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Abstract

Boolean algebras are well-known mathematical structures. It is known that the
theory of the class of these structures is incomplete, so the aim of this work is to
present sistematically the different ways to complete it. In order to do this, we
must also study the different kinds of Boolean algebras and their properties. Be-
sides completeness, we also study other questions like ω-categoricity and quantifier
elimination. The whole subject is studied in the formal language of first order logic.
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Chapter 1

Introduction

As mathematicians, most of the time we are asked to prove that a property
holds in a given structure. However, we do not usually think of this as checking
that a sentence belongs to a theory, probably because we are not used to treating
particular areas of mathematics, like group theory or euclidean geometry, with the
formalism of first order logic. Model theory studies mathematical structures from
the perspective of mathematical logic. It can be applied to many different struc-
tures and theories, and the present work is an application to Boolean algebras.

Given the theory of a class of structures, in our case Boolean algebras, many
questions can be considered: is it complete? Is it κ-categorical for some cardinal
number κ? Does it admit quantifier elimination? Can we characterise its models?
I believe one of the most the most natural ones is to ask if it is complete, in other
words, if given an arbitrary sentence, the sentence or its negation belongs to the
theory. A categorical theory determines a structure up to isomorphism. In our case,
it is clear that the theory of Boolean algebras cannot be complete or categorical,
because there are finite and infinite Boolean algebras. Even in infinite Boolean
algebras, there are questions that are left unanswered, like: do they have atoms?
As a consequence, the theory of infinite Boolean algebras is still incomplete. Now, I
believe that the most important question that needs to be asked and answered here
is: now that we know that the theory of Boolean algebras is not complete, how can
it be completed? Can we describe the different completions of the theory?

This is a problem that has been studied before. The first mathematician who
adressed the problem was Alfred Tarski, who also gave a result on the decidability
of models of the elementary theory of Boolean algebras. This was done quite briefly
so, later on and independently, Ershov wrote a publication in the Russian journal
Algebra i Logika ([5]) expanding these results. I have based by work in two more
modern versions of this study: the texts by Chang and Keisler ([3]) and Koppel-
berg ([8]). The first one is a classic model theory manual that dedicates a section
to Boolean algebras, because it uses them as an example on how to give all possible
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2 Introduction

completions of a theory using the back-and-forth tecnique. The second one is an
extensive work about Boolean algebras, and there is one chapter exclusively dedi-
cated to the completeness of their theories. However, the method they use to prove
their final results is a bit different from the one presented in this work: Koppel-
berg uses Vaught relations, which are basically an adaption of the back-and-forth
method for Boolean algebras, and in [3], the final results are proved using Skolem
expansions of languages and doing back-and-forth with structures of cardinality 2ω.
This tecniques are old-fashioned and hard to understand for someone with little
experience working with mathematical logic. For this reason, I have decided to give
this problem a more modern approach, using the back-and-forth tecnique with all
its generality.

For general notions and results about Boolean algebras, I used the texts by Bell
and Machover ([1]) and Halmos and Givant ([6]), and I consulted [9] and [2] to learn
about model theory.

Structure of the work
This work is structured as follows:

There is a chapter on preliminaries that presents the fundamentals of first or-
der logic, like semantics. I hope reading this chapter will clear up doubts of some
readers, especially if they are not familiar with mathematical logic. This is where
I set all the conventions regarding the objects that appear in the rest of the chapters.

In chapter 3 we describe the structure we will be working with: Boolean alge-
bras. In this chapter we present interesting properties of these objects that will
give the readers an idea of how they behave. Some of these properties might sound
familiar, as one may relate them to an algebraic context.

Chapter 4 is an introduction to model theory. Despite the fact that, in this
particular work, we treat model theory mainly as a tool, we manage to see some
important results of this field, though we do not give a proof for all of them.

In chapter 5 we study two important examples: atomless Boolean algebras and
atomic and infinite Boolean algebras. This chapter is key to understand the appli-
cations of model theory in the study of these structures. Some arguments presented
in the main proofs of chapter 5 are very similar to the ones in the final results, so
studying this particular algebras aside has been very helpful to me and, hopefully,
will also be helpful to the reader. Besides, in this chapter we do not only explore
the completeness of the algebras, but also quantifier elimination and ω-categoricity.
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Finally, in chapter 6 we prove the main results of this work. We describe the
invariants of a Boolean algebra, which are pairs of numbers that will be determinant
in the classification of the theories of Boolean algebras.
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Chapter 2

Preliminaries

In classical logic, we can distinguish propositional and first order logic. Propo-
sitional logic is known to be simpler: it describes basic facts, whereas first order
logic differenciates between relations, functions and objects, thus it can be used
to express a more complex reality. We will mostly use first order logic, but it is
important to describe the structure of propositional logic as well.
The language of propositional logic consists in a set P of propositional variables, the
connectives t, &,¬,→,↔ and brackets. Usually, the connective symbols are noted
by ∨,∧,¬,→,↔, but we will use t and & instead of ∨,∧ because otherwise there
could be a misunderstanding with the symbols of the language of Boolean algebras.
A proposition is a finite sequence of these symbols constructed using the following
rules:
If p is a propositional variable, ϕ,ψ are propositions, ∗ ∈ {&,t,→,↔, }:

ϕ ϕ,ψ

p ¬ϕ (ϕ ∗ψ)

An interpretation is a mapping I : P −→ {0, 1}. It is said that p ∈ P is true
with I iff I(p) = 1. It is false with I otherwise. By recursion, it can be extended
to a mapping I∗, which gives a value within {0, 1} to every proposition, in a way
that I∗ preserves the connectives. Every extension I∗ can be identified with the
interpretation I, and that is why, from now on, we will use the symbol I = I∗.

Let Σ,ϕ ⊆ Prop(P). It is said that ϕ is a logical consequence of Σ iff, for every
interpretation I, if I(Σ) ⊆ {1}, then I(ϕ) = 1. It is written Σ |= ϕ. Since we are
assuming the completeness theorem, we will write Σ |= ϕ or Σ ` ϕ indistinctly. If
ϕ,ψ are propositions and ψ |= ϕ and ϕ |= ψ, then we will say they are equivalent
and we will write ϕ ≡ ψ.

Now, there are two kind of symbols in first order logic:
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• Logical symbols like connectives (t, &,¬,→,↔), brackets, quantifiers (∀, ∃),
=, variables (x, y, z, ...).

• Non-logical symbols: relation symbols (R,S...), function symbols (F ,G,H..)
and constant symbols (c...).

Every relation symbol and every function symbol are associated to a natural number
n, which we call their arity.

A language is a set of non-logical symbols. The set of all relation symbols,
function symbols and constant symbols in a language L is written RL,FL and CL,
respectively.

A term in a language L is a finite sequence of symbols in V AR∪FL ∪ CL. It is
constructed using the following rules:
If x ∈ V AR, c ∈ CL,F ∈ FL is an n-ary function symbol and t1, ..., tn are terms,
then

t1, ..., tn

x c Ft1...tn

An atomic formula in the language L is a finite sequence of symbols in L ∪
V AR ∪ {=}. There are two kinds of atomic formulas.

• Equations. They are sequences of the form t1 = t2, there t1, t2 are terms in
L.

• Predications. They are sequences of the form Rt1...tn, where t1, ..., tn are
terms and R ∈ RL is an n-ary relation symbol.

A formula in L is a finite sequence of symbols in L∪{=,∀,∃,¬, &,t,→,↔, (, )}
constructed using the following rules
If χ is an atomic formula, ϕ,ψ are formulas, x is a variable, and ∗ ∈ {&,t,↔,→}

ϕ ϕ,ψ ϕ ϕ

χ ¬ϕ (ϕ ∗ψ) ∀xϕ ∃xϕ

It is said that an occurrence of a variable is free in a formula if it is not inside
the scope of any quantifier of the variable. A formula without free variables is called
a sentence.

Let L be a language. An L-structure is a pair M = (M , I) where M is a
nonempty set called universe, and I is a mapping that sends every symbol in L to
an object in M in the following way:

• I(c) ∈M if c is a constant symbol.
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• I(F ) : Mn −→M if F is an n-ary function symbol.

• I(R) ⊆Mn if R is an n-ary relation symbol.

We will write ϕ(x1, ...,xn) for a formula ϕ whose free variables are in the se-
quence x1, ...,xn. It is said that an n-tuple a = (a1, ..., an) satisfies a formula ϕ(x),
where x = (x1, ...,xn), inM = (M , I) iff it makes it true: M |= ϕ(a).

Now that some knowledge about logic has been acquired, there are only a few
definitions that need to be clarified.

We will refere to a set X as denumerable iff there is a bijection between X and
the set of natural numbers ω.

A set of formulas Σ(x1, ...,xn) in the language L is said to be consistent, or
satisfiable if there exists an L-structure and an n-tuple in the structure that satisfy
every formula in Σ. If such L-structure and tuple cannot exist, it is said that the
set is inconsistent or contradictory. If Σ is a set of sentences, andM satisfies every
sentence in Σ, we say thatM = (M , I) is a model of Σ. .

A theory of language L is a consistent set of sentences including all their con-
sequences in the language L. The elements of the theory are called theorems. A
complete theory is a maximal theory with respect to the inclusion relation among
theories. If T is a complete theory in the language L, every sentence ϕ in the
language verifies ϕ ∈ T or ¬ϕ ∈ T , and the converse is also true.



Chapter 3

Boolean algebras

3.1 Lattices

Definition 3.1.1 A lattice is a non empty partially ordered set 〈L,6〉 in which
every pair of elements x, y, has a supremum and an infimum. They are unique and
the first one is denoted by x∨ y and the second one by x∧ y.

It follows from the definition of supremum and infimum that:

x 6 y ⇔ x∧ y = x⇔ x∨ y = y.

We can treat both ∨ and ∧ as two operations, which we will call join and meet.
Associative, commutative and absortion properties hold in any lattice for both ∨
and ∧. In other words:

x∧ y = y ∧ x, x∨ y = y ∨ x,
x∨ (y ∨ z) = (x∨ y) ∨ z, x∧ (y ∧ z) = (x∧ y) ∧ z,

(x∧ y) ∨ y = y, (x∨ y) ∧ y = y.

Definition 3.1.2 It is said that a lattice is complete if every subset of L has an
infimum and a supremum.

Observation 3.1.3 If L is a complete lattice, the supremum of L is its greatest
element, and we will denote it by 1, and its infimum is its least element, which will
be called 0. However, it is not necessary for a lattice to be complete in order to
have a least and a greatest element. It is also easy to see that inf(∅) is the greatest
element in L and sup(∅) is the least one.

Definition 3.1.4 It is said that a lattice L is distributive if the following conditions
hold for any x, y, z ∈ L:

7



8 Boolean algebras

x∧ (y ∨ z) = (x∧ y) ∨ (x∧ z),
x∨ (y ∧ z) = (x∨ y) ∧ (x∨ z).

Definition 3.1.5 Let L be a lattice. L is said to be complemented if it has a least
and a greatest element and, for every x ∈ L, there is an element y ∈ L so that
x∨ y = 1 and x∧ y = 0. Such y is unique and we will write y=xc.

Definition 3.1.6 A Boolean Algebra is a complemented distributive lattice.

Proposition 3.1.7 Consider the structure B = 〈B,∧,∨,c,0,1〉 where B is a set,
∨,∧ are binary operations in B, c is a monary operation in B and 0, 1 ∈ B. Assume
they verify for any x, y, z ∈ B:

x∧ y = y ∧ x, x∨ y = y ∨ x,
x∨ (y ∨ z) = (x∨ y) ∨ z, x∧ (y ∧ z) = (x∧ y) ∧ z,

(x∧ y) ∨ y = y, (x∨ y) ∧ y = y,
x∧ (y ∨ z) = (x∧ y) ∨ (x∧ z), x∨ (y ∧ z) = (x∨ y) ∧ (x∨ z),

x∧ xc = 0, x∨ xc = 1.

If we define an order in B by x 6 y ⇔ x ∧ y = x, then 〈B,6〉 is a Boolean
Algebra, where 0, 1 are the least and greatest elements and for every x ∈ B, xc is
the complement of x. Also, for any x, y in the Boolean algebra, x∧ y and x∨ y are
the infimum and the supremum of x and y, respectively.

Proof: First of all, notice that 〈B,6〉 is a partially ordered set. Let’s prove that
x∧ y is the supremum of x and y. Since (x∧ y)∧ y = x∧ y, and (x∧ y)∧x = x∧ y,
x ∧ y 6 x, x ∧ y 6 y. Now let z be an element in B such that z ≤ x, z ≤ y. Then
z ∧ x = z, z ∧ y = z, and so z ∧ (x ∧ y) = (z ∧ x) ∧ y = z ∧ x = z. This means
z 6 (x ∧ y), thus x ∧ y is the infimum of x,y. We can prove similarly that x ∨ y is
the supremum of any x, y in B.
The distributivity holds because of the fourth axiom. The only thing left to prove
is that this distributive lattice is complemented, but it follows trivially from the
fact that 1 is the greatest element in B and 0 is the least one. 2

This is a more usual presentation of a Boolean algebra and it is the one we shall
use in the future. Nevertheless, there is a third one, which is usually used in a more
algebraic context: the Boolean ring.

Definition 3.1.8 A Boolean ring R is a commutative ring in which, for every
x ∈ R, x2 = x.

Proposition 3.1.9 Let B = (B,∧,∨,c , 0, 1) be a Boolean algebra. For any x, y ∈
B, we can define the operations:

x+ y = (x∧ yc) ∨ (xc ∧ y),
x · y = x∧ y.
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Then (B,+, ·) is a Boolean ring. Conversely, if R is a Boolean ring and we define:

x∧ y = xy,
x∨ y = x+ y+ xy,

xc = 1 + x,

then R = 〈R, ∨,∧,c, 0, 1〉 is a Boolean algebra.

Proof: See [7], chapter 5. 2

Definition 3.1.10 We define as the trivial algebra the set {0} with the usual oper-
ations. It is important to keep this definition in mind, since some authors consider
0 6= 1 as an axiom, and they define as the trivial algebra the set {0, 1}.

Definition 3.1.11 Let B = 〈B,∧,∨,c , 0, 1〉 be a Boolean algebra. It is said that A
is a subalgebra of B iff A = 〈A,∧ �A,∨ �A,c �A, 0, 1〉, where A ⊆ B is closed under
the operations.

Definition 3.1.12 Let B be a Boolean algebra, and consider A ⊆ B. There is a
minimal set A′ such that A ⊆ A′ ⊆ B and A′ is the universe of a subalgebra of B.
In fact,

A′ =
⋂
{C ⊆ B : A ⊆ C, 0, 1 ∈ C and C is closed under the operations}.

It is said that the subalgebra of B with universe A′ is the Boolean algebra generated
by A. If A = {a1, ..., an}, then we write 〈a1, ..., an〉.

3.2 Filters and homomorphisms

Definition 3.2.1 Let A and B be Boolean Algebras. An homomorphism between
Boolean algebras is an application h: A −→ B which verifies

h(x ∧ y) = h(x) ∧ h(y),
h(xc) = h(x)c,

for every x, y ∈ A.

Observation 3.2.2 The following propierties hold for any homomorphism h:

h(x∨ y) = h(x) ∨ h(y),
h(x) 6 h(y) if x 6 y,

h(0) = 0,
h(1) = 1.
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The first property is easy to see because x∨ y = (xc ∧ yc)c. Now, the fact that an
homomorphism preserves the order is due to:

x 6 y ⇒ x∧ y = x⇒ h(x) = h(x∧ y) = h(x) ∧ h(y)⇒ h(x) 6 h(y).

The others are a consequence of the first two.
If h is one-to-one and onto, we say h is an isomorphism, and write A ∼= B. For

the following results, we will write B for a Boolean algebra.

Definition 3.2.3 A filter F of B is a subset F ⊆ B such that:

1. 0 /∈ F,

2. For every x, y ∈ F , x∧ y ∈ F,

3. For every x ∈ F , and for every y ∈ B, x 6 y implies y ∈ F .

If we exclude from this list the condition 0 /∈ F, we can consider B as a filter, which
we will call improper filter.

Definition 3.2.4 Let X be a subset of B. It is said that X has the finite meet
property iff for every x1, ...,xn ∈ X, x1 ∧ ... ∧ xn 6= 0 for any n. In short, we say
X has the f .m.p.

Theorem 3.2.5 A subset X ⊆ B is included in a proper filter iff it has the finite
meet property.

Proof: Assume X ⊆ F where F is a filter. If x1, ...,xn ∈ F , then x1 ∧ ...∧ xn ∈ F ,
but 0 /∈ F , so x1 ∧ ...∧ xn 6= 0. Conversely, assume X has de f .m.p. Consider now
the set X+ = {y ∈ B : ∃x1, ...,xn ∈ X such that x1 ∧ ... ∧ xn 6 y}. Then X+ is
a filter that includes X. 0 /∈ X+ because X has de f .m.p, and the third condition
holds because of the transitivity of6. Now assume y, z ∈ X+. This means, there are
x1, ...,xn,x′1, ...,x′n ∈ X such that x1 ∧ ...∧ xn 6 y and x′1 ∧ ...∧ x′n 6 z. Therefore
x1 ∧ ...∧ xn ∧ x1 ∧ ...∧ x′n 6 y ∧ z, and y ∧ z ∈ X+ as a result. 2

Observation 3.2.6 For each homomorphism of Boolean algebras, h : A −→ B,
h−1(1)={ x ∈ A : h(x)=1 } is a filter, and it is called the hull of h. This means
that to every homomorphism of Boolean algebras can be associated a filter.

Definition 3.2.7 An ideal of a Boolean algebra is a subset I ⊆ B such that:

1. 1 /∈ I,

2. For every x, y ∈ I, x∨ y ∈ I,

3. For every x ∈ I and every y ∈ B, if y 6 x then y ∈ I.
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If we exclude the condition 1 /∈ I, we can consider B as an ideal, which will be
called the improper ideal of B.

Observation 3.2.8 Notice that for any ideal I of B, F={xc : x ∈ I} is a filter.

Let us define x↔ y=(xc∨ y)∧ (yc∨x). Now, remember that every Boolean algebra
is also a commutative ring. Ideals in Boolean algebras are also ideals in the Boolean
ring associated to the algebras. Since in a commutative ring R, for any ideal I of R,
we can consider the ring R/I, as a result of observation 3.2.8, it is natural to think
that we could also consider B/F for a filter F in a Boolean algebra with universe
B. In fact, if we define the relation ∼:

x ∼ y ⇔ x↔ y ∈ F ,

then ∼ is a congruence relation with the operations in B.
As a result, we can consider the quotient B/F , which is a Boolean algebra with the
operations ∧,∨,c defined in the natural way.

Observation 3.2.9 If we consider the natural homomorphism between B and B/F ,

h : B −→ B/F
x −→ h(x) = [x]F ,

then h is an homomorphism and F is the hull of h.

Definition 3.2.10 An ultrafilter in a Boolean algebra is a proper filter that is not
properly included in any other proper filter.

Theorem 3.2.11 Let F be a filter in the Boolean algebra B. The following condi-
tions are equivalent:

1. F is an ultrafilter,

2. For all x, y ∈ B,x∨ y ∈ F implies x ∈ F or y ∈ F ,

3. For every x ∈ B, either x ∈ F or xc ∈ F .

Proof:

• 1⇒ 2: Assume F is an ultrafilter and x ∨ y ∈ F . If x /∈ F , we can define
G = {z ∈ B : x ∨ z ∈ F}. Its is easy to see G is a filter containing F , so
F = G. Since x∨ y ∈ F , then y ∈ G and, as a result, y ∈ F .

• 2 ⇒ 3: The third condition follows immediately from the second one because
1=x∨ xc for any x ∈ B.
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• 3 ⇒ 1: Assume 3, and let G be a filter such that F ⊆ G. If F 6= G, then
there is x ∈ G such that x /∈ F . Hence xc ∈ F , and from this follows xc ∈ G
but 0 = x∧ xc ∈ G! This gives a contradiction, so F = G is proven.

2

Theorem 3.2.12 (Ultrafilter theorem)
For any Boolean algebra B, each filter F is included in an ultrafilter.
Proof: Let X be the set of all the filters of B containing F (X 6= ∅). If we prove
that any chain in X has an upper bound, by Zorn’s lemma, we will get that there
are maximal elements in X and, as a consequence, that there is an ultrafilter in B
containing F .
Let C be chain in X and consider C =

⋃
C. We will now prove C is the upper

bound we were looking for. It is obvious that D ⊆ C for every D ∈ C, so the only
thing left to prove is that C is a filter.
For every x, y ∈ C, x ∈ D, y ∈ E for some E,D ∈ C. Since C is a chain, we can
assume D ⊆ E, so x, y ∈ E and x ∧ y ∈ E,thus x ∧ y ∈ C. In addition to this, if
z ∈ B and x ≤ z, then z ∈ D. Therefore, z ∈ C. Since 0/∈ E for any filter E, 0 /∈ C.
With all of this, we get that C is a filter, as required. 2

Corollary 3.2.13 Each x ∈ B,x 6= 0 is included in an ultrafilter.
Proof: This follows immediatly from the fact that every x ∈ B,x 6= 0 is included
in a filter and the Ultrafilter theorem. 2

Corollary 3.2.14 For any Boolean algebra B, and any x, y ∈ B, such that x 6=
y, either there is an ultrafilter containing x and not y or there is an ultrafilter
containing y and not x.
Proof: For any x, y ∈ B such that x 6= y, x 
 y or y 
 x. Assume x 
 y, then
x ∧ yc 6= 0, thus there is an ultrafilter F in B containing x ∧ yc. This ultrafilter
verifies x ∈ F and y /∈ F . The other case is proved similarly. 2

3.3 Topology

It is easy to see that for any set X, its power set P(X) is a Boolean algebra
with the operations ∩,∪, ∅,X.

Definition 3.3.1 A field of subsets of a set X is a subalgebra of P(X).

Definition 3.3.2 We will call SB to the set of all ultrafilters in the Boolean algebra
B.

The main purpose of this section is to find out the relation between a Boolean
algebra B and SB.
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Theorem 3.3.3 The Stone representation theorem
Every Boolean algebra B is isomorphic to a field of subsets of SB.

Proof: We shall prove that the isomorphism needed is:

h : B −→ P(SB)
x −→ h(x) = {F ∈ SB : x ∈ F}

Let’s first prove it is an homomorphism of Boolean algebras. Let x, y be two ele-
ments in B. Then

F ∈ h(x∧ y)⇔ x∧ y ∈ F ⇔ x ∈ F and y ∈ F ⇔ F ∈ h(x) and
F ∈ h(y)⇔ F ∈ h(x) ∩ h(y).

As a result, h(x∧ y) = h(x) ∩ h(y). Similarly,

F ∈ h(xc)⇔ xc ∈ F ⇔ x /∈ F ⇔ F ∈ SB\h(x)⇔ F ∈ h(x)c.

Therefore h is an homomorphism. It is one-to-one because if x 6= y, there is an
ultrafilter F in B containing one and not the other (seen in 3.2.14). As a result, h
is an isomorphism from B onto h(B), a subalgebra of P(SB). 2

Definition 3.3.4 A Boolean space is a compact Hausdorff topological space which
admits a basis of clopen sets.

Definition 3.3.5 Given a topological space X, the set of all the clopen subsets of
X is called THE clopen algebra of X. It is noted by C(X).

Lemma 3.3.6 Let X be a compact topological space. If X admits a basis which is
a field of subsets of X, then this basis is C(X).

Proof: See [1]. Lemma 4.2. 2

Definition 3.3.7 Let h be the homomorphism defined by h(x) = {F ∈ SB : x ∈
F}. Since h(B) is closed under finite intersections, this set forms a basis of a
topology in SB, and we call Stone Space of B the resultING topological space.

Theorem 3.3.8 Let B be a Boolean algebra, and SB its Stone space. Then SB
is a Boolean space and B ∼= C(SB).

Proof: In order to prove SB is a Boolean space, we need to see it is Hausdorff,
compact, and that it admits a clopen basis.

• Given F ,G ∈ SB, if F 6= G then without loss of generality there is x ∈ F
such that x /∈ G. Since G is an ultrafilter, then xc ∈ G, so F ∈ h(x) and
G ∈ h(xc). Now h(x) and h(xc) are both open and disjoint sets of SB. It
follows that SB is a Hausdorff space.
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• To prove the compactness of SB, it suffices to see that every basic cover of
SB has a finite subcover. Let’s assume one doesn’t: {h(xi) : i ∈ I}. Then,
for any finite subset I0 ⊆ I, {h(xi) : i ∈ I0} 6= SB. But

h(
∧
i∈I0 x

c
i ) =

⋂
i∈I0 h(x

c
i ) =

⋂
i∈I0(SB\h(xi)) = SB\

⋃
i∈I0 h(xi) 6= ∅.

Then
∧
i∈I0 x

c
i 6= 0 for any finite I0 ⊆ I. This means {xc

i : i ∈ I} has
the finite meet property. Accordingly, there is an ultrafilter F such that
{xc

i : i ∈ I} ⊆ F . It follows that xc
i ∈ F , for every i ∈ I, thus F /∈

⋃
i∈I h(xi),

which contradicts the fact that {h(xi) : i ∈ I} covers SB.

• Since h(x) = SB\h(xc), every element of SB is clopen. It is then clear that
the topology of SB admits a clopen basis.

Now we have proven that SB is a Boolean space. The previous lemma gives us
h(B) = C(SB) and the Stone Representation theorem proves B ∼= h(B). As a
result, B ∼= C(SB). 2

Notice that we are stating that every Boolean algebra can be identified with the
basis of a topological space. As a result, we will get that every algebraic property
in B can be associated with a topological property in SB. However interesting this
is, we will not go deeper in this matter, since the main goal of this purpose is only
to get acquainted with Boolean algebras.

Theorem 3.3.9 1. If B is a finite Boolean algebra, then B ∼= P(SB). As a
consequence, |B| = 2|SB|.

2. Any two finite Boolean algebras A,B are isomorphic iff they have the same
cardinality.

3. For any n, there exists a Boolean algebra of cardinality n iff n =2m for some
m.

Proof:

1. If |B| < ω, then |SB| < ω and, since it is a Hausdorff space, it is discrete.
Hence, every subset of SB is clopen and we get C(SB) = P(SB), so B ∼=
P(SB) because of theorem 3.3.8.

2. This follows immediately from (1): if they have the same cardinality, then
|SA| = |SB|. As a consequence, both Boolean algebras are isomorphic to a
power set algebra of sets with the same cardinality, thus they are isomorphic.

3. If such Boolean algebra exists, it is finite. Therefore, it follows from (1)
that it is isomorphic to a power set algebra, so its cardinality must be 2m.
Conversely, if we want a Boolean algebra of cardinality 2m, then we can take
a set of cardinality m, and its power algebra set is a Boolean algebra of the
required cardinality.
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2

Proposition 3.3.10 Any equation holds in every Boolean algebra iff it holds in
every power set algebra.

Proof: The first implication is trivial. Now assume an equation holds in every
power set algebra. Then it holds in any subalgebra of every power set algebra,
i.e. in any field of subsets. Since every Boolean algebra is isomorphic to a field of
subsets, this expression must also hold in every Boolean algebra. 2

3.4 Atoms

Definition 3.4.1 An atom in a Boolean algebra is an element x such that x 6= 0
and if y <x, then y=0.

Observation 3.4.2 x is an atom iff for every y ∈ B one and only one of the
following condition holds: x 6 y or x 6 yc.

Observation 3.4.3 x is an atom iff x 6= 0 and, if x = y ∨ z where y ∧ z = 0, then
y = 0 or z = 0.

Observation 3.4.4 We will define a first order formula At(x) with meaning "x is
an atom":

x 6= 0 & ¬∃y(y 6= 0 & x∧ y = y).

Definition 3.4.5 Let B be a Boolean algebra. It is said that B is atomic iff for
every y ∈ B, y 6= 0, there is x ∈ B such that x is an atom and x 6 y.

Proposition 3.4.6 If B is an atomic Boolean algebra, every element in B is the
join of all the atoms it majorizes.

Proof: Fix x ∈ B and let A be the set all the atoms in B such that a 6 x
for every a ∈ A. It is obvious that x is an upper bound for A. Let’s prove that,
if there is y ∈ B such that y is also an upper bound for A, then x 6 y. If we
assume x 
 y, we get x ∧ yc 6= 0, thus there must be an atom b ∈ B such that
b 6 x∧ yc. But x∧ yc 6 x, so b ∈ A, and from this follows that b is below y. Hence,
b 6 (x∧ yc) ∧ y = x∧ (yc ∧ y) = 0! This gives a contradiction, because if b = 0, it
cannot be an atom, so we can conclude that

∨
A, exists and b =

∨
A, as required.

2

Definition 3.4.7 A Boolean algebra is said to be atomless iff it contains no atoms.

Observation 3.4.8 Every non-trivial atomless Boolean algebra is infinite.
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Let’s see some examples of atomic and atomless Boolean algebras.

1. Let L be the language of Propositional logic, and Prop(X) the set of all for-
mulas in L. For any φ,ψ ∈Prop(X), we define the equivalence relation φ ∼ ψ
iff φ ≡ ψ. Let |φ| = {ψ ∈Prop(x) : φ ∼ ψ} be the ∼-class of φ. Then, we can
consider the set of all ∼- classes B, and, if we define ∧,∨,c , 0, 1 in B by:

|φ| ∧ |φ| = |φ & ψ|,
|φ| ∨ |φ| = |φ t ψ|,
|φ|c = |¬φ|,

1 = |χ| for any χ ∈ Prop(X) such that ` χ,
0 = |χ| for any χ ∈ Prop(X) such that ` ¬χ,

then 〈B,∧,∨,c , 0, 1〉 is a Boolean algebra. Moreover, this Boolean algebra is
called the Lindenbaum-Tarski Boolean algebra and it is atomless. The order
is defined by |ϕ| 6 |ψ| ⇔ ϕ |= ψ. To see that this algebra is atomless, it
suffices to see that for every |ϕ| > 0 there is |ψ| 6= 0 such that |ψ| < |ϕ|. We
only have to take ψ = p∧ϕ, where p is a propositional variable that does not
appear in ϕ.

2. Let X be an infinite set. Now consider the filter F = {A ∈ P(X) : |Ac| < ω}
in the power set Boolean algebra. Then the quotient P(X)/F is an atomless
Boolean algebra because [A]F 6= 0 iff A is not in the ideal associated to F
according to 3.2.8, i.e.,A is an infinite set. In this case, there exist B,C ∈
P(X), both infinite and disjoint such that A = B ∪C and, as a consequence,
[A]F = [B]F ∪̇[C]F . This means [B]F , [C]F ⊆ [A]F , so [A]F cannot be an
atom, because if they are infinite, [B]F , [C]F 6= 0.

Observation 3.4.9 It has been proved in the previous section that every finite
Boolean algebra is isomorphic to a power set algebra. It is easy to see that all power
set Boolean algebras are atomic and complete Boolean algebras. As a consequence,
every finite Boolean algebra is atomic and complete.

Let’s see the converse:

Theorem 3.4.10 Let B be a Boolean algebra. If B is atomic and complete, then
B ∼= P(X) for some set X.
Proof: Let A = {a ∈ B : a is an atom}. Claim: B ∼= P(A).
We shall prove the homomorphism needed is:

f : B −→ P(A)
x −→ f(x) = {a ∈ A : a 6 x}.

In order to prove f is an isomorphism from B onto P(A) we need to prove f is a
bijective homomorphism:



3.4 Atoms 17

• Let x, y be any two elements in B, and a ∈ B be an atom.
a ∈ f(x ∧ y) iff a 6 x ∧ y. But x ∧ y 6 x,x ∧ y 6 y, so a 6 x, y, thus get
a ∈ f(x), f(y). This is equivalent to a ∈ f(x) ∩ f(y).
a ∈ f(xc) iff a 6 xc iff a � x iff a /∈ f(x) iff a ∈ P(A)\f(x)
Accordingly, f is an homomorphism

• Let x, y be two different elements in B. Then x � y or y � x. If we assume the
latter one, then xc ∧ y 6= 0 and, since B is atomic, there is an atom a ∈ B such
that a 6 xc ∧ y 6 xc, y. It follows a ∈ f(xc), f(y), thus a /∈ f(x), a ∈ f(y).
It results f(x) 6= f(y), and f is one-to-one.

• The only thing left to prove is f is surjective. We take X ∈ P(A) and,
since B is complete, we can consider x = sup(X). We claim X = f(x).
Trivially, X ⊆ f(x), because for every a ∈ X, a 6 sup(X) = x. Now,
consider a ∈ A\X. For any b ∈ X, a ∧ b = 0, because a is an atom and
a∧ b 6 a. Hence b 6 ac for any b ∈ X, so x 6 ac, which means a 
 x. From
this follows a /∈ f(x) and, as a consequence, f(x) ⊆ X.

2



Chapter 4

Model theory

Now that we have become familiar with Boolean algebras and their properties,
it is time we learn about concepts like partial isomorphisms, which are a tool that
will allow us to go deep in the particularities of these structures.

4.1 Partial isomorphisms

Definition 4.1.1 Let M,N be structures of language L. Consider now a one-to-
one mapping f: M −→ N such that dom(f) ⊆ M and rec(f) ⊆ N. It is said that f is
a partial isomorphism betweenM and N iff:

1. For every n-ary relation symbol R ∈ L, for any n-tuple a ∈ dom(f), a ∈
RM iff f(a) ∈ RN .

2. For every n-ary function symbol F ∈ L, for any n-tuple a ∈ dom(f), and
element b ∈ dom(f), FM(a) = b iff FN (f(a)) = f(b).

3. For every constant symbol c ∈ L, a ∈ dom(f), cM = a iff cN = f(a).

Definition 4.1.2 Given two L-structures M,N , we denote by S0(M,N ) the set
of all partial isomorphisms betweenM and N .

Observation 4.1.3 The empty set is a partial isomorphism for any two L-structures,
M,N . In other words, ∅ ∈ S0(M,N ).

Definition 4.1.4 Let n be a natural number and M,N be two L-structures. Now
we shall define the set Sn(M,N ) of n-isomorphisms between M and N by recur-
sion:
The case n = 0 has been defined previously. Now, assuming we have already con-
structed Sn(M,N ), a partial isomorphism f is in Sn+1(M,N ) iff it satisfies the
back-and-forth conditions:

18
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• forth condition: for every a ∈M there is g ∈ Sn(M,N ) such that a ∈ dom(g)
and g is an extension of f .

• back condition: for every b ∈ N there is g ∈ Sn(M,N ) such that b ∈ rec(g)
and g is an extension of f .

Proposition 4.1.5 Consider n,m such that 0 6 n 6 m. Then Sm(M,N ) ⊆
Sn(M,N ).

Proof: Notice that it suffices to see Sn+1(M,N ) ⊆ Sn(M,N ) for any n. We
shall prove this by induction:

• If n = 0, then clearly S1(M,N ) ⊆ S0(M,N ) because every element in
S1(M,N ) is a partial isomorphism.

• Assume now Sn(M,N ) ⊆ Sn−1(M,N ) and take f ∈ Sn+1(M,N ). Then,
for each a ∈M , there is g ∈ Sn(M,N ) such that a ∈dom(g) and g extends f .
Now, by the induction hypothesis, g ∈ Sn(M,N ) implies g ∈ Sn−1(M,N ):
this means f satisfies the forth condition for n, thus f ∈ Sn(M,N ). The
back condition is proved similarly.

2

Observation 4.1.6 The previous proposition states that:

...Sn+1(M,N ) ⊆ Sn(M,N ) ⊆ ... ⊆ S1(M,N ) ⊆ S0(M,N ).

Definition 4.1.7 It is said that f is an ω-isomorphism iff f ∈ Sn(M,N ) for any
n > 0. The set of all ω-isomorphisms betweenM and N is denoted by Sω(M,N ).

Observation 4.1.8 Notice that, if Sω(M,N ) = ∅, then Sn(M,N ) = ∅ for some
n.

Proof: This is because if Sn(M,N ) 6= ∅ for every n, then ∅ ∈ Sn(M,N ), thus
∅ ∈

⋂
n Sn(M,N ) = Sω(M,N ). 2

Definition 4.1.9 Let M,N be two L-structures. It is said that they are elemen-
tarily equivalent, and it is noted by M ≡ N , if for every sentence ϕ, M |= ϕ iff
N |= ϕ.

Now, there is no reason to stop at ω! We can define Sα(M,N ) for any ordinal
α as follows:
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Definition 4.1.10 • If α is a limit ordinal, f ∈ Sα(M,N ) iff f ∈ Sβ(M,N )
for every β < α.

• If α = β+ 1 for some ordinal β, then f ∈ Sα(M,N ) iff for any a ∈M , b ∈ N ,
there are g,h ∈ Sβ(M,N ) such that f ⊆ g,h and a ∈ dom(g), b ∈ rec(h).

Definition 4.1.11 S∞(M,N ) =
⋂
α S(M,N ).

Definition 4.1.12 It is said that two L-structuresM,N are partially isomorphic
via I iff I 6= ∅ is a collection of partial isomorphisms betweenM and N such that:

1. For any f ∈ I, a ∈M there is g ∈ I such that g extends f and a ∈ dom(g).

2. For any f ∈ I, b ∈ N there is g ∈ I such that g extends f and b ∈ rec(g).

It is noted by I:M ∼=p N .

Observation 4.1.13 S∞(M,N ) = Sα(M,N ) for some ordinal α.

Proof: Otherwise, the chain

... ( Sα+1(M,N ) ( Sα(M,N ) ( ... ( S0(M,N )

would never end, and this is a contradiction with the axiom of replacement and the
fact that the family of all ordinals is not a set but a proper class. 2

Proposition 4.1.14 I :M ∼=p N for some set I iff S∞(M,N ) 6= ∅.
Proof: ⇒ Assume I : M ∼=p N , and we will show that, for all ordinals α, I ⊆
Sα(M,N ). We will prove this by induction:

• The case α = 0 is trivial.

• If α = β + 1, we want to prove that for every f ∈ I, f ∈ Sβ+1(M,N ).
Assume the condition is true for β, and take a ∈ M . We know that there is
g ∈ I such that f ⊆ g and a ∈ dom(g). By hypothesis, g ∈ Sβ(M,N ), so
f ∈ Sβ+1(M,N ) = Sα(M,N ), as required.

• If α is a limit, then Sα(M,N ) =
⋂
β<α Sβ(M,N ). The induction hypothesis

is that for every β < α, I ⊆ Sβ(M,N ), so the fact that I ⊆ Sα(M,N ) follows
immediately.

⇐ Assume now S∞(M,N ) = I 6= ∅. We will show I :M ∼=p N . Fix the minimal
ordinal α such that Sα(M,N ) = S∞(M,N ), and also fix f ∈ I, a ∈ M . Then
f ∈ Sα+1, so there is g ∈ Sα(M,N ) = I such that f ⊆ g and a ∈ dom(g). From
this follows the fact that the forth condition holds, and the back condition is proved
similarly. 2
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Proposition 4.1.15 1. M ∼= N ⇒ I :M ∼=p N for some set I.

2. LetM,N be two countable L-structures such thatM ∼=p N . ThenM ∼= N .

Proof:

1. If f is an isomorphism between M and N , then the set I = {f} is a set of
partial isomorphisms betweenM and N , thus I :M ∼=p N .

2. This is because, if both structures are countable, we can enumerate them in
the following way: M = {ai : i ∈ ω} and N = {bi : i ∈ ω}. We need
to construct inductively an ascending chain of partial isomorphisms. Take
f0 ∈ I arbitrary. Then, assuming we have already constructed fn, we can
take f ′n ∈ I such that fn ⊆ f ′n and an ∈ dom(f ′n). Now have fn+1 ∈ I such
that f ′n ⊆ fn+1 with bn ∈ rec(fn+1). Now that we have fn defined for every
n ∈ ω, we can take f =

⋃
n fn, and this is a mapping such that dom(f) =M

and rec(f) = N : it is an isomorphism betweenM and N .

2

Definition 4.1.16 Let f be a partial isomorphism between M and N such that
f ∈ Sn(M,N ) but f /∈ Sn+1(M,N ) for some n. Then, we say the Fraïssé rank of
f is n. However, if f ∈ Sω(M,N ), then the Fraïssé rank of f is equal or greater
than ω.

Definition 4.1.17 Two n-tuples a = (a1, ..., an) and b = (b1, ..., bn) are said to be
m -equivalent iff there is an m-isomorphism f such that f(ai)=bi for every i, 1 6
i 6 n. It is written (a,M) ∼m (b,N ). If there is an ω-isomorphism between them,
they are said to be ω-equivalent.

The term can also be applied to structures and not only to tuples: it is saidM and
N are n− equivalent iff there is a n− isomorphism between them. This can also
be seen as if we were considering ∅ as a tuple.

Definition 4.1.18 LetM,N be L-structures. It is said thatM is an extension of
N , or N ⊆M, iff:

1. N ⊆M .

2. For every constant symbol c, cM = cN .

3. For every n-ary function symbol F , every n-tuple a ∈ N , FM(a) = FN (a).

4. For every n-ary relation symbol R, RN = RM ∩Nn.

An extension is said to be elementary iff for every ϕ(x1, ...,xn), and every a1, ..., an ∈
M , M |= ϕ(a1, ..., an) iff N |= ϕ(a1, ..., an). This is noted byM� N .
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Observation 4.1.19 IfM� N , thenM≡ N .

Definition 4.1.20 Let L be a language. Then we define the quantifier rank of a
formula as follows:

• For every variable x, QR(x) = 0.

• For every constant c, QR(c) = 1.

• For every m-ary function symbol F , QR(Ft1...tm) = 1 + Σ16i6mQR(ti).

• For every equation t1 = t2, where t1, t2 are terms in L, QR(t1 = t2) =
QR(t1) +QR(t2)− 1

• For every m-ary relation symbol R, QR(Rt1...tm) = Σ16i6mQR(ti).

• If ϕ is a formula in L, then QR(¬ϕ) = QR(ϕ).

• If ϕ,ψ are formulas in L, then QR(ϕtψ) = QR(ϕ&ψ) = max{QR(ϕ),QR(ψ)}.

• If ϕ is a formula in L and x is a variable, QR(∀xϕ) = QR(∃xϕ) = QR(ϕ) +
1.

Theorem 4.1.21 Fraïssé’s theorem
Let M and N be two L-structures. Then, the tuples a = (a1, ..., an) ∈ Mn and
b = (b1, ..., bn) ∈ Nn are m-equivalent iff they satisfy the same formulas (a in M
and b in N ) with quantifier rank at most m.

Proof: See [4]. Lemma 3.2. 2

Corollary 4.1.22 Any two L-structures M and N are elementarily equivalent iff
Sω(M,N ) 6= ∅.

4.2 Complete and ω-categorical theories. Quantifier
elimination

Let T be a complete theory in the language L andM a model of T . Fix n >1.

Definition 4.2.1 An n-type over ∅ is a set of formulas Σ(x1, ...,xn)={ϕi(x1, ...,xn) :
i ∈ I} such that T ∪ Σ is consistent (or Σ is consistent with T ).

Observation 4.2.2 An n-type Σ is complete iff it is maximal with respect to the
inclusion among n-types. An equivalent condition is that, for any formula of L,
ϕ(x1, ...,xn), ϕ(x1, ...,xn) ∈ Σ or ¬ϕ(x1, ...,xn) ∈ Σ.
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Consider now A ⊆ M , a set of parameters. It is clear that the language L can
be expanded to form L(A)=L ∪ {ca : a ∈ A}. This is useful whenever we want to
name the elements in A, because ca are not in the language L. Similarly, the model
M is expanded to the L(A)-structure (Ma)a∈A, where a = c

(Ma)a∈A
a . We will note

T (A) = Th((Ma)a∈A).

Definition 4.2.3 An n-type over A is an n-type of T (A) over ∅.

Observation 4.2.4 An n-type over A will have in its formulas constants to refer
to the elements in A. They are often written like ca = a.

Observation 4.2.5 A complete n-type over A is defined in the natural way. We
define the set Sn(A) as Sn(A) = {p(x1, ...,xn) : p(x1, ...,xn) is a complete n-type
over A}

Let Σ(x1, ...,xn) be an n-type over A.

Definition 4.2.6 An n-tuple (a1, ..., an) ∈Mn realizes Σ if M |= ϕ(a1, ..., an) for
every ϕ ∈ Σ.

Definition 4.2.7 Fix (a1, ..., an) ∈ Mn. The type of (a1, ..., an) over A is the set
{ϕ(x1, ...,xn) ∈ L(A) :M |= ϕ(a1, ..., an)}. It is noted tp(a1, ..., an/A).

Observation 4.2.8 tp(a1, ..., an/A) is an n-type over A for any a1, ..., an ∈ M .
Furthermore, (a1, ..., an) realizes tp(a1, ..., an/A) inM.

Definition 4.2.9 Let f be a mapping between two L-structures M and N . This
mapping is said to be elementary iff, for any a1, ..., an ∈ dom(f),ϕ = ϕ(x1, ...,xn),
M |= ϕ(a1, ..., an) iff N |= ϕ(f(a1), ..., f(an)).

Definition 4.2.10 LetM be a structure in the language L. We can define L(M)
as the language obtained by adding to L a constant symbol ca for every element a of
M. The structure M can be viewed as an L(M)-structure in which the symbols in
L are interpreted as before, and each new constant ca is interpreted as the element
a. The elementary diagram ofM is the set of all L(M) sentences that are true in
M. It is written Diagel(M).

Proposition 4.2.11 In general, it is not true that every n-type over A is realized
inM, but every n-type over A is realized in some elementary extension ofM.
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Proof: Consider an L-structure M, A ⊆ M and p, a type over A. Let’s define
T = p ∪Diagel(M), and we will show that it is consistent. In order to see this,
we will show that any finite subset of T is consistent. A finite subset of T can be
reduced to ∆ = {ϕ1, ...,ϕk,ψ1, ...,ψn}, where ϕi ∈ Diagel(M) for every i = 1, ..., k
and ψj ∈ p for every j = 1, ...,n. Since p is a type over A, it is known that there
is an L(A)-structure N such that N |= T (A) ∪ p. In particular, N |= ψj for every
j = 1, ..,n. Let’s see that N |= ϕi, too.
We can name ψ = ψ1 ∧ ... ∧ ψk, and write ψ as an L(A)-formula by ψ(b), where b
is a tuple of parameters that are in M\A. Since M |= ψ(b), then M |= ∃xψ(x)
and, by the choice of N , there must be a tuple c ∈ N such that N |= ψ(c). Now,
by interpreting the LM-symbols b as the elements c, we can consider N as an LM-
structure which satisfies: N |= ϕ1 ∧ ... ∧ ϕk ∧ ψ1 ∧ ... ∧ ψn. Hence, T is consistent,
so we know that there is an LM-structure M′ which satisfies T . M′ interprets a
symbol for each element ofM, soM is naturally embedded intoM′. Furthermore,
sinceM′ satisfies Diagel(M), this embedding is elementary, thus we getM�M′,
as required. 2

Definition 4.2.12 Let T be a complete theory, andM a model of T.M is said to
be ω-saturated iff, for every finite A ⊆M , every p ∈ S1(A) is realized inM.

Observation 4.2.13 It is a fact that not only the types in S1(A) are realized in
an ω-saturated structure: for every n ∈ ω, the types in Sn(A) are realized in M,
too. Besides, if M is ω-saturated, every n-type over any A ⊆ M is realized in M,
not only the complete ones.

Observation 4.2.14 T is a complete theory iff every pair of models of T are ele-
mentarily equivalent.

Definition 4.2.15 A theory T is ω-categorical iff it has a denumerable model and
any two denumerable modelsM,N of T are isomorphic.

Proposition 4.2.16 Every structure M has an elementary extension N that is
ω-saturated.

Proof: We will not give every precise detail of this proof, but a sketch. For further
information, see [9], theorem 5.1. We will construct an elementary chain: a chain
of structures such thatMi �Mi+1 for every i ∈N.
Take M0 =M and, assuming we have Mn, we will take Mn+1 to be a structure
such that, for any finite A ⊆ Mn and every p ∈ S1(A), there is some a ∈ Mn+1
such that a realizes p in Mn+1. We know that such Mn+1 exists because every
type is realized in some elementary extension of its structure. Then, if we consider
N =

⋃
nMn,Mn � N for every n ∈N, and it is ω-saturated. 2
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Proposition 4.2.17 Let T be a theory in the language L, and let Σ(x1, ...,xn) 6= ∅
be a set of formulas such that any two n-tuples of models of T are ω-equivalent
iff they satisfy the same formulas in Σ. We will write x = (x1, ...,xn). Then,
for every ϕ(x), there is a Boolean combination of formulas in Σ, ψ(x), such that
T |= ∀x(ψ(x)↔ ϕ(x)).

Proof: See [9]. Theorem 5.2. 2

Observation 4.2.18 The converse is immediate.

Definition 4.2.19 Under the conditions of the latter proposition, if we can take as
Σ the set of atomic formulas, we say T admits quantifier elimination.

Theorem 4.2.20 Let T be a theory. Then

1. T is complete iff for any M,N ω-saturated models of T there exists a set I
such that I :M ∼=p N .

2. T is complete and admits quantifier elimination iff for anyM,N ω-saturated
models of T, I : M ∼=p N where I is the set of all partial isomorphisms
betweenM and N whose domain is a finitely generated substructure ofM.

Now assume the language L of the theory is denumerable. Then:

3. T is complete and ω-categorical iff for any M,N models of T there exists a
set I such that I :M ∼=p N .

4. T is complete, ω-categorical and admits quantifier elimination iff for any
M,N models of T, I : M ∼=p N where I is the set of all partial isomor-
phisms between M and N whose domain is a finitely generated substructure
ofM.

The proof of this theorem requires many previous results, so we will only give
a sketch of the proof of (1) and, if the readers want further information, they may
consult [2].

Lemma 4.2.21 Let M,N be two ω-saturated L-structures. If M ≡ N then I :
M ∼=p N for some set I.

Proof: AssumeM ≡ N and consider I = {f : f ∈ S0(M,N ) elementary with a
finite domain }. Claim: I :M ∼=p N .
First notice that I 6= ∅ because, sinceM≡ N , ∅ ∈ I. Now, take f ∈ I, a ∈M . We
can name A = dom(f) ⊆ M , and we know it is finite, thus p(x) = tp(a/A) is a
type over A. Then q(x) = p(x)f = {ϕ(x, f(a1), ..., f(an)) : ϕ(x, a1, ..., an) ∈ p(x)}
is a type over B = rec(f) and, because of the ω-saturation of N , there is b ∈ N
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such that b realizes q(x). As a consequence, g = f ∪ {(a, b)} extends f and verifies
the forth condition. For symmetry, it will also verify the back condition. 2

It is obvious that the converse is true, because every ∞-isomorphism is an ω-
isomorphism.

Proposition 4.2.22 Let T be a theory. T is complete iff for anyM,N ω-saturated
models of T there exists a set I such that I :M ∼=p N .

Proof: AssumeM,N are two ω-saturated models of the complete theory T . Hence
M≡ N and, because of the previous lemma, there is I 6= ∅ such that I :M ∼=p N .
Conversely, let us take M,N , two models of T . In order to see T is complete, it
suffices to see that they are elementarily equivalent. Now, considerM′,N ′ two ω-
saturated models of T such thatM�M′ and N � N ′. ThenM≡M′ ≡ N ′ ≡ N
by hypothesis, and we can conclude that T is complete. 2

Now that we have proven (1), one of the implications in (3) is also easy to see:
if L is a denumerable language and for any M,N models of T there exists a set
I such that I : M ∼=p N , then T is complete and ω-categorical. It is complete
because any ω-saturated models of T are partially isomorphic via some set I, and
it is ω-categorical because of proposition 4.1.15.



Chapter 5

Some examples

5.1 Finitely generated Boolean algebras

The purpose of this chapter is to study the theories of atomless Boolean algebras
and of infinite atomic Boolean algebras. This will give us some clues on how to
complete the theory of Boolean algebras in particular cases and will serve as an
example of how to prove quantifier elimination.

Definition 5.1.1 The set 2n is the set of all mappings from {0, 1, ...,n − 1} to
{0, 1}.

It is obvious that 2n is also a natural number, but the context is enough to distin-
guish both different meanings.

Definition 5.1.2 Let A be a Boolean algebra, ε ∈ 2n and a = (a1, ..., an) be an
n-tuple in A. Then εa = ε(0)a1 ∧ ... ∧ ε(n− 1)an, where 0ai := ac

i and 1ai := ai.
εa is called a bit of a.

Observation 5.1.3 Let A = 〈a1, ..., an〉 be a Boolean algebra. For every a in A,
a 6= 0, there exist ε1, ..., εk ∈ 2n such that a = ε1a∨ ...∨ εka where a = (a1, ..., an).

Proof: This follows immediately from the fact that every element in A can be
written in its disjunctive normal form. 2

Observation 5.1.4 Any finitely generated Boolean algebra is finite.

Proof: The proof follows trivially from 5.1.3. 2

Observation 5.1.5 εa is equal to 0 or it is an atom.

Proof: Let’s assume εa is neither 0 or an atom. Then there is b in A such that
0 < b < εa, and b = ε1a∨ ...∨ εka for some ε1, ..., εk because of 5.1.3. Since b 6= 0,

27
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εia 6= 0 for some i ∈ {1, ..., k}, and εia 6 b 6 εa. Then εi = ε follows from εia 6 εa,
because if there was j such that εi(j) 6= ε(j), for example, ε(j) = 0 and εi(j) = 1,
we could consider εia = εia ∧ aj ≤ εa ∧ aj = 0, due to ac

j 6 εa. In this case, we
would get εia = 0, which gives us a contradiction! 2

Observation 5.1.6 For any atom x in A = 〈a1, ..., an〉, x=εa for some ε ∈ 2n.
Proof: Let x be an atom. By observation 5.1.3, x = ε1a ∨ ... ∨ εka. Notice that
for every i = 1, ..., k, εia 6 x so, since x is an atom, for every i = 1, ...k, εia = 0 or
εia = x. We know εia 6= 0 for some i, because otherwise we would get x = 0, thus
εia = x, as required. 2

Lemma 5.1.7 Let A and B be two finite Boolean algebras with atoms a1, .., an and
b1, ..., bn (ai 6= aj , bi 6= bj if i 6= j). There exists f : A 7−→ B an isomorphism such
that f(ai) = bi for every i = 1, ...,n.
Proof: Notice that, since A,B are finite, they are both atomic, and so they are
generated by their atoms: A = 〈a1, ..., an〉 and B = 〈b1, ..., bn〉. Consider now:

f : A −→ B
a =

∨
16i6l ai −→ f(a) =

∨
16i6l bi

It is clear that this mapping verifies f(ai) = bi for every i = 1, ...,n. Let’s see that
it is an isomorphism between Boolean algebras:

• It is easy to see that f preserves ∨, because if x majorizes a1, ..., ak and y
majorizes a′1, ..., a′k, then x∨ y majorizes a1, ..., ak, a′1, ..., a′k.

• f(ac) =
∨
j∈J bj , where aj 6 ac for every j ∈ J . Then, since 1B =

∨
j∈J bj ∨∨

j/∈J bj and 1A = ac ∨ a =
∨
j∈J aj ∨

∨
j/∈J aj , f(a)c = (

∨
j/∈J bj)

c =
∨
j∈J bj =

f(ac).

• It is surjective because B is atomic.

• It is one-to-one because if two elements are different in an atomic algebra,
they majorize different atoms.

2

Proposition 5.1.8 Let A = 〈a1, ..., an〉 and B = 〈b1, ..., bn〉. Let’s assume that for
every ε ∈ 2n, εa = 0 ⇔ εb = 0. Then there is an isomorphism f : A 7−→ B such
that f(ai) = bi for every i = 1, ...,n.
Proof: This follows from the fact that the atoms in A are εa, with ε ∈ 2n such
that εa 6= 0, and the same for the atoms in B. As a consequence, A and B have the
same number of atoms and there is f such that f(εia) = εib because of the previous
lemma. Now we need to prove that f(ai) = bi, but this results from the fact that
the atoms majorized by ai are the elements εa 6= 0 such that ε(i− 1) = 1, because
then f(εa) = εb, and the atoms below εb also verify ε(i− 1) = 1, and these are the
ones that are are majorized by bi. This added to the fact that an homomorphism
between Boolean algebras preserves ∨, gives us f(ai) = bi. 2
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Observation 5.1.9 The converse of 5.1.8 is also true.

5.2 Atomless Boolean algebras

The axioms of the theory of atomless Boolean algebras are the universal quan-
tification of the following formulas:

x∧ y = y ∧ x, x∨ y = y ∨ x,
x∨ (y ∨ z) = (x∨ y) ∨ z, x∧ (y ∧ z) = (x∧ y) ∧ z,

(x∧ y) ∨ y = y, (x∨ y) ∧ y = y,
x∧ (y ∨ z) = (x∧ y) ∨ (x∧ z), x∨ (y ∧ z) = (x∨ y) ∧ (x∨ z),

x∧ xc = 0, x∨ xc = 1,
¬At(x), 0 6= 1.

Recall that At(x) is x 6= 0 & ¬∃y(y 6= 0 & x ∧ y = y). We only add the axiom
0 6= 1 in order to exclude the trivial algebra as a model of the theory.

Theorem 5.2.1 The theory of atomless Boolean algebras is complete, ω-categorical
and admits quantifier elimination in the language L = {∧,∨,c , 0, 1}.

Proof: Due to theorem 4.2.20, it suffices to see that for any A,B models of T ,
I : A ∼=p B, where I is the set of all partial isomorphisms from A to B whose
domain is a finitely generated substructure of A. It is obvious that I 6= ∅, because
we can consider the algebra {0, 1} and the mapping f that sends 0A to 0B and 0A
to 1B.
Let us take f ∈ I, an isomorphism between A0 = 〈a1, ..., an〉 and B0 = 〈b1, ..., bn〉,
subalgebras of A and B, respectively, in a way such that f(ai) = bi for every
i = 1, ...,n. The only thing we need to prove is that the back-and-forth conditions
hold. Furthermore, we only need to prove the forth condition because the back
condition will also hold for symmetry.
Consider a ∈ A. What we need to find is g ∈ I such that f ⊆ g and g is an
isomorphism between 〈a1, ..., an, a〉 and 〈b1, ..., bn, b〉 for some b ∈ B. Now, because
of proposition 5.1.8, it suffices to see that for every ε ∈ 2n+1, εa′ = 0 iff εb

′
= 0

(where a′ = (a1, ..., an, a), and b
′
= (b1, ..., bn, b)). This is equivalent to see that,

for every ε ∈ 2n,

εa∧ a = 0⇔ εb∧ b = 0,
εa∧ ac = 0⇔ εb∧ bc = 0,

where a = (a1, ..., an) and b = (b1, ..., bn). Since A0 ∼= B0, we know εa = 0⇔ εb =
0. As a consequence, we only need to find b that satisfies the previous conditions
for every ε ∈ 2n that verifies εa 6= 0, because otherwise the result is immediate. Let
ε1, ..., εl be the only elements ε in 2n such that εa 6= 0. Now, for every i, 1 6 i 6 l,
we define ci in the following way:
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1. If εia∧ a = 0, we will take ci = 0.

2. If εia∧ ac = 0, we will take ci = εib.

3. If none of the previous is true we will do the following: since B is an atomless
Boolean algebra and εib 6= 0, εib = x∨y for some x, y 6= 0, such that x∧y = 0.
Then we take ci = x.

Claim: we can take b =
∨

16i6l ci. Fix i such that 1 6 i 6 l.

• Assume εia∧ a = 0. We know that εib∧ b = εib∧ (
∨

16j6l cj) =
∨

16j6l(εib∧
cj). In order to see that this expression equals 0, we will show that εib∧ cj = 0
for every j. This is true for j = i, because we have chosen ci = 0. For i 6= j,
it suffices to realise cj 6 εjb implies εib∧ cj 6 εjb∧ εib = 0.

• Now assume εia ∧ a 6= 0. Notice that this is only possible in the second or
the third case of the definition of ci, and that we want to see εib∧ b 6= 0. But
εib∧ b =

∨
16j6l(εib∧ cj), thus if we prove εib∧ cj 6= 0 for some j, we will get

what was required. Now, remember that in case (2) ci = εib, and in case (3),
ci = xi 6 εib, so ci ∧ εib = ci 6= 0 follows.

• Assume εia ∧ ac = 0. We want to show εib ∧ bc = 0, but εib ∧ bc = εib ∧
(
∨

16j6l cj)
c = εib ∧

∧
16j6l c

c
j = (εib ∧ cc

i ) ∧
∧

16j6l,i 6=j c
c
j = (εib ∧ εib

c
) ∧∧

16j6l,i 6=j c
c
j = 0, using that the only case possible is the second one and

this means ci = εib.

• Assume now εia∧ ac 6= 0. This is only possible in cases (1) or (3).
Now, in case (1), we have already proved that εia∧ a = 0 implies εib∧ b = 0,
thus it is not possible that εib∧ bc = 0, because if both of them were equal to
0, we would get εib = 0. As a consequence, εib∧ bc 6= 0.
If case (3) were to happen, then εib∧ (

∨
16j6l cj)

c =
∨

16j6l(εib∧ (cc
j ∧ εjb)).

Remember in case (3), ci = xji 6 εib and cc
i ∧ εib = yi 6 εib. As a

consequence, 0 6= yi = εib ∧ (cc
j ∧ εjb) 6

∨
16j6l(εib ∧ (cc

j ∧ εjb)). Hence,∨
16j6l(εib∧ (cc

j ∧ εjb)) = εib∧ bc 6= 0, as we wanted to prove.

2

5.3 Atomic and infinite Boolean algebras

The axioms of the theory of atomic and infinite Boolean algebras are the uni-
versal quantification of the following formulas:
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x∧ y = y ∧ x, x∨ y = y ∨ x,
x∨ (y ∨ z) = (x∨ y) ∨ z, x∧ (y ∧ z) = (x∧ y) ∧ z,

(x∧ y) ∨ y = y, (x∨ y) ∧ y = y,
x∧ (y ∨ z) = (x∧ y) ∨ (x∧ z), x∨ (y ∧ z) = (x∨ y) ∧ (x∨ z),

x∧ xc = 0, x∨ xc = 1,
∀x(x 6= 0→ ∃y(y ∧ x = y & At(y))), {∃x1, ...,xn(&16i<j6n ¬xi = xj)}n<ω.

We will expand the usual language in order to prove that the theory is complete and
admits quantifier elimination. We will add the predicates Am(x) for every m ∈ ω,
which mean "x is greater that, at least, m atoms":

∀x(Am(x)⇔ ∃y1, ..., ym(&16i<j6m yi 6= yj &16i6m (yi 6 x & At(yi)))

Observation 5.3.1 If we prove T ′ is complete, where T ′ is the theory of atomic
and infinite Boolean algebras expanded using the language with the predicates Am
containing the correspondent definitions, then the usual theory of these algebras is
complete too.

Proof: This is because, for any sentence ϕ in the language L, T ′ |= ϕ or T ′ |= ¬ϕ
because of its completeness. Since T |= ϕ iff T ′ |= ϕ, we get T is complete, too. 2

Observation 5.3.2 Isomorphisms between structures must preserve the predicates
defined in the language. For this reason, if we expand the language adding Am(x)
and f is an isomorphism between structures in this language, it must verify Am(x)⇔
Am(f(x)) for every m ∈ ω.

Lemma 5.3.3 In an ω-saturated Boolean algebra B, if a is an element greater than
infinitely many atoms, then there exists b ∈ B such that a ∧ b and a ∧ bc are both
greater than infinitely many atoms.

Proof: Consider the set Γ(x) = {Am(x ∧ a)}m∈ω ∪ {Am(a ∧ xc)}m∈ω. We claim
that Γ(x) is a type. In order to see this, we only need to see that it is consistent,
i.e. that every finite subset of Γ(x) is consistent. Any finite subset of Γ(x) is of
the form Γ0(x) ⊆ {A1(x ∧ a), ...,Am(x ∧ a),A1(a ∧ xc), ...,Am(a ∧ xc)} for some
m ∈ ω. It is known that A |= A2m(a), thus we can take a1, ..., a2m different atoms
below a. Then, taking b = a1 ∨ ... ∨ am, it is easy to see that a1, ..., am 6 a ∧ b
and am+1, ..., a2m 6 a ∧ bc. As a consequence, Γ0(x) is consistent, and so is Γ(x).
Now that we know that Γ(x) is a type, we get that there must be b ∈ B such that
Am(b∧ a) and Am(a∧ bc) for every m ∈ ω, because since B is ω-saturated, it must
realize Γ. 2

Theorem 5.3.4 The theory of infinite and atomic Boolean algebras is complete
and admits quantifier elimination in the language {∧,∨,c , 0, 1} ∪ {Am}m∈ω.

Proof: Due to theorem 4.2.20, it suffices to see that, for any A,B ω-saturated
models of the theory, I : A ∼=p B, where I is the set of all partial isomorphisms
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from A to B that have a finitely generated substructure of A as its domain. Notice
that I 6= ∅ because both models admit the Boolean algebra {0, 1} as a subalgebra,
thus we can take f , the mapping that sends 0A to 0B and 1A to 1B. We know it
preserves the predicates because both A and B are infinite, thus they must have
infinitely many atoms and we get Am(1A) and Am(1B).
Take f ∈ I such that f is an isomorphism between the subalgebras A0 = 〈a1, ..., an〉
of A and B0 = 〈b1, ..., bn〉 of B. We also take a ∈ A. For the back-and-forth
conditions to hold, we only need to find b ∈ B such that for every ε ∈ 2n:

Am(εa∧ a)⇔ Am(εb∧ b) for each m,
Am(εa∧ ac)⇔ Am(εb∧ bc) for each m.

First notice that, if these conditions hold, then:

εa∧ a = 0⇔ εb∧ b = 0,
εa∧ ac = 0⇔ εb∧ bc = 0,

Am(x)⇔ Am(f ′(x)) for any x ∈ 〈a1, ..., an, a〉,

where f ′ extends f and is an isomorphism between 〈a1, ..., an, a〉 and 〈b1, ..., bn, b〉.
This is because, since we are working with atomic algebras, εa∧ a = 0 iff ¬A1(εa∧
a) iff ¬A1(εb ∧ b) iff εb ∧ b = 0, and the same argument can be made for εa ∧ ac

and εb ∧ bc. Let’s see that the third condition also holds. If a′ = (a1, ..., an, a)
and b′ = (b1, ..., bn, b), then we know that any x in 〈a1, ..., an, a〉 can be expressed
like x = ε1a

′ ∨ ... ∨ εka′ for some ε1, ..., εk ∈ 2n+1. Since εia′ ∧ εja′ = 0 if i 6= j,
Am(ε1a

′ ∨ ... ∨ εka′) iff Ami(εia
′) for some mi such that m = Σ16i6kmi, and this

will happen iff Ami(εib
′
) for some mi such that m = Σ16i6kmi or, equivalently,

Am(ε1b
′ ∨ ...∨ εkb

′
). Notice that we have just proven that Am(x) iff Am(f ′(x)).

Let’s fix εi ∈ 2n such that εia 6= 0 and consider the cases:

1. If Am(εia) and ¬Am+1(εia), the same is true for εib. In addition, we also
know εia∧ a and εia∧ ac are greater than p and q atoms, respectively, where
m = p+ q. In this case, we take ci as the supremum of the p atoms x1, ...,xp
such that xj 6 εib for every j 6 p. In the particular case that εia ∧ a = 0
then we take ci = 0, and if εia∧ ac = 0, then ci = εib.

2. εia is greater than infinitely many atoms, εia∧ a is greater than p atoms and
εia∧ac is greater than infinitely many atoms. Since, in this case, εib is greater
than infinitely many atoms, we can take ci to be the supremum of p of them:
ci =

∨
16j6p xj where xj ∈ Di for every j, xj 6= xk if j 6= k, and Di = {x : x

is an atom and x 6 εib}.

3. εia is greater than infinitely many atoms, εia∧ ac is greater than p atoms and
εia ∧ a is greater than infinitely many atoms. Then ci = εib ∧ (

∧
16j6p x

c
j)

where xj ∈ Di are different atoms for every j.
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4. εia is greater than infinitely many atoms, and so are εia∧a and εia∧ac. Then
we can split εib in two parts such that they are both greater than infinitely
many atoms, because of the previous lemma. In this case we can take ci to
be one of this parts.

Claim: we can take b =
∨

16j6l cj .
Assume Am(εia ∧ a). Then, by the choice of ci, we know that ci is the supre-
mum of, at least, m different atoms x1, ...,xm such that xj 6 εib for every j =
1, ...,m. Then x1, ...,xm 6 εib ∧ ci 6 εib ∧ (

∨
16j6l cj) = εib ∧ b, thus we get

Am(εib ∧ b). Conversely, if Am(εb ∧ b), then Am(
∨

16j6l(εjb ∧ cj)), and this is
equivalent to Amj (

∨
16j6l(εib∧ cj)) for some mj such that m = Σ16j6lmj , because

(εib ∧ cj) ∧ (εib ∧ ck) = 0 if i 6= k. But εib ∧ cj = 0 if i 6= j, thus mj = 0 for any
j 6= i, so Am(εib∧ ci). As a consequence, Am(εia∧ a).

An analogous argument can be made to prove thatAm(εia∧ac) impliesAm(εib∧
bc). Now, if we assume Am(εib∧ bc) then, since bc =

∨
16j6l(εjb∧ cc

j), we get that
Am(

∨
16j6l εib ∧ (εjb ∧ cc

j)), thus Am(εib ∧ cc
i ), because if i 6= j, εib ∧ εjb ∧ cc

j = 0.
As a consequence, we get Am(εia∧ ac), as required.

2



Chapter 6

Classification of the complete
theories of Boolean algebras

6.1 Atomic elements

Let B=〈B, ∧,∨,c, 0, 1〉 a Boolean algebra.

Definition 6.1.1 Let a be an element in B. Then B|a = {x ∈ B : x 6 a}.

Observation 6.1.2 If we define xa = xc ∧ a, then B|a=〈B|a, ∧,∨,a, 0, a 〉 is a
Boolean algebra, where ∧ and ∨ are the restrictions of ∧,∨ in the universe B|a.

Definition 6.1.3 Let A,B be Boolean algebras defined on the sets A, B, respec-
tively, with the usual operations. Then we can define operations in A×B in the
following way:
For any (x, y), (u, v) ∈ A×B,

(x, y) ∧A×B (u, v) = (x∧ u, y ∧ v),
(x, y) ∨A×B (u, v) = (x∨ u, y ∨ v),

(x, y)cA×B = (xc, yc).

Observation 6.1.4 A×B = 〈A×B,∧A×B,∨A×B,cA×B , (0, 0), (1, 1)〉 is a Boolean
algebra. It is called product algebra of A and B.

Observation 6.1.5 Fix a ∈ B. Then for all x ∈ B there are y, z ∈ B such that
x = y ∨ z, where y ∈ B|a and z ∈ B|ac. In fact, y = x∧ a and z = x∧ ac: they are
unique. If we consider the mapping:

f : B −→ B|a×B|ac

x −→ f(x) = (x∧ a,x∧ ac)

we get that f is an isomorphism and, as a consequence, B ∼= B|a×B|ac

34
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Definition 6.1.6 An element a ∈ B is said to be atomic iff B|a is an atomic
Boolean algebra. An element a ∈ B is said to be atomless iff B|a is atomless.

Proposition 6.1.7 For any a ∈ B,

1. B is atomic iff B|a,B|ac are atomic.

2. B is atomless iff B|a,B|ac are atomless.

Proof:

1. We will prove a more general property: A,B are atomic iff A×B is atomic.
Assume that A,B are atomic and take any (x, y) ∈ A×B, (x, y) 6= (0, 0).
If x 6= 0 then there is a ∈ A such that a is an atom and a 6 x, thus
(a, 0) 6 (x, y). Notice that (a, 0) is an atom in A×B. Now, if x = 0, then
y 6= 0 and, since B is atomic, there is b ∈ B such that b 6 y and b is an
atom. This results in (0, b) 6 (x, y), and we know that (0, b) is an atom. In
any of the two possible cases, we have found an atom z ∈ A×B such that
z 6 (x, y), so A×B must be atomic.

Conversely, assume for all (x, y) ∈ A×B such that (x, y) 6= (0, 0) there exists
an atom (a, b) such that (a, b) 6 (x, y). Then, for every x ∈ A, x 6= 0 there is
an atom a ∈ A such that a 6 x. In order to see this, it suffices to take the first
component of the atom (a, b) ∈ A×B such that (a, b) 6 (x, 0). This shows
that A is atomic, and a similar argument can be made to see that B is atomic.

2. Let’s prove that A,B are atomless iff A×B is atomless.
If A,B are atomless and (a, b) is an atom in A×B, then either a is an atom
in A and b is 0, or b is an atom in B and a = 0. The fact that one of them
must be 0 for (a, b) to be an atom is trivial, because otherwise (a, 0) < (a, b)
or (0, b) < (a, b), depending on the case. Now, assume a = 0. Then b must
be an atom, because otherwise there would be y ∈ B such that y < b and
(0, y) < (0, b) = (a, b)! This is a contradiction with the fact that B is atom-
less, thus A×B must be atomless too. A similar argument can be made if
b = 0

Conversely, if A×B are atomless and a is an atom in A, then (a, 0) would be
an atom in A×B! This implies that there cannot be any atom in A: it must
be atomless. We can use a similar argument to prove that if b is an atom in
B, (0, b) is an atom in A×B, so B must be atomless too.

2

Definition 6.1.8 I(B)={x ∈ B : x = y ∨ z for some y, z such that y is atomic and
z is atomless}.
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Observation 6.1.9 It is easy to see that I(B) is an ideal of B, maybe an improper
one.

Proposition 6.1.10 If B is atomic or has a finitely many atoms, then I(B) = B.

Proof: If B is atomic, any element x in B is atomic. Then x = x∨ 0, where x is
atomic and 0 is atomless. As a consequence, I(B) = B.
If B has a finite number of atoms and we take x ∈ B, then x = y ∨ z, where
y =

∨
16i6n yi, and {y1, ..., yn} is the set of atoms in B such that yi 6 x for every i,

and z = x∧ yc. Note that y is atomic and z is atomless, so the result is proven. 2

6.2 Invariants

The main purpose of this and the next section is to find a uniform way to com-
plete the theory of Boolean algebras so that every possible completion appears. In
order to do this, we need to define some concepts.
For B a Boolean algebra, we will now define by induction a sequence of homomor-
phisms, ideals and quotient algebras:
Let x be an element in B.Then

x(0) = x,
I(0) = {0},
B(0) = B,

and, for any k < ω,

x(k+1) = x(k)/I(B(k)),
I(k+1) = {x ∈ B : x(k+1) = 0},

B(k+1) = B(k)/I(B(k)).

Notice that for any k < ω,

• The set I(k) is an ideal of B.

• {(x,x(k)) : x ∈ B} is an homomorphism from B onto B(k). The kernel of this
homomorphism is I(k). As a consequence,

B(k) ∼= B/I(k).

Observation 6.2.1 Due to proposition 6.1.10, if B(k) is atomic or has a finite
number of atoms, B(k+1) is trivial.

Proposition 6.2.2 There are formulas ϕk(x),ψk(x), ρk(x), ηk,l(x),σk,l(x) for ev-
ery k, l < ω such that, for any a ∈ B:
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1. B � ϕk(a) iff a ∈ I(k).

2. B � ψk(a) iff a(k) is atomic in B(k).

3. B � ρk(a) iff a(k) is atomless in B(k).

4. B � ηk,l(a) iff a(k) majorizes at least l atoms in B(k).

5. B � σk,l(a) iff a(k) majorizes at most l atoms in B(k).

Proof: We will show this by induction:
If k = 0,

1. ϕ0(x) is x = 0.

2. ψ0(x) must say that x is atomic in B. Then ψ0(x) is

∀y(y 6 x & 0 < y → ∃z(z 6 y & At(z))).

3. ρ0(x) must say that x is atomless in B. Then ρ0(x) is

∀y(y 6 x→ ¬At(y)).

4. η0,l(x) must say that x majorizes at least l atoms in B. Then η0,l(x) is

∃y1, ..., yl(&16i6l (yi 6 x) & &16i<j6l (¬yi = yj) &16i6l At(yi)).

5. σ0,l(x) must say that x majorizes at most l atoms in B. Then σ0,l(x) is

¬η0,l+1(x).

Now assume we have found the formulas for k:
Notice that ϕj(x) means x(j) = 0. We know for every x, y, x 6 y ⇒ x ∧ yc = 0.
Therefore, we will write ϕj(x∧ yc) for x(j) 6 y(j).

1. x ∈ I(k+1) iff x(k+1) = 0 ⇔ ∃y, z ∈ B(k) such that y is atomic in B(k), z
is atomless in B(k) and x(k) = y ∨ z ⇔ ∃y, z ∈ B such that y(k) is atomic
in B(k), z(k) is atomless in B(k) and x(k) = y(k) ∨ z(k). Then the formula
ϕk+1(x) is

∃y, z(x = y ∨ z & ψk(y) & ρk(y)).

2. x(k+1) is atomic in B(k+1) iff ∀y ∈ B(k+1)|x(k+1)(y > 0 → ∃z ∈ B(k+1)(0 <
z 6 y ∧¬∃u ∈ B(k+1)(0 < u < z))). Then the formula ψk+1(x) is

∀y(ϕk+1(y ∧ xc) & ¬ϕk+1(y)→ ∃z(¬ϕk+1(z) & ϕk+1(z ∧ yc) &

∀u(ϕk+1(u∧ zc) & ¬ϕk+1(z ∧ uc)→ ϕk+1(u)))).
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3. x(k+1) is atomless in B(k+1) iff there is no atom in B(k+1)|x(k+1). Then the
formula ρk+1(x) is

∀y(ϕk+1(y∧xc)→ ϕk+1(y) t ∃z(¬ϕk+1(z) & ¬ϕk+1(y∧zc) & ¬ϕk+1(z∧yc))).

4. ηk+1,l(x) is

∃y1, ..., yl( &16i6l (ϕk+1(yi∧xc) & ¬ϕk+1(yi) & &16j6l,j 6=i (¬ϕk+1(yi∧yc
j )

t ¬ϕk+1(yj ∧ yc
i )) & ∀z(¬ϕk+1(z) & ϕk+1(z ∧ yc

i )→ ϕk+1(yi ∧ zc))).

5. σk+1,l(x) is
¬ηk+1,l+1(x).

2

Consider the sequence B(0),B(1), ...,B(k). It is obvious that if one Boolean alge-
bra in the sequence is trivial, all the following ones will be trivial too. Nevertheless,
there is always the option that B(k) never becomes trivial.
Assume k is the first integer such that B(k+1) is trivial. Then B(k) is not, and
every element in B(k) is in I(B(k)). But what can be said about the atoms in B(k)

(if there are any)? The invariants will help us to classify the theories of Boolean
algebras by giving this kind of information.

Definition 6.2.3 We assign a pair of invariants (m(B),n(B)) to any non-trivial
Boolean algebra B as follows:

m(B) =

{
the least k < ω such that B(k+1) is trivial,
∞, otherwise.

n0(B) =

{
∞, if m(B) = k and B(k+1) has infinitely many atoms,
l, if m(B) = k and B(k) has l atoms.

}

n(B) =


0, if m(B) =∞,
n0(B), if m(B) = k < ω and B(k) is atomic,
−n0(B), if m(B) = k < ω and B(k) is not atomic.


Notice that m(B) indicates when does the sequence become trivial. The sign

of n(B) indicates whether B(m(B)) is atomic or not, and its absolute value is the
number of atoms in the algebra.

Observation 6.2.4 If m(B) = k < ω and n(B) = 0 then B(k) is atomless.
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Proposition 6.2.5 The following properties can be expressed by a sentence for any
k, l < ω:

1. m(B) = k

2. m(B) = k,n(B) = l

3. m(B) = k,n(B) = −l

4. m(B) =∞

5. m(B) = k,n(B) =∞

6. m(B) = k,n(B) = −∞

Proof: There is a formula that expresses B(k) is trivial: ∀x(ϕk(x)). This, added
to what we have proven in proposition 6.2.2, gives this result. 2

Proposition 6.2.6 B(k) ∼= (B|a)(k) × (B|ac)(k)

Proof: It suffices to apply the result in observation 6.1.5 to B(k) and to prove
(B|a)(k) = B(k)|a(k). See [5], lemma 18.3. 2

6.3 Classification

Proposition 6.3.1 Take a ∈ B. Then:

1. m(B) = max(m(B|a),m(B|ac))

2. m(B|a) < m(B|ac)⇒ m(B) = m(B|ac) and n(B) = n(B|ac)

3. Assume m(B|a) = m(B|ac) <∞. Then n(B) is characterized as follows:

(a) n(B) = 0 iff n(B|a) = n(B|ac) = 0
(b) n(B) > 0 iff n(B|a) > 0 and n(B|ac) > 0
(c) n(B) < 0 iff n(B|a) 6 0 or n(B|ac) 6 0 but not both 0 at the same time

4. m(A|a) = m(B|ac) <∞⇒ n0(B) = n0(B|a) + n0(B|ac)

Proof:

1. This follows from proposition 6.2.6: B(k) × {0} is not trivial if B(k) is not
trivial.

2. m(B) = m(B|ac) because of 1. As a consequence, n(B) = n(B|ac), because
the atoms in {0} × (B|ac)(k) are (0,x), where x is an atom in (B|ac)(k).
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3. All characterizations follow from propositions 6.2.6 and 6.1.7 but the last one,
which is just a consequence from the previous two.

4. The atoms in B(k) are isomorphic to the elements (b, 0) and (0, c), where b
is an atom in (B|a)(k) and c is an atom in (B|ac)(k). Therefore, n0(B) =
n0(B|a) + n0(B|ac)

2

Lemma 6.3.2 Let A,B be two non-trivial Boolean algebras such that (m(A),n(A))
= (m(B),n(B)). Assume B is ω-saturated. If we take a ∈ A, 0 6= a 6= 1, then
there is b ∈ B such that 0 6= b 6= 1 and

(m(A|a),n(A|a)) = (m(B|b),n(B|b))
(m(A|ac),n(A|ac)) = (m(B|bc),n(B|bc))

Proof: First of all, we need to distinguish several cases:

• Assume m(A|a) = m(A|ac) =∞.
Then ∞ = m(A) = m(B). As a consequence, for every k < ω there is c ∈ B
such that c(k) 6= 0, 1 in B(k). This is because, even though the condition
of not being trivial only gives us that there is c ∈ B such that c(k) 6= 0, if
B(k) was {0, 1} for some k, then B(k+1) would be trivial. What we need to
find is a certain b ∈ B such that m(B|b) = m(B|bc) = ∞ and, in order
to do this, it suffices to find b ∈ B such that b(k) 6= 0, 1 in B(k) for every
k. This is equivalent to see that the set of formulas {¬ϕk(x),¬ϕk(xc)}k<ω,
where ϕk is the one described in proposition 6.2.2, is a type. Let’s define
Σ = {¬ϕk(x),¬ϕk(xc)}k<ω. To prove its consistency, it suffices to take any
finite subset and see it is consistent: consider {¬ϕk(x),¬ϕk(xc)}k∈I , where
I ⊆ ω is finite, and let l be the maximum of I. Since we know that there is
x ∈ B(l) such that x(l) 6= 0, 1, we get that there is x ∈ B such that x(k) 6= 0, 1
for every k 6 l and, therefore, the consistency of this set is granted. As a
result, Σ must be consistent too. Now that we know that Σ is a type over ∅,
we get that it is realized in B, since B is ω-saturated.
Therefore, we can conclude that there is b ∈ B such that b(k) 6= 0 for every
k < ω, thus m(B|b) = m(B|bc) =∞.

• Assume m(A|a) < m(A|ac).
Claim: to prove the lemma it suffices to find b ∈ B such that m(B|b) =
m(A|a) and n(B|b) = n(A|a).
This is because, in this case, by lemma 6.3.1
m(A|ac) = m(A) = m(B) = max(m(B|b),m(B|bc)) = m(B|bc)
n(A|ac) = n(A) = n(B) = n(B|bc)
And the result will be proven.
Let k = m(A|a). It is important to keep in mind during this part of the proof
that B(k) is not atomic and it has infinitely many atoms, because otherwise
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we would get that m(B) = k due to proposition 6.1.10, and we know k <
m(A|ac) = m(B). We can now distinguish several cases:

1. If n(A|a) = +∞, then we need to find x ∈ B such that x 6= 0,x 6=
1,x(k+1) = 0,x(k) 6= 0 and (B|x)(k) is atomic and has infinitely many
atoms. It will be done if we can prove the consistency of the set of for-
mulas: {ϕk+1(x)} ∪ {¬ϕk(x)} ∪ {ψk(x)} ∪ {ηk,l(x)}l<ω, because of the
ω-saturation of the Boolean algebra B. Now, an infinite set of formulas
is consistent iff any of its finite subsets is also consistent. For this rea-
son, we consider {ϕk+1(x)} ∪ {¬ϕk(x)} ∪ {ψk(x)} ∪ {ηk,0(x), ..., ηk,l(x)}
for some l < ω, and claim that any b defined as b = b1 ∨ ... ∨ bl, where
b
(k)
i are different atoms in B(k) for all i 6 l satisfies the set of formulas.
First notice that the atoms b(k)i actually exist because B(k) has infinitely
many atoms. Let’s see that b satisfies all the conditions required. It is ob-
vious that b(k) 6= 0 because b(k) = b

(k)
1 ∨ ...∨ b(k)l , and b(k)i 6= 0 for every i,

thus b 6= 0. (B|(b1 ∨ ...∨ bl))(k) has l atoms, b(k)1 , ..., b(k)l , and it is atomic,
because all elements in B(k)|(b1 ∨ ...∨ bl)(k) are of the form

∨
i∈I b

(k)
i for

some I ⊆ {1, ..., l}, so they majorize the atoms b(k)i , i ∈ I. Notice that
b 6= 1 because otherwise b(k) = b

(k)
1 ∨ ...∨ b(k)l = 1, and this would mean

that B(k) only has finitely many atoms, which is a contradiction with
the fact that m(B) > k. In conclusion, we get that b satisfies every for-
mula in the subset, so {ϕk+1(x)} ∪ {¬ϕk(x)} ∪ {ψk(x)} ∪ {ηk,l(x)}l<ω is
consistent, as required.

2. If 0 < n(A|a) <∞. We denote l = n(A|a). Then we need to find x ∈ B
such that x(k+1) = 0,x(k) 6= 0,x 6= 0,x 6= 1, and (B|x)(k) is atomic and
has l atoms. It suffices to take x = b1 ∨ ... ∨ bl where b

(k)
i is an atom in

B(k), for the reasons explained in the previous case. Remember that it is
obvious that there are at least l atoms in B(k) because otherwise B(k+1)

would be trivial.

3. If −∞ < n(A|a) < 0. We denote l = n(A|a). Notice that, in order
to prove the lemma, we need to find x ∈ B(k) such that x 6= 0,x 6=
1,x(k+1) = 0,x(k) 6= 0,x(k) 6= 1 and (B|x)(k) has l atoms but it is
not atomic. The situation is similar to the previous cases but now
we need to use the fact that B(k) is not atomic: we pick an element
c ∈ B(k) such that c does not majorize any atom. Then it suffices to
take x = b1 ∨ ... ∨ bl ∨ c where b

(k)
i are different atoms in B(k) for every

i 6 l, because B|(b(k)1 ∨ ... ∨ b(k)l ∨ c) has l atoms but it is not atomic
because c does not majorize any of them. The rest of the conditions
(b 6= 0, 1, b(k+1) = 0 but b(k) 6= 0) can be verified exactly as in the previ-
ous cases.
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4. If n(A|a) = −∞. Then we need to find x ∈ B such that x(k+1) =
0,x(k) 6= 0,x 6= 0, 1 and (B|x)(k) has infinitely many atoms but is not
atomic. It will be done if we can prove the consistency of the set of formu-
las: {x 6= 0&x 6= 1} ∪ {ϕk+1(x)} ∪ {¬ϕk(x)} ∪ {¬ψk(x)} ∪ {ηk,l(x)}l<ω,
because of the ω-saturation. This is an infinite set of formulas, so it
is consistent iff any of its finite subsets is consistent. Now, any subset
has the form {x 6= 0 & x 6= 1} ∪ {ϕk+1(x)} ∪ {¬ϕk(x)} ∪ {¬ψk(x)} ∪
{ηk,1(x), ..., ηk,l(x)}. Now, this is consistent because in case (3) we found
an element that satistfied every formula in the set.

5. If n(A|a) = 0. Since B(k) is not atomic or atomless, there must be b ∈ B
such that b(k) 6= 0, 1 and it does not majorize any atom. This means
(B|b)(k) is atomless, so n(B|b) = 0. This is the element b we are looking
for (we know b 6= 0, b 6= 1).

• The proof is analogous if m(A|ac) < m(A|a) = m(A)

• Assume m(A|a) = m(A|ac) <∞.
We note k = m(A) = m(A|a) = m(A|ac) = m(B). We can distinguish sev-
eral cases:

1. If n(A) = 0, then n(B) = 0 and, for every x ∈ B,n(B|x) = n(B|xc) =
0. As a consequence, to prove the result it suffices to take b ∈ B such
that b(k) 6= 0, 1 in B(k). We know that this element actually exists be-
cause otherwise B(k) would be atomic ({0, 1} is an atomic algebra).

2. If n(A) > 0, then n(A|a) > 0,n(A|ac) > 0 and n(B) = n(A) = n(A|a)+
n(A|ac). In order to prove the lemma we need to find b ∈ B such that
b(k) is atomic and has n(A|a) atoms in B(k) and (bc)(k) is atomic and has
n(A|ac) atoms in B(k). It is obvious that, for any b we pick to prove the
lemma, b(k+1) = 0, because k = m(B). Now, several situations ought to
be distinguished here:
(a) If n(A) = l and n(A|a) = l1,n(A|ac) = l2, where l1, l2 are positive

integers. Then l = n(A|a) + n(A|ac) = l1 + l2 and we know that
B(k) has l atoms. Let b1, ..., bl1 , ..., bl ∈ B be the elements such that
b
(k)
i are all the different atoms in B(k) for all i 6 l. It suffices to
take b = b1 ∨ ...∨ bl1 because, in this algebra, 1(k) = b

(k)
1 ∨ ...∨ b(k)l ,

so (bc)(k) = b
(k)
l1+1 ∨ ...∨ b(k)l . This means that (B|b)(k) has l1 atoms

(b(k)1 , ..., b(k)n ), and (B|bc)(k) has l − l1 = l2 atoms. Also, we know
that b 6= 0, 1, b(k) 6= 0.

(b) If n(A) = ∞ and n(A|a) = n(A|ac) = ∞. We need to find x such
that x 6= 0, 1, x(k) 6= 0, x(k+1) = 0 and (B|x)(k), (B|xc)(k) are both
atomic and have infinitely many atoms. Such element must verify
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every formula in the set Σ = {x 6= 0,x 6= 1} ∪ {ϕk+1(x),¬ϕk(x)} ∪
{ηk,l(x), ηk,l(x

c)}l<ω. If we consider a finite subset of Σ and see
it is consistent, we will get that such b exists because of the ω-
saturation of B. An arbitrary finite subset of Σ can be reduced to
{x 6= 0,x 6= 1} ∪ {ϕk+1(x),¬ϕk(x)} ∪ {ηk,l(x), ηk,l(x

c)} for some l,
and we have already shown this is consistent in the previous case.

(c) If n(A) =∞, n(A|a) = l but n(A|ac) =∞. We need to find x such
that x 6= 0, 1, x(k) 6= 0, x(k+1) = 0 and (B|x)(k), (B|xc)(k) are both
atomic but the first one has l atoms and the second one has infinitely
many. Such element must verify every formula in the set Σ = {x 6=
0,x 6= 1} ∪ {ϕk+1(x),¬ϕk(x)} ∪ {ηk,l(x), ηk,r(x

c)}r<ω ∪ {σk,l(x)}.
Therefore, such b exists iff Σ is consistent, and this is iff every fi-
nite subset of Σ is consistent. A finite arbitrary subset of Σ is of
the form {x 6= 0,x 6= 1} ∪ {ϕk+1(x),¬ϕk(x)} ∪ {ψk(x),¬ψk(xc)} ∪
{ηk,l(x), ηk,l(x

c)} ∪ {σk,l(x
c)}, and the fact that it is consistent re-

sults from the previous cases.
(d) If n(A) =∞, n(A|ac) = l but n(A|a) =∞. This case is handled in

an analogous way.
3. If n(A) < 0, then n(B) < 0 and n(B) = n(A). Given this situation, the

only possible cases are:

(a) n(A|a) > 0 and n(A|ac) = 0, or n(A|ac) > 0 and n(A|a) = 0,

(b) n(A|a) < 0 and n(A|ac) = 0 or n(A|ac) < 0 and n(A|a) = 0,

(c) n(A|a) > 0 and n(A|ac) < 0 or n(A|ac) > 0 and n(A|a) < 0,

(d) n(A|a) < 0 and n(A|ac) < 0.

We will only prove the first situation of each case, because the other one
is done similarly. Also, we will not prove conditions like b 6= 0, 1, b(k) 6= 0
or b(k+1) = 0 because the proof is exactly the same as in previous cases.
Of course, in any of this cases we also need to distinguish if n(A) is finite
or infinite.
(a) We need to find b ∈ B such that b 6= 0, 1, b(k) 6= 0, b(k+1) = 0 and

(B|b)(k) is atomic has l = n(A) atoms and (B|bc)(k) is atomless. Let
b1, ..., bl ∈ B be the elements such that b(k)i are all the different atoms
in B(k) for every i 6 l. Then it suffices to take b = b1 ∨ ...∨ bl. It is
easy to see that (B|b)(k) is atomic and has l atoms, and (B|bc)(k) is
atomless because there are no atoms left in B(k): all of them are in
(B|b)(k).

(b) We need to find b ∈ B such that b 6= 0, 1, b(k) 6= 0, b(k+1) = 0 and
(B|b)(k) is not atomic and has got l = n0(A) atoms and (B|bc)(k)
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is atomless. Since n(B) < 0, there has to be an element c ∈ B
such that c(k) does not majorize any atoms. We can split c in two
disjoint elements c = c1 ∨ c2, where c1, c2 6= 0. Then it suffices to
take b = b1 ∨ ... ∨ bl ∨ c1, where b(k)i are all the different atoms in
B(k). Since c1 < c, b(k) 6= 1. We know that (B|b)(k) has l atoms but
it is not atomic, because c(k)1 ∈ (B|b)(k) and it does not majorize
any atom. Also (B|bc)(k) is atomless because all the atoms in B(k)

are in (B|b)(k).
(c) We need to find b ∈ B such that b 6= 0, 1, b(k) 6= 0, b(k+1) = 0 and

(B|b)(k) is atomic has got l1 = n(A|a) atoms and (B|bc)(k) is not
atomic but has l2 = n0(A|ac) atoms. We will note l = l1 + l2, and
we know there are l atoms in B(k). Notice that it suffices to take
b = b1 ∨ ...∨ bl1 , where b

(k)
i are different atoms in B(k), because then

bc = bl1+1∨ ...∨ bl∨ c, where c is defined as b1∨ ...∨ bl∨ c = 1. Notice
that c not atomic, because n(B) < 0, so (B|bc)(k) has l − l1 = l2
atoms, and it is not atomic, as required.

(d) We need to find b ∈ B such that b 6= 0, 1, b(k) 6= 0, b(k+1) = 0 and
(B|b)(k), (B|bc)(k) are both not atomic and have l1 = n0(A|a), l2 =
n0(A|ac) atoms, respectively. Since B(k) is not atomic, b1 ∨ ... ∨
bl ∨ c = 1, where c 6= 0 is atomless in B(k). Then, we can split c
into c = c1 ∨ c2, where c1, c2 6= 0 but c1 ∧ c2 = 0, and we can take
b = b1 ∨ ... ∨ bl1 ∨ c1. We know that (B|b)(k) has l1 atoms but it is
not atomic because c1 ∈ B|b, and bc = bl1 ∨ ...∨ bl ∨ c2, which means
that (B|bc)(k) is not atomic either, and has l − l1 = l2 atoms, as
required.

2

Definition 6.3.3 Let A,B be two Boolean algebras and take a1, ..., an ∈ A and
b1, ..., bn ∈ B. It is said that (A, a1...an) is similar to (B, b1...bn) iff for every
ε ∈ 2n,A|εa and B|εb are both trivial or they have the same invariants. It is
written (A, a1...an) ≈ (B, b1...bn)

Observation 6.3.4 The previous definition is also valid for n = 0: It is said A,B
are similar iff they are both trivial or they have the same invariants. In this case
we write A ≈ B.

Lemma 6.3.5 Let B be an ω-saturated Boolean algebra. Then, for any b ∈ B, B|b
is ω-saturated.

Proof: This follows from the fact that a type over a1, ..., an inB|b can be translated
into a type over a1, ..., an, b in B, thus it must be realized. 2

Theorem 6.3.6 Let A,B be Boolean algebras. Then they are elementary equivalent
iff they are both trivial or they have the same invariants.
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Proof: The first implication is obvious because, if they are elementary equivalent,
for any sentence ϕ, A |= ϕ ⇔ B |= ϕ. Due to proposition 6.2.5, having a determi-
nate pair of invariants can be expressed using a sentence. As a consequence, A and
B must have the same invariants.
Conversely, assume A,B have the same invariants. We may also assume that they
are ω-saturated, because otherwise they both have ω-saturated elementary exten-
sion. We will prove A and B are partially isomorphic, i.e., there is a set I of partial
isomorphisms such that I : A ∼=p B.
Claim: I = {{(ai, bi) : i < n} : (A, ai)i<n ≈ (B, bi)i<n,n < ω} verifies I : A ∼=p B
It is obvious that I 6= ∅ because ∅ ∈ I. Now, to prove that the elements in
I are partial isomorphisms it suffices to see that, for every ε ∈ 2n, εa = 0 iff
εb = 0, where a = (a1, ..., an) and b = (b1, ..., bn). If we fix ε ∈ 2n, assuming
(A, a1...an) ≈ (B, b1...bn), then A|εa ≈ B|εb. Therefore, if εa = 0, then A|εa is
the trivial algebra and B|εb must be trivial too. For this to happen, εb must be
0, because otherwise εb ∈ B|εb, and it would not be trivial. The argument is the
same if we start assuming εb = 0.
The only thing left to prove is that the back-and-forth conditions hold. In fact, it
suffices to see that one of them holds, because we get the other one by symmetry. We
want to see that, for every a1, ..., an+1 ∈ A, and every b1, ..., bn ∈ B, if (A, a1...an) ≈
(B, b1...bn) then there is bn+1 ∈ B such that (A, a1...an+1) ≈ (B, b1...bn+1). In or-
der to see this, first we need to prove that, assuming (A, a1...an) ≈ (B, b1...bn),
for every ε ∈ 2n there is c 6 εb such that (A|εa ∧ an+1) ≈ (B|εb ∧ c) and
(A|εa∧ ac

n+1) ≈ (B|εb∧ cc).
Now, if (A, a1...an) ≈ (B, b1...bn) then A|εa ≈ B|εb. If they are both trivial, it
suffices to take c = 0. Otherwise:

• If εa ∧ an+1 = 0, then c = 0. The first condition is trivial and the second
one follows from the fact that, in this case, εa∧ ac

n+1 = εa, so A|εa∧ ac
n+1 =

A|εa ≈ B|εb = B|εb∧ cc.

• If εa∧ an+1 = εa, then c = εb. Similarly, the first condition is trivial and the
second one follows from the fact that, in this case, εa∧ ac

n+1 = 0.

• If 0 6= εa∧an+1 6= 0. Then, due to lemmas 6.3.5 and 6.3.2, we know that there
is c ∈ B|εb such that A|εa∧ an+1 ≈ B|εb∧ c and A|εa∧ ac

n+1 ≈ B|εb∧ cc.

Claim: If ε1, ..., εl are the only elements in 2n such that εia ∧ an+1 6= 0 for every
i = 1, ..., l, we can take bn+1 =

∨
16i6l ci

We want to check if (A, a1...an+1) ≈ (B, b1...bn+1), i.e. A|εia′ ≈ B|εib′ for any
εi ∈ 2n+1, where a′ = (a1, ..., an, an+1) and b

′
= (b1, ..., bn, bn+1).

• If εi(n) = 1, we want to see A|εia ∧ an+1 ≈ B|εib ∧ bn+1. Now B|εib ∧
bn+1 = B|εib∧ (

∨
cj) = B|

∨
16j6l(εib∧ cj). As a consequence, if we see that
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εib ∧ cj = 0 for every j 6= i, it will be done, because then
∨

16j6l(εib ∧ cj) =∨
16j6l,j 6=i(εib ∧ cj) ∨ εib ∧ ci = εib ∧ ci, and we just proved A|εia ∧ an+1 ≈

B|εib∧ ci.
Let’s prove εib ∧ cj = 0 for every j 6= i. We know cj 6 εjb, so εib ∧ cj =
εib∧ εjb∧ cj = 0 for all j 6= i. For this reason, we can conclude the proof in
this particular case.

• If εi(n) = 0, what we want to show is A|εia ∧ ac
n+1 ≈ B|εib ∧ bc

n+1 for every
εi ∈ 2n. Now, bc

n+1 =
∨

16j6l(εj ∧ cc
j). As a consequence, εib ∧ bn+1 =

εib∧
∨

16j6l(εjb∧ cc
j) =

∨
16j6l(εib∧ εjb) ∧ cc

j = εib∧ cc
i , due to the fact that

εib ∧ εjb = 0 if i 6= j. This means A|εia ∧ ac
n+1 ≈ B|εib ∧ cc

i = B|εib ∧ bc
n+1,

as we wanted to show.

Since we have proven the result for all the possible cases, we can end the proof saying
that the back-and-forth conditions hold and, therefore, A and B are elementary
equivalent. 2

Proposition 6.3.7 For every pair of invariants (m,n), there is a Boolean algebra
B such that (m(B),n(B)) = (m,n).

Proof: See [8]. Proposition 18.5. 2

This is, that given a pair (m,n), we can construct T(m,n): a theory in the usual
language of Boolean algebras which consists on expanding the usual one with the
formulas that mean "the invariants of the models of this theory are (m,n)".

Let’s take a moment to think about the consequences of this last theorem. Re-
member that we said in chapter 3 that a theory is complete iff any two models of
the theory are elementary equivalent. If we consider T(m,n), for any pair (m,n), we
know that any two models of this theory are elementarily equivalent, because they
are Boolean algebras with the same invariants. Hence, T(m,n) is a complete theory,
and we reach the conclusion that we only need to add the invariants to the theory
of Boolean algebras in order to complete it. Moreover, all completions of the theory
of Boolean algebras appear as T(m,n) for some m,n. The theory of the trivial al-
gebra is formed by adding the axiom 0 = 1 to the general theory of Boolean algebras.

In chapter 4 we studied the theories of atomless Boolean algebras and atomic
and infinite Boolean algebras and, after a rather long proof, we got that they were
both complete. Let’s see what happens if we study their invariants:

• Because of proposition 6.1.10, we know that the invariant m of an atomless
Boolean algebra is 0. Besides, the number of atoms of this kind of algebra is
also 0, so the invariants of atomless Boolean algebras are (0, 0).
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• In the case of infinite and atomic Boolean algebras, the invariant m is 0 also
because of proposition 6.1.10. Now, an atomic and infinite Boolean algebra
must have infinitely many atoms, because if a Boolean algebra is atomic, the
set of the atoms in the algebra generates it, and a finitely generated Boolean
algebra is always finite. For this reason, the invariants of this kind of algebras
are (0,∞).

Since the invariants only depend on the fact that the Boolean algebra is atomless
or infinite and atomic, respectively, any two models of these Boolean algebras have
the same invariants, thus they must be elementary equivalent. Notice that we reach
the same conclusion as we did before: the theory of both atomless Boolean algebras
and infinite atomic Boolean algebras is complete. However, we cannot obtain, using
this method, any result on quantifier elimination and ω-categoricity.

One can also ask about other kind of Boolean algebras, for example, the finite
ones. Every finite Boolean algebra is isomorphic to a power set algebra, thus it
is atomic, and its invariant m must be 0. Moreover, its cardinality is 2k, so the
number of atoms in the Boolean algebra is k. As a result, the invariants of these
Boolean algebras are (0, k). This means that the theory of finite Boolean algebras
with cardinal 2k is complete. In particular, the Boolean algebra {0, 1} has the
invariants (0, 1).
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