−2πρ̂N
∑

σ∈{−1,1}

eπσρ̂N · ν(σρ̂− ρ)

4.3 Error Estimates on Approximations 27

where

ν(δ) =

[N−1
2]∑

k=−[N2]

e−2πδ|k| =

[N−1
2]∑

k=−[N−1
2]

e−2πδ|k| + e−2πδ|−[N2]| = 2

[N−1
2]∑

k=1

e−2πδk + 1 + e−2πδ[
N
2]

= 2

(
e−2πδ − (e−2πδ)[

N−1
2]+1

1− e−2πδ

)
+ 1 + e−2πδ[

N
2] =

2− 2e−2πδ[
N−1

2]

e2πδ − 1
+ 1 + e−2πδ[

N
2]

=
e2πδ − 2e−2πδ[

N−1
2] + 1

e2πδ − 1
+ e−2πδ[

N
2] =

=
e2πδ − 2e−2πδ[

N−1
2] + e−2πδ([

N
2]−1) − e−2πδ[

N
2] + 1

e2πδ − 1
.

Finally, we have that S∗N (ρ, ρ̂) will be

SN (ρ, ρ̂)− ν(ρ̂− ρ) =
e−πρ̂N

1− e−2πρ̂N
∑

σ∈{−1,1}

eπσρ̂N · ν(σρ̂− ρ)− ν(ρ̂− ρ)

=
e−πρ̂N

1− e−2πρ̂N
(e−πρ̂Nν(−ρ̂− ρ) + eπρ̂Nν(ρ̂− ρ))− ν(ρ̂− ρ)

=
e−2πρ̂N

1− e−2πρ̂N
ν(−ρ̂− ρ) + ν(ρ̂− ρ)

(
1

1− e−2πρ̂N
− 1

)
=

e−2πρ̂N

1− e−2πρ̂N
e−2π(ρ̂+ρ) − 2e2π(ρ̂+ρ)[

N−1
2] + e2π(ρ̂+ρ)([

N
2]−1) − e2π(ρ̂+ρ)[

N
2] + 1

e−2π(ρ̂+ρ) − 1
+

+
e−2πρ̂N

1− e−2πρ̂N
e2π(ρ̂−ρ) − 2e−2π(ρ̂−ρ)[

N−1
2] + e−2π(ρ̂−ρ)([

N
2]−1) − e−2π(ρ̂−ρ)[

N
2] + 1

e2π(ρ̂−ρ) − 1

= S∗1N (ρ, ρ̂) + S∗2N (ρ, ρ̂).

Proofs for the previous theorem and proposition have been adapted from [9].

4.3.2 Matrices of Periodic Functions

Our goal in this section is to control the propagation of the error when we perform matrix
operations, mainly products and inverses, though the procedures for other operations are
analogous. The results hereby presented are no more than consequences of Theorem 4.7 from
the previous section.

Corollary 4.8. Let us consider two matrix functions A : T→ Cm1×m2, and B : T→ Cm2×m3,
such that their entries are real analytic and bounded functions in the complex strip Tρ̂ of size
ρ̂ > 0. We denote by AB the product matrix and ÃB the corresponding approximation given
by DFT. Given a grid of size N ∈ N, we evaluate A and B in the grid, and we interpolate the
points AB(θj) = A(θj)B(θj). Then, we have

‖AB − ÃB‖ρ ≤ CN (ρ, ρ̂) ‖A‖ρ̂ ‖B‖ρ̂

for every 0 ≤ ρ < ρ̂.

28 Fourier Transforms and Approximation Results

Corollary 4.9. Let us consider a matrix function A : T → Cm×m whose entries are real
analytic and bounded functions in the complex strip Tρ̂ of size ρ̂ > 0. Given a grid of size
N ∈ N, we evaluate A in the grid and compute the inverses X(θj) = A(θj)

−1. Then, if X̃ is
the corresponding discrete Fourier approximation associated with the sample X(θj), the error
E(θ) = Idm −A(θ)X̃(θ) satisfies

‖E‖ρ ≤ CN (ρ, ρ̂) ‖A‖ρ̂ ‖X̃‖ρ̂

for 0 ≤ ρ < ρ̂. Moreover, if ‖E‖ρ < 1, there exists an analytic inverse A−1 : T → Cm×m

satisfying

‖A−1 − X̃‖ρ ≤
‖X̃‖ρ̂ ‖E‖ρ
1− ‖E‖ρ

.

Proof. To obtain the first inequality of the Corollary, we observe that if ÃX̃ is the discrete
Fourier approximation of AX̃, then it turns out that

(AX̃)(θj) = A(θj)X̃(θj) = Idm

for all points in the grid. This implies that ÃX̃ = Idm, and we end up with

‖E‖ρ = ‖Idm −AX̃‖ρ = ‖ÃX̃ −AX̃‖ρ

and the inequality follows applying Corollary 4.8. The second inequality follows from the
expression E = Idm−AX̃, simply writing A−1 = X̃(Idm−E)−1 and using a Neumann series
argument.[9]

4.4 The Fast Fourier Transform

A Fast Fourier Transform (FFT) is an implementation algorithm for the Discrete Fourier
Transform (DFT) but with a significant decrease of computational cost. Even though the
number of operations of a regular DFT has a O(N2) order, the number of operations for
the FFT has a O(N logN) order. There are several algorithms that are able to achieve such
low computational cost, but the most common and used is the Cooley-Tukey FFT algorithm,
which is the one we are going to explain in this section.[4][11]

The main idea of the Cooley-Tukey algorithm is to break down a DFT of any composite
size N = N1N2 into many smaller DFTs of sizes N1 and N2. This allows us to combine this
algorithm with any other algorithm for the DFT, for instance algorithms that are able to
handle large prime factors that cannot be decomposed by Cooley-Tukey.
The decomposition we are going to explain is the one used in the best known use of the
Cooley-Tukey algorithm. It divides the transform into two pieces of size N/2 at each step,
which limites itself to values of N = 2p for p ∈ N. This is not a problem in general since the
number of sample points N can usually be chosen freely. This decomposition is called the
radix-2 case, and for other factorizations ofN we call them the mixed-radix cases or split-radix.

4.4 The FFT 29

The radix-2 decimation-in-time (DIT) FFT divides a DFT of size N into two interleaved
DFTs of size N/2 with each recursive stage.
The DFT is defined, as we have previously seen, by the formula

f̃k =
1

N

N−1∑
j=0

fj e
− 2πi

N
j k.

The radix-2 DIT first computes the DFTs of the even-indexed inputs (f2m = f0, f2, . . .

. . . , fN−2) and of the odd-indexed inputs (f2m+1 = f1, f3, . . . , fN−1), and then combines
those two results to produce the DFT of the whole sequence. The algorithm rearranges the
DFT of the function fj into a sum over the even-numbered indices j = 2m and a sum over
the odd-numbered indices j = 2m+ 1.

f̃k =
1

2

 1

N/2

N/2−1∑
m=0

f2m e−
2πi
N

(2m) k

+
1

2

 1

N/2

N/2−1∑
m=0

f2m+1 e
− 2πi

N
(2m+1) k


=

1

2

 1

N/2

N/2−1∑
m=0

f2m e
− 2πi
N/2

m k

+
1

2
e−

2πi
N
k 1

N/2

N/2−1∑
m=0

f2m+1 e
− 2πi
N/2

m k


=

1

2
Ek +

1

2
e−

2πi
N
kOk.

It is clear that the sums within the last two parentheses are the DFT of the even-indexed
part f2m and the DFT of odd-indexed part f2m+1 of the function fj . We can denote the DFT
of the even-indexed part f2m by Ek and the DFT of the odd-indexed part by Ok and simplify
the resulting expression.

Taking advantage of the periodicity of the DFT, we know that Ek+N
2

= Ek and Ok+N
2

= Ok
if k < N/2. Thus, we can rewrite the previous equation as

f̃k =

{
1
2Ek + 1

2 e
− 2πi

N
k Ok , for 0 ≤ k < N/2

1
2Ek−N/2 + 1

2 e
− 2πi

N
k Ok−N/2 , for N/2 ≤ k < N .

Noticing that
e−

2πi
N

(k+N/2) = e−
2πi
N
−πi = e−πie−

2πi
N
k = −e−

2πi
N
k

we can express f̃k as

f̃k =
1

2
Ek +

1

2
e−

2πi
N
k Ok for 0 ≤ k < N/2 ,

f̃k+N/2 =
1

2
Ek −

1

2
e−

2πi
N
k Ok for 0 ≤ k < N/2 .

Applying this method recursively, splitting into two half-size DFTs, gives a final output of a
combination of Ek and e−

2πi
N
k Ok, which is a very simple size-2 DFT. This procedure can re-

duce the overall runtime of the DFT, which is O(N2), to O(N logN), and moreover, increase

30 Fourier Transforms and Approximation Results

the precision of the final results.[3]

Notice that, even though we have explained the Cooley-Tukey algorithm to transform grid
points into Fourier coefficients, the algorithm works as well for the inverse process. The only
difference in the procedure is the disappearance of the 1/N factor and the change of sign of
the exponent of the complex exponential, given that the formula for the IDFT, as we stated
previously, is

fj =
N−1∑
k=0

f̃k e
2πi
N
jk.

Thus, the factor 1/2 preceeding the sums also disappears, leaving us the formula

fk =

N/2−1∑
m=0

f̃2m e
2πi
N

(2m) k +

N/2−1∑
m=0

f̃2m+1 e
2πi
N

(2m+1) k.

Manipulating these terms in the same way we previously did, we obtain

fk =

N/2−1∑
m=0

f̃2m e
2πi
N/2

m k
+ e

2πi
N
k

N/2−1∑
m=0

f̃2m+1 e
2πi
N/2

m k
= Ẽk + e

2πi
N
k Õk.

Again, Ẽk+N
2

= Ẽk and Ẽk+N
2

= Õk for k < N/2. We can now express fk as

fk =

{
Ẽk + e

2πi
N
k Õk , for 0 ≤ k < N/2

Ẽk−N/2 + e
2πi
N
k Õk−N/2 , for N/2 ≤ k < N .

This time we have
e

2πi
N

(k+N/2) = e
2πi
N

+πi = eπie
2πi
N
k = −e

2πi
N
k

Which finally gives us

fk = Ẽk + e
2πi
N
k Õk for 0 ≤ k < N/2 ,

fk+N/2 = Ẽk − e
2πi
N
k Õk for N/2 ≤ k < N .

Chapter 5

Effective Calculation of the Error
Bounds

As the title says, in this chapter we are going to explicitly calculate the invariance error
bound for an approximately invariant torus and the hyperbolicity bound using some previously
obtained results.

5.1 The Invariance Error Bound

From this chapter and on, we consider the class of skew-products over rotations, (Rω, F) :

A ⊂ T × Rn → T × Rn that is, we assume that the dynamics on the base torus is a ro-
tation f(θ) = Rω(θ) = θ + ω, where ω ∈ T. Such skew-product is referred to as a quasi-
periodically forced system. We will also assume that F is real-analytic and hence can be
extended holomorphically to a complex neighborhood B ⊂ Tr × Cn of A , and moreover,
µ0 = ‖F‖B := sup

(θ,x)∈B
|F (θ, x)| < ∞ and µ1 = ‖DF‖B := sup

(θ,x)∈B
|DxF (θ, x)| < ∞. The

invariance equation now is

F (θ,K(θ))−K(θ + ω) = 0 (5.1)

with K : T→ Rn.

Figure 5.1: One dimensional invariant graph under a rotation.

31

32 Effective Calculation of the Error Bounds

The graph K corresponding to a solution of (5.1) is invariant under the quasi-periodically
forced system, and it is also said that it is a response torus (to the quasi-periodic forcing), or
that it is a quasi-periodic invariant torus.
In this section, we will note K0 as the continuous map for our approximate invariant torus,
allowing us to write the invariance equation in terms of K0 and the error resulting from the
current approximation, E(θ). Since our torus is approximately invariant under this perturba-
tion, it is clear that the following expression will be satisfied

F (θ,K0(θ))−K0(θ + ω) = E(θ). (5.2)

Since our theorem input object is the approximately invariant torus, we will take it as a finite
sum, and in case we pick N even, the Niquish term will already be set to 0. Such object will
have the form

K0(θ) =

[N−1
2]∑

k=−[N2]

K̃0,k e
2πikθ =

[N−1
2]∑

k=−[N−1
2]

K̃0,k e
2πikθ.

This expression is very useful since we can now easily obtain an analogous expression for
K0(θ + ω),

K0(θ + ω) =

[N−1
2]∑

k=−[N−1
2]

(K̃0,k e
2πikω) e2πikθ.

We should keep in mind that our main goal in this section is to find a computable value for
the error bound of the invariance equation, which will lead us at some point to manipulate
the function F (θ,K0(θ)) and its norm. Since the Fourier series of ϕ(θ) = F (θ,K0(θ)) is an
infinite sum, we would like to approximate it by a finite sum

ϕ̃(θ) =

[N−1
2]∑

k=−[N2]

ϕ̃k e
2πikθ.

Then, we would like to obtain a rigorous bound of ‖ϕ(θ)− ϕ̃(θ)‖ρ=0.
Recalling now Equation (5.2) and taking norms and adding and substracting ϕ̃(θ) we see that,
for ρ = 0,

‖E(θ)‖ρ ≤ ‖F (θ,K0(θ))− ϕ̃(θ)‖ρ + ‖ϕ̃(θ)−K0(θ + ω)‖ρ.
Since F is real-analytic, ϕ can be analytically extended to a complex strip of width ρ̂ > ρ, Tρ̂,
and assuming that ∀θ ∈ Tρ̂ , (θ, ϕ(θ)) ∈ B and using Theorem 4.7 we see

‖F (θ,K0(θ))− ϕ̃(θ)‖ρ = ‖ϕ(θ)− ϕ̃(θ)‖ρ ≤ CN (0, ρ̂) ‖ϕ‖ρ̂ ≤ CN (0, ρ̂) ‖F‖B = CN (0, ρ̂) µ0.

We have then left to calculate the second term of the sum, which follows

‖ϕ̃(θ)−K0(θ + ω)‖ρ =

∥∥∥∥ [N−1
2]∑

k=−[N2]

(ϕ̃k − K̃0,k e
2πikω) e2πikθ

∥∥∥∥
ρ

≤
[N−1

2]∑
k=−[N2]

|ϕ̃k − K̃0,k e
2πikω| ≤ ε̃,

5.2 The Hyperbolicity Bound 33

where ε̃ is the error at the grid. Then we find

‖F (θ,K0(θ))−K0(θ + ω)‖ρ ≤ CN (0, ρ̂) ‖ϕ‖ρ̂ + ε̃ = CN (0, ρ̂) µ0 + ε̃ ≤ ε̂,

where ε̂ is the invariance bound in Theorem 2.3, and CN (0, ρ̂), even though it depends on the
system, is very small.

5.2 The Hyperbolicity Bound

Once we have the proof from Chapter 3 of how the hyperbolicity bound is obtained, we
shall follow the path drawn by the previous section and find a computable way to calculate
the hyperbolicity bound of a system in T× Rn given a series of numerical inputs.

As we have previously done, we will focus on skew-products over rotations, for which Fourier
methods are very effective. For that, following Theorem 3.4, we assume we have as inputs
a continuous matrix-valued map P : T → GL(Rn) defining a linear skew-product (id, P) in
T× Rn such that

P (θ) =



[N−1
2]∑

k=−[N−1
2]

p1,1,k e
2πikθ · · ·

[N−1
2]∑

k=−[N−1
2]

p1,n,k e
2πikθ

...
. . .

...
[N−1

2]∑
k=−[N−1

2]
pn,1,k e

2πikθ · · ·
[N−1

2]∑
k=−[N−1

2]
pn,n,k e

2πikθ


=

=

[N−1
2]∑

k=−[N−1
2]

p1,1,k · · · p1,n,k
...

. . .
...

pn,1,k · · · pn,n,k

 e2πikθ.

And a continuous matrix-valued map Λ = ΛS × ΛU : T → L(RnS) ×GL(RnU) defining a
block-diagonal linear skew-product (f,Λ) in T×RnS ×RnU into which we want to reduce our
system.

Λ(θ) =

[N−1
2]∑

k=−[N−1
2]



λ1,1,k · · · λ1,nS ,k 0 · · · 0
...

. . .
...

...
. . .

...
λnS ,1,k · · · λnS ,nS ,k 0 · · · 0

0 · · · 0 λnS+1,nS+1,k · · · λnS+1,n,k

...
. . .

...
...

. . .
...

0 · · · 0 λn,nS+1,k · · · λn,n,k


e2πikθ

Λ(θ) =

(
ΛS(θ) 0

0 ΛU (θ)

)
.

34 Effective Calculation of the Error Bounds

We need now to approximate M0(θ) with a DFT approximation with a sampling of N points
over the regular grid, where we have our N fixed to a even number. Thus we will have

M̃0(θ) =



[N−1
2]∑

k=−[N2]
m̃1,1,k e

2πikθ · · ·
[N−1

2]∑
k=−[N2]

m̃1,n,k e
2πikθ

...
. . .

...
[N−1

2]∑
k=−[N2]

m̃n,1,k e
2πikθ · · ·

[N−1
2]∑

k=−[N2]
m̃n,n,k e

2πikθ


=

=

[N−1
2]∑

k=−[N−1
2]

m̃1,1,k · · · m̃1,n,k

...
. . .

...
m̃n,1,k · · · m̃n,n,k

 e2πikθ.

Recalling that we are working with a ρ = 0, we will continue using the ‖·‖ρ norm as previously
stated. The theorem also talks about the hyperbolicity constant λ. To verify this condition,
we have to check that there exists a λ such that ‖ΛS‖ρ ≤ λ < 1. For this we will need to
define the Fourier norm of a matrix. There are a couple ways we can do that. Being A an
n× n matrix depending on θ, these are

1. ‖A‖F,ρ = max
θ∈Tρ
‖A(θ)‖∞.

2. ‖A‖F,ρ = max
1≤i≤n

n∑
j=1
‖aij‖F,ρ.

The second option is the most convenient between those two, given that is the supremum
norm of a numerical matrix made of the Fourier norm of each term of the original Fourier se-
ries matrix.[6] That is the one we are using. This norm still satisfies that ‖A(θ)‖ρ ≤ ‖A(θ)‖F,ρ.

Now that we already have the necessary tools for bounding, we have to check if we can
find a value λ < 1 such that ‖ΛS‖ρ ≤ ‖ΛS‖F,ρ ≤ λ. If this value exists, we have to check
the second hypothesis, which is ‖Λ−1U ‖ρ ≤ λ. The calculation of this norm is not as direct as
the previous one. The fact that Λ−1U is the inverse of a matrix of Fourier series breaks the
correspondance between grid points and Fourier coefficients, hence, we will have to proceed
differently.
Notice that

‖Λ−1U ‖ρ ≤ ‖Λ
−1
U − Λ̃−1U ‖ρ + ‖Λ̃−1U ‖ρ ≤ ‖Λ

−1
U − Λ̃−1U ‖ρ + ‖Λ̃−1U ‖F,ρ.

We shall take the first term of the sum apart in order to apply Corollary (4.9), which handles
the error while applying a DFT upon inverted matrices as long as the function entries of our
matrix can be analytically extended to a complex strip of width ρ̂, Tρ̂, which holds true for
our case since we are working with real analytic functions.

‖Λ−1U − Λ̃−1U ‖ρ ≤
‖Λ̃−1U ‖ρ̂ ‖E(θ)‖ρ

1− ‖E(θ)‖ρ

5.2 The Hyperbolicity Bound 35

where E(θ) = IdnU − ΛU Λ̃−1U as used in Corollary (4.9), which also gave us a very useful
result, that claimed

‖E(θ)‖ρ ≤ CN (ρ, ρ̂) ‖ΛU‖ρ̂ ‖Λ̃−1U ‖ρ̂.

Now we can finally write

‖Λ−1U − Λ̃−1U ‖ρ ≤
‖Λ̃−1U ‖ρ̂ CN (ρ, ρ̂) ‖ΛU‖ρ̂ ‖Λ̃−1U ‖ρ̂

1− CN (ρ, ρ̂) ‖ΛU‖ρ̂ ‖Λ̃−1U ‖ρ̂
≤

CN (ρ, ρ̂) ‖ΛU‖F,ρ̂ ‖Λ̃−1U ‖2F,ρ̂
1− CN (ρ, ρ̂) ‖ΛU‖F,ρ̂ ‖Λ̃−1U ‖F,ρ̂

.

The last inequality holds thanks to the fact that ΛU is a matrix of Fourier series, which means
that there is no error produced while turning back to the points of the grid and forth again
to the Fourier series. However, as we have said before, this is not true for Λ−1U given that
the invertion of the matrix breaks the direct and errorless correspondance between grid points
and DFT coefficients.

Once we have expressed the desired norm in computable terms, is time now to check if
‖Λ−1U ‖ρ ≤ λ, that is, if

‖Λ−1U ‖ρ ≤
CN (ρ, ρ̂) ‖ΛU‖F,ρ̂ ‖Λ̃−1U ‖2F,ρ̂

1− CN (ρ, ρ̂) ‖ΛU‖F,ρ̂ ‖Λ̃−1U ‖F,ρ̂
+ ‖Λ̃−1U ‖F,ρ̂ ≤ λ.

In case this condition is not satisfied witht the first λ we have picked, it may be interesting to
play around with the λ value and try to find another λ′ < 1 such that satisfies both conditions.

Once the issue is settled and we have a suitable λ, the next step is to find the σ that bounds
the error. Let Ered be the error in the reducibility equation, where

Ered = P (θ + ω)−1M0(θ)P (θ)− Λ(θ).

In order to calculate a suitable bound for ‖Ered‖, we can extract the norm of P (θ + ω)−1 to
simplify the operations.

‖Ered‖ρ = ‖P (θ + ω)−1M0(θ)P (θ)− Λ(θ)‖ρ ≤ ‖P (θ + ω)−1‖ρ ‖M0(θ)P (θ)− P (θ + ω)Λ(θ)‖ρ.

For this, we will first compute ‖P (θ + ω)−1‖ρ. Notice that

‖P (θ + ω)−1‖ρ ≤ ‖P (θ + ω)−1 − P (θ + ω)−1̃‖ρ + ‖P (θ + ω)−1̃‖F,ρ.

The procedure is exactly the same as the one we previously did for ‖Λ−1U ‖ρ. So

‖P (θ + ω)−1 − P (θ + ω)−1̃‖ρ ≤
‖P (θ + ω)−1̃‖ρ̂ ‖E(θ)‖ρ

1− ‖E(θ)‖ρ
.

Where E(θ) = Idn − P (θ + ω) P (θ + ω)−1̃ as we already know, plus

‖E(θ)‖ρ ≤ CN (ρ, ρ̂) ‖P (θ + ω)‖ρ̂ ‖P (θ + ω)−1̃‖ρ̂.

36 Effective Calculation of the Error Bounds

And finally

‖P (θ + ω)−1 − P (θ + ω)−1̃‖ρ ≤
CN (ρ, ρ̂) ‖P (θ + ω)‖F,ρ̂ ‖P (θ + ω)−1̃‖2F,ρ̂

1− CN (ρ, ρ̂) ‖P (θ + ω)‖F,ρ̂ ‖P (θ + ω)−1̃‖F,ρ̂
.

The reasoning behind these inequalities and procedures is exactly the same we used for ‖Λ−1U ‖ρ,
since P (θ + ω)−1 is as well the inverse of a trigonometric polynomials matrix.

This finishes the calculation of a computable formula for ‖P (θ + ω)−1‖ρ. What we have
left to discover is a way to express ‖M0(θ)P (θ) − P (θ + ω)Λ(θ)‖ρ in computable terms. For
that, we may proceed as we did in Chapter 3, but this time separating onto three norms

‖M0(θ)P (θ)− P (θ + ω)Λ(θ)‖ρ ≤ ‖M0(θ)P (θ)− M0(θ)P (θ)̃‖ρ +

+ ‖M0(θ)P (θ)̃ − P (θ + ω)Λ(θ)̃‖ρ + ‖P (θ + ω)Λ(θ)̃− P (θ + ω)Λ(θ)‖ρ.

Using Corollary (4.8) on the first and third term of the sum and the inequality of the Fourier
norm, we obtain

‖M0(θ)P (θ)− P (θ + ω)Λ(θ)‖ρ ≤ CN (ρ, ρ̂) ‖M0(θ)‖ρ̂ ‖P (θ)‖F,ρ̂ +

+ ‖M0(θ)P (θ)̃ − P (θ + ω)Λ(θ)̃‖F,ρ̂ + CN (ρ, ρ̂) ‖P (θ + ω)‖F,ρ̂ ‖Λ(θ)‖F,ρ̂

since the second term of the sum is the norm of the difference of two matrices of trigonometric
polynomials, which is a matrix of trigonometric polynomials.
Notice that ‖M0(θ)‖ρ̂ ≤ ‖M0(θ)‖B = µ1, this means that ‖M0(θ)‖ρ̂ ≤ µ1.

Now that everything is calculated, we shall write it all together for a better and more compact
visualization of the expression

‖Ered‖ρ ≤

 CN (ρ, ρ̂) ‖P (θ + ω)‖F,ρ̂ ‖P (θ + ω)−1̃‖2F,ρ̂

1− CN (ρ, ρ̂) ‖P (θ + ω)‖F,ρ̂ ‖P (θ + ω)−1̃‖F,ρ̂
+ ‖P (θ + ω)−1̃‖F,ρ

 ·
·
(
CN (ρ, ρ̂) µ1 ‖P (θ)‖F,ρ̂ + ‖M0(θ)P (θ)̃ − P (θ + ω)Λ(θ)̃‖F,ρ̂ +

+ CN (ρ, ρ̂) ‖P (θ)‖F,ρ̂ ‖Λ(θ)‖F,ρ̂
)

= σ.

At last, we can pick our hyperbolicity bound as cH ≥ 1
1−λ−σ .

Remark 5.1. Bounding ‖Dk
xF (θ, x)‖B ≤ µk, for k = 0, 1, 2, suffices to satisfy Theorem’s 2.3

hypotheses.

Chapter 6

The Reducibility Method

There exist several algorithms to solve the invariance equation for finding invariant tori
by using Newton-like methods. These refining algorithms lead immediately to continuation
methods to obtain good initial approximations. This is the frame where we are going to work
in, specifically, we are going to treat one of those methods, the so called reducibility method.

6.1 Reducibility Method

In Section 3.2 we have assumed that there is a frame adapted to the geometrical and dy-
namical properties of the torus (the matrix-valued map P), in such a way that the linearization
of the dynamics around the torus has a simpler form (the form of a block-diagonal matrix Λ).
Often one can also optimize the choice of the frame in such a way that the linearization is
constant (and possibly diagonal). This reduction is not always possible but, when it holds and
some extra non-resonance conditions are fulfilled, the Newton step is extremely fast and accu-
rate when using Fourier series. Moreover, reducibility is a geometrically important property,
since it gives full information about the linearization. We introduce now the formal definition
of reducibility.

Definition 6.1. An invariant torus K = graph(K) is reducible if the linear skew-product,
with rotation ω and transfer matrix M(θ) = DyF (θ,K(θ)), is reducible to a constant matrix,
that is, there exists a constant matrix Λ and a change of variables P (θ), known as Floquet
transformation, such that the reducibility equation

P (θ + ω)−1M(θ)P (θ)− Λ = 0 (6.1)

is satisfied.

The Floquet transformation is assumed to be 2-periodic, instead of 1-periodic, in order to
include non-orientable bundles.
The key idea of the reducibility method is to consider both the invariance equation and the
reducibility equation (6.1), in such a way that at each step of Newton’s method the linear
equation to be solved is, somehow, diagonalized.

37

38 The Reducibility Method

Assume that we have an approximate invariant torus graphed by K, and we have also
produced an approximate invariant frame P with reduced constant diagonal dynamics Λ =

diag(λ1, . . . , λn), in such a way that

F (θ,K(θ))−K(θ + ω) = E(θ) (6.2)

and
P (θ + ω)−1DyF (θ,K(θ))P (θ)− Λ = Ered(θ) (6.3)

are small.
See that if K(θ) = K(θ) + ∆K(θ) is a new approximation of a guess K, then, from equation
(6.2), holds

DyF (θ,K(θ))∆K(θ)−∆K(θ + ω) = −E(θ). (6.4)

In order to improve the estimatesK,P,Λ, we look for ∆K = Pξ, ∆P = PQ, ∆ = diag(δ1, . . . , δn),
so that the new approximations are K = K + Pξ, P = P + PQ, Λ = Λ + ∆. By multiplying
equation (6.4) with P (θ + ω)−1, we obtain

P (θ + ω)−1DyF (θ,K(θ))P (θ)ξ(θ)− ξ(θ + ω) = η(θ)

where η(θ) = −P (θ+ω)−1E(θ). Using (6.3), and skipping the quadratically small error terms
Ered(θ)ξ(θ), we are lead to the cohomological equation

Λ ξ(θ)− ξ(θ + ω) = η(θ).

Writing the n components of the previous equation, we obtain, for i = 1, . . . , n:

λiξ
i(θ)− ξi(θ + ω) = ηi(θ).

Each of these equations is diagonal in the Fourier space, obtaining for any k ∈ Z:

(λi − e2πikω)ξ̂ik = η̂ik.

From here, the new approximation of the torus is given by K = K + Pξ.
The corrections Q and ∆ are obtained from the cohomological equation

ΛQ(θ)−Q(θ + ω)Λ−∆(θ) = −Ered(θ)

where Ered(θ) = P (θ + ω)−1DyF (θ,K(θ))P (θ)− Λ. Writing the last cohomological equation
component-wise we obtain, for any i, j = 1, . . . , n:

λiQ
ij(θ)−Qij(θ + ω)λj = −Eijred(θ) , if i 6= j

λiQ
ii(θ)−Qii(θ + ω)λi − δi = −Eiired(θ) , if i = j

These equations are, again, diagonal in Fourier space. Notice also that the adjustment δi in
the second equation is adequate to match the average of the right-hand side (as seen in [10]).
In the following section, we will specify an algorithm of the reducibility method for computing
reducible invariant tori.

6.2 Reducibility Method Algorithm 39

6.2 Reducibility Method Algorithm

Let K = graph(K) be an approximate fiberwise hyperbolic invariant torus graphed by
K(θ), P (θ) be the matrix of an approximate adapted frame, P−(θ) be the inverse of P (θ),
and Λ = diag(λ1, . . . , λn) be the reduced constant matrix on the approximate (complex) 1D
invariant bundles generated by the columns of P (θ), so

F (θ,K(θ))−K(θ + ω) = E(θ),

P−(θ + ω)DyF (θ,K(θ))P (θ)− Λ = Ered(θ),

where E and Ered are small.
One step on the reducibility method consists in computing the new approximations K,P ,Λ
through the following substeps:

1. Compute the error in the adapted frame from

η(θ) = −P−(θ + ω)E(θ),

and then compute the Fourier coefficients of the correction ξ from cohomological equation
Λ ξ(θ)− ξ(θ + ω) = η(θ). That is, for i = 1, . . . , n, and for each k ∈ Z, set

ξ̂ik =
1

λi − e2πikω
η̂ik.

2. Compute
K = K + Pξ,

and the new error in the reducibility,

Ered(θ) = P−(θ + ω)DyF (θ,K(θ))P (θ)− Λ.

3. Compute ∆ = diag(δ1, . . . , δn) and the Fourier coefficients of the matrix Q from the
cohomological equation ΛQ(θ)−Q(θ + ω)Λ−∆ = −Ered(θ). That is:
For i, j = 1, . . . , n, i 6= j, and for each k ∈ Z set

Q̂ijk =
−1

(λi − e2πikωλj)
Êijred,k.

For i = 1, . . . , n , set
δi = Êiired,0 , Q̂

ii
0 = 0,

and for each k ∈ Z\{0}
Q̂iik =

−1

λi(1− e2πikω)
Êiired,k .

4. Compute the new approximations

P = P + PQ

and
Λ = Λ + ∆.

(Algorithm adapted from [10]).

40 The Reducibility Method

Chapter 7

A Case of Study: The Quasi
Periodically Forced Standard Map

In this chapter we will apply the previous results, both theoretical and practical, and
present the computer implementation of the reducibility method for the so called quasi-
periodically forced standard map.

7.1 Quasi-periodically Forced Standard Map

The quasi-periodically forced standard map (Rω, Fε) : T× R2 → T× R2 is defined as
θ = θ + ω

x = x+ y − b
2πsin(2πx)− εsin(2πθ)

y = y − b
2πsin(2πx)− εsin(2πθ)

where we fix our rotation to the irrational coefficient ω =
√
5−1
2 .

Let’s begin by finding the fixed points of the non-perturbated standard map, that is, all the
points (x, y) such that {

x = x+ y − b
2πsin(2πx)

y = y − b
2πsin(2πx),

that is, the points that satisfy{
y − b

2πsin(2πx) = 0

− b
2πsin(2πx) = 0

⇐⇒

{
y = 0

2πx = kπ,

with k ∈ Z. Hence, the fixed points are of the form (k/2, 0) with k ∈ Z. In particular, for
K = (1/2, 0) (and for all fixed points with even k) the differential matrix is(

1 + b 1

b 1

)
,

41

42 The Quasi-periodically Forced Standard Map

and its eigenvalues are

λ1,2 =
2 + b±

√
b(b+ 4)

2
.

Notice that for b > 0, then λ1 > 1 and λ2 = 1/λ1 < 1, hence our fixed point K = (1/2, 0) is
hyperbolic. Therefore, from now on, we will fix b > 0.
Moreover, we can define

Λ =

2+b+
√
b(b+4)

2 0

0
2+b−
√
b(b+4)

2

 .

For the entries of the P matrix we will need the two eigenvectors corresponding to each
eigenvalue. Taking them with unitary module, we can build our P matrix as

P =


√
2√

b2+2b−b
√
b(b+4)+2

b−
√
b(b+4)√

2b2+4b−2b
√
b(b+4)+4

−b+
√
b(b+4)√

2b2+4b−2b
√
b(b+4)+4

√
2√

b2+2b−b
√
b(b+4)+2

 .

In summary, the torus graphed by K : T → R2 given by K(θ) = (1/2, 0) is a fiberwise
hyperbolic invariant torus of the map (Rω, F0). Notice that K is a fiberwise hyperbolic
approximately invariant torus for (Rω, Fε) for ε small enough. Hence, as a consequence of
Theorem 2.3, there is a fiberwise hyperbolic invariant torus for (Rω, Fε) for ε small enough.

7.2 Programming Procedure

Since the reducibility method provides a cleansing algorithm for the initial approximations
in order to reduce the invariance and reducibility errors, we shall pick our first approximations
in such a way that a continuation method regarding ε works better. The continuation method
starts off from the values obtained once the algorithm is finished for the first value of ε, that
is ε = 0. Since ε = 0 does not perturbate our original standard map, the initial approxima-
tions K, P and Λ for the method will be the same as the ones picked firstly for ε = 0. The
approximations that work best for reducing the invariance error and the reducibility error, are
picking Λ as the diagonal matrix with the eigenvalues of the standard map associated to a
fixed hyperbolic point, which forms the K approximation, and taking P as the matrix whose
columns are generated by the eigenvectors with eigenvalues corresponding to the elements in Λ.

In order to ease the possible implementation of a Fast Fourier Transform algorithm such
as the Cooley-Tukey explained in Section 4.4, we will use a sampling of size N = 2p, for some
p ∈ N.

There is a very important thing to take into account when operating with arrays of Fourier
coefficients, and is related with the way we have truncated our Fourier series, which is, for a
certain function f ,

f̃(θ) =

[N−1
2]∑

k=−[N2]

f̃k e
2πikθ,

7.2 Programming Procedure 43

with Niquish term set to 0.
See that some terms of the sum are evaluated over negative values of k, but, of course, the
indexing of an array of size N goes from 0 to N − 1, which forces us to use k − N instead
of k in every point of the array between N/2 + 1 and N − 1 when operating with the series,
to displace one half of the terms to its proper place. The Niquish term, corresponding to the
N/2 position in the array, is set to 0.

Once the initial data is properly introduced, the algorithm will provide new K, P and Λ

approximations in such a way that at each step the error in both invariance and reducibility
is significantly decreased. This process will run in loop until a stopping condition is satisfied,
and that is, until both errors get smaller than a given tolerance. Notice that, as the ε value
approaches a certain point, more steps will require the process and more slowly the error in
reducibility will begin to decrease.

Even though the main objective of the algorithm is to find suitable approximations for K,
P and Λ reducing the errors, we will also implement a checking of the Fourier coefficients in
vector K. As we know, Fourier coefficients tend to 0 when approaching high values of N, which
means that the tails (to the left and to the right) of the Fourier coefficients of K must tend
to 0 (see Figure 7.1). As we have previously stated, the distribution of Fourier coefficients in
an array differs from the theoretical distribution, therefore, the ends of an array will contain
the major weight of Fourier coefficients while the tails will lie around the N/2 position (see
Figure 7.2).

Figure 7.1: Theoretical representation of the distribution of Fourier coefficients.

44 The Quasi-periodically Forced Standard Map

Figure 7.2: Distribution of Fourier coefficients on an N size array (keep in mind that these graphs have been drawn
with a line for a better understanding of the concept, although a representation true to the computer reality would use
dots to represent each node instead of a continuous line).

It is possible, though, that, probably due to the precision of the computer or a poor amount
of grid nodes, those tails acquire higher values than expected. This can be solved by doubling
the grid size, although the process cannot be taken lightly. Keep in mind that, in the array,
the Fourier tails (the colored area in Figure 7.2) will dwell in the (N/4, 3N/4) range (given
the symmetry with respect to N/2) and hence, when extending the grid size to N ′ = 2N , we
will have that N/2 = N ′/4, but we will still want that symmetry but now against N ′/2, so
we can "move the second half to the negative positions".

Figure 7.3: Original distribution of Fourier coefficients once duplicated the grid size.

To do so, we only have to move the second half of the original array to the end of the new
one, by transporting the coefficients contained in the (N ′/4, N ′/2) range to the (3N ′/4, N ′)

range, that is, moving each point N ′/2 positions to the right (assuming at every moment that
the original grid size is a multiple of 4).

7.3 Computation Results 45

Figure 7.4: New distribution of Fourier coefficients in a double sized grid and in between zeros.

The checking of the size of the tails will be done once the algorithm has proved convergence
for the given ε, and if the test results true, the objects that mainly rule the method (K and
P) will be extended in the aforementioned way and put back to the loop to run the algorithm
again until both, errors and Fourier tails, are reduced beyond a given tolerance.

Remark 7.1. When speaking about the size of the error or the size of the tails, we are always
speaking about norms, such as the supremum norm when evaluating over a grid or the ‖ · ‖∞
norm when operating with Fourier coefficients.

7.3 Computation Results

The implementation of the previous methods on a program allows us to see the behavior,
speed and precision of the algorithm. In order to illustrate the methodology, we have selected
b = 1.3. Picking the initial data as explained and doubling the grid size when necessary, leads
the computer to push the algorithm to its natural limit. Such limit is an ε value for which
the hyperbolicity breaks and begins a chaotic behavior. This approaching to the critical value
εc is noticeable in the disposition of our K points, given that as we are getting closer to that
εc, K begins to fractalize. This is the reason why even though starting the algorithm with
N = 512, it ended up suddenly increasing to N = 16384. Regardless the huge amount of
nodes in the grid at the end of the algorithm, a FFT implmentation accelerates significantly
the process. A speedtest run in the program shows that the algorithm implemented with a
DFT lasted 9581 seconds to run, which are a bit more than two hours and a half, as opposed
to a FFT implementation, which lasted 3.418 seconds.

To visualize the fractalization effect, we provide the plot of the x-projection against θ for
several values of ε > 0 (since we know for ε = 0 our x-projected torus will be a constant line
in x = 1/2) until we reach the closest ε to εc that the computer has been able to calculate.

46 The Quasi-periodically Forced Standard Map

Figure 7.5: x-projection of the curve for ε = 0.5. Figure 7.6: Angles for ε = 0.5.

Figure 7.7: x-projection of the curve for ε = 1.0. Figure 7.8: Angles for ε = 1.0.

Figure 7.9: x-projection of the curve for ε = 1.2. Figure 7.10: Angles for ε = 1.2.

Figure 7.11: x-projection of the curve for ε = 1.2342. Figure 7.12: Angles for ε = 1.2342.

7.3 Computation Results 47

Figure 7.13: Breakdown of an invariant torus. The right-side graphics are the stable and unstable subbundles represented
by the angle between them and the horizontal line.

In order to describe the properties of fiberwise hyperbolicity, we consider as observables
the eigenvalues associated to the invariant bundles and the minimum and maximum distance
between the invariant subbundles, as displayed in the following figures

Figure 7.14: Eigenvalues associated to the invariant bundles as a function of parameter ε.

Figure 7.15: Minimum and maximum distance between invariant subbundles as a function of parameter ε.

In these two pictures we somehow quantify the deterioration of fiberwise hyperbolicity
properties, consisting in the collapse of the invariant bundles, and then the destruction of the
invariant splitting, even though the rates of contraction and expansion remain apart. This
phenomenon leads to the destruction of the torus.

48 The Quasi-periodically Forced Standard Map

Conclusions

It is by now clear that skew-product systems’ properties are great tools for tackling prob-
lems involving quasi-periodic forcings. In the same way, we have proved once again the
efficiency of Fourier series, specially Fourier Transforms, regarding numerical computation. I
personally find very interesting the differentiation between the DFT and FFT and how one of
them can make your algorithm run for hours while the other runs it in seconds.

As an extension of this work, one shall wonder if, for instance, it is possible to prove the ex-
istence of real-analytic invariant tori K given an approximately invariant real-analytic torus.
The answer is yes, and the proof is at hand with the methodology introduced in this work. It
is interesting as well study with detail the dynamics in a torus at the verge of breakdown or
explicitly calculate the computational cost of an FFT algorithm.
As for now, we can be completely satisfied with the computation of an invariant torus with a
computer or the proof of such an important result as the validation theorem is.

49

50 Conclusions

Annex

This code calculates fiberwise hyperbolic invariant tori using the reducibility method in a
continuation process for the parameter ε as well as some properties of its invariant subbundles.

1 #include <stdio.h>
2 #include <math.h>
3 #include <complex.h>
4 #include <stdlib.h>
5
6 #define PI 3.1415926535897932384626
7
8 void dft(complex *, complex *, int);
9 void idft(complex *, complex *, int);
10 void fft(complex *, complex *, int);
11 void ifft(complex *, complex *, int);
12
13 double supnorm(complex *x, int N){
14 /* Calculates the supremum norm */
15 int k;
16 double sup= 0;
17 for (k= 0; k<N; k++)
18 if(cabs(x[k])>sup) sup=cabs(x[k]);
19 return sup;
20 }
21
22 double infnorm(complex *m[2][2] , int N){
23 /* Calculates the sub -infinity norm */
24 double err00 , err01 , err10 , err11 , err= 0;
25 err00=supnorm(m[0][0] , N);
26 err01=supnorm(m[0][1] , N);
27 err10=supnorm(m[1][0] , N);
28 err11=supnorm(m[1][1] , N);
29
30 err= err00;
31 if (err01 >err) err= err01;
32 if (err10 >err) err= err10;
33 if (err11 >err) err= err11;
34 return err;
35 }
36
37 double l1norm(complex *x, int N){
38 /* Calculates L1 norm */

51

52 Annex

39 int k;
40 double l1= 0.;
41 for(k=N/2; k<N; k++){
42 l1+= cabs(x[k]);
43 l1+= cabs(x[N-1-k]);
44 }
45 return l1;
46 }
47
48 double l1tail(complex *x, int N){
49 /* Calculates the norm of the tails of a Fourier array */
50 int k;
51 double l1= 0.;
52 for (k= N/2; k<3*N/4; k++){
53 l1+= cabs(x[k]);
54 l1+= cabs(x[N-1-k]);
55 }
56 return l1;
57 }
58
59 double linftail(complex *x, int N){
60 /* Calculates the sub -infinity norms of the tails */
61 int k;
62 double li= 0., c;
63 for (k= N/2; k<3*N/4; k++){
64 c= cabs(x[k]);
65 li= li<c ? c : li;
66 }
67 return li;
68 }
69
70 void sum(complex *x, complex *y, complex *s, int N){
71 int k;
72 for(k=0; k<N; k++)
73 s[k]= x[k]+y[k];
74 }
75
76 void mult(complex *x, complex *y, complex *m, int N){
77 int k;
78 for(k=0; k<N; k++)
79 m[k]=x[k]*y[k];
80 }
81
82 void rest(complex *x, complex *y, complex *r, int N){
83 int k;
84 for(k=0; k<N; k++)
85 r[k]=x[k]-y[k];
86 }
87
88 void esc(complex *x, complex *e, complex a, int N){
89 int k;
90 for(k=0; k<N; k++)

Annex 53

91 e[k]=a*x[k];
92 }
93
94 void F(complex *K0, complex *K1 , complex *FK0 , complex *FK1 , double b,

double e, int N){
95 /* Calculates the image through the Standard Map */
96 int j;
97 for(j=0; j<N; j++){
98 FK1[j]=K1[j]-(b/(2*PI))*csin (2*PI*K0[j])- e*csin ((2*PI*j)/N);
99 FK0[j]=K0[j]+FK1[j];

100 }
101 }
102
103 void fourierrot(complex *x, complex *xrot , double om, int N){
104 /* Rotates the Fourier coefficients */
105 int k;
106 for(k=0; k<N/2; k++)
107 xrot[k]=x[k]*cexp (2*PI*I*k*om);
108 for(k=N/2+1; k<N; k++)
109 xrot[k]=x[k]*cexp (2*PI*I*(k-N)*om);
110 }
111
112 void cohom1(complex *y, complex *x, double lam , double mu, double om, int N

){
113 /* Solves the cohomological equation for lambda != mu */
114 int k;
115 for(k=0; k<N/2; k++)
116 x[k]=y[k]/(lam -mu*cexp (2*PI*I*k*om));
117 for(k=N/2+1; k<N; k++)
118 x[k]=y[k]/(lam -mu*cexp (2*PI*I*(k-N)*om));
119 x[N/2]=0;
120 }
121
122 void cohom2(complex *y, complex *x, double lam , double om, int N){
123 /* Solves the cohomological equation when lambda = mu */
124 int k;
125 x[0]=0;
126 for(k=1; k<N/2; k++)
127 x[k]=y[k]/(lam*(1-cexp (2*PI*I*k*om)));
128 x[N/2]=0;
129 for(k=N/2+1; k<N; k++)
130 x[k]=y[k]/(lam*(1-cexp (2*PI*I*(k-N)*om)));
131 }
132
133 void checkcoh1(complex *x, complex *y, double lam , double mu , double om,

int N){
134 /* Checks the solution of the cohomological equation for lambda != mu */
135 int k;
136 complex *xrot=(complex *) malloc(N*sizeof(complex));
137 esc(x, x, lam , N);
138 fourierrot(xrot , xrot , om , N);
139 esc(xrot , xrot , mu , N);

54 Annex

140 rest(x, x, xrot , N);
141 printf("\nCohom eq \t\t Eta");
142 for(k=0; k<N; k++){
143 printf("\n%lf+(%lf)i \t\t %lf+(%lf)i",
144 creal(x[k]), cimag(x[k]), creal(y[k]), cimag(y[k]));
145 }
146 free(xrot);
147 }
148
149 void allocm(complex *m[2][2] , unsigned N){
150 int i, j;
151 for(i=0; i<2; i++)
152 for(j=0; j<2; j++)
153 m[i][j]= (complex *) malloc(N*sizeof(complex));
154 }
155
156 void allocv(complex *v[2], unsigned N){
157 int i;
158 for(i=0; i<2; i++)
159 v[i]= (complex *) malloc(N*sizeof(complex));
160 }
161
162 void reallocm(complex *m[2][2] , unsigned N){
163 int i, j;
164 for(i=0; i<2; i++)
165 for(j=0; j<2; j++)
166 m[i][j]= (complex *) realloc(m[i][j], N*sizeof(complex));
167 }
168
169 void reallocv(complex *v[2], unsigned N){
170 int i;
171 for(i=0; i<2; i++)
172 v[i]= (complex *) realloc(v[i], N*sizeof(complex));
173 }
174
175 void freev(complex *v[2]){
176 int i;
177 for(i=0; i<2; i++)
178 free(v[i]);
179 }
180
181 void freem(complex *m[2][2]){
182 int i, j;
183 for(i=0; i<2; i++)
184 for(j=0; j<2; j++)
185 free(m[i][j]);
186 }
187
188 void matrixmult(complex *x[2][2] , complex *y[2][2] , complex *z[2][2] , int N

){
189 int i, j, k, l;
190 complex p[2][2];

Annex 55

191 for(k=0; k<N; k++){
192 for(i=0; i<2; i++){
193 for(j=0; j<2; j++){
194 p[i][j]=0;
195 for(l=0; l<2; l++){
196 p[i][j]+=x[i][l][k]*y[l][j][k];
197 }
198 }
199 }
200 for(i= 0; i<2; i++)
201 for(j= 0; j<2; j++)
202 z[i][j][k]= p[i][j];
203 }
204 }
205
206 void matrixvectmult(complex *x[2][2] , complex *v[2], complex *r[2], int N){
207 int i, j, k;
208 complex p[2];
209 for(k=0; k<N; k++){
210 for(i=0; i<2; i++){
211 p[i]=0;
212 for(j=0; j<2; j++){
213 p[i]+=x[i][j][k]*v[j][k];
214 }
215 }
216 for(i=0; i<2; i++){
217 r[i][k]=p[i];
218 }
219 }
220 }
221
222 void matrixesc(complex *x[2][2] , complex *y[2][2] , double a, int N){
223 int i, j, k;
224 for(k=0; k<N; k++){
225 for(i=0; i<2; i++){
226 for(j=0; j<2; j++){
227 y[i][j][k]=x[i][j][k]*a;
228 }
229 }
230 }
231 }
232
233 void inverse(complex *a[2][2] , complex *inv [2][2] , int N){
234 /* Inverts a matrix */
235 int k;
236 complex det , adj [2][2];
237 for(k=0; k<N; k++){
238 det=a[0][0][k]*a[1][1][k]-a[0][1][k]*a[1][0][k];
239 adj [0][0]= a[1][1][k];
240 adj [1][1]= a[0][0][k];
241 adj [0][1]= -a[1][0][k];
242 adj [1][0]= -a[0][1][k];

56 Annex

243 inv [0][0][k]= adj [0][0]/ det;
244 inv [1][1][k]= adj [1][1]/ det;
245 inv [1][0][k]= adj [0][1]/ det;
246 inv [0][1][k]= adj [1][0]/ det;
247 }
248 }
249
250 void reducerr(complex *prinv [2][2] , complex *dif [2][2] , complex *p[2][2] ,

complex l0, complex l1, complex *err [2][2] , int N){
251 /* Calculates the reducibility error */
252 int k;
253 matrixmult(prinv , dif , err , N);
254 matrixmult(err , p, err , N);
255 for(k=0; k<N; k++){
256 err [0][0][k]-=l0;
257 err [1][1][k]-=l1;
258 }
259 }
260
261 void matrixgf(complex *grid [2][2] , complex *coef [2][2] , int N){
262 /* Transforms an array of matrices evaluated over a grid into matrices of

Fourier coefficients */
263 int k;
264 fft(grid [0][0] , coef [0][0] , N);
265 fft(grid [0][1] , coef [0][1] , N);
266 fft(grid [1][0] , coef [1][0] , N);
267 fft(grid [1][1] , coef [1][1] , N);
268 }
269
270 void matrixfg(complex *coef [2][2] , complex *grid [2][2] , int N){
271 /* Transforms an array of matrices of Fourier coefficients into matrices

evaluated over a grid */
272 int k;
273 ifft(coef [0][0] , grid [0][0] , N);
274 ifft(coef [0][1] , grid [0][1] , N);
275 ifft(coef [1][0] , grid [1][0] , N);
276 ifft(coef [1][1] , grid [1][1] , N);
277 }
278
279 void matrixsum(complex *x[2][2] , complex *y[2][2] , int N){
280 int k;
281 for(k=0; k<N; k++){
282 x[0][0][k]+=y[0][0][k];
283 x[0][1][k]+=y[0][1][k];
284 x[1][0][k]+=y[1][0][k];
285 x[1][1][k]+=y[1][1][k];
286 }
287 }
288
289 void matrixres(complex *x[2][2] , complex *y[2][2] , int N){
290 int k;
291 for(k=0; k<N; k++){

Annex 57

292 x[0][0][k]-=y[0][0][k];
293 x[0][1][k]-=y[0][1][k];
294 x[1][0][k]-=y[1][0][k];
295 x[1][1][k]-=y[1][1][k];
296 }
297 }
298
299 double inverr(complex *K[2], complex *err[2], double b, double e, double om

, int N){
300 /* Calculates the invariance error */
301 int i, k;
302 complex *KrotG[2], *KrotF [2], *FK[2];
303 double error;
304 allocv(KrotG , N);
305 allocv(KrotF , N);
306 allocv(FK, N);
307 F(K[0], K[1], FK[0], FK[1], b, e, N);
308 for(k=0; k<N; k++){
309 KrotG [0][k]=K[0][k];
310 KrotG [1][k]=K[1][k];
311 }
312 fft(KrotG [0], KrotF[0], N);
313 fft(KrotG [1], KrotF[1], N);
314 fourierrot(KrotF [0], KrotF[0], om, N);
315 fourierrot(KrotF [1], KrotF[1], om, N);
316 ifft(KrotF [0], KrotG[0], N);
317 ifft(KrotF [1], KrotG[1], N);
318 printf("\nTK1 %.2le \t %.2le\n", l1tail(KrotF[0], N), l1tail(KrotF[1], N)

);
319 printf("TKI %.2le \t %.2le\n", linftail(KrotF[0],N), linftail(KrotF[1],

N));
320 rest(FK[0], KrotG[0], err[0], N);
321 rest(FK[1], KrotG[1], err[1], N);
322 freev(KrotG);
323 freev(KrotF);
324 freev(FK);
325 {
326 double err0 , err1;
327 err0= supnorm(err[0], N);
328 err1= supnorm(err[1], N);
329 if(err0 >err1)
330 return err0;
331 else
332 return err1;
333 }
334 }
335
336 void difmatrix(complex *K[2], complex *dif [2][2] , double b, int N){
337 /* Evaluates the differential matrix of the Standard Map over K */
338 int k;
339 for(k=0; k<N; k++){
340 dif [0][0][k]=1-b*ccos (2*PI*K[0][k]);

58 Annex

341 dif [0][1][k]=1;
342 dif [1][1][k]=1;
343 dif [1][0][k]=-b*ccos (2*PI*K[0][k]);
344 }
345 }
346
347 void dft(complex *grid , complex *coef , int N){
348 int j, k;
349 long double complex sum;
350 for(k=0; k<N; k++){
351 sum= 0.;
352 for(j=0; j<N; j++){
353 sum+= ((long double complex) grid[j])*cexpl (-((long double complex)

2.0l*PI*I*k*j)/N);
354 }
355 coef[k]= (complex) (sum/N);
356 }
357 }
358
359 void idft(complex *coef , complex *grid , int N){
360 int j, k;
361 long double complex sum;
362 for(k=0; k<N; k++){
363 sum= 0;
364 for(j=N/2; j<N; j++){
365 sum+= ((long double complex) coef[j])*cexpl (((long complex)2.0l*PI*I*

k*j)/N);
366 sum+= ((long double complex) coef[N-1-j])*cexpl (((long complex) 2.0l*

PI*I*k*(N-1-j))/N);
367 }
368 grid[k]= (complex) sum;
369 }
370 }
371
372 void separate (complex *a, int n){
373 /* Copies all even elements to lower -half of a[]
374 and all odd elements to upper -half of a[] */
375 complex b[n/2];
376 int i;
377 for(i=0; i<n/2; i++)
378 b[i]=a[i*2+1];
379 for(i=0; i<n/2; i++)
380 a[i]=a[i*2];
381 for(i=0; i<n/2; i++)
382 a[i+n/2]=b[i];
383 }
384
385 void _fft(complex *X, int N){
386 int i, k;
387 complex e, o, w;
388 if(N<2){
389 }else{

Annex 59

390 separate(X,N);
391 _fft(X, N/2);
392 _fft(X+N/2, N/2);
393 for(k=0; k<N/2; k++){
394 e=X[k];
395 o=X[k+N/2];
396 w=cexp (-2.*PI*I*k/N);
397 X[k]=e/2.+w*o/2.;
398 X[k+N/2] =e/2.-w*o/2.;
399 }
400 }
401 }
402
403 void fft(complex *grid , complex *coef , int N){
404 int k;
405 for (k=0; k<N; k++){
406 coef[k]=grid[k];
407 }
408 _fft(coef , N);
409 }
410
411 void _ifft(complex *X, int N){
412 int i, k;
413 complex e, o, w;
414 if(N<2){
415 }else{
416 separate(X,N);
417 _ifft(X, N/2);
418 _ifft(X+N/2, N/2);
419 for(k=0; k<N/2; k++){
420 e=X[k];
421 o=X[k+N/2];
422 w=cexp (2.*PI*I*k/N);
423 X[k]=e+w*o;
424 X[k+N/2]=e-w*o;
425 }
426 }
427 }
428
429 void ifft(complex *coef , complex *grid , int N){
430 int k;
431 for(k=0; k<N; k++){
432 grid[k]=coef[k];
433 }
434 _ifft(grid , N);
435 }
436
437 int main(){
438
439 int N= 1024, NMAX= 16384;
440 int i, maxiter= 6, j, k, r=0;
441 double om=(-1+ sqrt (5))/2, b= 1.3, e, e0, eok , step;

60 Annex

442 complex *K[2], *K0[2], *P0[2][2] , *KF[2], *deltaK [2], *etaG[2], *etaF[2],
*P[2][2] , *Prot [2][2] , *PinvG [2][2] , *PinvF [2][2] , *ProtinvG [2][2] ,

*ProtinvF [2][2] , *dif [2][2] , *invaerr [2], *reduerrG [2][2] , *reduerrF
[2][2] , *inverserr [2][2] ,

443 *auxG [2][2] , *auxF [2][2] , *QF[2][2] , *QG[2][2] , *xiF[2], *xiG[2], v0[2],
v1[2];

444 double lam0 , lam1 , delta0 , delta1 , error , errorredu , totalerror , tolerror
= 1.e-9, tolerrorredu= 1.e-7, tail , ang0 , ang1 , mod , dmin , dmax , d;

445 char duplicate;
446 FILE *globalfile;
447 char generalfile [100];
448
449 globalfile= fopen("info.txt", "w");
450 if (! globalfile) {
451 puts("File Error");
452 }
453
454 allocv(etaG , N);
455 allocv(etaF , N);
456 allocv(invaerr , N);
457 allocv(xiG , N);
458 allocv(xiF , N);
459 allocv(K, N);
460 allocv(K0, N);
461 allocv(KF, N);
462 allocv(deltaK , N);
463 allocm(P, N);
464 allocm(ProtinvG , N);
465 allocm(Prot , N);
466 allocm(ProtinvF , N);
467 allocm(PinvG , N);
468 allocm(PinvF , N);
469 allocm(dif , N);
470 allocm(reduerrG , N);
471 allocm(reduerrF , N);
472 allocm(QG, N);
473 allocm(QF, N);
474 allocm(inverserr , N);
475 allocm(auxG , N);
476 allocm(P0, N);
477 allocm(auxF , N);
478
479 /* Start off with e=0, and hyperbolic fixed point (1/2, 0), filling P

with eigenvectors and Lambda with its eigenvalues */
480 lam0 =(2+b+sqrt(b*(b+4)))/2;
481 lam1 =(2+b-sqrt(b*(b+4)))/2;
482
483 for(k=0; k<N; k++){
484 K0[0][k]=1/2.;
485 K0[1][k]=0;
486 P0 [0][0][k]=sqrt (2)/sqrt(b*b+2*b-b*sqrt(b*(b+4))+2);
487 P0 [1][0][k]=(-b+sqrt(b*(b+4)))/sqrt (2*b*b+4*b-2*b*sqrt(b*(b+4))+4);

Annex 61

488 P0 [0][1][k]=(b-sqrt(b*(b+4)))/sqrt (2*b*b+4*b-2*b*sqrt(b*(b+4))+4);
489 P0 [1][1][k]=sqrt (2)/sqrt(b*b+2*b-b*sqrt(b*(b+4))+2);
490 }
491 printf("\nK (%02le \t %02le)", creal(K[0][0]) , creal(K[1][0])); fflush(

stdout);
492
493 e0=0;
494 eok= 0;
495
496 step=1e-1;
497 duplicate= 0;
498 do{
499 e=e0+step;
500
501 for(k=0; k<N; k++){
502 K[0][k]=K0[0][k];
503 K[1][k]=K0[1][k];
504 P[0][0][k]=P0 [0][0][k];
505 P[0][1][k]=P0 [0][1][k];
506 P[1][0][k]=P0 [1][0][k];
507 P[1][1][k]=P0 [1][1][k];
508 }
509
510 printf("\n\nEPS= %lf\n", e);
511 i= 0;
512 do{
513 /* This loop applies the Newton method */
514 printf("\n\nSTEP %i\n", i+1);
515 i++;
516
517 /* Step 1: Calculate Invariance Error */
518 error=inverr(K, invaerr , b, e, om, N);
519 printf("\nInvariance error (%02le)", error);
520 if(error >100.){
521 i=maxiter;
522 break;
523 }
524
525 inverse(P, PinvG , N);
526 matrixgf(PinvG , PinvF , N);
527 fourierrot(PinvF [0][0] , ProtinvF [0][0] , om , N);
528 fourierrot(PinvF [0][1] , ProtinvF [0][1] , om , N);
529 fourierrot(PinvF [1][0] , ProtinvF [1][0] , om , N);
530 fourierrot(PinvF [1][1] , ProtinvF [1][1] , om , N);
531 matrixfg(ProtinvF , ProtinvG , N);
532 matrixvectmult(ProtinvG , invaerr , etaG , N);
533
534 if(error <tolerror) goto step3;
535
536 /* Step 2: K correction and reducibility error */
537 esc(etaG[0], etaG[0],-1, N);
538 esc(etaG[1], etaG[1],-1, N);

62 Annex

539 fft(etaG[0], etaF[0], N);
540 fft(etaG[1], etaF[1], N);
541 cohom1(etaF[0], xiF[0], lam0 , 1, om, N);
542 cohom1(etaF[1], xiF[1], lam1 , 1, om, N);
543 ifft(xiF[0], xiG[0], N);
544 ifft(xiF[1], xiG[1], N);
545
546 matrixvectmult(P, xiG , deltaK , N);
547 sum(K[0], deltaK [0], K[0], N);
548 sum(K[1], deltaK [1], K[1], N);
549 printf("\nNew K(0) = (%02le \t %02le)", creal(K[0][0]) , creal(K

[1][0])); fflush(stdout);
550
551 /* Step 3: Calculate Q and deltas */
552 step3:
553 difmatrix(K, dif , b, N);
554 reducerr(ProtinvG , dif , P, lam0 , lam1 , reduerrG , N);
555 errorredu=infnorm(reduerrG , N);
556 printf("\nReducibility Error Norm (%02le)", errorredu);
557 printf("\nReducibility Error (%02le %02le)", supnorm(reduerrG [0][0] ,

N), supnorm(reduerrG [0][1] , N));
558 printf("\n (%02le %02le)\n", supnorm(reduerrG [1][0] , N), supnorm(

reduerrG [1][1] , N));
559 if(errorredu >100.){
560 i= maxiter;
561 break;
562 }
563 if(errorredu <tolerrorredu) goto step5;
564
565 /* Step 4: Correction of P and lambda */
566 matrixgf(reduerrG , reduerrF , N);
567 cohom1(reduerrF [0][1] , QF[0][1] , -lam0 , -lam1 , om , N);
568 cohom1(reduerrF [1][0] , QF[1][0] , -lam1 , -lam0 , om , N);
569 delta0=reduerrF [0][0][0];
570 delta1=reduerrF [1][1][0];
571 cohom2(reduerrF [0][0] , QF[0][0] , -lam0 , om, N);
572 cohom2(reduerrF [1][1] , QF[1][1] , -lam1 , om, N);
573
574 matrixfg(QF , QG, N);
575 matrixmult(P, QG, auxG , N);
576 matrixsum(P, auxG , N);
577 lam0+= delta0;
578 lam1+= delta1;
579
580 step5:
581 /* Checks Fourier tails */
582 fft(K[0], KF[0], N);
583 fft(K[1], KF[1], N);
584 matrixgf(P, PinvF , N);
585
586 {
587 double t0, t1;

Annex 63

588 t0=linftail(KF[0], N); t1=linftail(KF[1], N);
589 tail= t0>t1 ? t0 : t1;
590 }
591
592 if(isnan(tail) || tail >tolerror) i=maxiter ;
593
594 } while((error >tolerror || errorredu >tolerrorredu) && i<maxiter);
595
596 if(i== maxiter && ((error >tolerror || errorredu >tolerrorredu))){
597 if(duplicate){
598 step *=0.1;
599 duplicate =0;
600 continue;
601 }
602 duplicate =1;
603 N*=2;
604 if(N>NMAX) break;
605 printf("Duplication to %i\n", N);
606
607 reallocv(etaG , N);
608 reallocv(etaF , N);
609 reallocv(invaerr , N);
610 reallocv(xiG , N);
611 reallocv(xiF , N);
612 reallocv(K, N);
613 reallocv(K0 , N);
614 reallocv(KF , N);
615 reallocv(deltaK , N);
616 reallocm(P, N);
617 reallocm(P0 , N);
618 reallocm(ProtinvG , N);
619 reallocm(Prot , N);
620 reallocm(ProtinvF , N);
621 reallocm(PinvG , N);
622 reallocm(PinvF , N);
623 reallocm(dif , N);
624 reallocm(reduerrG , N);
625 reallocm(reduerrF , N);
626 reallocm(QG , N);
627 reallocm(QF , N);
628 reallocm(inverserr , N);
629 reallocm(auxG , N);
630 reallocm(auxF , N);
631
632 if(i== maxiter && ((error >tolerror || errorredu >tolerrorredu))){
633 printf("Reduction of step\n");
634 step*= 1.0e-1;
635 fft(K0[0], KF[0], N/2);
636 fft(K0[1], KF[1], N/2);
637 matrixgf(P0 , PinvF , N/2);
638 }
639

64 Annex

640 for(k=N/4; k<N/2; k++){
641 KF[0][k+N/2]=KF[0][k];
642 KF[1][k+N/2]=KF[1][k];
643 PinvF [0][0][k+N/2]= PinvF [0][0][k];
644 PinvF [0][1][k+N/2]= PinvF [0][1][k];
645 PinvF [1][0][k+N/2]= PinvF [1][0][k];
646 PinvF [1][1][k+N/2]= PinvF [1][1][k];
647 }
648
649 for(k=N/4; k<3*N/4; k++){
650 KF[0][k]=0;
651 KF[1][k]=0;
652 PinvF [0][0][k]=0;
653 PinvF [0][1][k]=0;
654 PinvF [1][0][k]=0;
655 PinvF [1][1][k]=0;
656 }
657
658 {
659 printf("TK1 %.2le \t %.2le\n", l1tail(KF[0],N), l1tail(KF[1],N));
660 printf("TKI %.2le \t %.2le\n", linftail(KF[0],N), linftail(KF[1],

N));
661
662 ifft(KF[0], deltaK [0], N);
663 ifft(KF[1], deltaK [1], N);
664
665 fft(deltaK [0], KF[0], N);
666 fft(deltaK [1], KF[1], N);
667
668 printf("TK1 %.2le \t %.2le\n", l1tail(KF[0],N), l1tail(KF[1],N));
669 printf("TKI %.2le \t %.2le\n", linftail(KF[0],N), linftail(KF[1],

N));
670 }
671
672 ifft(KF[0], K0[0], N);
673 ifft(KF[1], K0[1], N);
674 matrixfg(PinvF , P0, N);
675 }else{
676 duplicate= 0;
677 if(i<=3 && e0!=0) step *=10.;
678 e0=e;
679 for(k=0; k<N; k++){
680 K0[0][k]=K[0][k];
681 K0[1][k]=K[1][k];
682 P0 [0][0][k]=P[0][0][k];
683 P0 [0][1][k]=P[0][1][k];
684 P0 [1][0][k]=P[1][0][k];
685 P0 [1][1][k]=P[1][1][k];
686 }
687
688 {
689 FILE *file;

Annex 65

690 char myfile [100];
691 sprintf(myfile , "K%.6lf.txt", e0);
692 printf("%s\n", myfile);
693 file= fopen(myfile , "w");
694 if(!file){
695 puts("File Error");
696 }else{
697 fprintf(globalfile ,"%lf %le %le ", e0, lam0 , lam1);
698 dmin= sqrt (2.);
699 dmax= 0;
700
701 for(k=0; k<N; k++){
702 ang0=atan2(creal(P0 [0][0][k]), creal(P0 [1][0][k]));
703 if(ang0 <0) ang0+=PI;
704 ang1=atan2(creal(P0 [0][1][k]), creal(P0 [1][1][k]));
705 if(ang1 <0) ang1+=PI;
706
707 fprintf(file , "%.8lf % .8lf % .8lf % .8lf % .8lf\n", (double)k/

N, creal(K0[0][k]), creal(K0[1][k]), ang0 , ang1);
708
709 v0[0]= creal(P[0][0][k]); v0[1]= creal(P[1][0][k]);
710 v1[0]= creal(P[0][1][k]); v1[1]= creal(P[1][1][k]);
711 mod=sqrt(v0[0]*v0[0]+v0[1]*v0[1]);
712 v0[0]/=mod , v0 [1]/= mod;
713 mod=sqrt(v1[0]*v1[0]+v1[1]*v1[1]);
714 v1[0]/=mod , v1 [1]/= mod;
715
716 double d1, d2;
717 d1=hypot(v0[0]-v1[0],v0[1]-v1[1]);
718 d2=hypot(v0[0]+v1[0],v0[1]+v1[1]);
719 d=d1 < d2 ? d1 : d2;
720
721 if(d<dmin) dmin=d;
722 if(d>dmax) dmax=d;
723 }
724 fprintf(globalfile , " %le %le\n", dmin , dmax);
725 fclose(file);
726 }
727 }
728 }
729
730 } while(step >1e-4);
731
732 fclose(globalfile);
733 printf("\n\nFINAL EPS OK= %lf\n", e0);
734 printf("\n\nFINAL EPS KK= %lf\n", e);
735 printf("FINAL N= %i\n", N);
736
737 freev(etaG);
738 freev(etaF);
739 freev(invaerr);
740 freev(xiG);

66 Annex

741 freev(xiF);
742 freev(K);
743 freev(KF);
744 freev(deltaK);
745 freem(P);
746 freem(ProtinvG);
747 freem(Prot);
748 freem(ProtinvF);
749 freem(PinvG);
750 freem(PinvF);
751 freem(dif);
752 freem(reduerrG);
753 freem(reduerrF);
754 freem(QG);
755 freem(QF);
756 freem(inverserr);
757 freem(auxG);
758 freem(auxF);
759
760 return 0;
761 }

Bibliography

[1] Bundle. https://en.wikipedia.org/wiki/Bundle_(mathematics). [Accessed June 23,
2018].

[2] Bundle map. https://en.wikipedia.org/wiki/Bundle_map. [Accessed June 23, 2018].

[3] Cooley-Tukey Algorithm. https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_
FFT_algorithm. [Accessed April 26, 2018].

[4] Fast Fourier Transform. https://en.wikipedia.org/wiki/Fast_Fourier_transform.
[Accessed April 26, 2018].

[5] Fiber Bundle. https://en.wikipedia.org/wiki/Fiber_bundle#Formal_definition.
[Accessed June 23, 2018].

[6] Matrix norm. https://en.wikipedia.org/wiki/Matrix_norm. [Accessed May 17, 2018].

[7] Open Mapping Theorem (functional analysis). https://en.wikipedia.org/wiki/Open_
mapping_theorem_(functional_analysis). [Accessed May 6, 2018].

[8] Section (fiber bundle). https://en.wikipedia.org/wiki/Section_(fiber_bundle).
[Accessed June 23, 2018].

[9] J-Ll Figueras, Alex Haro, and Alejandro Luque. Rigorous computer-assisted applica-
tion of kam theory: a modern approach. Foundations of Computational Mathematics,
17(5):1123–1193, 2017.

[10] Alex Haro, Marta Canadell, Jordi-Lluis Figueras, Alejandro Luque, and Josep-Maria
Mondelo. The parameterization method for invariant manifolds. Appl. Math. Sci, 195,
2016.

[11] Jake VanderPlas. Understanding the FFT Algorithm. https://jakevdp.github.io/
blog/2013/08/28/understanding-the-fft/. [Accessed April 26, 2018].

[12] Rowland, Todd. "Fiber Bundle." From MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/WhitneySum.html. [Accessed May 4, 2018].

[13] Rowland, Todd. "Vector Bundle." From MathWorld–A Wolfram Web Resource, created
by Eric W. Weisstein. http://mathworld.wolfram.com/FiberBundle.html. [Accessed
April 13, 2018].

67

https://en.wikipedia.org/wiki/Bundle_(mathematics)
https://en.wikipedia.org/wiki/Bundle_map
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fiber_bundle#Formal_definition
https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Open_mapping_theorem_(functional_analysis)
https://en.wikipedia.org/wiki/Open_mapping_theorem_(functional_analysis)
https://en.wikipedia.org/wiki/Section_(fiber_bundle)
https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
http://mathworld.wolfram.com/WhitneySum.html
http://mathworld.wolfram.com/WhitneySum.html
http://mathworld.wolfram.com/FiberBundle.html

68 BIBLIOGRAPHY

[14] Silly rabbit at the English Wikipedia. Bundle section. https://en.wikipedia.org/
wiki/File:Bundle_section.svg. [Accessed June 23, 2018].

[15] Weisstein, Eric W. "Whitney Sum." From MathWorld–A WolframWeb Resource, created
by Eric W. Weisstein. http://mathworld.wolfram.com/WhitneySum.html. [Accessed
May 4, 2018].

https://en.wikipedia.org/wiki/File:Bundle_section.svg
https://en.wikipedia.org/wiki/File:Bundle_section.svg
http://mathworld.wolfram.com/WhitneySum.html

	Abstract
	Acknowledgements
	Introduction
	Skew-product Dynamical Systems
	Introductory Definitions
	Skew-product Dynamical Systems

	The Kantorovich-type Validation Theorem
	Fixed Point Theorems
	Validation Theorem

	On the Notion of Fiberwise Hyperbolicity
	Dynamical Definition of Fiberwise Hyperbolicity
	Relation between Hyperbolicity Definitions

	Hyperbolicity Bound

	Fourier Transforms and Approximation Results
	Analytic Functions, Norms and Strips
	The FT and the DFT
	Error Estimates on Approximations
	Analytic Periodic Functions
	Matrices of Periodic Functions

	The FFT

	Effective Calculation of the Error Bounds
	The Invariance Error Bound
	The Hyperbolicity Bound

	The Reducibility Method
	Reducibility Method
	Reducibility Method Algorithm

	The Quasi-periodically Forced Standard Map
	Quasi-periodically Forced Standard Map
	Programming Procedure
	Computation Results

	Conclusions
	Annex
	Bibliography

