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This article reviews recent theoretical developments in heavy-quarkonium physics from the point of
view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential
nonrelativistic QCD. The main goal will be to derive Schrödinger equations based on QCD that
govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review
discusses a selected set of applications, which include spectroscopy, inclusive decays, and
electromagnetic threshold production.
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I. INTRODUCTION

In order to understand human-scale processes, a clas-
sical nonrelativistic �NR� picture of physics based on
Galilean symmetry proves sufficient. Until the beginning
of the last century, this picture, supplemented with elec-
tromagnetism, was enough to understand the majority of
processes observed in nature. At the start of the quan-
tum age, it was again a NR equation, the Schrödinger
equation, which proved to be the most successful in ex-
plaining the atomic and nuclear spectra.

High-energy processes are far from human-scale pro-
cesses. They are described in the present by relativistic
quantum field theories �QFTs�. Under some circum-
stances, however, high-energy processes develop a NR
regime and produce bound states that behave very much
like atoms.

The discovery of the J /�, a heavy resonance with a
very narrow width, at Brookhaven and SLAC �Aubert et
al., 1974; Augustin et al., 1974�, which was later identi-
fied with a bound state of a new �heavy� quark, charm,
and its antiquark, namely, a charmonium �cc̄� state,
opened up the possibility of using a NR picture in the
realm of QCD, the fundamental QFT of strong interac-
tions. This possibility was enhanced three years later by
the discovery of the �, an even heavier and narrower
resonance, which was again interpreted as a bound state
of a new �heavier� quark, bottom, and its antiquark,
namely, a bottomonium �bb̄� state �Herb et al., 1977�. In
fact, the narrow width of these resonances proved to be
crucial in establishing QCD as the sector of the Standard
Model that describes the strong interaction �Appelquist
and Politzer, 1974; De Rujula and Glashow, 1975�. From
that moment on, charmonia and bottomonia have been
throughly studied and still are a subject of intensive the-
oretical and experimental research �see, for instance,
Brambilla et al., 2004 and Skwarnicki, 2004�. They can
indeed be classified in terms of the quantum numbers of
a NR bound state, and the spacing of the radial excita-
tions and of the fine and hyperfine splittings has a pat-
tern similar to the ones in positronium, a well-studied
QED NR bound state. A related system, the bc̄ bound
state �Bc�, has also been found in nature �Abe et al.,
1998�. The heaviest of the quarks, the top, which has
recently been found at the Tevatron �Abe et al., 1994�,
has a large decay width �due to weak interactions� and is
not expected to form narrow t-t̄ resonances. However,
the production of t-t̄ near threshold, namely, in the NR
regime, will be one of the major programs at the Inter-
national Linear Collider.

These systems will be denoted by heavy quarkonia.
They are characterized by at least three widely sepa-

rated scales: the hard scale �the mass m of the heavy
quarks�, the soft scale �the relative momentum of the
heavy quark–antiquark �p��p�mv, v�1�, and the ul-
trasoft �US� scale �the typical kinetic energy E�mv2 of
the heavy quark and antiquark�. Moreover, by the defi-
nition of heavy quark, m is large in comparison with the
typical hadronic scale �QCD. Hence processes that hap-
pen at the scale m are expected to be successfully de-
scribed using perturbation theory, due to the asymptotic
freedom of QCD. This explains why the narrow heavy-
quarkonium widths could be qualitatively understood as
a manifestation of asymptotic freedom. However, lower
scales, such as �p� and E, which are responsible for the
binding, may or may not be accessible to perturbation
theory. The appearance of all these scales in the dynam-
ics of heavy quarkonia makes its quantitative study ex-
tremely difficult. This is even so in the weak-coupling
regime, where the system becomes Coulombic. Never-
theless, by exploiting the hierarchies m�p�E and m
��QCD the problem can be considerably simplified. This
may be done in any particular calculation for a given
observable, or, alternatively, using effective-field theo-
ries �EFTs�. In the latter, the hierarchies of scales are
exploited at the action level producing universal results
independent of particular observables, which is far more
advantageous. The basic idea behind EFTs is that to de-
scribe observables of a particular �low� energy region,
one can integrate out the degrees of freedom of the
other regions. This produces an effective action �for the
EFT� involving only the degrees of freedom in the re-
gion we are interested in. Calculating with the effective
�EFT� or with the fundamental �QCD� action gives
equivalent physical results as far as that particular re-
gion is concerned, but calculations are much simpler
with the EFT. In heavy quarkonium, we are interested in
physics at the low-energy scale E. Hence EFTs, which
have energy scales larger than E integrated out, can be
and have been built. They have led to major progress in
our understanding of heavy quarkonium in recent years.
We shall devote this review to these new developments.
Before that, let us put this progress in a historical per-
spective.

The discovery of bottomonium and charmonium trig-
gered the use of NR potential models �where the physics
of the bound state is described by a Schrödinger equa-
tion�. The main input in this approach is the potential
introduced. At lowest order in the weak-coupling re-
gime ��p���QCD�, the potential is Coulombic. Higher-
order corrections to the potential in perturbation theory
were obtained over the years �Buchmüller et al., 1981;
Gupta and Radford, 1981, 1982; Pantaleone et al., 1986;
Titard and Yndurain, 1994� even though the computa-
tions were difficult due to the several scales involved. It
was also not clear how to systematically incorporate US
effects. For instance, we mention the infrared sensitivity
found in the static potential �Appelquist et al., 1978� or
in the one-loop calculations of P-wave decays �Barbieri
et al., 1980�. In any case, the observed bottomonium and
charmonium spectra turned out not to be Coulombic
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and phenomenologically fine-tuned potentials were nec-
essary to reproduce them �Eichten et al., 1978�. See
Brambilla and Vario �1999a� for more references. This
motivated attempts to derive the heavy-quarkonium po-
tential from QCD without relying on perturbation
theory. The idea was to find gauge-invariant expressions
for the potentials �within an expansion in 1/m� in terms
of the expectation values of Wilson loops. Several meth-
ods have been worked out over the years and expres-
sions for the spin-dependent and spin-independent po-
tentials up to O�1/m2� were obtained �Wilson, 1974;
Susskind, 1977; Brown and Weisberger, 1979; Eichten
and Feinberg, 1981; Peskin, 1983; Gromes, 1984; Bar-
chielli et al., 1988, 1990; Szczepaniak and Swanson,
1997�. All the obtained potentials have been investi-
gated on the lattice �see Bali, 2001, for a recent review�.
However, these results had a number of shortcomings.
Lucha et al. �1991� pointed out that if calculated in per-
turbation theory, the potentials obtained from the
Wilson-loop approach missed the hard logarithms �ln m
present in the potentials directly computed from QCD.
More recently, Brambilla, Pineda, et al. �2001� also
pointed out that not only hard logarithms, but some of
the potentials, relevant at relative order �s

2 in the spec-
trum, were missed as well. Finally, the infrared �IR� di-
vergences in the perturbative computation of P-wave
decays seemed impossible to accommodate in that
framework. Overall, a more systematic and controlled
derivation of the nonrelativistic dynamics from QCD
was required.

Independent of the line of research above, nonrelativ-
istic QED �NRQED� an EFT for NR leptons, was intro-
duced �Caswell and Lepage, 1986�. It turned out to be
the first and decisive link in the chain of developments
that we shall review here. NRQED is obtained from
QED by integrating out the hard scale m. It is charac-
terized by an UV cutoff much smaller than the mass m
and much larger than any other scale. Nonrelativistic
QCD �NRQCD�, which also appears in the title of the
article of Caswell and Lepage �1986�, was introduced
soon afterwards �Lepage and Thacker, 1988�. The La-
grangian of NRQCD can be organized in powers of
1/m, thus making explicit its nonrelativistic nature. A
set of operators and matching coefficients are associated
with each power of m. The operators encode the low-
energy content of the theory and the coefficients encode
the effects of the degrees of freedom with energy O�m�
that have been integrated out. Namely, in NRQCD the
contributions coming from the hard scale m are factor-
ized. NRQCD had two major advantages that we would
like to point out here: �i� it could be rigorously derived
from QCD in a systematic manner providing an opti-
mized framework for lattice simulations �Thacker and
Lepage, 1991� and �ii� it solved the problem of the IR
divergences of the P-wave decays of heavy quarkonium.
This solution, however, came at the price of introducing
the so-called color-octet matrix elements, which could
not be incorporated in the Schrödinger-like formulations
available at that time. In spite of this, it was noted by

Chen et al. �1995� that if the nonperturbative potentials
were calculated starting from NRQCD instead of from
QCD, the problem of the missing hard logarithms men-
tioned above disappeared.1 This again raised some hope
that NR potential models could eventually be regarded
as EFTs of QCD. It also made it evident that the poten-
tial models available, even those in which the potentials
were obtained in terms of Wilson loops, were not con-
trolled derivations from QCD and that first-principles
computations of heavy quarkonia should be done within
the framework of NRQCD.

NRQCD itself was, however, not free of shortcom-
ings. The main problem was related to the fact that both
soft and US degrees of freedom were entangled. This
affects the power-counting rules, which were not homo-
geneous. Namely, the power counting by Lepage et al.
�1992� assumed �QCD�mv2, which catches the leading-
order contribution but not the subleading contributions
in v. Also perturbative calculations were difficult to per-
form due to the dependence on two scales. Another
problem was that the first computations in NRQCD
were based on cutoff regularization,2 whereas the calcu-
lations in QCD are often done in dimensional regular-
ization �DR�. Attempts to perform the matching be-
tween QCD and NRQCD using DR had the drawback
that the naive incorporation of the kinetic term in the
quark propagator jeopardized the power-counting rules.

A solution to the last problem was first proposed by
Manohar �1997�. He argued that the matching between
QCD and NRQCD in the bilinear sector of the theory in
DR should be performed by treating the kinetic-energy
term as a perturbation, as was done in heavy-quark ef-
fective theory �reviewed by Neubert, 1994�. Along the
same lines, the matching of QCD to NRQCD in the
four-fermion sector, where the Coulomb pole enhance-
ment starts playing a role, was performed soon after by
Pineda and Soto �1998a, 1998c�. The key point was that
in order to carry out the matching, it is not so important
to know the power counting of each term in the effective
theory, but to know that the remaining dynamical scales
of the effective theory are much lower than the mass:
m� �p� ,E ,�QCD.

Returning to the main problem, the first works ad-
dressing the entanglement of the soft and US scales in
NRQCD tried to classify the different momentum re-
gions existing in a purely perturbative version of
NRQCD and/or to reformulate NRQCD in such a way
that some of these regions were explicitly displayed by
introducing new fields in the NRQCD Lagrangian. In
particular, we mention the article by Labelle �1998�,

1These are included in the matching coefficients of the theory
and may be transferred to the potentials by expanding Green’s
functions in NRQCD instead of in QCD �Chen et al., 1995;
Bali et al., 1997; Brambilla and Vairo, 1999b�.

2In any case, the simplifications compared with purely rela-
tivistic Bethe-Salpeter-like �Bethe and Salpeter, 1951� compu-
tations were enormous and led to a plethora of new results in
QED. See, for instance, Kinoshita and Nio, 1996; Hoang et al.,
1997; Labelle et al., 1997; Hill and Lepage, 2000; Hill, 2001.
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where a diagrammatic approach to NRQED was used
and the subsequent work by Luke and Manohar �1997�,
Grinstein and Rothstein �1998�, and Luke and Savage
�1998� in NRQCD. All these early attempts turned out
to be missing some relevant intermediate degrees of
freedom.

The first complete solution came in the work of
Pineda and Soto �1998a�. The idea was to build an EFT
containing only the degrees of freedom relevant for

Q̄-Q systems near threshold, i.e., those with E�mv2 and
as close as possible to a Schrödinger-like formulation
�see also Lepage �1997��. All other degrees of freedom
were to be integrated out. The EFT, which was called
potential NRQCD �pNRQCD�, had roughly the follow-
ing structure:

where V�0��r� is the static potential �−CF�s /r in the per-
turbative case� and ��r� is the field associated with the

Q̄-Q state. This EFT turned out to meet all our expec-
tations: it achieved the factorization between US and
higher-energy modes, had a definite power counting �at
least in the perturbative regime�, and was very close to a
NR Schrödinger-like formulation of the heavy-
quarkonium dynamics. In the Lagrangian, potentials ap-
pear. These are the matching coefficients of the theory
and are calculated by matching with NRQCD ampli-
tudes, using either Feynman diagrams �see Beneke et al.,
1999; Czarnecki et al., 1999b; Pineda and Soto, 1999;
Kniehl, Penin, Steinhauser, et al., 2002 for specific ex-
amples in QCD and QED and Sec. IV.E for further de-
tails� or Wilson-loop amplitudes �Brambilla et al., 1999b,
2000�. In the perturbative regime, a confirmation that
pNRQCD was able to catch all the relevant dynamical
regions came from diagrammatic studies. Beneke and
Smirnov �1998� made the most complete classification of
�perturbative� momentum regions to date by a diagram-
matic study called the threshold expansion. In the lan-
guage of the threshold expansion, the matching between
NRQCD and QCD corresponds to integrating out the
hard region and pNRQCD is obtained from NRQCD by
integrating out what are called soft quarks and gluons
and potential gluons. Finally, we mention two later
works which dealt with reformulating NRQCD within
an effective Lagrangian formalism. In the article by
Griesshammer �1998� all degrees of freedom of NRQCD
were made explicit in the Lagrangian. In that of Luke et
al. �2002� the question of how to obtain renormalization-
group �RG� equations for NR systems was addressed for
the first time. The resulting formalism is now known as
velocity NRQCD. For a review on this theory, see Ho-
ang �2002�. All these formulations should be equivalent

to pNRQCD once the same degrees of freedom have
been integrated out.

This closed the circle connecting QCD with a properly
modified Schrödinger-like formulation in the weak-
coupling regime. Compared with the traditional meth-
ods, perturbative computations are optimized since only
one scale appears in each of the Feynman integrals. The
interaction with US gluons is treated in a quantum-field-
theory fashion yet everything can be encoded in a
Schrödinger-like formulation. The applications of these
ideas to QED have also been very successful. We refer
to Sec. IV.G for references.

The natural question then was: What happens in the
strong-coupling regime? The application of EFTs has led
to a well-founded connection with QCD in this regime.
The potentials are now understood as matching coeffi-
cients to be obtained by comparison with NRQCD. This
along with new computational techniques has solved the
problems mentioned before allowing the complete com-
putation of the potential at O�1/m2� �Brambilla, Pineda,
et al., 2001; Pineda and Vairo, 2001�. Also with these
techniques, new terms, nonanalytic in 1/m, were identi-
fied �Brambilla et al., 2004� and a solution was found for
the IR sensitivity of the P-wave decays �Brambilla, Ei-
ras, et al., 2002�. Again, the use of EFTs has allowed us
to close the circle and connect QCD with a properly
modified Schrödinger-like formulation in the strong-
coupling regime.

Heavy quarkonium has been important in the history
of QCD and maintains that role even today. In the early
1970s, its high-energy nature helped to establish
asymptotic freedom and QCD as the fundamental
theory of the strong interaction. Later on, its NR nature
served as a testing ground for many models of the low-
energy dynamics of QCD. Since the 1990s, due to the
rise of EFTs for heavy quarks, heavy-quarkonium ob-
servables can be rigorously derived from QCD, low- and
high-energy modes factorized, and large logarithms sys-
tematically resummed. From a conceptual point of view,
the origin and exact meaning of a QCD Schrödinger
equation has been clarified. In the weak-coupling re-
gime, this opens up the possibility of having precise de-
terminations of the Standard Model parameters to
which heavy quarkonium is sensitive: �s and the heavy-
quark masses. In the strong-coupling regime, heavy
quarkonia are, due to their wealth of scales, an ideal
laboratory in which to probe the structure of the QCD
vacuum.

It is our aim to review the recent developments in
heavy-quarkonium physics from the point of view of
EFTs. Our main goal will be to derive the QCD
Schrödinger equation that governs heavy-quarkonium
physics in the weak- and strong-coupling regimes. We
shall not be exhaustive in most of the derivations but
concentrate on the main ideas and general lines of de-
velopment with some illustrative examples. Then we
shall discuss a selected set of applications. The review is
not exhaustive. For instance, we shall not discuss one of
the major phenomenological successes of NRQCD: ex-
plaining the heavy-quarkonium production rate at the

1426 Brambilla et al.: Effective-field theories for heavy quarkonium

Rev. Mod. Phys., Vol. 77, No. 4, October 2005



Tevatron �Braaten et al., 1996; Beneke, 1997; Krämer,
2001; Bodwin et al., 2003�.

Before moving to the main body of the review, we list
here our main notational choices �Yndurain, 1999�. The
QCD Lagrangian density reads

L = �
i=1

Nf

q̄i�iD” − mi�qi −
1
4

G	
aG	

a , �1�

where D	=�	+ igA	, igG	
= �D	 ,D
�, qi are the quark
fields, and mi their current masses. Nf is the total num-
ber of quark flavors. We shall often indicate with the
capital letter Qi the heavy-quark fields and always set to
zero the light-quark masses. In the EFT, the heavy-
quark masses will be also indicated by mi, but always
understood, if not differently specified, as pole masses.
The strong-coupling constant �s=g2 /4� in the presence
of nf light quarks runs, at energies below the heavy-
quark thresholds, as



d�s

d

= − 2�s	�0

�s

4�
+ �1
 �s

4�
�2

+ ¯ � , �2�

where

�0 =
11
3

CA −
4
3

TFnf,

�1 =
34
3

CA
2 −

20
3

CATFnf − 4CFTFnf, . . . ,

and CA=Nc=3, CF= �Nc
2−1� /2Nc=4/3 and TF=1/2.

The basic computational techniques for perturbative
QCD used throughout can be found in the book of Pas-
cual and Tarrach �1984�.

II. NRQCD

A. Degrees of freedom

NRQCD is designed to describe the dynamics of a
heavy quark and a heavy antiquark �not necessarily of
the same flavor� at energy scales �in the center-of-mass
frame� much smaller than their masses, which are as-
sumed to be much larger than �QCD, the typical had-
ronic scale. At these energies, further heavy-quark–
antiquark pairs cannot be created so it is sufficient, and
convenient, to use Pauli spinors for both the heavy-
quark and heavy-antiquark degrees of freedom. We shall
denote by ��x� the Pauli spinor field that annihilates a
quark and by �x� the one that creates an antiquark.
Both ��x� and �x� transform in the fundamental repre-
sentation of color SU�3�. The remaining �light� degrees
of freedom are the same as in QCD, except for the UV
cutoffs as we shall discuss below. In particular, the gluon
fields will appear in covariant derivatives D	 and field
strengths G	
. For instance, we shall see that the
leading-order Lagrangian density for the heavy-quark
and antiquark fields reads

L = �†
iD0 +
1

2m
D2�� + †
iD0 −

1

2m
D2� . �3�

In a NR frame, the energy and three-momentum of the
heavy particles scale in a different way and hence a dif-
ferent UV cutoff may be introduced for each: 
s and 
p,
respectively. However, NRQCD is usually considered as
having a single UV cutoff 
NR= 
p ,
s� satisfying
E ,p ,�QCD�
NR�m; 
p is the UV cutoff of the relative
three-momentum of the heavy quark and antiquark; 
s is
the UV cutoff of the energy of the heavy quark and the
heavy antiquark, and of the four-momentum of the glu-
ons and light quarks.

From a Wilson RG point of view, NRQCD is obtained
from QCD by integrating out energy fluctuations about
the heavy-quark �heavy-antiquark� mass and three-
momentum fluctuations up to the scale 
NR for the
heavy-quark �heavy-antiquark� fields, and four-
momentum fluctuations up to the same scale for the
fields of the light degrees of freedom. Since 
NR
��QCD, this can be carried out in practice perturba-
tively in �s�
NR�. Within the threshold expansion frame-
work �Beneke and Smirnov, 1998�, this corresponds to
integrating out the hard modes of QCD.

If the quark and antiquark have the same flavor, they
can annihilate into hard gluons, which have already been
integrated out and are not present in the NRQCD La-
grangian. This implies that the QCD Lagrangian must
contain imaginary Wilson coefficients. The non-
Hermiticity of the NRQCD Lagrangian, which at first
sight may appear rather unwelcome, if not disastrous,
turns out to provide an extremely powerful tool for cal-
culating inclusive decay widths to light particles.

B. Power counting

From the discussion above, it follows that the
NRQCD Lagrangian can be organized as a power series
in 1/mQ �and 1/mQ̄�. The Wilson or matching coeffi-
cients of each operator depend logarithmically on
mQ �mQ̄�, 
NR and, as mentioned before, can be calcu-
lated in perturbation theory in �s�
NR�. Hence the im-
portance of a given operator for a practical calculation
depends not only on its size �power counting�, which we
shall briefly discuss next, but also on the leading power
of �s that its matching coefficient has.

Since several scales �E , �p� ,�QCD� remain dynamical, it
is not possible to assign a size to each operator unam-
biguously without extra assumptions: no homogeneous
power counting exists. As we shall see, the introduction
of pNRQCD facilitates this task. The original power
counting introduced by Bodwin et al. �1995� assumes
�QCD�E�mv2, and hence �p��mv��QCD, v��s�mv�
�1, which implies that the bound state is Coulombic
�positroniumlike�. In this case homogeneous power-
counting rules can be given using pNRQCD in the
weak-coupling regime �Sec. IV�. Nevertheless, it is un-
likely that the whole heavy-quarkonium spectrum can
be described by this power counting and alternatives

1427Brambilla et al.: Effective-field theories for heavy quarkonium

Rev. Mod. Phys., Vol. 77, No. 4, October 2005



need to be explored. We only anticipate here that in the
strong-coupling regime of pNRQCD the following scal-
ing will be considered: E� �p���QCD. The issue of the
power counting of NRQCD has also been addressed by
Beneke �1997� and Fleming et al. �2001� �see also the
discussion in Sec. II.F�. In both cases, the authors allow
for some freedom in the possible size of the NRQCD
matrix elements by introducing a parameter � that inter-
polates between different power countings.

C. Lagrangian, currents, and symmetries

The allowed operators in the Lagrangian are con-
strained by the symmetries of QCD. However, due to
the particular kinematic region on which we are focus-
ing, Lorentz invariance is not linearly realized in the
heavy-quark sector, and it is not straightforward �though
certainly possible, as will be discussed below� to imple-
ment. One has, in a first stage, to content oneself with
implementing the rotational subgroup only. Including nf
light quarks, the NRQCD Lagrangian density for a
quark of mass m1 and an antiquark of mass m2 �m1 ,m2
��QCD� reads at O�1/m2�,3 m=m1 ,m2 �Caswell and
Lepage, 1986; Bodwin et al., 1995; Manohar, 1997; Bauer
and Manohar, 1998�:

LNRQCD = Lg + Ll + L� + L + L�, �4�

Lg = −
1
4

G	
aG	

a +

1
4

 c1

g�1�

m1
2 +

c1
g�2�

m2
2 �gfabcG	


a G�
	bG
�c, �5�

Ll = �
i=1

nf

q̄iiD” qi +
1
8

 c1

ll�1�

m1
2 +

c1
ll�2�

m2
2 �g2 �

i,j=1

nf

q̄iT
a�	qiq̄jT

a�	qj

+
1
8

 c2

ll�1�

m1
2 +

c2
ll�2�

m2
2 �g2 �

i,j=1

nf

q̄iT
a�	�5qiq̄jT

a�	�5qj

+
1
8

 c3

ll�1�

m1
2 +

c3
ll�2�

m2
2 �g2 �

i,j=1

nf

q̄i�
	qiq̄j�	qj

+
1
8

 c4

ll�1�

m1
2 +

c4
ll�2�

m2
2 �g2 �

i,j=1

nf

q̄i�
	�5qiq̄j�	�5qj, �6�

L� = �†	iD0 +
ck

�1�

2m1
D2 +

c4
�1�

8m1
3D4 +

cF
�1�

2m1
� · gB

+
cD

�1�

8m1
2 �D · gE − gE · D� + i

cS
�1�

8m1
2� · �D� gE

− gE�D��� +
c1

hl�1�

8m1
2 g2�

i=1

nf

�†Ta�q̄i�0Taqi

+
c2

hl�1�

8m1
2 g2�

i=1

nf

�†�kTa�q̄i�k�5Taqi

+
c3

hl�1�

8m1
2 g2�

i=1

nf

�†�q̄i�0qi +
c4

hl�1�

8m1
2 g2�

i=1

nf

�†�k�q̄i�k�5qi,

�7�

L = c.c. of L��1 ↔ 2� ,

L� =
f1�1S0�
m1m2

O1�1S0� +
f1�3S1�
m1m2

O1�3S1� +
f8�1S0�
m1m2

O8�1S0�

+
f8�3S1�
m1m2

O8�3S1� , �8�

where

O1�1S0� = �††�, O1�3S1� = �†�†�� , �9�

O8�1S0� = �†Ta†Ta�, O8�3S1� = �†Ta�†Ta�� .

�10�

The matching coefficients are symmetric under the ex-
change m1↔m2, � are the Pauli matrices, iD0= i�0

−gA0, iD= i� +gA, Ei=Gi0, Bi=−�ijkGjk /2, �ijk being the
usual three-dimensional antisymmetric tensor4 ��a�b�i

��ijkajbk� with �123=1, and c.c. stands for charge conju-
gate ��c=−i�2*, c= i�2�*, and A	

c =−A	
T�.

The NRQCD Lagrangian is defined up to field redefi-
nitions. In the expression adopted here, we have made
use of this freedom. Powers larger than one of iD0 ap-
plied to the quark fields have been eliminated. We have
also redefined the gluon fields in such a way that the
coefficient in front of −G	
aG	


a /4 in Lg is 1. This turns
out to be equivalent to redefining the coupling constant
in such a way that it runs with Nf−2=nf flavors �for m1
�m2, Nf−1=nf for m1=m2�, where Nf are the flavors in
QCD �Pineda and Soto, 1998c� �see also Griesshammer
�2000� for a calculation of the � function in NRQCD�. A
possible term D	G	�

a D
G

�a has been eliminated

through the identity �Manohar, 1997�

� d4x�2D	G	�
a D
G


�a + 2gfabcG	

a G�

	bG
�c

+ G	

a D2G	
a� = 0. �11�

Finally, a term like cG	

a D2G	
a has been eliminated

through the field redefinition A	→A	+2c�D� ,G�	�
�Pineda and Vairo, 2001�.

The Wilson coefficients appearing in the NRQCD La-
grangian will be discussed in Sec. II.D. The O�1/m3� La-
grangian �without the light-fermion sector� can be found
in the paper by Manohar �1997�. The Feynman rules as-
sociated with the first two lines of Eq. �7� can be found
in the article by Bodwin and Chen �1999�.

3We also include the D4 /8m3 terms since they will be neces-
sary later on.

4In DR several prescriptions are possible for the �ijk tensors
and �. Therefore if DR is used, one has to make sure that one
uses the same procedure as that used to calculate the matching
coefficients.
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NR currents should also be considered since they ap-
pear in inclusive �electromagnetic� decays, NR sum
rules, or t - t̄ production near threshold. Similar to the
Lagrangian, they can be written as an expansion in 1/m
times some hard matching coefficients times some NR
�local� operators. For instance, the electromagnetic vec-
tor and axial-vector currents read �see Hoang and Teub-
ner, 1999�

jk
v�x� = b1,NR

v ��†�k��x� −
b2,NR

v

6m2 ��†�k
−
i

2
DI�2

��x�

+ ¯ , �12�

jk
a�x� =

b1,NR
a

m
��†
−

i

2
DI � ��

k
��x� + ¯ , �13�

where �† DI ��†�D�− �D��† and the dots stand for
corrections, which do not contribute at next-to-next-to
leading order �NNLO� for S waves. In practice, most of
the physical information can be extracted from the
imaginary parts of the four-fermion operators, which are
discussed in Sec. II.F.2. In particular, the matching coef-
ficients b1,NR

v and b2,NR
v can be traded for the matching

coefficients Im fEM�3S1� and Im gEM�3S1�, respectively.
The QCD Lagrangian is invariant under Lorentz

boosts. However, the NR expansion has destroyed the
manifest invariance of the EFT under Lorentz boosts.
Since the EFT is equivalent to QCD at any order of the
strong-coupling and NR expansion, the invariance under
Lorentz boosts is not lost but must be somehow incor-
porated into the EFT. Indeed, it imposes specific con-
straints on the form of the EFT itself.

Constraints imposed by the relativistic invariance
were first worked out for heavy-quark effective theory
�HQET�, which coincides with NRQCD in the bilinear
sector of the heavy-quark fields �Luke and Manohar,
1992; Manohar, 1997�. In HQET the realization of the
relativistic invariance is called reparametrization invari-
ance. It imposes constraints on the Wilson coefficients of
the EFT. For instance,

ck = c4 = 1, 2cF − cS − 1 = 0, �14�

where we have dropped the explicit indication of the
flavor index.

An alternative derivation consists of imposing the
Poincaré algebra on the generators H, P, J, and K of
time translations, space translations, rotations, and
Lorentz-boosts transformations of NRQCD �Brambilla,
Gromes, and Vairo, 2003�. The idea originates from the
work of Dirac �1949�, and has been used to constrain the
form of the relativistic corrections to phenomenological
potentials �Foldy, 1961; Krajcik and Foldy, 1974; Sebas-
tian and Yun, 1979�. It was applied to NR EFTs by
Brambilla, Gromes, and Vairo �2003� and Vairo �2004a�.
In a field theory, the Poincaré algebra has to be under-
stood among fields quantized in accordance with the ca-

nonical equal-time commutation relations.5 The transla-
tion and rotation generators P and J may be derived
from the NRQCD Lagrangian or by matching to the
QCD generators. They are exact because translational
and rotational invariance have not been explicitly bro-
ken in going to the EFT. The Lorentz-boost generators
may be obtained by matching order by order in 1/m to
the Lorentz-boost generators of QCD. They depend on
some specific matching coefficients independent of those
in the Lagrangian. The NRQCD Poincaré generators
satisfy the Poincaré algebra if Eq. �14� is satisfied for
each flavor up to O�1/m� and O��2� /m2� �plus some
other constraints on the matching coefficients appearing
in K� �Brambilla, Gromes, and Vairo, 2003�. Therefore
at the considered order, one gets the same result as from
reparametrization invariance. The calculation of con-
straints specific to NRQCD, i.e., involving four-fermion
operators, has not been done in either approach yet.
This would correspond to going to higher orders in 1/m.

In general, we shall constrain the matching coeffi-
cients of the kinetic energy in accordance with Eq. �14�.
Occasionally, however, we shall keep them explicit for
tracking purposes.

D. Matching

The calculation of the NRQCD Wilson coefficients is
done through a procedure called matching. In a match-
ing calculation suitable renormalized QCD and renor-
malized NRQCD Green’s functions �or matrix elements�
are imposed to be equal for scales below 
NR at the
desired order of �s and 1/m. In particular, the expansion
of Green’s functions in external energies E and three-
momenta p must be equal. This fixes the matching coef-
ficients, which will depend on the renormalization
schemes used in QCD and in NRQCD. It greatly simpli-
fies calculations if these expansions are done before the
loop integrals are performed. However, doing so may
introduce IR divergences and for the equality between
QCD and NRQCD Green’s functions to remain valid
the same IR regulator must be used in both theories. It
is very convenient to use DR as an IR regulator as well
as an UV one. This is because all loop integrals in the
NRQCD calculations will be scaleless and can be set to
zero, as we shall argue below. Let us explain what will
happen. Schematically �Manohar, 1997� one has

Aeff
 1

�UV
−

1

�IR
� �15�

in the EFT, which is zero if �UV=�IR in DR. Therefore
we only have to calculate loop integrals in QCD that
depend on a single scale �m�. Typically we get

5More precisely, the algebra imposes relations among the
bare fields and coupling constants. These relations are pre-
served in the renormalized theory if Poincaré invariance is not
broken by quantum effects.
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A
1

�UV
+ B

1

�IR
+ �A + B�ln




m
+ D . �16�

Since the full and effective theories share the same IR
behavior B=−Aeff. Moreover, the UV divergences are
absorbed in the coefficients of both theories. In this way
the difference between the full and effective theory is

�A + B�ln



m
+ D , �17�

which provides the one-loop contribution to the match-
ing coefficients for the effective theory. It is implicit in
this procedure that the same renormalization scheme is
used for both UV and IR divergences in NRQCD. In
the QCD calculation both the UV and IR divergences
can also be renormalized in the same way, for instance,
using the minimal subtraction scheme, which is the stan-
dard one for QCD calculations. This fixes the UV renor-
malization scheme in NRQCD in which the Wilson co-
efficients have been calculated and means that for these
Wilson coefficients to be consistently used in a NRQCD
calculation, it must be carried out in the same scheme,
for instance, in dimensional regularization and in the
minimal subtraction �MS� scheme.

The matching calculation can be carried out in any
gauge since both the QCD and NRQCD Lagrangians
are manifestly gauge invariant. However, since most of
the times one is matching gauge-dependent Green’s
functions, the same gauge must be chosen in QCD and
NRQCD. Using different gauges or, in general, different
ways to carry out the matching procedure, may lead to
apparently different results for the matching coefficients
�within the same regularization and renormalization
scheme�. These results must be related by local-field re-
definitions. In other words, if both matching calculations
had used the same minimal basis of operators, the re-
sults would have coincided. If the matching is carried
out as described above, it is more convenient to choose a
covariant gauge �i.e., Feynman gauge� since only QCD
calculations, which are manifestly covariant, are to be
carried out.

In the procedure described above, one may worry
about the fact that the NR propagator 1/ �p0−p2 /m� con-
tains the scale m, which spoils the usual argument �used
in HQET, for instance� that loop integrals in the EFT
contain no scales once one has expanded in the external
energies and three-momenta. Let us argue in the follow-
ing paragraphs that the procedure is indeed correct.

Consider first the single-quark or single-antiquark sec-
tor. In any diagram in NRQCD, one can always choose
the momenta flowing along the heavy-quark line in the
same direction. Then all heavy-quark propagators will
have poles in either the lower or upper half of the com-
plex plane only. Then, if all integrals over the energies
flowing through the heavy-quark propagators are car-
ried out by closing the contour around the opposite half-
complex plane, these energies will be replaced by linear
dependencies in the three-momenta in the NR quark
propagators. These linear dependencies dominate over
quadratic dependencies of the kinetic terms both in the

IR and in the UV. The latter is so because 
NR is always
smaller than m. Hence the kinetic term can be expanded
and the integrals become dimensionless. In fact, in DR
the kinetic term not only can but must be expanded
since this is the only way to ensure that three-momenta
remain smaller than 
NR.

Consider next the quark-antiquark sector. Any fixed-
order loop calculation may contain heavy-quark–
antiquark irreducible diagrams �meaning diagrams
which cannot be disconnected by cutting an internal
quark line and an internal antiquark line� and heavy-
quark–antiquark reducible ones.

Consider first a quark-antiquark irreducible diagram.
The fact that at any point of an internal quark propaga-
tor there is always at least one gluon propagator �or two
light-quark propagators� in addition to an antiquark
propagator allows one to choose all momenta flowing
both along the quark and along the antiquark propaga-
tor in the same direction. Hence the poles of both the
quark and antiquark propagators are in the same com-
plex half plane, and therefore the argument put forward
for the single-quark sector also holds here.

Consider finally a quark-antiquark reducible diagram.
It can always be written as a series of two-particle irre-
ducible �2PI� diagrams linked by a quark and by an an-
tiquark propagator. Let us choose the center-of-mass
momentum to be zero and focus on one such 2PI block.
If p �p�� is the momentum flowing along the incoming
�outgoing� quark line, then −p �−p�� is necessarily the
momentum flowing along the incoming �outgoing� anti-
quark line. p0 �p0�� has two relevant scalings, namely,
p0��p� and p0�p2 /2m. If the scaling p0��p� occurs,
then kinetic terms �p2 /2m can be neglected in 2PI dia-
gram and no further scale m will be introduced. If the
scaling p0�p2 /2m occurs, then p0 can be neglected in
the gluon propagators and the only dependence in p0

can be reduced to either the quark or antiquark propa-
gator. Furthermore, the internal energies in the 2PI dia-
gram eventually take the value of the three-momenta �p�
and hence p0 and p2 /2m can be expanded. In either
case, no extra scales m are introduced in the 2PI dia-
grams and they can be set to zero. Consider now the link
between two 2PI diagrams. If p0��p�, the kinetic term
can be expanded and no further scale m is introduced. If
p0�p2 /2m, no further dependence on p0 in the 2PI dia-
grams exists, and hence the integral over p0 can be trivi-
ally done inducing a m /p2 propagator so that the m de-
pendence factorizes trivially. In summary, two-particle
reducible diagrams also become scaleless and can be set
to zero.

One might be concerned about the appearance of
pinch singularities when the kinetic terms are expanded
in the links. Let us show that they are of no concern.
Recall first that pinch singularities blow up only after the
limit �→0 is taken, where i� defines the causal propa-
gator. We propose taking this limit at the end of the
calculation. If no other dependence on p0 existed, we
could carry out all integrals except the one over p0.
Since they have no scale, as argued before, and they
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contain no pinch singularities, they can safely be set to
zero, and the net result is zero. If there are further de-
pendencies on p0, by fraction decomposition one can al-
ways isolate the pinch singularity in a term 1/ �p0

+ i���−p0+ i�� with no further dependencies on p0 �plus
other terms with no pinch singularity� and proceed as
above.

Let us finally note that this matching procedure corre-
sponds to taking the purely hard contribution in the
threshold expansion for the NRQCD matching coeffi-
cients.

In order to address the matching calculation, we also
need the relation between the QCD and NRQCD quark
�antiquark� fields:

Q1�x� → Z1
1/21 + �0

2
e−im1t��x� ,

Q2�x� → Z2
1/21 − �0

2
eim2t�x� . �18�

At one loop, one obtains for the wave-function renor-
malization constants

Zi = 1 + CF
�

�

3

4
ln

mi
2


2 − 1� + O�
�
�
�2�, i = 1,2.

�19�

Notice also that the states are differently normalized
in relativistic ��p �p��= �2��32�p2+m2�3�p−p��� or NR
��p �p��= �2��3�3�p−p��� theories. Hence in order to
compare the S-matrix elements between the two theo-
ries, a factor �2�p2+m2�1/2 has to be introduced for each
external fermion.

For the single-quark �antiquark� sector as well as for
the purely gluonic sector, the matching coefficients have
been obtained at one loop up to O�1/m2� in the back-
ground Feynman gauge by Manohar �1997�. They read
�similarly for 1→2�

cF
�1� = 1 +

�s

2�
�CF + 
1 − ln

m1



�CA� ,

cD
�1� = 1 +

�s

�
�
8

3
ln

m1



�CF + 
1

2
+

2
3

ln
m1



�CA�

−
4
15
�s

�
TF
m1

2 + m2
2

m2
2 � ,

cS
�1� = 1 +

�s

�
�CF + 
1 − ln

m1



�CA� ,

c1
g�1� =

�s

360�
TF �20�

�
=
NR�. The complete O��s
2� correction to cF is also

known �Czarnecki and Grozin, 1997�.
For the quark-antiquark sector, they have been ob-

tained at one loop up to O�1/m2� by Pineda and Soto

�1998c�. For the nonannihilation diagrams, which are
displayed in Fig. 1, it is convenient to use the following
basis:

L� =
dss

m1m2
�1

†�12
†2 +

dsv

m1m2
�1

†��12
†�2

+
dvs

m1m2
�1

†Ta�12
†Ta2

+
dvv

m1m2
�1

†Ta��12
†Ta�2, �21�

which is equivalent to the one in Eq. �8�. The relation
between them can be found �in four dimensions� in the
article by Pineda and Soto �1998c�. In this basis, for the
case of the quark and antiquark having arbitrary flavor,
the matching coefficients at one loop read in the Feyn-
man gauge

dss = − CF
CA

2
− CF� �s

2

m1
2 − m2

2�m1
2
ln

m2
2


2 +
1
3
�

− m2
2
ln

m1
2


2 +
1
3
�� , �22�

dsv = CF
CA

2
− CF� �s

2

m1
2 − m2

2m1m2 ln
m1

2

m2
2 , �23�

dvs = −
2CF�s

2

m1
2 − m2

2�m1
2
ln

m2
2


2 +
1
3
� − m2

2
ln
m1

2


2 +
1
3
��

+
CA�s

2

4�m1
2 − m2

2�	3�m1
2
ln

m2
2


2 +
1
3
�

− m2
2
ln

m1
2


2 +
1
3
�� +

1

m1m2
�m1

4
ln
m2

2


2 +
10
3
�

− m2
4
ln

m1
2


2 +
10
3
��� , �24�

dvv =
2CF�s

2

m1
2 − m2

2m1m2 ln
m1

2

m2
2 +

CA�s
2

4�m1
2 − m2

2�	�m1
2
ln

m2
2


2 + 3�
− m2

2
ln
m1

2


2 + 3�� − 3m1m2 ln
m1

2

m2
2� �25�

�
=
NR�. The 
-independent pieces of dvv depend on the
procedure for reducing the D-dimensional Dirac matri-

FIG. 1. Relevant one-loop diagrams for the matching of the
four-fermion operators at order O�1/m2� for the case of un-
equal masses. The incoming and outgoing particles are on shell
and exactly at rest.
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ces to Pauli matrices. Note that we have used the pre-
scription for the dimensionally regulated spin matrices
of Pineda and Soto �1998c�, which differs from the more
standard ’t Hooft–Veltman scheme.

The contribution of the diagrams in Fig. 1 to the case
of equal flavor is obtained by taking the limit m1→m2
=m. Explicit formulas for this case can be found in the
article by Pineda and Soto �1998c�. In this case, however,
annihilation processes are allowed and they should be
taken into account. The relevant annihilation diagrams
up to one loop are displayed in Fig. 2.

One obtains

f1�1S0� = �s
2CF
CA

2
− CF��2 − 2 ln 2 + i�� , �26�

f1�3S1� = 0, �27�

f8�1S0� =
�s

2

2

−

3
2

CA + 4CF��2 − 2 ln 2 + i�� , �28�

f8�3S1� = − ��s�m��1 +
�s

�
	TF�nf

3

2 ln 2 −

5
3

− i��
−

8
9� +

109
36

CA − 4CF�� . �29�

Recall that we have to add to the annihilation contribu-
tions above the contributions �22�–�25� in the m1→m2
=m limit. Note that imaginary contributions appear,
which are relevant for the calculation of inclusive decay
widths. The calculation of corrections of higher order in
�s to the imaginary parts of the four-fermion matching
coefficients has a long history �Barbieri et al., 1979, 1980,
1981; Hagiwara et al., 1981; Mackenzie and Lepage,

1981; Bodwin et al., 1995; Beneke et al., 1998; Czarnecki
and Melnikov, 1998; Petrelli et al., 1998; Maltoni, 1999�.
An updated list of them and a summary of the state of
the art can be found in the article by Vairo �2004b�. No
further matching calculations beyond the order reported
here have been carried out for the real part of four-
quark operators.

The 
 dependence of the matching coefficients is
eventually traded for a lower scale ��p � ,E ,�QCD�. This
may introduce large logarithms that ought to be
summed up, as discussed in Sec. II.E. When higher-
order terms in �s are calculated, it may occur that large
numerical factors lead to poor convergence of the per-
turbative series. This is often related to so-called renor-
malon singularities, which are discussed in Sec. V.

E. Renormalization group

Once the EFT has been built, one may try to work out
the RG improvement of the matching coefficients. This
has proven to be a nontrivial task for NRQCD, which is
related to the fact that different kinds of degrees of free-
dom are encoded in the same fields. In other words, the
soft and US physics have not been disentangled at the
NRQCD Lagrangian level. This means that obtaining
the RG improvement at the NRQCD level becomes an
ill-defined problem. We shall see later on that the intro-
duction of pNRQCD, which does factorize soft and US
physics, indicates how this problem must be posed. In-
deed, it is possible to obtain some results at this level �in
fact it is even convenient� which will be used afterwards
in order to obtain the RG equations in potential
NRQCD �in the weak-coupling regime�. The NRQCD
matching coefficients are functions of 
NR= 
p ,
s�. It is
convenient to restrict ourselves to the derivation of RG

FIG. 2. Relevant diagrams for
the matching of the four-
fermion operators at order
O�1/m2� and one loop that only
appear for the equal-mass case.
The incoming and outgoing par-
ticles are on shell and exactly at
rest.
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equations with respect to the scale 
s since the RG equa-
tions with respect to the scale 
p are obtained in a much
simpler way using pNRQCD.

The matching coefficients of the terms bilinear in the
heavy-quark fields and of the pure gluonic terms are just
functions of 
s, i.e., c=c�
s ,m��c�
s�. This is due to the
fact that the UV behavior of the Green’s functions in
this sector is only sensitive to the energy and not to the
three-momentum of the heavy quarks, as can also be
seen by explicit computations. Therefore the anomalous
dimensions can be computed using the static propagator
for the heavy quark, and coincide with those obtained
for HQET. The complete leading-logarithm-order
�LLO� running of these matching coefficients in the ba-
sis of operators �5�–�7� was calculated by Bauer and
Manohar �1998� in the �background� Feynman gauge
�some partial previous results already existed in the lit-
erature �Eichten and Hill, 1990; Falk et al., 1991; Blok et
al., 1997��. For the case of the only nontrivial matching
coefficient at O�1/m�, cF, a next-to-leading-logarithm-
order �NLLO� evaluation is also available �Amoros et
al., 1997; Czarnecki and Grozin, 1997�, which we explic-
itly display to illustrate the typical structure of the RG-
improved matching coefficients:

cF�mi� = z−�0/2�1 +
�s�
h�

4�

c1 +

�0

2
ln

h

2

mi
2�

+
�s�
h� − �s�
s�

4�

 �1

2�0
−
�0�1

2�0
2 � + ¯ � , �30�

where z= ��s�
s� /�s�
h��1/�0, 
h�mi is the hard matching
scale, c1=2�CA+CF�, and the one- and two-loop anoma-
lous dimensions are

�0 = 2CA, �1 =
68
9

CA
2 −

52
9

CATFnf. �31�

Complications appear when the four-heavy-quark op-
erators f� are considered. As we have mentioned, they
depend on both cutoffs: 
p and 
s. Nevertheless, at one
loop, all the dependence of the matching coefficients is
due only to 
s, i.e., f�
p ,
s ,m�� f�
p ,
s�� f�
s�. The de-
pendence on 
p appears at two loops or higher and will
be discussed in Sec. IV. In any case, if one restricts one-
self to the purely soft running �i.e., 
s dependence only�,
it still makes sense to consider the �soft� RG running of
the NRQCD matching coefficients including the four-
heavy-fermion operators. In this approximation, one can
always perform the computation with static propagators
for the heavy quarks and order by order in 1/m.

Formally, we can write the NRQCD Lagrangian as an
expansion in 1/m:

LNRQCD = �
n=0

�
1

mn�nOn, �32�

where the RG equations of the matching coefficients are


s
d

d
s
� = B���� . �33�

The RG equations have a triangular structure �the stan-
dard structure one can see, for instance, in HQET RG
equations�:


s
d

d
s
�0 = B0��0� ,


s
d

d
s
�1 = B1��0��1,


s
d

d
s
�2 = B2�2,1���0��2 + B2�1,2���0��1

2,

. . . , �34�

where the different B’s can be expanded into a power
series in �0 ��0 corresponds to the marginal operators
�renormalizable interactions��. For NRQCD we have
�0=�s and �1= ck ,cF�, �2= ˆc1

g ,cD ,cS , cll� , chl� , f�‰.
As we have already mentioned, the LLO running for

the c� in Feynman gauge can be read off from the re-
sults obtained by Bauer and Manohar �1998�. The LLO
running of the f� in Feynman gauge can be found in the
article by Pineda �2002b�.

At this stage, we would like to stress that we are
working in a nonminimal basis of operators for the
NRQCD Lagrangian. Consequently the values of �some
of� the matching coefficients are ambiguous �only some
combinations with physical meaning are unambiguous�
and could depend upon the gauge in which the calcula-
tion has been performed. At the practical level, this
means that they will depend on the specific basis of op-
erators we have taken for the NRQCD Lagrangian and
on the procedure used �in particular on the gauge�.
Therefore if working in a nonminimal basis, one should
be careful to do the matching using the same gauge for
all the operators �or at least for those that are poten-
tially ambiguous�. This affects the running of cD, f8�1S0�,
and c1

hl. Indeed, it has been shown by Bauer and Mano-
har �1998� that cD can be absorbed into f8�1S0� and c1

hl by
using the equations of motion �D ·Ea=g��†Ta�+†Ta

+�j=1
nf q̄j�

0Taqj��.
Let us illustrate the point by considering the running

of cD and f8�1S0� in the equal-mass case and without light
quarks. In Feynamn gauge we obtain


s
d

d
s
cD =

�s

4�
�4CA

3
cD − 
2CA

3
+

32CF

3
�ck

2 −
10CA

3
cF

2� ,

�35�


s
d

d
s
f8�1S0� = 4�CF − CA��s

2ck
2 +

3
2
�s

2CAcD, �36�

while in Coulomb gauge we have
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s
d

d
s
cD�Coulomb� =

�s

4�
�22CA

3
cD − 
32CA

3

+
32CF

3
�ck

2 −
10CA

3
cF

2� ,

�37�


s
d

d
s
f8�1S0��Coulomb� = 
4CF −

3CA

2
��s

2ck
2 .

Clearly, the running of cD and f8�1S0� is gauge depen-
dent, but the running of the combination �scD

+ �1/��f8�1S0� is not, reflecting the fact that cD can be
absorbed into f8�1S0� by means of a suitable field redefi-
nition.

F. Applications: spectrum and inclusive decay widths

NRQCD has been applied over the last 12 years to a
large number of observables related to heavy-
quarkonium physics. Here we shall briefly discuss two
kinds of observables: spectra and inclusive decay widths.
Concerning the spectra, we shall mention the state of
the art relevant to the lattice determination of the bot-
tomonium levels. We shall keep a continuum EFT point
of view since a discussion of lattice NRQCD is beyond
the scope of the present work �see Kronfeld �2004� and
Lepage �2005� for some recent reviews�. We shall, how-
ever, give a more detailed discussion of the inclusive de-
cay width. We have chosen these observables because
they are amenable to rather clean theoretical deriva-
tions. They will also be addressed in the following sec-
tions dedicated to pNRQCD.

Before proceeding, we have to establish a power
counting for NRQCD. As was mentioned in Sec. II.B,
since the scales �E , �p� ,�QCD� remain dynamical, it is not
possible to give a homogeneous counting for each op-
erator. In other words, in contrast to pNRQCD, we shall
not be able to disentangle the contributions coming
from the different scales. In order to be on the safe side,
we have to assume the most conservative counting
where each operator counts as �mv�d, d being its dimen-
sion, with the exception of iD0 which counts as mv2 �v
��p � /m�E / �p��.6 To count matrix elements of color sin-
glet operators between quarkonium states is rather
simple. Since the quarkonium states are normalized, it is
sufficient to count the dimension of the gluon field op-
erators and covariant derivatives. For color octet
operators,7 one has to take into account that they give a
nonvanishing contribution between quarkonium states if
at least two extra 1/m operators are inserted. Hence

using the above rules, one has to add 2 to the dimension
of the gluon field operators and covariant derivatives.
This counting, which we call the conservative counting,
differs from the “original counting” of NRQCD intro-
duced by Lepage et al. �1992�. We refer to Sec. II.B for
further details.

1. Spectra

The idea to put NRQCD on the lattice was a very
early one �Lepage et al., 1992�. The advantages with re-
spect to full QCD are obvious. The lattice spacing a and
the dimension L of the lattice have to fulfill the require-
ment 1/a�Q�q�1/L, where Q is the largest and q the
smallest scale of the system under study. In full QCD we
have Q�m while in NRQCD Q��p��m. NRQCD
therefore does not require such a fine lattice as full
QCD, which means that much more economical simula-
tions are sufficient. The drawback is that the continuum
scaling window will not be reached and much more care
has to be taken in order to extrapolate from the discrete
simulations to the continuum physics.

Some recent results obtained in the lattice version of
NRQCD can be found in the article by Lepage and
Davies �2004�. As a consequence of the rather precise
data, for the heavy-quarkonium spectra all levels below
the open-flavor threshold have been obtained from mul-
tiexponential fits to suitable correlation functions. In
Fig. 3 we show some recent quenched and unquenched
results for the radial and orbital splittings in the botto-
monium system �Gray et al., 2003�.

6In principle, at least another scale is relevant for quarko-
nium: �m�QCD. Since this scale is larger than E, �p�, and �QCD,
it may, in principle, change our counting. We discuss this in
Sec. VII.

7This applies to the pure octet content of the octet operators
�O8 ,P8 , . . . � defined in Eq. �39�, which starting from O�1/m4�
may also contain singlet parts.

FIG. 3. �Color online� Radial and orbital splittings in the �
system from lattice QCD in the quenched approximation
�open circles� and including dynamical u, d, and s quarks �filled
circles�. The lattice spacing has been fixed by the radial split-
ting between ��2S� and ��1S�. The b-quark mass has been
tuned to get the � mass correct. From Lepage and Davies,
2004.
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Here we comment on the theoretical limits of precise
lattice results. We neglect all complications and uncer-
tainties connected with the numerical simulations and
continuum extrapolations. The version of the NRQCD
Lagrangian used in all lattice simulations contains, apart
from the Yang-Mills term, only bilinear terms in the
heavy-quark fields. The matching coefficients are taken
at tree level. This is due to the fact that their calculation
in a lattice regularization scheme turns out to be quite
cumbersome so that, up to now, only some preliminary
numerical estimates are available �Trottier and Lepage,
1998�. As a consequence, regardless of how many opera-
tors have been added to the bilinear sector of the La-
grangian, the theoretical limit on the precision of the
radial splittings is of relative order �sv

2�0.2�0.1�2%
in the original power counting described in the article of
Lepage et al. �1992� ��sv�0.2�0.3�6% in the conser-
vative counting introduced above�, while for the fine and
hyperfine splittings it is of relative order �s�0.2�20%.
We have assumed for the bottomonium case v2�0.1 and
�s�mb��0.2.8 In any case, the precision in the radial
splittings is rather good, while it is worse by an order of
magnitude in the fine and hyperfine splittings. In the
charmonium case, v2�0.3 and �s�mc��0.35, which
means that the theoretical limit on the precision of the
radial splittings is not smaller than 10% in the original
counting �20% in the conservative counting�. In order to
improve the present precision, it is therefore crucial to
calculate the one-loop corrections to the Wilson coeffi-
cients in the NRQCD Lagrangian in a consistent lattice
regularization and renormalization scheme. In this
sense, the recent work by Becher and Melnikov �2002,
2003� seems to be rather promising. Note that at order
�sv

4 ��sv
3 in the conservative counting�, 1 /m2 correc-

tions to the Yang-Mills sector of the NRQCD Lagrang-
ian and four-fermion operators also have to be taken
into account.

2. Inclusive decay widths

Let us consider heavy quarkonia made out of a quark
and an antiquark of the same flavor �m1=m2=m�. Anni-
hilation processes happen in QCD at the scale of the
mass m. Therefore integrating out these scales in the
matching from QCD to NRQCD produces imaginary
terms in the matching coefficients of the 4-four-fermion
operators of the NRQCD Lagrangian as we have seen in
Sec. II.D. Therefore the annihilation width of a heavy
quarkonium H into light particles is given by �Bodwin et
al., 1995�

��H → light particles� = 2 Im�H�L��H� , �38�

where �H� is a normalized eigenstate of the NRQCD
Hamiltonian with the quantum numbers of the consid-
ered quarkonium in its center-of-mass frame.9 In Eq. �8�
we have given L� up to order 1/m2, here we need it up
to order 1/m4:

L� =
f1�1S0�

m2 O1�1S0� +
f1�3S1�

m2 O1�3S1�

+
f8�1S0�

m2 O8�1S0� +
f8�3S1�

m2 O8�3S1�

+
f1�1P1�

m4 O1�1P1� +
f1�3P0�

m4 O1�3P0�

+
f1�3P1�

m4 O1�3P1� +
f1�3P2�

m4 O1�3P2�

+
g1�1S0�

m4 P1�1S0� +
g1�3S1�

m4 P1�3S1�

+
g1�3S1, 3D1�

m4 P1�3S1, 3D1�

+ �O1 → O8,P1 → P8,f1 → f8,g1 → g8� , �39�

where the explicit expressions for the operators in the
first line can be found in Eq. �10� and for the remaining
operators in the paper by Bodwin et al. �1995�.

The NRQCD factorization formula for the inclusive
heavy-quarkonium annihilation width into light particles
reads �dn denotes the dimension of the generic four-
fermion operator O�n��

��H → LH� = �
n

2 Im f�n�

mdn−4 �H�O�n��H� , �40�

��H → EM� = �
n

2 Im fEM
�n�

mdn−4 �H�OEM
�n� �H� , �41�

where we have distinguished between electromagnetic
decay widths and decay widths into light hadrons �LH�.
The information needed in order to describe decays into
hard electromagnetic particles is encoded in the electro-
magnetic contributions to the matching coefficients that
we denote by fEM,gEM, . . . . We do not use a special sym-
bol to denote the purely hadronic component of the
matching coefficients, which is the dominant one. The
purely electromagnetic component of the inclusive de-
cay width may be singled out by projecting the four-
fermion operators onto the QCD vacuum state �vac� ac-
cording to �†

¯†
¯�→�†

¯�vac��vac�†
¯�. The

8It seems too optimistic to replace �s with �s /�, as suggested
by Lepage et al. �1992�, since several �s corrections appear with
large coefficients �compare with the explicit expressions given
in the previous section and with the discussion in the article by
Brambilla and Vairo �1999b��. Moreover, large logarithms
could also deteriorate the convergence.

9This expression only holds at leading order �LO� in the
imaginary terms. The exact expression, which has not been
necessary for applications so far, reads ��H→ light particles�
=−2 Im��H̃�H�H� / �H̃ �H��, where H is the NRQCD Hamil-

tonian and �H̃� ���H� in general� is the corresponding eigen-
state of H†.
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projected operators are denoted by OEM, PEM, . . .. For
instance, OEM�1S0�=�†�vac��vac�†�. The inclusive an-
nihilation width into light hadrons may be obtained
from the full annihilation width by switching off the
electromagnetic interaction. The factorization formulas
�40� and �41� have been rigorously proven and shown
diagrammatically in the article by Bodwin et al. �1995�.

Working out Eqs. �40� and �41�, the explicit expres-
sions for the decay widths of S- and P-wave quarkonium
up to O�Im f�mv5� are

�„VQ�nS� → LH…

=
2

m2
Im f1�3S1��VQ�nS��O1�3S1��VQ�nS��

+ Im f8�3S1��VQ�nS��O8�3S1��VQ�nS��

+ Im f8�1S0��VQ�nS��O8�1S0��VQ�nS��

+ Im g1�3S1�
�VQ�nS��P1�3S1��VQ�nS��

m2

+ Im f8�3P0�
�VQ�nS��O8�3P0��VQ�nS��

m2

+ Im f8�3P1�
�VQ�nS��O8�3P1��VQ�nS��

m2

+ Im f8�3P2�
�VQ�nS��O8�3P2��VQ�nS��

m2 � , �42�

�„PQ�nS� → LH…

=
2

m2
Im f1�1S0��PQ�nS��O1�1S0��PQ�nS��

+ Im f8�1S0��PQ�nS��O8�1S0��PQ�nS��

+ Im f8�3S1��PQ�nS��O8�3S1��PQ�nS��

+ Im g1�1S0�
�PQ�nS��P1�1S0��PQ�nS��

m2

+ Im f8�1P1�
�PQ�nS��O8�1P1��PQ�nS��

m2 � , �43�

�„Q�nJS� → LH…

=
2

m2
Im f1�2S+1PJ�
�Q�nJS��O1�2S+1PJ��Q�nJS��

m2

+ Im f8�2S+1SS��Q�nJS��O8�1S0��Q�nJS��� , �44�

�„VQ�nS� → e+e−
…

=
2

m2
Im fee�
3S1��VQ�nS��OEM�3S1��VQ�nS��

+ Im gee�
3S1�

�VQ�nS��PEM�3S1��VQ�nS��
m2 � , �45�

�„PQ�nS� → ��…

=
2

m2
Im f���
1S0��PQ�nS��OEM�1S0��PQ�nS��

+ Im g���
1S0�

�PQ�nS��PEM�1S0��PQ�nS��
m2 � , �46�

�„Q�nJ1� → ��…

= 2 Im f���
3PJ�

�Q�nJ1��OEM�3PJ��Q�nJ1��
m4

for J = 0,2, �47�

where the symbols V and P stand for the vector and
pseudoscalar S-wave heavy quarkonium and the symbol
 for the generic P-wave quarkonium „the states �n10�
and �nJ1� are usually called h��n−1�P� and J��n
−1�P�, respectively….

Looking at Eqs. �42�–�47�, the first obvious observa-
tion is that in the hadronic decay widths singlet as well
as octet matrix elements occur. In the case of the had-
ronic P-wave decay widths the color octet matrix ele-
ments are of the same order as the singlet matrix ele-
ments. This means that a description of heavy
quarkonium in terms of a color-singlet bound state of a
heavy quark and antiquark necessarily fails at some
point: for P-wave decay this point is the leading order!
There is another way to understand the role of the octet
matrix elements. The singlet matching coefficients are
plagued by IR divergences. The coefficients Im f�3P0�
and Im f�3P2� are IR divergent at next-to-leading order
�NLO� �Barbieri et al., 1976�. These divergences are pre-
cisely canceled by the octet contributions �Bodwin et al.,
1992�. Therefore the inclusion of the octet matrix ele-
ments is crucial to making Eq. �44� physical, i.e., inde-
pendent of the cutoff. For S-wave decays, note that in
the original NRQCD power counting used by Lepage et
al. �1992� the octet matrix elements are O�v4� suppressed
compared with the leading order. This is not so within
the conservative power counting adopted here, where
they are O�v2�. This may be of phenomenological rel-
evance for ��V→LH� since Im f1�3S1� is O��s� sup-
pressed with respect to Im f8�S�.

Despite the fact that the NRQCD factorization for-
mulas for inclusive decay widths are theoretically solid
and have provided a solution to the long-standing prob-
lem of the cancellation of the IR divergences, their prac-
tical relevance in calculating inclusive or electromag-
netic decay widths of quarkonia has been rather limited.
This is mainly due to the following reasons:

�i� NRQCD matrix elements may be fitted on the ex-
perimental decay data �Maltoni, 2003� or calculated on
the lattice �Bodwin et al., 1996, 2002�. The matrix ele-
ments of singlet operators can be linked at leading order
to the Schrödinger wave functions at the origin �Bodwin
et al., 1995� and therefore may be evaluated by means of
potential models �Eichten and Quigg, 1995�. In general,
however, NRQCD matrix elements, in particular of
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higher dimensionality, are poorly known or completely
unknown.

�ii� The formulas depend on a large number of matrix
elements. In the bottomonium system, 14 S- and P-wave
states lie below the open-flavor threshold ���nS� and
�b�nS� with n=1,2,3; hb�nP� and bJ�nP� with n=1,2 and
J=0,1,2� and in the charmonium system 8 ���nS� and
�c�nS� with n=1,2; hc�1P� and cJ�1P� with J=0,1,2�. For
these states, Eqs. �42�–�47� describe the decay widths
into light hadrons and into photons or e+e− in terms of
46 NRQCD matrix elements �40 for the S-wave decays
and 6 for the P-wave decays�. More matrix elements are
needed if higher-order operators have to be included.
Indeed, Ma and Wang �2002� and Bodwin and Petrelli
�2002� have stated that higher-order operators not in-
cluded in Eqs. �42�–�47�, even if parametrically sup-
pressed, may turn out to give sizable contributions to the
decay widths. This may be the case, in particular, for
charmonium, where v2�0.3, so that relativistic correc-
tions are large and for P-wave decays, where the above
formulas provide only the leading-order contribution in
the velocity expansion. In fact it was pointed out by Ma
and Wang �2002� and Vairo �2002� that if no special can-
cellations among the matrix elements occur, then the or-
der v2 relativistic corrections to the electromagnetic de-
cays c0→�� and c2→�� may be as large as the leading
terms. Finally, it was noted by Maltoni �2003� that the
relevance of higher-order matrix elements may be en-
hanced �or suppressed� by the multiplying matching co-
efficients.

�iii� The convergence of the perturbative series of the
four-fermion matching coefficients is often poor �see, for
instance, the examples in the article by Vairo �2002��.
This limits, in general, the reliability and stability of the
results. Some classes of large perturbative contributions
have been resummed for S-wave annihilation decays by
Braaten and Chen �1998� and Bodwin and Chen �1999,
2001� improving the convergence of the series.

III. POTENTIAL NRQCD. THE PHYSICAL PICTURE

Of the full hierarchy of scales in heavy quarkonium,
NRQCD takes advantage of the fact that m is much
larger than the remaining ones ��p� ,E ,�QCD, . . . � only.
This means that if we are interested in physics at the
scale of the binding energy E, NRQCD contains degrees
of freedom that can never appear as physical states at
that scale. These are, in particular, light degrees of free-
dom of energy ��p��E and heavy quarks with energy
fluctuations of the same order. Therefore within the phi-
losophy of EFTs, these degrees of freedom should be
integrated out. The implementation of this idea gives
rise to a new effective theory called pNRQCD �Pineda
and Soto, 1998a�. The appropriate description of the re-
maining degrees of freedom and how this integration
can actually be carried out will clearly depend on the
relative size of �QCD compared to the scales �p� and E.
We consider the different possibilities in the next two
sections. In pNRQCD it is the large scale �p� that limits

the UV cutoff of the energy fluctuations. Even if its typi-
cal value in a bound state can be associated with mv, its
fluctuations may reach up to the scale m, which is the
UV cutoff for the three-momentum fluctuations of the
heavy quarks, �p�.

A. Weak-coupling regime

If �p���QCD, the integration of degrees of freedom of
energy scale �p� can be done in perturbation theory.
Hence we do not expect a qualitative change in the de-
grees of freedom but only a lowering of their energy
cutoff. Let us call the resulting EFT pNRQCD�.
pNRQCD� is thus defined by the same particle content
as NRQCD and the cutoffs 
pNR= 
p ,
us�, where 
p is
the cutoff of the relative three-momentum of the heavy
quarks and 
us is the cutoff of energy fluctuations of the
heavy quarks and of the four-momenta of the gluons and
light quarks. They satisfy the following inequalities: �p�
�
p�m and p2 /m�
us� �p�. The Wilson coefficients of
pNRQCD� will then depend on p and p�, the three-
momenta of the heavy quark and antiquark, respec-
tively, usually through the combination k=p−p�. Hence
nonlocal terms �potentials� in real space are produced.
Indeed, these potentials encode the nonanalytic behav-
ior in the momentum transfer k of the heavy quark,
which is of the order of the relative three-momentum of
the heavy quarks. This is again a peculiar feature of
pNRQCD which had not been observed in any EFT be-
fore. It provides an appealing interpretation of the usual
potentials in quantum mechanics within an EFT frame-
work.

In order to take advantage of the fact that the three-
momentum of the heavy quarks is always larger than the
four-momentum of the light degrees of freedom, it is
very convenient to use fields in which the relative coor-
dinate �conjugate to the relative momentum� appears
explicitly. We define the center-of-mass coordinate of

the Q-Q̄ system R��x1+x2� /2 and the relative coordi-

nate r�x1−x2. A Q-Q̄ state can be decomposed into a
singlet state S�r ,R , t� and an octet state O�R ,r , t� in re-
lation to color gauge transformation with respect to the
center-of-mass coordinate. �We notice that in QED only
the state analogous to the singlet appears.� The gauge
fields are evaluated in R and t, i.e., A	=A	�R , t�. They
do not depend on r due to the fact that, since the typical
size of r is the inverse of the soft scale, gluon fields are
multipole expanded with respect to this variable.

If the binding energy E is larger than or of the same
order as �QCD, we have accomplished our goal and the
EFT we are looking for, namely, pNRQCD in the weak-
coupling regime, coincides with pNRQCD�. If, on the
contrary, �QCD�E, we still have to integrate out the
energy scale �QCD and its associated three-momentum
scale ��QCDm in order to obtain pNRQCD. This cannot
be done perturbatively in �s anymore, but one can defi-
nitely continue exploiting the hierarchy of scales, as will
be discussed in the following section.
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B. Strong-coupling regime

For illustration purposes, let us first consider the par-
ticular case �p���QCD�E, which was discussed in the
previous section. We have to figure out what happens to
the pNRQCD� degrees of freedom after integrating out
those of energy ��QCD. Below the scale �QCD, it is bet-
ter to think in terms of hadronic degrees of freedom,
which are color-singlet states. Hence the octet field is
not acceptable in the final EFT and must be integrated
out. Since it couples to gluons of energy ��QCD, it is
also expected that it develops a mass gap of the same
order. Therefore in pure gluodynamics the only degree
of freedom left is the singlet field interacting with a po-
tential, which also has nonperturbative contributions
from the integration of degrees of freedom of order
�QCD. In real QCD, pseudo-Goldstone bosons, which
have masses smaller than �QCD, should also be included.
These are the expected degrees of freedom of pNRQCD
in the strong-coupling regime �Brambilla et al., 2000�.

In the general case �p���QCD, we cannot integrate
out energy degrees of freedom at the scale �p� in pertur-
bation theory in �s. Still the relevant energy scales are at
a lower scale E� �p���QCD and one can in principle
build an EFT at that scale, as we have done above in a
particular case. This is pNRQCD in the strong-coupling
regime. At scales E��QCD, QCD becomes strongly
coupled and it is again better to think in terms of had-
ronic degrees of freedom, which are color-singlet states.
Hence the most likely degrees of freedom in this regime
are a singlet field and pseudo-Goldstone bosons. This is
supported by our knowledge of the static limit of QCD
as will be argued below.

In the static limit, there is an energy gap between the
ground state and the first excited state. In the nonstatic
case there will be a set of states nus� whose energies Enus
lie much below the energy of the first excited state in the
static case. We denote these states as US. The aim of
pNRQCD is to describe the behavior of the US states.
Therefore all the physical degrees of freedom in
NRQCD with energies larger than Enus

can be inte-
grated out in order to obtain pNRQCD. The available
lattice calculations of the static spectrum �see Fig. 4�
clearly show that from small to moderately large values
of r there is an energy gap between the ground state and
higher excitations. The ground-state energy is known as
the static QCD potential. If the binding energy of the
heavy-quarkonium state we are interested in is much
lower than the first excitation of the static limit, we can
integrate out all higher excitations of this limit and keep
only the ground state, which will be represented by a
singlet field whose static energy is given by the static
QCD potential.

Note finally that for heavy-quarkonium states whose
binding energy is close to or above the region where
higher excitations occur, the use of pNRQCD is not jus-
tified and one should stay at the NRQCD level. In the
case of real QCD, the heavy-light meson pair threshold
plays the role of a higher excitation.

IV. POTENTIAL NRQCD. THE WEAK-COUPLING REGIME

A. pNRQCD: the degrees of freedom

The degrees of freedom of pNRQCD in the weak-
coupling regime ��p��E��QCD� are a quark-antiquark
pair, gluons, and light quarks with the cutoffs 
pNR
= 
p ,
us�. 
p is the cutoff of the relative three-
momentum of the heavy quarks and 
us is the cutoff of
the energy of the heavy-quark–antiquark pair and of the
four-momentum of the gluons and light quarks. They
satisfy the following inequalities: �p��
p�m and p2 /m
�
us� �p�.

The degrees of freedom of pNRQCD can be repre-
sented by the same fields as in NRQCD. The main dif-
ference with respect to the NRQCD Lagrangian will be
that now nonlocal terms in space �namely, potentials� are
allowed. This representation is suitable for explicit per-
turbative matching calculations. However, in order to es-
tablish a power counting, it is more convenient to repre-
sent the quark-antiquark pair by a wave-function field

��x1,x2,t��� � ���x1,t��
†�x2,t�

�
1

Nc
������x1,t��

†�x2,t�

+
1

TF
T��

a T��
a ���x1,t��

†�x2,t� . �48�

This can be rigorously achieved in a NR system: �i� time
is universal, and hence one can constrain oneself to cal-
culating correlators in which the time coordinate of the
quark field coincides with the time coordinate of the
antiquark field; �ii� since particle and antiparticle num-
bers are separately conserved, if we are interested in the
one-heavy-quark one-heavy-antiquark sector, there is no
loss of generality if we project our theory to that sub-
space of the Fock space which is described by the wave-

FIG. 4. �Color online� Mass gap between the singlet and hy-
brid fields. From Bali et al., 2000.
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function field ��x1 ,x2 , t�. Furthermore, this wave-
function field can be uniquely decomposed into singlet-
and octet-field components with homogeneous �US�
gauge transformations with respect to the center-of-mass
coordinate:

��x1,x2,t� = P�eig�x2

x1A·dx�S�r,R,t�

+ P�eig�R
x1A·dx�O�r,R,t�P�eig�x2

R A·dx� . �49�

P stands for path ordered. Under �US� color gauge
transformations �g�R , t��, we have

S�r,R,t� → S�r,R,t� ,

O�r,R,t� → g�R,t�O�r,R,t�g−1�R,t� . �50�

Using these fields has the advantage that the relative
coordinate r is explicit, and the fact that r is much
smaller than the typical length of the light degrees of
freedom can be easily implemented via a multipole ex-
pansion. This implies that the gluon fields will always
appear evaluated at the center-of-mass coordinate. Note
that this is nothing but translating to real space the con-
straint 
p�
us. In addition, if we restrict ourselves to the
singlet field only, we are left with a theory which is to-
tally equivalent to a quantum-mechanical Hamiltonian.
The whole theory, however, will contain singlet-to-octet
transitions mediated by the emission of an US gluon,
which cannot be encoded in any quantum-mechanical
Hamiltonian.

B. Power counting

The power counting of the pNRQCD Lagrangian is
easier to establish when it is written in terms of singlet
and octet fields. Since quark and antiquark particle num-
bers are separately conserved, the Lagrangian will be
bilinear in these fields and we only have to estimate the
size of the terms multiplying those bilinears. m and
�s�m�, inherited from the hard matching coefficients,
have well-known values. Derivatives with respect to the
relative coordinate i�r and 1/r�k �the transfer momen-
tum� must be assigned the soft scale ��p�. Time deriva-
tives i�0, center-of-mass derivatives i�R, and the fields of
the light degrees of freedom must be assigned the US
scale E�p2 /m. The �s arising in the matching calcula-
tion from NRQCD, namely, those in the potentials, must
be assigned the size �s�1/r� and those associated with
the light degrees of freedom �gluons, at lower orders�
the size �s�E�. If �QCD did not exist �as in QED� this
would provide a homogeneous counting in which each
term has a well-defined size. If E��QCD �recall that
then �s�E��1� this is also true, but calculations at the
US scale cannot be done in perturbation theory in �s�E�
anymore. If E��QCD, the counting becomes inhomoge-
neous �i.e., it is not possible to assign a priori a unique
size to each term� since the light degrees of freedom
may have contributions both at the scale E and at the
scale �QCD �see Sec. IV.G�. Nevertheless, the largest size
a term can have can be estimated identically as before.

C. Lagrangian and symmetries

The degrees of freedom of pNRQCD can be arranged
in several ways and so accordingly can the pNRQCD
Lagrangian. We first write it in terms of quarks and glu-
ons, which allows a smooth connection with the
NRQCD section. One of the most distinct features of
the pNRQCD Lagrangian is the appearance of the
terms V, nonlocal in r, as matching coefficients of four-
fermion operators:

Lpot = −� d3x1d3x2�
†�t,x1��t,x2�V�r,p1,p2,S1,S2�

� �US gluon fields�†�t,x2���t,x1� , �51�

where pj=−i�xj
, for j=1,2, and S1=�1 /2, S2=�2 /2 act on

the fermion and antifermion, respectively �the fermion
and antifermion spin indices are contracted with the in-
dices of V, which are not explicitly displayed�. Typically,
US gluon fields show up at higher order. With this new
term the pNRQCD Lagrangian can be written in the
following way:

LpNRQCD = LNRQCD
US + Lpot, �52�

where LNRQCD
US has the form of the NRQCD Lagrangian

but all the gluons must be understood as US. This way
of writing the pNRQCD Lagrangian is advantageous for
calculating the matching potentials straightforwardly by
means of standard Feynman-diagram techniques. On the
other hand, for the study of heavy quarkonium, it is con-
venient, before calculating physical quantities, to project
the above Lagrangian onto the quark-antiquark sector
of the Fock space. This makes the multipole expansion
explicit at the Lagrangian level and it may also be useful
at the matching level, depending on how it is done. An
example is the matching via Wilson loops discussed in
Sec. IV.F. The projection onto the quark-antiquark sec-
tor is easily done at the Hamiltonian level by projecting
onto the subspace spanned by

� d3x1d3x2��x1,x2��†�x1��x2��US gluons� , �53�

where �US gluons� is a generic state belonging to the
Fock subspace with no quarks and antiquarks but an
arbitrary number of ultrasoft gluons. The pNRQCD La-
grangian then has the form

LpNRQCD =� d3x1d3x2Tr	�†�t,x1,x2�
iD0 +
Dx1

2

2m1

+
Dx2

2

2m2
+ ¯ ���t,x1,x2��

−� d3x
1
4

G	

a �x�G	
a�x�

+� d3x�
i=1

nf

q̄i�x�iD” qi�x� + ¯
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+� d3x1d3x2Tr�†�t,x1,x2�

�V�r,p1,p2,S1,S2�

��US gluon fields���t,x1,x2�� , �54�

where the first four lines stand for the NRQCD La-
grangian projected onto the quark-antiquark sector and

iD0��t,x1,x2� = i�0��t,x1,x2� − gA0�t,x1���t,x1,x2�

+��t,x1,x2�gA0�t,x2� . �55�

The dots in Eq. �54� stand for higher terms in the 1/m
expansion. The last four lines contain the four-fermion
terms specific to pNRQCD. In general US gluon fields
may also appear there, but the leading term �in �s, 1 /m,
and in the multipole expansion� is simply given by the
Coulomb law �one gluon exchange�:

�S

�x1 − x2�
Tr�Ta�†�t,x1,x2�Ta��t,x1,x2�� . �56�

We can enforce that the gluons be US by multipole
expanding them in r. In the case of the covariant deriva-
tives in Eq. �54� this corresponds to

iD0��t,x1,x2� = i�0��t,x1,x2� − �gA0�t,R�,��t,x1,x2��

−
1
2

ri
„g�iA0�t,R�…��t,x1,x2�

−
1
2

ri��t,x1,x2�„g�iA0�t,R�… + O�r2� ,

�57�

iDx1
��t,x1,x2� = 
i�r +

i

2
�R + gA�t,R�

+
ri

2
„g�iA�t,R�…���t,x1,x2� + O�r2� .

�58�

iDx2
��t,x1,x2� = 
–i�r +

i

2
�R���t,x1,x2�

+��t,x1,x2�
–gA�t,R�

+
ri

2
g„�iA�t,R�…� + O�r2� .

From now on, all the gluon �and light-quark� fields will
be understood as functions of t and R. We shall not al-
ways explicitly display this dependence. According to
the power counting given in the previous section, the
multipole expansion makes explicit the size of each term
in the Lagrangian. On the other hand, expansions like
Eqs. �57� and �58� spoil the manifest gauge invariance of
the Lagrangian. This may be restored by introducing sin-
glet and octet fields as in Eq. �49�. We choose the follow-
ing normalization with respect to color:

S = S1c/�Nc, O = OaTa/�TF. �59�

We shall not always explicitly display their dependence
on R, r, and t in the following. After multipole expan-
sion, the pNRQCD Lagrangian may be organized as an
expansion in 1/m and r �and �s�. The most general
pNRQCD Lagrangian density, compatible with the sym-
metries of QCD, that can be constructed with a singlet
field, an octet field, and US gluon fields up to order
p3 /m2 �see Sec. IV.B� has the form

LpNRQCD =� d3rTrS†�i�0 − hs�r,p,PR,S1,S2��S

+ O†�iD0 − ho�r,p,PR,S1,S2��O�

+ VA�r�TrO†r · gES + S†r · gEO�

+
VB�r�

2
TrO†r · gEO + O†Or · gE�

−
1
4

G	

a G	
a + �

i=1

nf

q̄iiD” qi, �60�

hs�r,p,PR,S1,S2� = 	cS
�1,−2��r�,

p2

2mred
� + cS

�1,0��r�
PR

2

2mtot

+ Vs�r,p,PR,S1,S2� , �61�

ho�r,p,PR,S1,S2� = 	cO
�1,−2��r�,

p2

2mred
� + cO

�1,0��r�
PR

2

2mtot

+ Vo�r,p,PR,S1,S2� , �62�

Vs = Vs
�0� +

Vs
�1,0�

m1
+

Vs
�0,1�

m2
+

Vs
�2,0�

m1
2 +

Vs
�0,2�

m2
2 +

Vs
�1,1�

m1m2
,

�63�

Vo = Vo
�0� +

Vo
�1,0�

m1
+

Vo
�0,1�

m2
+

Vo
�2,0�

m1
2 +

Vo
�0,2�

m2
2 +

Vo
�1,1�

m1m2
,

�64�

where iD0O� i�0O−g�A0�R , t� ,O�, PR=−iDR, p=−i�r,
mred=m1m2 /mtot, and mtot=m1+m2. When acting be-
tween singlet fields, the color trace reduces PR to −i�R.
According to the order at which we are working, the
potentials have been displayed up to terms of order
1/m2. The static and the 1/m potentials are real-valued
functions of r only. The 1/m2 potentials have an imagi-
nary part proportional to ��3��r� and a real part that may
be decomposed as �we drop the labels s and o for singlet
and octet which have to be understood�

V�2,0� = VSD
�2,0� + VSI

�2,0�, V�0,2� = VSD
�0,2� + VSI

�0,2�, �65�

V�1,1� = VSD
�1,1� + VSI

�1,1�,

VSI
�2,0� =

1
2

p1
2,Vp2

�2,0��r�� +
VL2

�2,0��r�

r2 L1
2 + Vr

�2,0��r� , �66�

1440 Brambilla et al.: Effective-field theories for heavy quarkonium

Rev. Mod. Phys., Vol. 77, No. 4, October 2005



VSI
�0,2� =

1
2

p2
2,Vp2

�0,2��r�� +
VL2

�0,2��r�

r2 L2
2 + Vr

�0,2��r� , �67�

VSI
�1,1� = −

1
2

p1 · p2,Vp2
�1,1��r�� −

VL2
�1,1��r�

2r2

��L1 · L2 + L2 · L1� + Vr
�1,1��r� , �68�

VSD
�2,0� = VLS

�2,0��r�L1 · S1, �69�

VSD
�0,2� = − VLS

�0,2��r�L2 · S2, �70�

VSD
�1,1� = VL1S2

�1,1� �r�L1 · S2 − VL2S1

�1,1� �r�L2 · S1

+ VS2
�1,1��r�S1 · S2 + VS12

�1,1��r�S12�r̂� , �71�

where S1=�1 /2, S2=�2 /2, L1�r�p1, L2�r�p2, and
S12�r̂��3r̂ ·�1r̂ ·�2−�1 ·�2. The pNRQCD Lagrangian
density at order r2 /m0, r0 /m, �r /m�PR, and �r0 /m2�PR
and the corresponding matching coefficients at tree level
can be found in the article by Brambilla, Gromes, and
Vairo �2003�.

For the case m1=m2=m, the potential has the follow-
ing structure:

V�r� = V�0��r� +
V�1��r�

m
+

V�2�

m2 + ¯ ,

V�2� = VSD
�2� + VSI

�2�,
�72�

VSI
�2� =

1
8

PR
2 ,Vp2,CM

�2� �r�� +
�r� PR�2

4r2 VL2,CM
�2� �r�

+
1
2

p2,Vp2
�2��r�� +

VL2
�2��r�

r2 L2 + Vr
�2��r� ,

VSD
�2� =

�r� PR� · �S1 − S2�
2

VLS,CM
�2� �r� + VLS

�2��r�L · S

+ VS2
�2��r�S2 + VS12

�2� �r�S12�r̂� ,

S=S1+S2 and L=r�p. Other forms of the potential can
be brought to the one above by using unitary transfor-
mations, or the relation

− 	1

r
,p2� +

1

r3L2 + 4���3��r� = −
1

r

p2 +

1

r2r · �r · p�p� .

�73�

From Eq. �60� we see that the relative coordinate r
plays the role of a continuous parameter which specifies
different fields. Moreover, we note that the Lagrangian
is now in an explicitly gauge-invariant form. This is a
consequence of the transformation properties �50� of the
singlet and octet fields and of the fact that the gluon
fields depend on t and R only. The functions Vs, Vo,
cS

�1,−2�, cO
�1,−2�, cS

�1,0�, cO
�1,0�, VA, and VB are the matching

coefficients of the effective theory. At leading order it

follows from Eq. �57� that VA=VB=1, from Eq. �58� that
cS

�1,−2�=cO
�1,−2�=cS

�1,0�=cO
�1,0�=1, and from Eq. �56� that

Vs
�0�=−CF�s /r and Vo

�0�= �1/2Nc��s /r.
Equations �52�, �54�, and �60� provide three different

ways to write the pNRQCD Lagrangian. We have also
shown how to derive one from the other. This works
�and is useful� at tree level. In general, each form of the
pNRQCD Lagrangian may be constructed indepen-
dently of the others by identifying the degrees of free-
dom, using symmetry arguments, and matching directly
to NRQCD.

The expressions for the currents in pNRQCD are
equal to those of NRQCD with the replacements: NR
→pNR and 
→
pNR. In particular, this applies to Eqs.
�12� and �13�. As in NRQCD, most of the physical infor-
mation can be extracted from the imaginary part of the
potentials, which are proportional to the imaginary part
of the NRQCD four-fermion matching coefficients.
Therefore the imaginary part of the �singlet or octet�
potential will have the following structure �with only lo-
cal potentials, delta functions, or derivatives of delta
functions�:

Im V =
Im V�2�

m2 +
Im V�4�

m4 + ¯ , �74�

where the explicit expressions for Im V�2� and Im V�4� are

Im V�2� = −
CA

2
��3��r�4 Im f1

pNR�1S0�

− 2S2�Im f1
pNR�1S0� − Im f1

pNR�3S1��

+ 4 Im fEM
pNR�1S0� − 2S2�Im fEM

pNR�1S0�

− Im fEM
pNR�3S1��� , �75�

Im V�4� = CAT SJ
ij �r

i��3��r��r
j�Im f1

pNR�2S+1PJ�

+ Im fEM
pNR�2S+1PJ�� +

CA

2
�SJ

ij �r
i�r

j ,��3��r��

��Im g1
pNR�2S+1SJ� + Im gEM

pNR�2S+1SJ�� , �76�

T 01
ij = �ij�21 − S2� , �77�

T 10
ij =

1
3

SiSj, �78�

T 11
ij =

1
2
�ki��kj��S

�S��, �79�

T 12
ij = 
�ikS� + �i�Sk

2
−

Si�k�

3
�
�jkS� + �j�Sk

2
−

Sj�k�

3
� ,

�80�

�00
ij = �ij�21 − S2�, �11

ij = �ijS
2, �81�

and we have omitted the labels singlet and octet in the
matching coefficients for simplicity. Note that we use a
notation for the matching coefficients similar to the one
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used in NRQCD, but this does not imply that the match-
ing coefficients are equal.

The pNRQCD Lagrangian is invariant under charge
conjugation plus 1↔2 exchange �82�, time reversal �83�,
and parity �84�. In particular singlet, octet, and gluon
fields transform under these as

S�r,R,t� → �2S�− r,R,t�T�2, �82�

O�r,R,t� → �2O�− r,R,t�T�2,

A	�R,t� → − A	�R,t�T,

S�r,R,t� → �2S�r,R,− t��2, �83�

O�r,R,t� → �2O�r,R,− t��2,

A	�R,t� → A	�R,− t� ,

S�r,R,t� → − S�− r,− R,t� , �84�

O�r,R,t� → − O�− r,− R,t� ,

A	�R,t� → A	�− R,t� .

Singlet- and octet-field transformations may be derived
from Eq. �48�.

The discrete symmetries constrain the form of the La-
grangian. As an example we observe that the charge
conjugate of �d3rTrO†r ·gEO� is �d3rTrO†Or ·gE� and
therefore only the sum of the two appears in the La-
grangian. For a similar reason the term �d3rTrS†�r
�p ·gB�S� /m cannot appear, while the combination
�d3rTrO†�r�p ·gB�O−O†O�r�p ·gB�� /m is possible.

As in NRQCD, the form of the pNRQCD Lagrangian
may also be constrained by imposing the Poincaré alge-
bra of the generators H, P, J, and K of time translations,
space translations, rotations, and Lorentz boosts of the
EFT �Brambilla, Gromes, and Vairo, 2003�. H is the
pNRQCD Hamiltonian. The translation and rotation
generators P and J may be derived from the pNRQCD
Lagrangian or by matching to the NRQCD generators.
They are exact because translational and rotational in-
variance have not been broken in going to the EFT. The
Lorentz-boost generators may be obtained by matching
to the Lorentz-boost generators of NRQCD. As can be
seen from the explicit expressions given by Brambilla,
Gromes, and Vairo �2003�, they depend on some specific
matching coefficient independent of those in the La-
grangian. The tree-level matching may be performed by
multipole expanding the NRQCD Lorentz-boost gen-
erators and projecting onto singlet and octet two-
particles states. Loop corrections can, in principle, be
calculated as has been done for the matching coefficients
of the pNRQCD Lagrangian.

Imposing the Poincaré algebra on the above genera-
tors constrains the form of the pNRQCD Lagrangian.
For the constraints on the Lorentz-boost generators, see
Brambilla, Gromes, and Vairo �2003�. For the Lagrang-
ian, the constraints

cS
�1,0� = cO

�1,0� = 1 �85�

fix the center-of-mass kinetic energy to PR
2 /4m. The co-

efficient of the kinetic energy p2 /m, cS
�1,−2�, is not fixed by

Poincaré invariance. However, one may argue that be-
cause no other momentum-dependent operator than the
kinetic energy of NRQCD, −�†�2 / �2m��+†�2 / �2m�,
may contribute to the kinetic energy of pNRQCD, the
coefficients cS

�1,0� and cS
�1,−2� have to be equal. It follows

then that cS
�1,−2�=1 �analogously for cO

�1,−2��.10 In the
singlet- and octet-potential sectors we obtain

VLS,CM

V�0��
= −

1

2r
, VL2,CM +

rV�0��

2
= 0, �86�

Vp2,CM + VL2,CM +
V�0�

2
= 0,

where V�=dV /dr. We shall come back to the relations
between the singlet potentials in the strong-coupling re-
gime in Sec. VII.E.2. Finally, in the singlet-octet and
octet-octet sectors of the Lagrangian, the chromoelectric
fields are constrained to enter in the combination

r · 
gE +
1
2	 PR

2m
� ,gB�� , �87�

i.e., as in the Lorentz force. Further constraints can be
found in the article by Brambilla, Gromes, and Vairo
�2003�.

D. Feynman rules

The Feynman rules of pNRQCD for the static limit
were given by Brambilla et al. �2000� in terms of the time
variable and background gluon fields. However, for
computations in pNRQCD using Feynman diagrams, it
is sometimes more useful to consider the Feynman rules
in US momentum space �even if preserving the relative
distance r between the heavy quarks in position space�.
The propagator of the singlet is

i

E − hs
. �88�

This expression contains subleading terms in the velocity
expansion. In order to have homogeneous power count-
ing, it is convenient to expand it about the Coulomb
Green’s function Gc defined in Fig. 5, which scales as
1/mv2, and similarly for the octet. The complete set of
Feynman rules at the order displayed in Eq. �60� is
shown in Fig. 5.

10One may also obtain cS
�1,−2�=1 by a direct nonperturbative

matching computation as done by Brambilla, Pineda, et al.
�2001�. The relevant steps of that calculation are reproduced in
Eqs. �270�–�272�. The kinetic-energy operator may be read
from the ratio of the 1/m Green’s function �272� and the
zeroth-order one �270�.

1442 Brambilla et al.: Effective-field theories for heavy quarkonium

Rev. Mod. Phys., Vol. 77, No. 4, October 2005



E. Matching: diagrammatic approach

We discuss here how the matching between NRQCD
and pNRQCD �in the formulation of Eq. �52�� within a
diagrammatic approach is made along the lines of that
shown in Pineda and Soto �1998a, 1998b, 1999�. This
procedure is especially convenient for obtaining the po-
tentials order by order in �s since the whole technology
of Feynman diagrams can be used.

A practical way of obtaining the matching coefficients
of pNRQCD is by enforcing that two- and four-fermion
Green’s functions with arbitrary US external gluons be
equal to those of NRQCD at any desired order in E /k.
It is convenient to expand the energy of the external
quark and the energy and momenta of the US gluons
around zero before carrying out the loop integrals so
that the integrals become homogeneous in the soft scale
and hence are easier to evaluate. This may produce IR
divergences which are most conveniently �but not neces-
sarily� regulated in DR in the same way as the UV di-
vergences are. Since the IR behavior of NRQCD and
pNRQCD is the same, these divergences will cancel out
in the matching provided that the same IR regulator is
used in both theories. The UV divergences of NRQCD
must be renormalized in the MS scheme if we want to
use the matching coefficients of the NRQCD Lagrang-
ian computed themselves in this scheme. We still have a
choice in the renormalization scheme of pNRQCD.
However, it is most advantageous to again use the MS
scheme. Indeed, with this choice we can blindly subtract

any divergence regardless of whether it is UV or IR in
the matching calculation. For the UV divergences of
NRQCD and pNRQCD, this just corresponds to our
choice of scheme, and for the IR divergences this is pos-
sible since as long as we use the same treatment in both
theories, their IR behavior is the same. This allows us to
set integrals with no scale equal to zero.

Notice that we demand that off-shell Green’s func-
tions in NRQCD and pNRQCD be equal and not on-
shell Green’s functions �or on-shell matrix elements� as
is usual in many matching calculations, in particular, in
matching calculations from QCD to NRQCD. This is
due to the fact that we are eventually interested in
bound states, and particles in a bound state are typically
off shell. More precisely, the equations of motion at low-
est order are not those of the free particles. The equa-
tions of motion of pNRQCD �with potential terms in-
cluded� or local-field redefinitions may be consistently
used later on to remove time derivatives in higher-order
terms and to write the pNRQCD Lagrangian in a stan-
dard form, in the philosophy advocated by Scherer and
Fearing �1995� �see also Balzereit �1999��. It has actually
been checked by Pineda and Soto �1999�11 that this pro-

11However, there is still some freedom in the choice of the
wave-function field due to time-independent unitary transfor-
mations which commute with the leading terms in the
pNRQCD Lagrangian. Therefore, in general, it is not expected
that the standard forms of the pNRQCD Lagrangian calcu-

FIG. 5. Propagators and vertices of the pNRQCD Lagrangian �60�. Dashed lines represent longitudinal gluons and curly lines
transverse gluons. P	 represents the gluon incoming momentum.
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cedure produces gauge-independent results at O�m�s
4� in

the computation of the positronium spectrum.
The remaining important step for carrying out the

matching efficiently is the use of static �HQET� propa-
gators for the fermions. This can be justified as follows.
When p0��p� we are in the kinematical region we wish
to integrate out, and the cutoffs of both NRQCD and
pNRQCD ensure that the kinetic term p2 /2m be sub-
leading with respect to the energy irrespective of the
value of �p�. This fact is not automatically implemented
in DR. When DR is used, the correct UV behavior of
NRQCD is only obtained when expanding about the
static propagator. When p0�p2 /2m, we are in a kine-
matical region which still exists in pNRQCD, and it
should not be integrated out. The simplest way to avoid
this kinematical region is, again, by expanding the ki-
netic term. After all these simplifications the computa-
tions in the NRQCD side reduce to diagrams with only
one scale inside loops. In short, one would have �where
E generically denotes the external momentum or the
kinetic term p2 /m�

� dDqf�q,k,E� =� dDqf�q,k,0� + O
E

k
� . �89�

Now we are in a position to prove that no pNRQCD
diagram containing a loop contributes to the matching
calculation. Consider first the two-fermion Green’s func-
tion with an arbitrary number of US legs. For potential
terms to contribute at least a four-fermion Green’s func-
tion are needed and hence we only care about US glu-
ons. If we put a momentum ��p� in the fermion line, it
cannot flow out through any external US gluon line �by
definition of US�. Thus it must flow through the fermion
line, which is a series of static propagators insensitive to
the momentum flowing through them. Upon expanding
about external fermion energies and external energies
and momenta of the US gluons there is no scale left in
any of the integrals and therefore any loop contribution
vanishes. In fact, exactly the same argument can be used
for the NRQCD calculation. We conclude that the terms
bilinear in fermions are exactly the same in NRQCD
and pNRQCD. However, we have to keep in mind that
the latter �by definition� must be understood as contain-
ing ultrasoft gluons only.

Consider next the four-fermion Green’s function in
pNRQCD containing several potential terms but no US
gluons. Since no energy can flow through the potentials
and the static propagators are insensitive to the momen-
tum, upon expanding about the US external energy, the
integrals over internal energies have no scale. However,
these integrals have IR �pinch� singularities which are
not regulated by standard DR. How to rigorously deal
with them is discussed in Sec. IV.E.1. Since the IR be-
havior of pNRQCD and NRQCD is the same, the same

kind of integrals appears in the NRQCD calculation. If
we consistently set them to zero, we obtain the correct
potential terms. It is important to keep in mind that the
Wilson coefficients compensate the different UV behav-
ior of the effective theory �pNRQCD� with respect to
that of the more “fundamental” theory �NRQCD�.
Hence they are not sensitive to the details of the IR
behavior, which legitimates the prescription above. Then
any loop diagram in pNRQCD with no US gluons can
be set to zero. This still holds if an arbitrary number of
US gluon lines is included in the diagram. Indeed, any
potential line in the diagram may now also contain US
momenta from the gluon lines. These, however, can be
expanded about zero since they are �by definition� much
smaller than the momentum transfer in the potential.
Hence the integrals over US gluon energies and mo-
menta contain no scale �again upon expanding the US
external energy in the fermion static propagators� and
can also be set to zero. In short, loops in pNRQCD will
have the following structure in general:

� dDqf�q,E� =� dDqf�q,0� + O
E

k
� = 0. �90�

In brief, we can directly identify the potential terms
from a calculation in NRQCD. We stress again the simi-
larity in the procedure with the matching between QCD
and NRQCD as carried out before. The potential terms
in pNRQCD play the role of Wilson coefficients in the
matching procedure. As a summary, the final set of rules
is the following:

• Compute �off-shell� NRQCD Feynman diagrams
within an expansion in �s, 1 /m, and E. In case loops
appear, they have to be computed using static propa-
gators for the heavy quark and antiquark, which
makes the integrals depend on k only.

• Match the resulting expression to the tree-level ex-
pression in pNRQCD �i.e., the potentials that appear
in the pNRQCD Lagrangian� to the required order
in �s, 1 /m, and E.

• Isolate pinch singularities, if they appear, in expres-
sions which are identical to those which appear in the
pNRQCD computation and set them to zero. Or, al-
ternatively, one may just subtract the pNRQCD dia-
grams with the same pinch singularity, as discussed in
Sec. IV.E.1.

Let us mention here that when this procedure is used
to match local NRQCD four-fermion operators, these
do not get any loop correction. Indeed, due to the use of
HQET propagators, all NRQCD integrals become scale-
less and hence vanish. We often say that they are inher-
ited in pNRQCD.

A word of caution is necessary concerning the proce-
dure above. It relies heavily on the fact that there are no
further scales other than m, k, and E. If, for instance, an
energy scale m� such that E�m��k�m enters the pic-
ture, it would be convenient to take 
us�m� rather than

us�k and hence 
p��mm� rather than 
p�m. Then, in
the matching calculation we should also integrate out

lated with different gauges coincide, but that they are only
related by one such unitary transformation. This explains the
different expressions for the potential that one may find in the
literature but which still lead to the same physics.
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quarks with energy �m� and three-momentum ��mm�,
which cannot be done anymore in the static approxima-
tion. A careful analysis of the integration regions along
the lines of the threshold expansion discussed below
should be carried out in this case. Incidentally, this situ-
ation is of physical relevance for the ��1S� system,
where the charm-quark mass plays the role of m�.

It is also possible to perform the matching to
pNRQCD using the threshold expansion �Beneke and
Smirnov, 1998�. This procedure has been followed by
several groups �Beneke et al., 1999; Kniehl et al., 2002a,
2002b�. Typically �although not always�, the procedure
consists of taking one specific diagram of NRQCD and
splitting it into the different existing regions of mo-
menta. According to this terminology, the modes �and
correspondingly the regions of momenta� that appear in
NRQCD are the following:

�i� Soft modes. Quarks and gluons with energy and
three-momenta of O�mv� �the quarks are off-shell
in this situation�.

�ii� Potential modes. Quarks and gluons with energy
of O�mv2� and three-momenta of O�mv� �the glu-
ons are off-shell in this situation�.

�iii� US modes. Quarks and gluons with energy and
three-momenta of O�mv2� �in practice, it does not
seem there are quarks in this situation�.

Integrating out soft modes and potential gluons corre-
sponds to matching NRQCD to pNRQCD. In some
cases, it is customary to perform the matching using
�free� on-shell quarks. This has the consequence that
loops in pNRQCD do not vanish �since the energy is not
left as a free parameter in which one can expand� and
have to be subtracted accordingly. In addition, the on-
shell condition may set to zero some terms in the �off-
shell� potential. When these terms enter into a NRQCD
subdiagram of a higher-loop matching calculation, they
may give rise to new contributions to the potential due
to quark potential loops. This never occurs if the proce-
dure described above is used. In any case, the potentials
obtained by using different methods can be related to
each other by unitary transformations.

1. Pinch singularities

Let us now discuss the issue of the so-called pinch
singularity. We illustrate this discussion with the diagram
�in the Coulomb gauge� in Fig. 6. Actually, such a dia-
gram appears in the computation of the positronium
spectrum at O�m�5� carried out in the article by Pineda
and Soto �1999�. The one-loop integral of this diagram
reads

I �� dDq

�2��D

1
�q − k�2

1

q0 + i�

1

− q0 + i�

1

q2
�ij −
qiqj

q2 �
��¯� , �91�

where �¯� stands for a q0-independent term. We see
that it has two singularities at q0= ± i�. This is usually
referred to as the pinch singularity. The rigorous proce-
dure employed to eliminate the pinch singularity comes
from the matching computation. Previously we men-
tioned that loops in pNRQCD could be set to zero as far
as the matching computation was concerned, but that
required that the same kind of pinch-singularity dia-
grams were set to zero in NRQCD. The implementation
of this idea can be translated into a simple solution:
since for any NRQCD diagram with a pinch singularity
there must be a pNRQCD diagram with the same pinch
singularity, just subtract it �see Fig. 7�. Therefore the ac-
tual integral to be computed is

I �� dDq

�2��D

1
�q − k�2

1

q0 + i�

1

− q0 + i�

 1

q2 +
1
q2�

�
�ij −
qiqj

q2 ��¯� . �92�

We can see how the pinch singularity disappears, and the
resulting integral provides new contributions to the po-
tential only.

Pinch singularities also appear in computations using
the threshold expansion. We have seen here that under-
standing the pinch singularities within the EFT frame-
work provides a consistent prescription to eliminate
them in each case.

2. Potentials

The general structure of the potentials has been given
in Sec. IV.C. We shall focus on the equal-mass case, Eq.
�72�. By dimensional analysis, V�1� scales like 1/r2, Vp2

�2�

like 1/r, Vr
�2� like 1/r3 or ��3��r�, and so on. They are

FIG. 6. Matching between NRQCD and pNRQCD without
considering pinch singularities. The dashed and curly lines rep-
resent the longitudinal and transverse gluon exchanges, respec-
tively.

FIG. 7. Matching between NRQCD and
pNRQCD taking into account pinch singu-
larities. In pNRQCD the loop regulates the
pinch singularity.
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Vs
�0��r� = − CF

�Vs
�r�

r
, �93�

Vs
�1��r� = −

CFCADs
�1�

2r2 , �94�

Vp2,s
�2� �r� = − CFD1,s

�2�, �95�

VL2,s
�2� �r� =

CFD2,s
�2�

2
1

r
, �96�

Vr,s
�2��r� = �CFDd,s

�2���3��r� , �97�

VS2,s
�2� �r� =

4�CFDS2,s
�2�

3
��3��r� , �98�

VLS,s
�2� �r� =

3CFDLS,s
�2�

2
1

r3 , �99�

VS12,s
�2� �r� =

CFDS12,s
�2�

4
1

r3 , �100�

where �Vs
and the various D’s depend logarithmically on

r and the renormalization scale 
pNR. In order to obtain
the spectrum at order m�s

4, �Vs
has to be calculated to

order �s
3 �two loops�, Vs

�1� to order �s
2 �one loop�, and the

remaining potentials to order �s �tree level�. They are

�Vs
= �s�r�	1 + �a1 + 2�E�0�

�s�r�
4�

+ ��E�4a1�0 + 2�1�

+ 
�2

3
+ 4�E

2 ��0
2 + a2��s

2�r�
16�2� , �101�

Ds
�1� = �s

2�r� ,

D1,s
�2� = D2,s

�2� = Dd,s
�2� = DS2,s

�2� = DLS,s
�2� = DS12,s

�2� = �s�r� .

�102�

a1 was computed by Fischler �1977� and a2 by Peter
�1997� and Schröder �1999b�. If one wishes to have the
spectrum to one order higher, namely, m�s

5, all these po-
tentials must be calculated to one more power in �s. For
�Vs

, only the logarithmic contributions are known
�Brambilla et al., 1999b; Kniehl and Penin, 1999� �Padé
approximant �Chishtie and Elias, 2001� and renormalon-
based �Pineda, 2001� estimates are also available�. Vs

�1�

was calculated by Kniehl, Penin, Steinhauser, et al.
�2002� �the logarithmic corrections were computed by
Brambilla et al., 1999a and Kniehl and Penin, 1999� and
the complete Vs

�2� have been computed over the years
�Buchmüller et al., 1981; Gupta and Radford, 1981, 1982;
Pantaleone et al., 1986; Titard and Yndurain, 1994;
Brambilla et al., 1999a; Pineda and Soto, 1999; Manohar
and Stewart, 2000b; Kniehl et al., 2002a� and can be
found in the article by Kniehl et al. �2002a�. Several com-

ments are in order concerning these calculations.
�1� The potentials in the matching calculation appear

naturally in momentum space, and so they are given in
many of the references above. The real-space potentials,
which are better suited for bound-state calculations, are
obtained by Fourier transforming the momentum-space
potentials. At lower orders, it is enough to take the Fou-
rier transform in three dimensions in the sense of distri-
butions �Titard and Yndurain, 1994�. At higher orders, it
must be taken in d dimensions, as discussed below.

�2� In different papers, the results displayed for each
of the potentials may vary, even if the same basis �72� is
used. This does not mean a priori that there are incon-
sistencies. The basis �72� is overcomplete and hence ap-
parently different results may be related to each other
by unitary transformations. In particular, Vs

�1� can be to-
tally reshuffled into 1/m2 potentials.

�3� In earlier papers, the potentials were calculated
directly from QCD without expanding in the kinetic en-
ergy. In that case there are contributions from the
pNRQCD side to the matching calculation due to the
fact that the kinetic term in the pNRQCD Hamiltonian
cannot be expanded anymore. In this framework, the
integrals involved in the calculation have more than one
scale and are harder to evaluate.

�4� In higher-order calculations, quantum-mechanical
perturbation theory requires regularization and renor-
malization. The UV divergences are renormalized by lo-
cal potentials inherited from NRQCD and the scale de-
pendence is compensated by the one in the NRQCD
matching coefficients. In order to use the NRQCD
matching coefficients obtained in Sec. II.D, the poten-
tials must be kept in d dimensions. This is not important
as far as the soft or US factorization is concerned �it
amounts to a change of subtraction scheme�, but it be-
comes when the calculation is sensitive to divergences
due to the hard or potential factorization. This occurs at
order m�s

6 for the spectrum and in O��s
2� corrections for

the current. Note that any loop correction to a given
�e.g., Coulomb� potential slightly changes its functional
form �it gets multiplied by �r
��4−D� for each loop�. The
expressions for the potentials in three dimensions calcu-
lated at higher orders display small logarithms, which
eventually cancel out in the full calculation, in addition
to the large logarithms, which eventually become ln �s,
as discussed by Kniehl et al. �2002a� �note that in Bram-
billa et al. �1999a� only the large logarithms were dis-
played�.

�5� The octet potential is also known at two-loop ac-
curacy �Kniehl et al., 2005�,

Vo
�0��r� � 
CA

2
− CF��Vo

�r�

r
,

�Vo
�r� = �Vs

�r� − 
3
4

−
�2

16
�CA

2 �s
3 + O��s

4� . �103�

�6� At order m�s
5 for the spectrum and at O��s

3� for
the current US loops start to contribute. This implies
that VA�r� is also needed. At tree level we have
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VA�r� = VB�r� = 1. �104�

�7� For the case m1�m2, the 1/m2 potentials have
only been calculated in the scheme described in Sec.
IV.E for QED �Pineda and Soto, 1999�. Earlier calcula-
tions for both QCD �Gupta and Radford, 1982� and
QED �Gupta et al., 1989� exist, which have been carried
out by matching directly the fundamental theory to a
quantum-mechanical Hamiltonian.

�8� RG-improved expressions for the potential can
also be obtained. They are discussed in Sec. IV.H.

Finally, we would like to briefly discuss the matching
of currents and the imaginary pNRQCD potential. Inte-
grating out the soft scale when matching local currents
produces scaleless integrals, which are zero in DR. This
means that the matching coefficient remains the same at
the matching scale. If we take the electromagnetic-
vector current as an example, the matching condition is
b1,pNR

v �
p ,
us=
s�=b1,NR
v �
p ,
s�. In the case of b1,NR

v , only
a dependence on 
p appears �at least at low orders�. An
equivalent discussion applies to the imaginary terms of
the Lagrangian for which the general matching condi-
tion Im fpNR�
p ,
us=
s�=Im f�
p ,
s� holds. Nevertheless,
one should keep in mind that the expressions for the
matching coefficients will change once their running is
considered �see Sec. IV.H�.

F. Matching: Wilson-loop approach

We discuss here another way to perform the matching
to pNRQCD which we sometimes denote as Wilson-
loop matching. With respect to the previously discussed
procedure, it is characterized by the following points.

�a� It is done in coordinate space.

�b� It is done with the pNRQCD Lagrangian in the
form of Eq. �60�. This means that the degrees
of freedom that appear most naturally in the
pNRQCD part of the matching are singlet and oc-
tet fields.

�c� As a consequence of �b�, only one time appears in
the computation.

�d� The gluon fields appear in the NRQCD part of the
matching procedure in terms of Wilson-loop ampli-
tudes. Therefore the formulation will be explicitly
gauge invariant at each step.

�e� Gauge-invariant expressions can be obtained for
the potentials that encode all the corrections in
�s�1/r� for a given order in 1/m and the multipole
expansion.

The results obtained within this matching procedure will
be equivalent �up to field redefinitions� to those ob-
tained in the previous section.

From points �d� and �e� above, it is clear that the
Wilson-loop matching is well suited for generalization to
nonperturbative cases. Therefore it provides us with a
bridge between the weak-coupling matching procedure
of this section and the strong-coupling one of Sec. VII.

There, the language will be exactly the one introduced
here in the framework of perturbative QCD.

In the following, we define our interpolating fields, set
the basis of the matching, and illustrate the procedure
by discussing the static matching up to and including
order r2 in the multipole expansion. We closely follow
the work of Brambilla et al. �2000�, to which we refer the
reader for more details of the original derivation.

1. Interpolating fields

Our aim is to match, in coordinate space, amplitudes
defined in terms of the fields of NRQCD with ampli-
tudes defined in terms of the fields that appear in the
pNRQCD Lagrangian �60�, i.e., A	, S, and Oa fields.
Therefore we need to identify some interpolating fields
in NRQCD that have the same quantum numbers and
the same transformation properties as S and Oa. The
correspondence is not one to one. Given an interpolat-
ing field in NRQCD there are an infinite number of
combinations of singlet and octet operators with US
fields that have the same quantum numbers and there-
fore a nonvanishing overlap with the NRQCD operator.
Fortunately, the operators in pNRQCD can be orga-
nized according to the counting of the multipole expan-
sion. For instance, for the singlet we have

†�x2,t���x2,x1;t���x1,t�

→ �Zs
�0��r�S�r,R,t�

+ �ZE,s�r�rr · gEa�R,t�Oa�r,R,t� + ¯ , �105�

and for the octet

†�x2,t���x2,R ;t�Ta��R,x1;t���x1,t�

→ �Zo
�0��r�Oa�r,R,t�

+ �ZE,o�r�rr · gEa�R,t�S�r,R,t� + ¯ , �106�

where

��y,x ;t� � P exp	i�
0

1

ds�y − x� · gA„x − s�x − y�,t…� .

�107�

The arrows are a reminder that the two operators act on
different Hilbert spaces and that the equalities hold only
inside Green’s functions. The factors Z are normaliza-
tion factors. From Eqs. �105� and �106� it follows that the
operators on the left-hand side overlap at leading order
in the multipole expansion with the singlet and octet
fields, respectively.

The matching for the octet in Eq. �106� does not make
use of a gauge-invariant operator. In a perturbative
matching this is not problematic since Vo is gauge invari-
ant order by order in �s. However, if one aims at taking
advantage of nonperturbative techniques, it is preferable
to work with a manifestly gauge-invariant quantity. The
simplest solution consists in replacing the Ta color ma-
trix on the left-hand side of Eq. �106� by a local gluonic
operator Ha�R , t�Ta with the right transformation prop-
erties, e.g., gBa�R , t�Ta. All Ha�R , t�Ta with the right
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transformation properties will give the same potential in
the weak-coupling regime corresponding to the pertur-
bative octet potential. In the strong-coupling regime,
where octet quark-antiquark fields do not exist as inde-
pendent degrees of freedom, they identify different de-
grees of freedom and hence different potentials, corre-
sponding to the different symmetry properties of Ha. We
come back to this in full detail in Sec. VI.

2. Matching at O„r0 ,1 /m0
…

In order to get Vs
�0� and Zs

�0�, we choose the following
Green’s function in NRQCD �Susskind, 1977; Brown
and Weisberger, 1979�:

GNRQCD

= �vac�†�x2���x2,x1���x1��†�y1���y1,y2��y2��vac�

= �3�x1 − y1��3�x2 − y2��W�� + ¯ , �108�

where the dots stand for higher-order corrections in the
1/m expansion. The quantity W� is the rectangular Wil-
son loop �Wilson, 1974� with corners x1= �TW /2 ,r /2�,
x2= �TW /2 ,−r /2�, y1= �−TW /2 ,r /2�, and y2
= �−TW /2 ,−r /2�:

W� � P exp	− ig�
r�TW

dz	A	�z�� . �109�

A graphical representation is given in Fig. 8. We also
define

�¯� � �vac�Tr¯��vac� =� DADqDq̄e−iS�0�
Tr¯� ,

�110�

where S�0� is the pure Yang-Mills plus light-quark action
of QCD and the path integral is over all light fields.

Equation �105� states that the leading overlap of the
Green’s function �108� is with the singlet propagator in
pNRQCD. Indeed, in pNRQCD we get in the static
limit and at the zeroth order in the multipole expansion:

GpNRQCD = Zs
�0��r��3�x1 − y1��3�x2 − y2�e−iTWVs

�0��r�.

�111�

In order to single out the soft scale, we consider the
large TW limit of the Wilson loop �equivalent to setting
E→0�:

i

TW
ln�W�� = u0�r� + i

u1�r�
TW

+ O
 1

TW
2 � for TW → � ,

�112�

then from the matching condition GNRQCD=GpNRQCD
we obtain

Vs
�0��r� � − CF

�Vs
�r�

r
= u0�r� , �113�

ln Zs
�0��r� = u1�r� . �114�

The matching does not rely on any perturbative expan-
sion in �s. However, since we are concerned with the
weak-coupling situation, the quantities on the right-hand
side of Eqs. �113� and �114� can be evaluated expanding
order by order in �s. At LO in �s we have

Vs
�0��r� = − CF

�s

r
or �Vs

= �s, �115�

Zs
�0��r� = Nc. �116�

In order to get Vo
�0� and Zo

�0� one proceeds in a similar
way. We choose the NRQCD Green’s function:

GNRQCD
ab

= �vac�†�x2��
x2,
x1 + x2

2
;
TW

2
�Ta

��
x1 + x2

2
,x1;

TW

2
���x1��†�y1�

��
y1,
y1 + y2

2
;−

TW

2
�Tb�
y1 + y2

2
,y2;−

TW

2
�

��y2��vac�

= �3�x1 − y1��3�x2 − y2��TaW�Tb� + ¯ , �117�

where in the last line the color matrices are understood
as inserted in the static Wilson loop at the points
�R ,TW /2� and �R ,−TW /2�. The dots stand for higher-
order corrections in the 1/m expansion.

Equation �106� states that the leading overlap of the
Green’s function �117� is with the octet propagator in
pNRQCD. Indeed, in pNRQCD we obtain in the static
limit and at zeroth order in the multipole expansion

GpNRQCD
ab = Zo

�0��r��3�x1 − y1��3�x2 − y2�e−iTWVo
�0��r�

���ab
adj�TW/2,− TW/2�� , �118�

where the Wilson line,

FIG. 8. A graphical representation of the static Wilson loop.
We adopt the convention that the time direction is from the
left to the right. Therefore the quark trajectories are repre-
sented by horizontal lines and the equal-time end-point Wilson
lines by shorter vertical lines.
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��TW/2,− TW/2� � ��TW/2,R,− TW/2,R�

= P exp	− ig�
−TW/2

TW/2

dtA0�R,t�� ,

is evaluated in the adjoint representation. As in the sin-
glet case, we define

i

TW
ln

�TaW�Tb�
��ab

adj�TW/2,− TW/2��

= v0�r� + i
v1�r�
TW

+ O
 1

TW
2 � for TW → � . �119�

From the matching condition GNRQCD
ab =GpNRQCD

ab we ob-
tain

Vo
�0��r� � 
CA

2
− CF��Vo

�r�

r
= v0�r� , �120�

ln Zo
�0��r� = v1�r� . �121�

Again, the formulas above do not rely on any expansion
in �s. However, in the weak-coupling situation, the
quantities on the right-hand sides of Eqs. �120� and �121�
can be expanded order by order in �s. At LO in �s we
obtain

Vo
�0��r� = 
CA

2
− CF��s

r
or �Vo

= �s, �122�

Zo
�0��r� = TF. �123�

Note that, despite the octet matching procedure being
gauge dependent, the octet static potential obtained in
this way is not at any finite order in perturbation theory
�it corresponds to the pole of the octet static propaga-
tor�. All the gauge dependence goes into the normaliza-
tion factor Zo

�0�. In this respect, it is worthwhile to ob-
serve that the string ��ab

adj�TW /2 ,−TW /2�� does not give
contributions to the potential at any finite order in per-
turbation theory, but it does to Zo

�0�.

3. Matching at O„r1 ,1 /m0
… and O„r2 ,1 /m0

…

At O�r�, there are no additional contributions to the
singlet and octet matching potentials and to the normal-
ization factors. At this order in the multipole expansion
one finds VA and VB. In the weak-coupling regime at LO
in �s they are

VA�r� = 1, VB�r� = 1. �124�

At O�r2�, one finds the next-to-leading contributions to
the singlet and octet static potentials and to the singlet
static normalization factor.

The NLO correction in the multipole expansion to the
singlet static propagator �111� is given by �see Fig. 9�

GpNRQCD = Zs
�0��r��3�x1 − y1��3�x2 − y2�e−iTWVs

�0��r�

� 
1 −
TF

Nc
VA

2 �r��
−TW/2

TW/2

dt�
−TW/2

t

dt�

�e−i�t−t���Vo
�0�−Vs

�0��

��r · gEa�t��ab
adj�t,t��r · gEb�t���� , �125�

where fields with only temporal arguments are evaluated
in the center-of-mass coordinate. From the matching
condition GNRQCD=GpNRQCD, we obtain Zs

�0� and Vs
�0� at

NLO in the multipole expansion:

Vs
�0��r� = u0�r� +

TF

Nc
VA

2 �r� lim
TW→�

i

TW
�

−TW/2

TW/2

dt

��
−TW/2

t

dt�e−i�t−t���Vo
�0�−Vs

�0��

��r · gEa�t��ab
adj�t,t��r · gEb�t��� , �126�

ln Zs
�0��r� = u1�r� +

TF

Nc
VA

2 �r��
−�

�

dt

��
−�

t

dt�e−i�t−t���Vo
�0�−Vs

�0��

� �r · gEa�t��ab
adj�t,t��r · gEb�t��� . �127�

Equations �126� and �127� do not rely on any perturba-
tive expansion in �s. However, since we are considering
the weak-coupling case, they can be evaluated order by
order in �s and one can obtain the leading logarithmic
contribution to the static potential. This comes from the
three-loop IR logarithmic divergence of the Wilson loop
first noticed by Appelquist et al. �1978� �see also Kum-
mer et al., 1996�. The calculation may be done in various
ways depending on how divergences are regularized.
Obviously the scheme adopted for calculating the Wil-
son loop must be the same as that adopted for calculat-
ing the loop diagram in pNRQCD. This study has been
performed by Brambilla et al. �1999b, 2000� giving

FIG. 9. The matching of Vs
�0� and Zs

�0� at next-to-leading order
�NLO� in the multipole expansion. On the left-hand side is the
Wilson loop in NRQCD, on the right-hand side are the
pNRQCD propagators. The first and second diagrams on the
right-hand side symbolically represent the first and second
terms in Eq. �125�.
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Vs
�0��r,
us� = − CF

�Vs
�r�

r
= „u0�r�…two-loop

−
CFCA

3

12
�s

r

�s
3

�
ln�r
us� , �128�

ln Zs
�0��r,
us� = „u1�r�…two-loop +

CFCA
2

2

�s
3

�
ln�r
us� . �129�

The two-loop expression for u0�r� is given by
−CF�Vs

�r�two-loop/r and the two-loop expression for �Vs
can be found in Eq. �101�. The contributions propor-
tional to ln�r
us� in Eqs. �128� and �129� would be zero in
QED. The fact that �Vs

depends on the IR behavior of
the theory is therefore a distinct feature of QCD, more
specifically, of the non-Abelian nature of QCD, which
allows gluons to interact with themselves at arbitrarily
small energy scales. We stress that in order to match the
normalization factor �129�, it is necessary to take into
account contributions coming from the end-point Wilson
lines, which can be considered irrelevant only at order
�1/TW�0, i.e., for the potential �note that this does not
require any special assumption about the large-time be-
havior of the gluon fields�.

The NLO correction to Eq. �118� in the multipole ex-
pansion comes from the graph shown in Fig. 10. We omit
a term proportional to VB

2 of the type shown in
Fig. 11 and terms which contain operators like
Trrirj�Di ,Ej�OO†�, because in perturbation theory they
neither contribute to the octet matching potential nor to
the normalization. The reason is that in contrast to the
nonperturbative regime where we may have dependen-
cies on the scale �QCD, in perturbation theory loops on
octet lines are scaleless and vanish in DR. With a calcu-
lation analogous to that in the singlet case we obtain at
leading logarithmic three-loop accuracy

Vo
�0��r,
us� = 
CA

2
− CF��Vo

�r�

r

= „v0�r�…two-loop

+ 
CA

2
− CF�CA

3

12
�s

r

�s
3

�
ln r
us. �130�

The two-loop expression for v0�r� is given by �CA
−CF /2��Vo

�r�two-loop/r and for the two-loop expression
of �Vo

, see Eq. �103�. Similarly Zo
�0� may also be calcu-

lated, but only in a specific gauge.

4. Matching at order r0
„1/m, 1 /m2, and beyond…

Following this method, one may consider 1/m correc-
tions. If one works at LO in the multipole expansion, the
singlet and octet fields decouple. If we further focus on
the singlet sector, the computations would be similar to
those that appear in Sec. VII.E.4 for the strong-coupling
regime. This is the case because we are actually per-
forming the matching order by order in 1/m and to any
order in �s. Therefore the expressions obtained in the
strong-coupling regime also hold here up to corrections
due to US effects. This reasoning also applies to what in
Sec. VII is called the “quantum-mechanical matching”
�see Sec. VII.E�, where explicit expressions in terms of
Wilson-loop amplitudes for the real and imaginary parts
of the pNRQCD potentials are derived. Those expres-
sions are also valid in the perturbative regime, if they
are understood to be at O�r0� in the multipole expan-
sion. Note that the Wilson loops multiplying delta func-
tions of r or derivatives of them are zero in the pertur-
bative regime since they become dimensionless objects
and vanish in DR. In particular, this applies to the glu-
onic correlators that appear in the imaginary part of the
potential. Finally, we note that nonanalytic terms due to
the scale �m�QCD do not appear here since for �QCD
�E, this three-momentum scale has not been integrated
out.

G. Observables: spectrum and inclusive decay widths

We have finally built the pNRQCD Lagrangian and
are in the position to calculate observables with it. We
consider observables �being the theoretically cleanest
ones� that only involve the calculation of the NR propa-
gator �Green’s function� of the system projected onto
the colorless sector of a quark-antiquark pair �with Ps
the corresponding projector� and the gluonic vacuum,

��E,r,r�� � i� dtd3ReiEt�vac�TS�r�,0,0�S†�r,R,t���vac�

= �r��Gs�E��r� , �131�

Gs�E� � Ps�vac�
1

H − E
�vac�Ps = Gc�E� + �Gs, �132�

where H is the pNRQCD Hamiltonian, Gc the Coulomb
Green’s function defined in Fig. 5, and E the energy
measured from the threshold 2m.

Besides the heavy-quarkonium spectrum �i.e., the
poles of the Green’s function�, we consider inclusive
�electromagnetic� decay widths, NR sum rules, and t-t̄

FIG. 10. The matching of Vo
�0� and Zo

�0� at NLO in the multi-
pole expansion. On the left-hand side is the Wilson loop in
NRQCD with color matrix insertions, on the right-hand side
are the pNRQCD propagators.

FIG. 11. Octet self-energy graph proportional to VB
2 .
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production near threshold. For these the normalization
at the origin will be important,12 i.e., the object �r
=0�Gs�E��r=0� has to be computed.

In pNRQCD, there are only potential and US loops.
Within pNRQCD, talking about potential loops is noth-
ing but talking about quantum-mechanical perturbation
theory:

where the black square represents a generic �Vs correc-
tion to the singlet Coulomb Hamiltonian.

US loops can be computed using standard Feynman-
diagram techniques, where it is sometimes convenient to
work in momentum space for the US momenta and in
position space for the soft scale �this is certainly so if one
wants to do standard �finite� quantum-mechanical per-
turbation theory, although it is clearly possible to do it in
momentum space�. We illustrate the procedure with the
first US contribution to Gs:

�133�

where d=3+2�. We can see that the result is UV diver-
gent. This is not a problem in an EFT in which such
divergences can �and should� be absorbed in the match-
ing coefficients of the EFT, i.e., in the potentials. More-
over, there are other sources of logarithmic UV diver-
gences, proportional to ln 
p, coming from potential
loops. They show up either by going to high enough
orders in quantum-mechanical perturbation theory �for
instance, if we are interested in computing the spectrum
at O�m�s

6��,

Gc�E��VsGc�E� ¯ �VsGc�E� , �134�

or by inserting sufficiently singular operators in the com-
putation �as is the case for the renormalization of the
matching coefficient of the electromagnetic current�.
These divergences can be absorbed in the matching co-
efficients of the local potentials �those proportional to
��3��r� or its derivatives� or in the matching coefficients
associated with the currents. Let us explain in detail how
this works. Since the singular behavior of the potential
loops appears for �p���s /r, a perturbative expansion in

�s is allowed in Gc�E�, which can be approximated by
the free propagator:

Therefore a practical simplification follows from the fact
that the Coulomb potential −CF�s /r can be considered a
perturbation as far as the computation of the ln 
p UV
divergences is concerned. Moreover, each Gc

�0� produces
a potential loop and one extra power of m in the nu-
merator, which eliminates the powers of 1/m in the dif-
ferent potentials. This allows the mixing of potentials
with different powers of 1/m. One typical example is the
diagram in Fig. 12, which corresponds to

Gc
�0��E�

�CFDd,s
�2�

m2 ��3��r�Gc
�0��E�CF

�Vs

r
Gc

�0��E�

�
�CFDd,s

�2�

m2 ��3��r�Gc
�0��E� . �135�

The relevant computation gives

�r = 0�Gc
�0��E�CF

�Vs

r
Gc

�0��E��r = 0�

� � ddp�

�2��d � ddp

�2��d

m

p�2 − mE
CF

4��Vs

q2

m

p2 − mE

� − CF

m2�Vs

16�

1

�
, �136�

where q=p−p�. This divergence can be absorbed in Dd,s
�2�

contributing to its running as follows:


p
d

d
p
Dd,s

�2��
p� � �Vs
�
p�Dd,s

�2�2�
p� + ¯ . �137�

It is particularly appealing how the EFT framework
gives a solution to the problem of the UV divergences
one finds in standard quantum-mechanical perturbation-
theory calculations. When potential divergences are
found it can be more convenient to work in a momen-

12Other observables that do not belong to this category are
semi-inclusive radiative decay widths, which have been studied
by Garcia i Tormo and Soto �2004� and are considered in Sec.
VIII.G, or heavy-quarkonium production, for which an analy-
sis in the weak-coupling regime is available �Beneke et al.,
2000�.

FIG. 12. One possible contribution to the running of Dd,s
�2� at

next-to-leading-logarithm order �NLL�. The first picture repre-
sents the calculation in terms of the free quark-antiquark
propagator Gc

�0� and the potentials �the small rectangles�. The
picture on the right is the representation within a more stan-
dard diagrammatic interpretation in terms of quarks and anti-
quarks. The delta potentials are displayed as local interactions
and the Coulomb potential as an extended object in space �but
not in time�.
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tum representation �see, for instance, Czarnecki et al.
�1999b��. Nevertheless, it is also possible to handle the
UV divergences in position space �Yelkhovsky, 2001�.
Either way, the computation should be performed in the
same scheme used to compute the potentials �see Sec.
IV.E for details�.

1. Heavy-quarkonium mass

After this discussion and taking into account the
power-counting rules given in Sec. IV.B, one can obtain
the different observables up to some order in v��s. For
instance, the level of precision of the perturbative com-
putation for the heavy-quarkonium mass,

Mnlj
pert. = 2m + �

m=2

�

Anlj
�m��s

m, �138�

is as follows �some results were actually computed prior
to the existence of pNRQCD�. The O�m�s

2� result is
nothing but the positroniumlike result with the proper
color factor. The O�m�s

3� contribution was computed by
Billoire �1980�. The O�m�s

4� term was computed by
Melnikov and Yelkhovsky �1998�, Pineda and Yndurain
�1998, 2000�, Penin and Pivovarov �1999�; the one at
O�m�s

5 ln �s� by Brambilla et al. �1999a�, Kniehl and Pe-
nin �2000c�, Hoang, Manohar, and Stewart �2001�; the
next-to-next-to-next-to-leading-order �NNNLO� large-
�0 result by Hoang �2000�, Kiyo and Sumino �2000�; and
the computations that complete the NNNLO result for
the ground state �but without the static-potential three-
loop coefficient� by Kniehl et al. �2002a�, Penin and
Steinhauser, �2002�.13 Logarithms have also been re-
summed for the heavy-quarkonium mass �see Sec. IV.H
for details�.

In principle, for the bottomonium ground state, finite
charm-mass effects have to be taken into account since
the soft scale is of the order of the charm mass. They can
be found in the articles by Eiras and Soto �2000�; Hoang
�2000�; Melles �2000�; Wang and Yao �2004�.

So far, nonperturbative effects have not been dis-
cussed. Therefore it was implicitly assumed that �QCD

�mv2, which makes them relevant at O�m�s
5� where US

modes appear for the first time. This assumption may be
reasonable for t-t̄ systems, but for bottomonium and
charmonium it is more questionable. In the situation
�QCD�mv2, one cannot compute using perturbation
theory at the US scale. In this situation �which may be
relevant for bottomonium�, the energy of the heavy
quarkonium reads as follows:

Mnlj = 2m + �
m=2

�

Anlj
�m��
us��s

m + �Mnlj
US�
us� , �139�

where the 
us scale dependence of the different pieces
cancels in the overall sum �for the perturbative sum, this
dependence first appears in Anlj

�5�� and �En�Anlj
�2��s

2�

�Mnlj
US�
us� � �Mnl

US�
us�

=
TF

3Nc
�

0

�

dt�n,l�re−t�ho
�0�−En�r�n,l�

��gEa�t���t,0�ab
adjgEb�0���
us� , �140�

for which one can think of several possibilities depend-
ing on the relative size between mv2 and �QCD. In the
limit mv2��QCD, the result obtained by Penin and
Steinhauser �2002� is the combination

�Anlj
�5��
us��s

5 + �Mnlj
US�
us��O��s

5�pert.. �141�

The expression for the nonperturbative object looks
similar to Eq. �140� but with an UV cutoff � such that
mv2����QCD. Therefore we have

�Mnlj
US�
us� = �Mnlj

pert.,US�
us;�� + �Mnlj
US��� . �142�

The study of the nonperturbative effects in this limit,
often called the Voloshin-Leutwyler limit, has a long his-
tory starting from Voloshin �1979� and Leutwyler �1981�.
�Mnlj

US��� reads �this expression follows by Fourier trans-
forming to energy space Eq. �140� and setting 
us=��

�Mnlj
US��� =

g2

6Nc
�vac�Ej

a�0�

��n,l�r� 1

En − ho
�0� − iD0

adj�
ab

r�n,l�

�Ej
b�0��vac� . �143�

A notation closer to the one used by Voloshin �1979� can
be obtained by going to a Hamiltonian formulation �for
instance, fixing the gauge A0=0�. This corresponds to
replacing iD0

adj by H�0�, where H�0� is defined in Eq. �196�
and the physical states are constrained to satisfy the
Gauss law �projected to the octet sector�,

D · �a�phys� = 
� d3RTrO†�gTa,O��

+ q̄�0Taq��phys� , �144�

where �a is the canonical momentum conjugated to Aa.
As long as we do not study the fine and hyperfine split-
tings �see Leutwyler, 1981; Curci et al., 1983; Campos-
trini et al., 1986; Krämer et al., 1992; Titard and Yndu-
rain, 1995; Pimeda, 1997a, for such studies in the
Voloshin-Leutwyler limit�, the corrections do not de-
pend on j �total angular momentum� and s �spin� so we
shall not display these indices in the states. The octet
propagator mixes low O�iD0

adj��QCD� and high energies
O�ho

�0��En�mv2�. Therefore an operator product ex-

13The application of pNRQED �the QED version of
pNRQCD� and, in general, of factorization with DR, has also
led to a plethora of results for the spectra of positronium
�Czarnecki et al., 1999a; Melnikov and Yelkhovsky, 1999b,
2001; Pineda and Soto, 1999; Kniehl and Penin, 2000b�.
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pansion can be performed whose expansion parameter is
of order


 iD0
adj

En − ho
�2

� 
�QCD

m�n
2 �2

, �145�

and one obtains

�Mnl
US��� = �

r=0

�

CrOr � �
r=0

�

�Enl
�r�, �146�

where

Cr = �n,l�r
 1

En − ho
�2r+1

r�n,l� , �147�

Or =
g2

54
�vac�Tr��D0�0��,�¯�D0�0�,E�0�� ¯ �

��D0�0��,�¯�D0�0�,E�0�� ¯ ���vac� , �148�

and the trace is in the adjoint representation. �Enl
�0� has

been obtained by Leutwyler �1981�; Voloshin �1982�;
Pineda �1997b� and �Enl

�1� by Pineda �1997b�. For further
details, we refer the reader to these works.

What we have discussed applies for tt̄ production near
threshold. In the case of bottomonium or charmonium,
it is more likely that the kinematical situations mv2

��QCD �in which the whole functional form of the chro-
moelectric correlator is needed� or �QCD�mv2 apply.
This last situation is discussed in Sec. VII. A phenom-
enological analysis is presented in Sec. VIII.A.

2. Inclusive decay widths

It is rather easy, after the matching has been per-
formed, to calculate in pNRQCD the inclusive decay
width of a heavy quarkonium H into light particles. This
is the imaginary part of the singlet propagator pole in
the complex plane and may be calculated as �at LO in
Im H�

��H → light particles� = − 2�n,l,s,j�Im H�n,l,s,j� . �149�

The imaginary part of the pNRQCD Hamiltonian has
been written in Eqs. �75� and �76�. It depends on delta
�or derivatives of delta� potentials and does not mix sin-
glet and octet fields. The states �n , l ,s , j� are the eigen-
states of the pNRQCD Hamiltonian. For electromag-
netic inclusive decays, Im fEM

pNR�3S1� is needed �or
equivalently the matching coefficient of the electromag-
netic current, b1,pNR

v � for the decay into e+e− and
Im fEM

pNR�1S0�, for the decay into ��. The first matching
coefficient is known at present with two-loop accuracy
�Källen and Sarby, 1955; Beneke et al., 1998; Czarnecki
and Melnikov, 1998� in a closed analytic form. For the
second, besides the one-loop result by Harris and Brown
�1957�, a semianalytic two-loop result was obtained by
Czarnecki and Melnikov �2002�. Apart from the electro-
magnetic matching coefficients, the relevant calculation
is that of the residue of the NR propagator at the origin:

Res
E=Epole

�r = 0�Gs�E��r = 0� = ��n
�0��2�1 + ��n�2, �150�

where

��n
�0��2 =

1

�

mCF�s

2n
�3

� �n, �151�

and Epole is the energy for which Gs�E� has a pole. Ex-
plicit expressions for the purely perturbative computa-
tion at NNLO can be found in the articles of Melnikov
and Yelkhovsky �1999a� and Penin and Pivovarov
�1999�. Note that at this order the LO expressions for
Im gEM

pNR�3S1� and Im gEM
pNR�1S0� are also needed. There-

fore, with NNLO precision, the electromagnetic decays
can be written in the following way:

�„VQ�nS� → e+e−
… =

4CA

m2 �n�Im fEM
pNR�3S1��1 + ��n�2

+ Im gEM
pNR�3S1�

En

m
� , �152�

�„PQ�nS� → ��… =
4CA

m2 �n�Im fEM
pNR�1S0��1 + ��n�2

+ Im gEM
pNR�1S0�

En

m
� , �153�

where V and P stand for the vector and pseudoscalar
heavy quarkonium. Some higher-order corrections are
also known. The O��s

3 ln �s� term has been computed by
Kniehl et al. �2003�; Hoang �2004�, the O��s

3 ln2 �s� term
by Kniehl and Penin �2000c�.14 For RG-improved ex-
pressions, see Sec. IV.H.

For the nonperturbative corrections, a discussion simi-
lar to the mass case applies to the relative size between
�QCD and mv2. Near the pole En, we have the expansion
�we only consider nonperturbative corrections in what
follows�

�r = 0�Gs�E��r = 0�

=
�n + ��n

np

En + �En0
np − E

+ O„�En + �En0
np − E�0

…

=
�n

En − E
−
�n�En0

np

�En − E�2 +
��n

np

En − E
+ O„�En − E�0

…

+ O��npEn0
2 � . �154�

On the other hand, one obtains

�r = 0�Gs�E��r = 0�

� �r = 0�Gc�E��r = 0� + �r = 0��Gs
np�E��r = 0� ,

�155�

where

14Major progress has also been made in QED for positronium
decays using these techniques. See Kniehl and Penin, 2000a;
Melnikov and Yelkhovsky, 2000.
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�r = 0��Gs
np�E��r = 0�

=
g2

18
�vac�Ej

a�0��r = 0�
1

hs
�0� − E

r� 1

ho
�0� + iD0

adj − E
�

ab

r

�
1

hs
�0� − E

�r = 0�Ej
b�0��vac�

= −
�n�En0

np

�En − E�2 +
��n

np

En − E
+ O„�En − E�0

… . �156�

Proceeding in the same way as before, we can factorize
mv2 from �QCD effects:

�r = 0��Gs
np�E��r = 0� = �

r=0

�

Cr
GOr, �157�

where

Cr
G = �r = 0�

1

hs
�0� − E

r
 1

ho
�0� − E

�2r+1

r
1

hs
�0� − E

�r = 0�

=
A−2

�r�

�En − E�2 +
A−1

�r�

�En − E�
+ O„�En − E�0

… , �158�

and Or is defined in Eq. �148�. Now, from these expres-
sions, we can read off the observables we are interested
in, namely,

��n
np � �

r=0

�

��n
�r� = �

r=0

�

A−1
�r�Or, �En0

np =
− 1

�n
�
r=0

�

A−2
�r�Or.

�159�

This also provides a new method of obtaining the energy
corrections for l=0 states, which can be used to check
the results of the previous subsection. ��n

�0� and �En0
�0�

were calculated by Voloshin �1982� and ��n
�1� by Pineda

�1997b�. We refer the reader to these works for further
details.

NR sum rules and t-t̄ production near threshold will
be discussed in Secs. VIII.E and VIII.F, respectively. For
those, the relevant objects to be computed are again �r
=0�Gs�E��r=0�, but for arbitrary energy E�mv2, and
the electromagnetic matching coefficients considered be-
fore. Finally, it is also possible to obtain RG-improved
expressions, which we consider in the next section.

H. Renormalization group

Schematically, we can write the pNRQCD Lagrangian
as an expansion in r and 1/m in the following way:

LpNRQCD = �
n=−1

�

rnṼnOn +
1

m �
n=−2

�

rnṼn
�1�On

�1� + O
 1

m2� ,

�160�

where Ṽn
��� �Ṽn

�0�� Ṽn� are dimensionless constants �in
four dimensions�. Since they reabsorb the divergences of
the EFT in the way explained in Sec. IV.G, they will

depend on 
p and 
us. One can obtain RG-improved ex-

pressions for Ṽn
��� in the following way.

One first performs the matching from QCD to
NRQCD. The latter depends on some matching coeffi-
cients, c�
s� and f�
p ,
s�, which can be obtained order by
order in �s �with 
p=
s� following the procedure de-
scribed in Sec. II.D. In Sec. II.E, we discussed the pro-
cedure to get the running of c and the soft �
s� running
of f at any finite order �basically using HQET tech-
niques�. Nevertheless, the running of f�
p ,
s� is more
complicated beyond one loop since a dependence on 
p
appears. As we shall see, it can be obtained within pN-
RQCD.

The second step is the matching from NRQCD to
pNRQCD. The latter depends on some matching coef-
ficients �potentials�, which typically have the following

structure: Ṽ„c�
s� , f�
p ,
s� ,
s ,
us ,r…. These potentials
can be obtained order by order in �s following the pro-
cedure described in Secs. IV.E and IV.F. The integrals in
the matching calculation depend on a factorization scale

, which corresponds either to 
s or to 
us. In an explicit
calculation, they can be distinguished by looking at the
UV and IR behavior of the diagrams: UV divergences
are proportional to ln 
s, which cancel the 
s scale de-
pendence inherited from the NRQCD matching coeffi-
cients, and IR divergences are proportional to 
us. How-
ever, since we only want to perform a matching
calculation at some given scale 
=
s=
us �or when work-
ing order by order in �s without attempting any resum-
mation of logarithms�, it is not necessary to distinguish
between 
s and 
us.

The third step is to obtain the RG equations of the
potentials. 
s provides us with the starting point of the
RG evolution with respect to 
us �up to a constant of
order 1�. The running with respect to 
us can then be
obtained following the procedure described by Pineda
and Soto �2000� and Pineda �2002b�. Formally, the RG
equations of the matching coefficients due to the 
us de-
pendence read


us
d

d
us
Ṽ = BṼ�Ṽ� . �161�

From a practical point of view, one can organize the RG
equations within an expansion in 1/m and �s�
us�. At
O�1/m0�, the analysis corresponds to the study of the
static limit of pNRQCD, which has been carried out by

Pineda and Soto �2000�. Since Ṽ−1�0, there are relevant
operators �super-renormalizable terms� in the Lagrang-
ian and the US RG equations lose the triangular struc-
ture that they exhibited for the RG equations of 
s. Still,

if Ṽ−1�1, the RG equations can be obtained as a double

expansion in Ṽ−1 and Ṽ0, where the latter corresponds to
the marginal operators �renormalizable interactions�. At
short distances �1/r��QCD�, this is the case for the

static limit of pNRQCD. Specifically, we have Ṽ−1

= �Vs
,�Vo

�, which fulfills Ṽ−1��s�r��1, Ṽ0=�s�
us�, and
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Ṽ1= VA ,VB��1. Therefore we can calculate the anoma-
lous dimensions order by order in �s�
us�. In addition,

we also have an expansion in Ṽ−1. Moreover, the specific
form of the pNRQCD Lagrangian severely constrains
the RG equations’ general structure. Therefore, for in-
stance, the leading nontrivial RG equation for �Vs

reads


us
d

d
us
�Vs

=
2
3
�s

�
VA

2 �
CA

2
− CF��Vo

+ CF�Vs�3

+ O�Ṽ−1
4 Ṽ0,Ṽ0

2Ṽ−1
3 � . �162�

At higher orders in 1/m the analysis has been carried
out by Pineda �2002b�. The same considerations as for
the static limit apply here as far as the nontriangularity
of the RG equations is concerned. In general, one has
the structure


us
d

d
us
Ṽn

��� � �
ni��i�

Ṽn1

��1�Ṽn2

��2�
¯ Ṽnj

��j�,

with �
i=1

j

�i = �, �
i=1

j

ni = n , �163�

and one has to pick up the leading contributions from all
possible terms. Actually, as far as the NNLL heavy-
quarkonium mass is concerned, the relevant US running
can be obtained by computing the diagram displayed in
Eq. �133� �one also has to consider the running of VA,
which happens to be zero�. Working in DR, one should
note that the potentials have to be understood in D di-
mensions �see, for instance, Eq. �3.1� of Schröder’s thesis
�1999a��. Therefore powers of gB

2 �the bare coupling�
have dimensions and have to be compensated by powers
of k2� in �Vs

. This means that the US divergences �1/�
poles� generated by the right-hand side of Eq. �162� are
absorbed by the terms in �Vs

proportional to gB
8 or to a

higher power. Finally, by solving Eq. �161� between 
s

and 
us, we have Ṽ„c�
s� , f�
p ,
s� ,
s ,
us ,r…, where the
running with respect to 
us is known. Note that the run-
ning with respect to 
s is also known, since we demand
that the potential be independent of it:


s
d

d
s
Ṽ = 0, �164�

which can be solved by setting 
s=1/r. Therefore one

can also deduce the dependence of Ṽ on r.
The final step is to obtain the RG equation for 
p. In

pNRQCD, integrals over the relative three-momentum
of the heavy quarks occur. When these integrals are fi-
nite no dependence on 
p occurs and one has �p��1/r
�m�s and p2 /m�m�s

2. Therefore one can reduce 
us

down to �m�s
2 reproducing the results obtained by

Pineda �2002b�. In general, the integrals over p are di-
vergent, and the structure of the logarithms is dictated
by the UV behavior of p and 1/r. This means that we
cannot replace 1/r and 
us by their physical expectation
values but rather by their cutoffs within the integral over
p, i.e., 
p. Therefore besides the potential’s explicit de-

pendence on 
p, which appears in f, it also implicitly
depends on 
p through the requirement 1/r��p��
p,
and also through 
us since 
us has to fulfill p2 /m�
us
� �p� in order to ensure that only soft degrees of free-
dom have been integrated out for a given �p�. This latter
requirement holds if we fix the final point of the evolu-
tion of the ultrasoft RG equation to be 
us=
p

2 /m. At
this stage, a single cutoff 
p exists and the correlation of
cutoffs becomes manifest. Therefore for the RG
equation for 
p, the anomalous dimension of

Ṽ„c�1/r� , f�
p ,1 /r� ,1 /r ,
p
2 /m ,r… is at LO the same as the

one of Ṽ„c�
p� , f�
p ,
p� ,
p ,
p
2 /m ,
p….

15 It appears
through the divergences induced by the iteration of the
potentials in the way explained by Pineda �2002a� and
Sec. IV.G. In particular, the computation of the anoma-
lous dimension can be organized within an expansion in
�s and using the free propagators Gc

�0�. Finally, the run-
ning will go from 
p�m down to 
p�m�s. A similar
discussion applies to the running of the matching coeffi-
cients of the currents �or, in other words, of the imagi-
nary terms of the potential�. This completes the proce-
dure to obtain the RG equations for the hard, soft, and
US scales. An example is given below.

This line of investigation has led to several new results
in heavy-quarkonium physics. They can be summarized
as follows �we omit all numerical coefficients that can be
found in the quoted literature�:

• The NNLL correction to the heavy-quarkonium en-
ergy �Pineda, 2002b�, i.e., corrections of order

�E � m�s
4 + m�s

5 ln �s + m�s
6 ln2 �s + ¯ . �166�

• The LL �Pineda, 2002b� �first obtained by Hoang,
Manohar, and Stewart, 2001� and NLL �Kniehl et al.,
2004; Penin et al., 2004a� correction to the heavy-
quarkonium hyperfine splitting,

�EHF � m�s
4 + m�s

5 ln �s + m�s
6 ln2 �s + ¯ + m�s

5

+ m�s
6 ln �s + m�s

7 ln2 �s + m�s
8 ln3 �s + ¯ .

�167�

15Roughly speaking, this result can be thought of as expand-
ing ln r around ln 
p in the potential, i.e.,

Ṽ„c�1/r�,f�
p,1/r�,1/r,
p
2/m,r…

� Ṽ„c�
p�,f�
p,
p�,
p,
p
2/m,
p… + �ln�
pr�r

d

dr
Ṽ�

1/r=
p

+ ¯ .

�165�

The ln�
pr� terms give subleading contributions to the anoma-
lous dimension when introduced in divergent integrals over p.
An explicit example of this type of correction appears in the
computation of the hyperfine splitting of heavy quarkonium at
NLL �Kniehl et al., 2004; Penin et al., 2004a�.
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• The NLL �Pineda, 2002a� correction to the inclusive
electromagnetic decays �this result can be applied to
t̄-t production at threshold or NR sum rules since the
running of the electromagnetic current matching co-
efficient is the only nontrivial object that appears in
the NLL running�,

�„VQ�nS� → e+e−
… � m�s

3�1 + �s
2 ln �s + �s

3 ln2�s

+ ¯ � ,

�„PQ�nS� → ��… � m�s
3�1 + �s

2 ln �s + �s
3 ln2�s + ¯ � ,

�168�

and for the ratio the NNLL correction �Penin et al.,
2004b�

�„VQ�nS� → e+e−
…

�„PQ�nS� → ��…
� 1 + �s

2 ln �s + �s
3 ln2 �s + ¯

+ �s
3 ln �s + �s

4 ln2 �s + ¯ .

�169�

The resummation of logarithms using EFTs was first
addressed within the velocity NRQCD framework
�Luke et al., 2000; see also Manohar and Stewart, 2000c,
2001; Hoang, Manohar, and Stewart, 2001; Hoang and
Stewart, 2003; Hoang, 2004�, where the relevance of the
cutoff correlation for the RG was first realized. Never-
theless, the early formulations of this theory had some
problems �in particular, concerning the treatment of US
modes�, which led to incorrect results for the heavy-
quarkonium mass at NNLL �Hoang, Manohar, and
Stewart, 2001� and the electromagnetic-current match-
ing coefficient at NLL �Manohar and Stewart, 2001�.
They have been resolved by Hoang and Stewart �2003�
and their results now agree with those obtained in
pNRQCD �Pineda, 2002a, 2002b�. The application of the
RG to QED bound states has also been considered in
both formalisms; see Manohar and Stewart �2000a�;
Pineda �2002a, 2002c�; Penin et al. �2004b�.

Finally, we illustrate the method in the simplest pos-
sible situation where all the scales appear. We consider
the corrections to the heavy-quarkonium spectrum for
the non-equal-mass case in the limit where one of the
masses �m2� goes to infinity, and in the Abelian limit
with zero light flavors �CF→1,CA→0,TF→1,nf→0�.
This is nothing but the hydrogen-atom case. We com-
pute some NNNLL corrections to the Lamb shift of
O�m�s

8 ln3 �s�, which were first computed using the RG
by Manohar and Stewart �2000a�. Here we follow the
discussion in the articles of Pineda �2002a, 2002c�. In this
limit, �s does not run and we can neglect the four-
fermion matching coefficients since they are suppressed
by powers of 1/m2. Therefore we only have to consider
the running of the matching coefficients of the heavy-
quark bilinear terms. At O�1/m2�, cD is the only match-
ing coefficient with nontrivial running. By solving Eq.
�35� in this limit, one obtains

cD�
s� = 1 −
8
3
�s

�
ln

s

m
. �170�

At the pNRQED level, we have to consider first the US
RG running of Dd,s

�2�, which follows from Eq. �133�. It
reads �we use VA=1 and cS

�1,−2�=1�


us
d

d
us
Dd,s

�2� = −
4
3

�s
2

�
. �171�

By using the initial matching condition

Dd,s
�2��
s� = �s

cD�
s�
2

, �172�

we can solve Eq. �171�. The solution is

Dd
�2��
us� =

�s

2

1 −

8
3
�s

�
ln

us

m
� , �173�

which gives the full NNLL contribution to the spectrum
of O�m�s

5 ln �s� and nothing else. At NNNLL, we can
obtain the O�m�s

8 ln3 �s� contribution from Eq. �137�,
which is due to the diagram in Fig. 12. This is because
the O�m�s

8 ln3 �s� term has the highest power of loga-
rithm that could appear from this evaluation of the en-
ergy and that in order to achieve such power it is neces-
sary to mix with its NNLL-terms. As we have seen, the
latter only appear in the LL evaluation of Dd

�2� �173�,
which, indeed, only produces a single logarithm. The
other point is that the NLL evaluation of the potentials
only produces single logarithms unless mixed with LL
running. Therefore the diagrams with the highest power
of Dd

�2� will give the highest logarithmic power in the
spectrum of the NNNLL. Thus we only have to solve
Eq. �137� �note the replacement 
us=
p

2 /m�, which in the
limit considered here reads


p
d

d
p
Dd,s

�2��
p� = �sDd,s
�2�2�
p� + ¯ . �174�

The solution is

�Dd
�2� =

64
27
�s

3
�s

�
�2

ln3 
p

m
. �175�

V. RENORMALONS AND THE DEFINITION OF THE
HEAVY-QUARK MASS

A. The pole mass and static singlet potential renormalon

The pole mass of a heavy quark can be related to the
MS mass by the series

m = mMS + �
n=0

�

rn�s
n+1, �176�

where �s��s�
�, mMS is calculated at the normalization
point 
=mMS �in this way logarithms that are not asso-
ciated with the renormalon are resummed�, and the first
three coefficients r0, r1, and r2 are known �Gray et al.,
1990; Chetyrkin and Steinhauser, 2000; Melnikov and
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Ritbergen, 2000�. The pole mass is also known to be IR
finite and scheme independent at any finite order in �s
�Kronfeld, 1998�. We then define the Borel transform

m = mMS + �
0

�

dte−t/�sB�m��t�, B�m��t� � �
n=0

�

rn
tn

n!
.

�177�

We denote by renormalons the singularities on the real
axis of the Borel plane.16 The perturbative expansion
behavior of Eq. �176� at large orders is dictated by the
closest renormalon to the origin of its Borel transform,
which happens to be located at t=2� /�0 �Beneke and
Braun, 1994; Bigi et al., 1994; Neubert and Sachrajda,
1995�. More precisely, the behavior of the Borel trans-
form near the closest renormalon at the origin is �we
define u=�0t /4��

B�m�„t�u�… = B��mRS�„t�u�…

+ �term analytic at u = 1/2� , �178�

where

B��mRS�„t�u�… � Nm

1

�1 − 2u�1+b �1 + c1�1 − 2u�

+ c2�1 − 2u�2 + ¯ � . �179�

This dictates that the behavior of the perturbative ex-
pansion at large orders be

rn =
n→�

Nm

 �0

2�
�n��n + 1 + b�

��1 + b� 
1 +
b

�n + b�
c1

+
b�b − 1�

�n + b��n + b − 1�
c2 + ¯ � . �180�

The different b, c1, c2, etc. can be obtained from the
procedure used by Beneke �1995�. The coefficients b and
c1 were computed by Beneke �1995�, and c2 by Beneke
�1999� and Pineda �2001�. They are

b =
�1

2�0
2 , c1 =

1

4b�0
3
�1

2

�0
− �2� , �181�

and

c2 =
1

b�b − 1�

�
�1

4 + 4�0
3�1�2 − 2�0�1

2�2 + �0
2�− 2�1

3 + �2
2� − 2�0

4�3

32�0
8 .

�182�

Approximate determinations for Nm have been obtained
by Pineda �2001�; Lee �2003b�; Cvetic �2004�; see also
Pineda �2003b�.

One can perform the same analysis with the singlet
static potential when �QCD�1/r. Its perturbative expan-
sion reads

Vs
�0��r ;
us� = �

n=0

�

Vs,n
�0��s

n+1. �183�

The potential, however, is not an IR safe object since it
depends on the IR cutoff 
us, which first appears at
O��s

4� �for more details see Sec. IV.F�. Nevertheless,
these US logarithms are not associated with the first IR
renormalon since they also appear in momentum space
�see also the discussion below�. They will not be consid-
ered further in this section.

We now use the observation that the first IR renorma-
lon of the singlet static potential cancels with �twice� the
renormalon of the pole mass. This has been proven in
the �one-chain� large-�0 approximation by Pineda �1998�
and Hoang, Smith, et al. �1999b� and at any loop �disre-
garding possible effects due to 
us� by Beneke �1998�. It
can also be argued to hold from an EFT approach where
any renormalon ambiguity should cancel between op-
erators and matching coefficients. Let us consider, for
instance, 1 /r��QCD. If we understand the quantity 2m
+Vs

�0� as an observable up to O�r2�QCD
3 ,�QCD

2 /m� renor-
malon �and/or nonperturbative� contributions, then this
proves the �first IR� renormalon cancellation at any loop
�as well as the IR-renormalon independence of 
us�.

One can now read off the asymptotic behavior of the
static potential from the one of the pole mass and work
analogously. We define the Borel transform

Vs
�0� = �

0

�

dte−t/�sB�Vs
�0���t�, B�Vs

�0���t� � �
n=0

�

Vs,n
�0� tn

n!
.

�184�

The closest renormalon to the origin is located at t
=2� /�0. This dictates that the behavior of the perturba-
tive expansion at large orders be

Vs,n
�0� =

n→�
NVs


 �0

2�
�n��n + 1 + b�

��1 + b� 
1 +
b

�n + b�
c1

+
b�b − 1�

�n + b��n + b − 1�
c2 + ¯ � , �185�

and the Borel transform near the singularity reads

B�Vs
�0��„t�u�… = NVs



1

�1 − 2u�1+b �1 + c1�1 − 2u� + c2�1

− 2u�2 + ¯ � + �analytic term� . �186�

In this case, by analytic term we mean an analytic func-
tion up to the next IR renormalon at u=3/2 �Aglietti
and Ligeti, 1995�.

For NVs
some approximate determinations exist

�Pineda, 2001; Lee, 2003b; see also Pineda, 2003b�. Ac-
tually, the best determinations come from Nm using the
cancellation of the pole mass and static singlet potential
renormalon, i.e.,

2Nm + NVs
= 0. �187�

16We shall not consider singularities due to instantons �Le
Guillou and Zinn-Justin 1990�.
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B. Renormalon-subtracted scheme and power counting

In EFTs with heavy quarks, the inverse of the heavy-
quark mass becomes one of the expansion parameters
�and of the matching coefficients�. A natural choice in
the past has been the pole mass because it is the natural
definition in processes where the particles eventually
measured in the detectors correspond to the fields in the
Lagrangian �as in QED�. This is not the case in QCD.
One consequence of this is that the pole mass suffers
from renormalon singularities. Moreover, since these
renormalon singularities lie close to the origin of the
Borel plane and perturbative calculations have gone
very far for systems with heavy quarks, they manifest
themselves as a poor convergence of the perturbative
series. It is then natural to try to define a new mass
parameter, which replaces the pole mass, but is still ad-
equate for threshold problems. Several choices have
been proposed in the literature: the kinetic mass �Bigi et
al., 1994�, the potential-subtracted �PS� mass �Beneke,
1998�, the 1S mass �Hoang, Ligeti, and Manohar, 1999�,
the PS-mass �Yakovlev and Groote, 2001�, and the RS
�RS� mass �Pineda, 2001�. All of them achieve the renor-
malon cancellation and share the following structure:

mX = m − �mX, �188�

where X= PS,1S , . . . � and �mX is an object such that

B��mX� = B��mRS� + �analytic term at u = 1/2� . �189�

The different definitions have different analytic terms.
�mkin is defined as the self-energy of a static quark com-
puted with a hard cutoff, �mPS is defined as 1/2 the self-
energy of the Coulomb potential computed with a hard
cutoff much smaller than 1/r, �mPS is defined as the soft
part of the heavy-quark self-energy computed with a
hard cutoff, and �m1S is 1 /2 the perturbative binding
energy of the ground state of heavy quarkonium �note
that in this case the renormalon cancellation is achieved
between different powers of �s�. We shall not discuss
further all these threshold masses. Instead, we focus on
one, the RS mass, which better matches with the analy-
ses of the previous section. In any case, a large part of
the discussion also holds when replacing RS by X. It
should be noted that since different masses implement
the renormalon cancellation in different ways, different
systematic errors appear. For instance, the major error
in the RS mass comes from Nm �see Eq. �180��. For the
kinetic and PS masses, it seems difficult to compute
higher-order terms. The PS and 1S masses depend on
the US scale at NNNLO, which may be problematic
once this precision is needed �for instance, in B physics�.
Finally, the 1S mass assumes that the ground state of
heavy quarkonium is mainly a perturbative system.
Therefore having at one’s disposal several masses may
help to better handle the errors, e.g., in the extraction of
the MS quark masses.

The RS definition tries to cancel the poor perturbative
behavior associated with the renormalon, which is due
to the nonanalytic terms in 1−2u in the Borel transform

of the pole mass. These terms also exist in the effective
theory. Therefore the procedure followed by Pineda
�2001� was to subtract the pure renormalon contribution
in the new mass definition,17 the RS mass mRS,

mRS�
f� = m − �
n=1

�

Nm
f
 �0

2�
�n

�s
n+1�
f�

��
k=0

�

ck
��n + 1 + b − k�
��1 + b − k�

, �190�

where c0=1. We expect that with this renormalon-free
definition, the coefficients multiplying the expansion pa-
rameters in the effective-theory calculation will have a
natural size and that the same holds for the coefficients
multiplying the powers of �s in the perturbative expan-
sion relating mRS to mMS. Therefore we do not lose ac-
curacy if we first obtain mRS and later on use the pertur-
bative relation between mRS and mMS in order to obtain
the latter. Nevertheless, since we work order by order in
�s, in the relation between mRS and mMS it is important
to expand everything in terms of �s, specifically �s�
f�, in
order to achieve the renormalon cancellation order by
order in �s. Then, the perturbative expansion in terms of
the MS mass reads

mRS�
f� = mMS + �
n=0

�

rn
RS�s

n+1, �191�

where rn
RS=rn

RS�mMS,
 ,
f�. These rn
RS are the ones ex-

pected to be of natural size �or at least not to be artifi-
cially enlarged by the first IR renormalon�.

These definitions significantly improve the conver-
gence of the perturbative series in comparison with the
pole mass. We refer the reader to the work of Pineda
�2001� for numerical details.

The shift from the pole mass to the RS mass affects
the explicit expression of the effective Lagrangians. In
particular, in HQET at LO, a residual mass term ap-
pears in the Lagrangian

L = h̄�iD0 − �mRS�h + O
 1

mRS
� , �192�

where �mRS=m−mRS and similarly for the NRQCD La-
grangian.

If we consider the LO in 1/m for pNRQCD when
�QCD�m�s, the residual mass term is absorbed into the
static potential �in going from NRQCD to
pNRQCD, one runs down the scale 
f to 
f�m�s�. We
can then, analogous to the RS mass, define a singlet
static RS potential

Vs,RS
�0� �
f� = Vs

�0� + 2�mRS, �193�

where the coefficients multiplying the perturbative se-
ries should be of O�1� �provided that we expand Vs

�0� and

17One could also choose not to include terms proportional to
cn for n�2 since these terms actually go to zero for u→1/2 for
the physical value of b�0.4.
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�mRS in the same parameter, namely, �s�. Notice also the
trivial fact that the scheme dependence of mRS cancels
with the scheme dependence of VRS. This definition sig-
nificantly improves the perturbative expansion in the po-
tential. For a numerical analysis we refer the reader to
the work of Pineda �2001, 2003b�.

The pNRQCD Lagrangian for weak coupling in the
RS scheme is formally equal to the one in the on-shell
scheme �see Eq. �60�� with the modifications m1�2�
→m1,RS�2,RS�, V→VRS, and so on. Note, in particular,
that now the expansion is in terms of 1/mRS.18 One can
then compute observables along the lines of Sec. IV.G
�at the practical level one can work with the pole mass
and change to the RS mass at the end�. For instance, one
would obtain the following expression for the heavy-
quarkonium spectrum �see Eq. �138��:

Mnlj = 2mRS + �
m=2

�

Anlj
m,RS�
us��s

m + �Mnlj
US�
us� , �194�

where the 
us scale dependence of the different pieces
cancels in the overall sum �for the perturbative sum, this
dependence first appears in Anlj

5,RS�.
We expect that by working with the RS scheme the

coefficients multiplying the powers of �s will now be of
natural size and therefore the convergence is improved
compared with the on-shell scheme. Actually, this ap-
pears to be the case. See Sec. VIII for details and a
phenomenological discussion.

Finally, we discuss some theoretical issues �see also
Beneke, 1999�. First, once one agrees to give up using
the pole mass as an expansion parameter, one may still
wonder why not use the MS mass instead. There are
several answers to this question. One is that due to the
fact that there is another scale, m�s, besides m, one
would not achieve the renormalon cancellation order by
order in �s but rather between different orders in �s,
jeopardizing in this way the convergence of the pertur-
bative expansion. This can be resolved by using the up-
silon expansion �Hoang, Ligeti, and Manohar, 1999�.
Nevertheless, some other problems may remain. Work-
ing with mMS would mean introducing a large shift in the
pNRQCD Lagrangian of O�m�s� thereby compromising
the power-counting rules.19 Furthermore, by expanding
everything in terms of �s, we may introduce a potentially

large logarithm, ln m /
 �note that we cannot minimize
this logarithm except at the price of introducing another
large logarithm, ln�m�s /
��.

VI. �P�NRQCD: THE STATIC LIMIT

Although NRQCD and pNRQCD were originally de-

signed to study Q-Q̄ systems of large but finite mass, it is
very interesting to consider their static limit �where m
→� while keeping all the other scales finite�. On the one
hand, the static energy spectra are the main ingredients
for the potentials both in the strong- and in the weak-
coupling regimes. On the other hand, the study of the
energy spectrum is interesting in itself. For instance, a
linear dependence on r for the ground-state energy at
long distances is usually considered a proof of confine-
ment. The abundant lattice data �at least of quenched
simulations� make it possible to study quantitatively for
which distances the potentials are in the perturbative or
nonperturbative regime, providing a controlled frame-
work for discerning when to use the weak- or the strong-
coupling version, of pNRQCD. To answer this question,
the proper handling of the renormalon singularities will
be crucial.

A. NRQCD in the static limit

The Hamiltonian associated with the Lagrangian �4� is

H = H�0� + O�1/m� , �195�

H�0� =� d3x
1
2

��a�a + BaBa� − �
j=1

nf � d3xq̄jiD · �qj,

�196�

and the physical states are constrained to satisfy the
Gauss law:

D · �a�phys� = g
�†Ta� + †Ta + �
j=1

nf

q̄j�
0Taqj��phys� .

�197�

We are interested in the one-quark–one-antiquark
sector of the Fock space. In the static limit it is spanned
by

�n� ;x1,x2��0� � �†�x1�c
†�x2��n ;x1,x2��0�, ∀ x1,x2,

�198�

where �n� ;x1 ,x2��0� is a gauge-invariant �since it satisfies
the Gauss law� eigenstate �up to a phase� of H�0� with
energy En

�0��x1 ,x2�. For convenience, we use here the
field c�x�= i�2*�x�, instead of �x�, because it is the one
to which a particle interpretation can easily be given: it
corresponds to a Pauli spinor that annihilates a fermion
in the 3* representation of color SU�3� with the stan-
dard, particlelike, spin structure. �n ;x1 ,x2��0� encodes the
gluonic content of the state, namely, it is annihilated by
c�x� and ��x� for all x. It transforms as a 3x1

� 3x2

* under

18Note that the definition of the RS scheme in the octet sector
is more involved since there are some renormalons left at u
=1/2 in Vo

�0�+2�mRS. The reason is that even at LO in 1/m,
2m+Vo

�0� is not an observable due to the fact that there is still
interaction with low-energy gluons. Therefore one expects
2m+Vo

�0� to be ambiguous by an amount of O��QCD�. We
elaborate on this in section VI.

19This is certainly so for t-t̄ physics. Nevertheless, for the bot-
tom quark, the O�m�s� term does not seem to be that large
numerically, being much smaller than the typical values of the
soft scale in the ��1S�. Therefore it may be that working with
the MS mass does not destroy the power-counting rules or
pNRQCD �or HQET� at the practical level.
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color SU�3�. The normalizations are taken as follows:
�0��m ;x1,x2�n ;x1,x2��0� = �nm, �199�

�0��m� ;x1,x2�n� ;y1,y2��0� = �nm�
�3��x1 − y1���3��x2 − y2� .

�200�

We have made explicit that the positions x1 and x2 of the
quark and antiquark, respectively, are good quantum
numbers for the static solution �n� ;x1 ,x2��0� �since there
are no spatial derivatives in the Lagrangian�, whereas n
generically denotes the remaining quantum numbers.
We also choose the basis such that T�n� ;x1 ,x2��0�

= �n� ;x1 ,x2��0�, where T is the time-reversal operator. The
ground-state energy E0

�0��x1 ,x2� can be associated with
the static potential of the heavy quarkonium in some
circumstances �see Sec. VII.E�. The remaining energies
En

�0��x1 ,x2�, n�0, are usually associated with the poten-
tial used in order to describe hybrids �they may also
correspond to heavy quarkonium or heavy hybrids plus
glueballs�. They can be computed on the lattice �see
Juge et al., 2003, and also Fig. 13�. Translational invari-
ance implies that En

�0��x1 ,x2�=En
�0��r�. This means that

they are functions of r and the only other scale in the
system, �QCD.

In static NRQCD, the gluonic excitations between
static quarks have the same symmetries as in a diatomic
molecule �see Messiah, 1979�. In the center-of-mass sys-
tem, these correspond to the symmetry group D�h �re-
placing the parity generator by CP�. According to that
symmetry, the mass eigenstates are classified in terms of
the angular momentum along the quark-antiquark axis

��Lz�=0,1,2,. . . to which one gives the traditional names
� ,� ,� , . . .�, CP �even, g, or odd, u�, and the reflection
properties with respect to a plane that passes through
the quark-antiquark axis �even,  , or odd, !�. Only the
� states are not degenerate with respect to the reflection
symmetry.

B. Static pNRQCD in the weak-coupling regime

In the static limit pNRQCD has the same symmetries
as NRQCD. In this section we discuss some general
properties of the short-distance behavior of the static
energies that can be straightforwardly derived within
this EFT. We shall follow the work of Brambilla et al.
�2000�.

In the limit �QCD�1/r and at LO in 1/m, the spec-
trum of the theory can be read off from the Lagrangian
�60�. In particular, the LO solution corresponds to the
zeroth order of the multipole and 1/m expansions. At
this order, while the singlet decouples from the octet and
the gluons, the octet is still coupled to gluons. We call
the states made of an adjoint source in the presence of a
gluonic field gluelumps,

H�R,r,t� � Ha�R,t�Oa�R,r,t� . �201�

These, in turn, correspond to the gluonic excitations be-
tween static quarks in the short-distance limit, for which
there is abundant nonperturbative data available from
lattice simulations �see Fig. 13�. Depending on the glue
operator Ha and its symmetries, the gluelump operator
OaHa describes a specific gluonic excitation between
static quarks and its static energy VH.

In static pNRQCD at lowest order in the multipole
expansion, besides the symmetries of static NRQCD, ex-
tra symmetries for the gluonic excitations between static
quarks appear. The glue dynamics no longer involves the
relative coordinate r. Therefore the glue associated with
a gluonic excitation between static quarks acquires a
spherical symmetry. In the center-of-mass system, glu-
onic excitations between static quarks are therefore clas-
sified according to representations of O�3� � C, which we
summarize by L, the angular momentum, CP, and re-
flection with respect to a plane passing through the
quark-antiquark axis. Since this symmetry group is
larger than that of NRQCD, several gluonic excitations
between static quarks are expected to be approximately
degenerate in pNRQCD, i.e., in the short-distance limit
r�1/�QCD. We illustrate this point in Table I where all
operators H up to dimension 3 are built and classified
according to their quantum numbers in NRQCD and
pNRQCD. In Table I all the operators are evaluated at
the center-of-mass coordinates. �g

+ is not displayed since
it corresponds to the singlet state. The prime indicates
excited states of the same quantum numbers. The opera-
tors chosen for the � and � states are not eigenstates of
the reflection operator. This is not important since these
states are degenerate with respect to this symmetry.
From the results of Table I the following degeneracies
are expected in the short-distance limit:

FIG. 13. �Color online� Different hybrid potentials �Juge et al.,
2003� at a lattice spacing a��0.2 fm�0.4r0, where r0�0.5 fm
is the scale for which �−r0

2dV /dr�r=r0
=1.65 �Sommer, 1994�, in

comparison with the gluelump spectrum �Foster and Michael,
1999� �circles, left-most data points�. The gluelump spectrum
has been shifted by a constant to adjust the 1+− state with the
�u and �u

− potentials at short distance. In addition, we include
the sum of the ground-state ��g

+� potential and the scalar glue-
ball mass m0++ �Bali et al., 1993; Morningstar and Peardon,
1999; Lucini and Teper, 2001�. The lines are drawn to guide the
eye. From Bali and Pineda, 2004.
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�g
+� ��g, �g

− ��g� � �g,
�202�

�u
− ��u, �u

+ ��u� � �u.

Similar observations have also been made by Foster and
Michael �1999�. In pNRQCD they emerge in a quite
clear and straightforward way and one can explicitly
write down the relevant operators. For higher excita-
tions the expected degeneracies have been obtained by
Bali and Pineda �2004�. We discuss them further when
comparing with lattice data in Sec. VI.D.

So far only the symmetries of pNRQCD at lowest or-
der in the multipole expansion have been used. In fact
one can go beyond that and predict the shape of the
static energies by calculating the singlet and gluelump
�static hybrid� correlators,

�vac�H�R,r,T/2�H†�R�,r�,− T/2��vac�

� �3�R − R���3�r − r��e−iTVH�r�, �203�

�vac�S�R,r,T/2�S†�R�,r�,− T/2��vac�

� �3�R − R���3�r − r��e−iTVs
�0��r�, �204�

for large T. At lowest order in the multipole expansion
the spectrum of the singlet state reads20

Es�r� = 2m + Vs
�0��r� + O�r2� . �205�

For the static hybrids, the spectrum reads �VH=Vo
�0��r�

+�H�

EH�r� = 2m + Vo
�0��r� + �H + O�r2� , �206�

where

�H � lim
T→�

i

T
ln�Ha�T/2��ab

adj�T/2,− T/2�Hb�− T/2�� .

�207�

Note that Eq. �207� allows us to relate the correlation
length of some gluonic correlators to the behavior of the
spectrum of the static hybrids at short distances. Note
also that �H is the same for operators corresponding to
states that are degenerate.

The potentials Vs
�0� and Vo

�0� can be computed within
perturbation theory. One could then perform a detailed
comparison with lattice data. We will see that in order to
do so we have to deal first with the renormalon ambigu-
ities as explained in Sec. V.

C. The singlet static potential at short distances versus
lattice

In the last few years, lattice simulations �Bali et al.,
1997; Necco and Sommer, 2002� have improved their
predictions at short distances allowing very accurate
comparisons between perturbation theory and lattice
simulations. In order to perform this comparison, we
cannot work in the on-shell scheme due to the presence
of the renormalon, which destroys the convergence of
the perturbative series. Therefore schemes were intro-
duced to make the renormalon cancellation explicit. In
the work of Recksiegel and Sumino �2002� and Sumino
�2002� the renormalon cancellation is achieved order by
order in �s by expanding both m and Vs

�0� in terms of the
same �s�
�. A potential problem of this method is the
appearance of large logarithms in the mass expansion. In
the results of Necco and Sommer �2001�, lattice data
were shown to agree with perturbation theory at short
distances if the force was used instead of the potential. It
was shown by Pineda �2003b� that this is equivalent to
working in a renormalon-free scheme, and a first quan-
titative comparison of the �quenched� lattice data with
the RS potential Vs,RS

�0� �r� was done �see also Lee, 2003b�.
This analysis allowed us to put quantitative bounds on
nonperturbative effects at short distances and, in par-
ticular, it ruled out a linear potential with slope �
=0.21 GeV2 at short distances �see also Pineda, 2004�. It
also showed that today lattice data are precise enough to
be sensitive to three-loop perturbation theory �see Fig.
14�. Overall, up to distances of around �0.4–0.5�r0, per-
turbation theory is convergent with small errors and
agrees with lattice data in all of the previous analyses.
For larger distances the analysis done by Pineda �2003b�
shows agreement with the lattice data �within errors� up
to distances of �0.8r0 if large logarithms are resummed.
In the paper by Recksiegel and Sumino �2003� it was
argued that by fine-tuning the renormalization scale,
agreement with lattice data could be reached �within er-
rors� up to 3r0. Nevertheless, for such large distances,
the use of perturbation theory is quite doubtful. There-

20By taking the arbitrary subtraction constant as twice the
pole mass of a heavy quark in Eqs. �205� and �206�, these equa-
tions become renormalon-free.

TABLE I. Operators H for the �, �, and � gluonic excitations
between static quarks in pNRQCD up to dimension 3. The
covariant derivative is understood in the adjoint representa-
tion. D ·B and D ·E do not appear, the first because it is iden-
tically zero after using the Jacobi identity, while the second
gives vanishing contributions after using the equations of mo-
tion. From Brambilla et al., 2000.

Gluelumps
OaHa L=1 L=2

�g
+� r ·E ,r · �D�B�
�g

− �r ·D��r ·B�
�g r�E ,r� �D�B�
�g� r� ��r ·D�B+D�r ·B��
�g �r�D�i�r�B�j+ �r�D�j�r�B�i

�u
+ �r ·D��r ·E�
�u

− r ·B ,r · �D�E�
�u r�B ,r� �D�E�
�u� r� ��r ·D�E+D�r ·E��
�u �r�D�i�r�E�j+ �r�D�j�r�E�i
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fore further studies are needed to see whether this
agreement is purely accidental or a theoretical explana-
tion can be given.

D. Gluelumps versus lattice

We compare the predictions of pNRQCD for the
static hybrids in the weak-coupling regime with lattice
data. We first explore at which distances the expected
degeneracies start to be fulfilled and whether the glue-
lump mass and hybrid potential splittings agree with
each other �see Fig. 13�. On a qualitative level the short-
distance data are consistent with the expected degenera-
cies. In any case, at best one can imagine perturbation
theory to be valid for the left-most two data points. With
the exception of the �u, �u�, and �u potentials there are
also no clear signs of the onset of the short-distance 1/r
behavior with a positive coefficient as expected from
perturbation theory. Furthermore, most of the gaps
within multiplets of hybrid potentials, which at leading
order depend on the size of the nonperturbative r2 term,
are still quite significant, even at r=0.4r0; for instance,
the difference between the �u

− and �u potentials at this
distance is about 0.28r0

−1�110 MeV.
From the above considerations it is clear that for a

more quantitative study one needs lattice data at shorter
distances. These have been provided by Bali and Pineda
�2004� for the lowest two gluonic excitations, �u and �u

−.
We display their differences in the continuum limit in
Fig. 15. We see how these approach zero at small r, as
expected from the short-distance expansion.
pNRQCD predicts that the next effects should be of
O�r2� �and renormalon-free�. The lattice data are fitted
rather well by a �E�u−�g

+ =A�u−�u
−r2 ansatz for short dis-

tances, with slope �see Fig. 15�

A�u−�u
− = 0.92−0.52

+0.53r0
−3, �208�

where the error is purely statistical �lattice�, the system-
atic error being negligible. We remark that within the
framework of static pNRQCD and to second order in
the multipole expansion, one can relate the slope A�u−�u

−

to gluonic correlators of QCD.
One can go beyond these analyses and use lattice data

plus the knowledge of the �perturbative� octet potential
to obtain numerical values for gluelump masses in a par-
ticular scheme. However, analogous to the situation with
the static singlet potential, the convergence of the octet
potential perturbative series is poor. The solution to this
problem comes again from working in a RS scheme
properly generalized to the hybrid case. The hybrid en-
ergy is

EH�r� = 2mRS�
f� + Vo,RS�r ;
f� + �H
RS�
f� + O�r2� . �209�

In the RS scheme the octet potential is

Vo,RS�
f� = Vo − �Vo,RS = �
n=0

�

Vo,n
RS�s

n+1, �210�

where

�Vo,RS = �
n=1

�

NVo

f
 �0

2�
�n

�s
n+1�
f��

k=0

�

ck
��n + 1 + b − k�
��1 + b − k�

.

�211�

This specifies the gluelump mass

�H
RS�
f� = �H − ��RS�
f� , �212�

where

FIG. 14. �Color online� Plot of r0�VRS�r�−VRS�r��+Elatt.�r��� vs
r at tree �dashed line�, one-loop �dash-dotted line�, two-loop
�dotted line�, and three-loop level �estimate� plus the
renormalization-group �RG� expression for the ultrasoft �US�
logarithms �solid line� compared with the lattice simulations
Elatt.�r� �Necco and Sommer, 2002�. For the scale of �s�
�, we
set 
=1/r. Further, 
f=
us=2.5r0

−1, �MS=0.602r0
−1 �Capitani et

al., 1999�, and r�=0.153 99r0. From Pineda, 2003b.

FIG. 15. �Color online� Splitting between the �u
− and �u po-

tentials extrapolated to the continuum limit and comparison
with a quadratic fit to the r�0.5r0 data points �r0

−1�0.4 GeV�.
The big circles correspond to the data obtained by Juge et al.
�2003�. The errors in this case are smaller than the symbols.
The smaller circles correspond to the data obtained by Bali
and Pineda, 2004. From Bali and Pineda, 2004.
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��RS�
f� = �
n=1

�

N�
f
 �0

2�
�n

�s
n+1�
f�

��
k=0

�

ck
��n + 1 + b − k�
��1 + b − k�

. �213�

Note that factorization requires

2Nm + NVo
+ N� = 0. �214�

Nm is already known and NVo
can also be obtained ap-

proximately from low orders in perturbation theory fol-
lowing the same procedure as in Sec. V.A. One now has
a convergent series in perturbation theory and can ob-
tain absolute values for the masses of the gluelumps, in
particular, for the lowest gluelump using the splitting of
the �g

+ and the �u potential. Then using the lattice data
obtained by Foster and Michael �1999�, it is possible to
calculate the absolute values for the masses of all glue-
lump excitations in a given scheme �in this case, the RS
scheme�. The results are summarized in Table II. For a
comparison with other determinations, see the work of
Bali and Pineda �2004�.

VII. POTENTIAL NRQCD. THE STRONG-COUPLING
REGIME

In this section we discuss pNRQCD when �QCD�E.
In Sec. III we have called this situation the strong-
coupling regime of pNRQCD, and some general fea-
tures of the physical picture have already been dis-
cussed. Since the EFT does not tell us anything about
the nonperturbative dynamics of QCD, we have to rely
on some assumptions in order to identify the relevant
degrees of freedom. The assumptions will be minimal,
supported by general considerations and lattice data, but
clearly we are on less solid ground here than in the
weak-coupling regime.

A. Degrees of freedom

If we consider the case without light quarks, the physi-
cal states made by a heavy quark and antiquark are
heavy-quarkonium states or hybrids or both of them in
the presence of glueballs. Quenched lattice data show
that the static energy of the lowest state is separated by
a gap of order �QCD from the higher ones. This feature
is preserved in going to unquenched simulations �see
Fig. 4�. We assume that this feature is also preserved in
the dynamical case of heavy quarks with finite masses.
This leads to identifying the heavy quarkonium with the
solution of the Schrödinger equation on which the static
potential corresponds to the ground-state static energy.

Once light fermions have been incorporated, however,
new gauge-invariant states appear besides the heavy
quarkonium, hybrids, and glueballs. First, we have states
with no heavy-quark content. Due to chiral symmetry,
there is a mass gap of O��QCD� between the Goldstone
bosons, which are massless in the chiral limit, and the
rest of the spectrum. Therefore the Goldstone bosons
are US degrees of freedom, while the rest of the spec-
trum is integrated out at the scale �QCD. Besides these,
we also have bound states made of one heavy quark
and light quarks. In practice, we are considering the

Qq̄-Q̄q system. The energy of this system is, according
to the HQET counting rules �Neubert, 1994�, mQq̄

+mQ̄q=2m+2�̄. Therefore since �̄��QCD, we assume
that these states are also integrated out at the scale
�QCD. This cannot be done for heavy-quarkonium states
near threshold, since in this case there is no mass gap
between the heavy quarkonium and the creation of a

Qq̄-Q̄q pair. Thus if we want to study the heavy quarko-
nium near threshold, we should include these degrees of
freedom in the spectrum �for a model-dependent ap-
proach to this situation see, for instance, Eichten et al.
�1978��. We assume here that the heavy-quarkonium

TABLE II. Absolute values for the gluelump masses in the continuum limit in the RS scheme at

f=2.5r0

−1�1 GeV, in r0 units and in GeV. Note that an additional uncertainty of about 10% should
be added to the last column to account for the quenched approximation. We also display examples of
creation operators H for these states. The curly braces denote complete symmetrization of the indi-
ces. From Bali and Pineda, 2004.

JPC H �H
RSr0 �H

RS/GeV

1+− Bi 2.25 �39� 0.87 �15�
1−− Ei 3.18 �41� 1.25 �16�
2−− Di�Bj� 3.69 �42� 1.45 �17�
2+− Di�Ej� 4.72 �48� 1.86 �19�
3+− Di�DjBk� 4.72 �45� 1.86 �18�
0++ B2 5.02 �46� 1.98 �18�
4−− Di�DjDkBl� 5.41 �46� 2.13 �18�
1−+ �B∧E�i 5.45 �51� 2.15 �20�
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states under construction are safely far from threshold.21

In summary, the pNRQCD degrees of freedom in the
regime �QCD�E for quarkonium states far from thresh-
old are a singlet field S, describing the heavy-
quarkonium state, and Goldstone boson fields. In the
following, we shall not consider the Goldstone boson
fields. If one switches off the light fermions, only the
singlet survives and pNRQCD reduces to a pure two-
particle nonrelativistic quantum-mechanical system, usu-
ally referred to as a pure potential model.

B. Power counting

The structure of the pNRQCD Lagrangian under the
above conditions is very simple: it is just a bilinear in the
singlet field. Therefore establishing the power counting
means to estimate the size of the terms multiplying the
bilinear.

The soft scale �p� must be assigned to −i�r and 1/r, the
US scale E�p2 /m to the time derivatives i�0 and Vs

�0�.
This last condition follows from the consistency of the
theory that requires the virial theorem be met. In other
words, all the terms in the Schrödinger equation,

i�0� = E� = �p2/m + Vs
�0��� , �215�

must count the same. Note that the normalization con-
dition of the wave function ��d3r���r��2=1� sets ���2
��p�3. In general, the 1/m corrections to the potential
�real and imaginary� will be a combination of �s calcu-
lated at different scales, derivatives with respect to the
relative coordinate −i�r, 1 /r, and expectation values of
the fields of the light degrees of freedom. The quantities
m and �s�m� are inherited from the hard matching and
have well-known values, in particular �s�m��1. The
strong-coupling constant also appears evaluated at the
scales �m�QCD, 1/r, �QCD, and E. At the scale �m�QCD,
which appears in loop calculations �see below�, �s�m�
��s��m�QCD��1 since �m�QCD��QCD. At the scales
�QCD and E, �s��QCD��1 and �s�E��1 by definition of
the strong-coupling regime. If �p���QCD, then �s�1/r�
�1. If �p���QCD�E, then �s��m�QCD���s�1/r��1. In
the situation �p���QCD, the expectation values of the
fields of the light degrees of freedom depend on r and
�QCD, while in the situation �p���QCD�E, the 1/r
��p� dependence factorizes and the expectation values
of the fields of the light degrees of freedom depend only
on �QCD.22 In both cases their natural counting is �QCD
to the power of their dimension.

C. Lagrangian and symmetries

The pNRQCD Lagrangian �without Goldstone
bosons� is given by

LpNRQCD =� d3R� d3rS†�i�0 − hs�x1,x2,p1,p2,S1,S2��S ,

�216�

where

hs�x1,x2,p1,p2,S1,S2� =
p1

2

2m1
+

p2
2

2m2

+ Vs�x1,x2,p1,p2,S1,S2� , �217�

pj=−i�xj
, r=x1−x2, R= �x1+x2� /2, and Sj is the spin

operator of particle j. In the following, unless stated dif-
ferently, we assume m1�m2. However, we shall not ex-
ploit a possible hierarchy between the two masses, which
for our purposes are of the same order �m��QCD. The
potential Vs contains a real and an imaginary part, with
the real part responsible for the binding and the imagi-
nary part for the decay width of the heavy-quarkonium
state. The imaginary part of Vs comes from the matching
coefficients of the four-fermion operators of NRQCD.
The potential Vs is, in general, a nonperturbative quan-
tity, even if to some degree it may be obtained with per-
turbation theory, as the matching coefficients of
NRQCD, or in general any contribution coming from
scales larger than �QCD. It is the aim of the matching
procedure, which we discuss in the following sections, to
provide the factorization formulas and the exact expres-
sions for the nonperturbative pieces. These may eventu-
ally be calculated on the lattice or in QCD vacuum mod-
els, which will be the subject of Sec. VII.G.

The symmetries of the singlet field are those already
discussed for the pNRQCD Lagrangian in the weak-
coupling regime. In particular, the potential and kinetic
energies satisfy the Poincaré invariance constraints �85�
and �86� �for the singlet potential�. Note that Poincaré
invariance may also constrain the natural power count-
ing discussed in Sec. VII.B.

D. Matching: analytic and nonanalytic mass terms

Despite the fact that the strong-coupling Lagrangian
�216� looks quite simple, the matching procedure that
leads to it may be complicated. This is due to the fact
that we have to integrate out, and therefore to make
explicit, all the degrees of freedom �or momentum re-
gions� that appear in the range from the hard to the US
scale within a nonperturbative environment.

Since we are also integrating out �QCD, new momen-
tum regions �apart from �QCD itself� that do not appear
in the weak-coupling matching show up. Let us consider,
for instance, the diagram of Fig. 16. Suppose that the
incoming �outcoming� particle is an off-shell particle of
energy ��QCD and three-momentum p�q��mv �for in-

21One may think of relaxing this condition in the large-Nc
limit, where the mixing between the heavy quarkonium and
the Qq̄-Q̄q is suppressed by powers of 1/Nc.

22This is certainly so for states with low principal quantum
number n. For higher excitations one should keep in mind that
p and 1/r could scale differently with n.
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stance, an on-shell particle that just emitted �absorbed� a
soft gluon of energy �QCD�. The diagram corresponds to
the integral

� d3�

�2��3V�p − ��
1

E − �2/m + i�
V�� − q� . �218�

This integral also receives a contribution from the three-
momentum region "��mE��m�QCD. Since �m�QCD
��QCD, the potential is perturbative, and since
�m�QCD�p ,q, we may expand in p and q and the inte-
gral effectively reduces to

�s
2� d3�

�2��3

1

"4

1

E − �2/m + i�
� �s

2 1

�QCD

1
�m�QCD

,

�219�

where �s is calculated at the �perturbative� scale
�m�QCD. From the above example we may draw the
following conclusions. First, in the strong-coupling re-
gime new degrees of freedom show up in loops, namely,
quark-antiquark pairs with relative three-momentum of
order �m�QCD and on-shell energy of order �QCD. Since
the scale �m�QCD� �p� for �QCD�E, this is the largest
scale below m and thus the first to be integrated out.
The only reason this otherwise dominant contribution to
the potential is suppressed is that it appears only in
loops. Second, since we expand in the external mo-
menta, which are small compared to �m�QCD, the effec-
tive interaction that arises is local. Third, this kind of
contribution is nonanalytic in m.

It is convenient to split the potential �imaginary and
real parts� into a part that gets contributions only from
scales that are analytic in the mass, V1/m, and another,
V1/�m, that contains any contribution coming from the
scale �m�QCD:

Vs = V1/m + V1/�m. �220�

We often refer to V1/�m as the part of the potential that is
nonanalytic in 1/m. This is only true at LO, which is,
however, the order at which we work here. The match-
ing for the V1/m part may be performed in a strict 1 /m
expansion. The matching for the V1/�m part may be done
by integrating out quark-antiquark pairs with relative
three-momenta of order �m�QCD.

We next discuss the matching procedures for V1/m and
V1/�m when �p���QCD and �p���QCD�E. We will first
consider the case �p���QCD in Sec. VII.E. The potential
will be a function of r and �QCD. This is the most general

case. The particular case �p���QCD�E may be derived
by factorizing the potential in a high-energy part depen-
dent on 1/r��p� and a low-energy part dependent on
�QCD. In this case, however, it is more practical and con-
sistent with the general philosophy of the EFT to
achieve factorization directly by integrating out the
scales �p� and �QCD in two different steps of the match-
ing procedure. We consider this situation in Sec. VII.F.
We note here that local terms that appear when �p�
��QCD are already factorized and therefore will be re-
produced �up to field redefinitions� when �p���QCD
�E. This describes the imaginary part of the potential,
which comes from the four-fermion contact terms of the
NRQCD Lagrangian and the part of the potential that is
nonanalytic in 1/m.

Finally, we mention that soft light fermions will not be
explicitly considered in the matching computation. If we
want to incorporate them, the procedure would be
analogous. One would have to consider the matrix ele-
ments and Wilson loops with dynamical light fermions
incorporated and new terms appearing in the energies at
O�1/m2� due to operators involving light fermions that
appear in the NRQCD Lagrangian at O�1/m2� and the
Gauss law.

E. Matching for �p���QCD

In Sec. VI.A, we discussed the static limit of NRQCD.
The spectrum consists of the static energies E0

�0��E1
�0�

�¯ . We assume a gap of order �QCD between E0
�0� and

the higher excitations. pNRQCD is, by definition, the
EFT that describes the lowest excitation of the NRQCD
spectrum. From Eq. �216� it follows that pNRQCD in
the static limit consists of a singlet field S with static
energy V�0�. Since the static energy is an observable, the
matching condition in the static limit is

E0
�0��r� = V�0��r� . �221�

Note that the left-hand side is a quantity defined in
NRQCD, while the right-hand side is a matching coeffi-
cient of pNRQCD.

We may think of generalizing the matching condition
�221� to the nonstatic case. Similar to what was done in
Sec. VI.A, we introduce the normalized eigenstates,
�n� ;x1 ,x2�, and eigenvalues, En�x1 ,x2 ;p1 ,p2�, of the full
NRQCD Hamiltonian H. They satisfy the equations

H�n� ;x1,x2� =� d3x1�d
3x2��n� ;x1�,x2��

�En�x1�,x2�,p1�,p2�,S1,S2�

���3��x1� − x1���3��x2� − x2� , �222�

�m� ;x1,x2�n� ;y1,y2� = �nm�
�3��x1 − y1���3��x2 − y2� , �223�

where the states are labeled with the positions x1 and x2
of the static solution even if the position operator does
not commute with H beyond the static limit. The eigen-
values En are, in general, functions of the momentum

FIG. 16. The incoming energy E is of order �QCD, p, and q of
order mv. The vertex describes the interaction with an external
potential V.
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and spin operators and therefore should be understood
as operators as well. We assume a gap of order �QCD
between �the levels of� E0 and �the levels of� En for n
#0. Under this circumstance, and arguing as in the static
case above, it follows that the matching condition is

E0�x1,x2,p1,p2,S1,S2� = hs�x1,x2,p1,p2,S1,S2� . �224�

Again, this equation expresses the �real and imaginary
parts of the� pNRQCD Hamiltonian in terms of a quan-
tity

E0�x1,x2,p1,p2,S1,S2���3��x1 − y1���3��x2 − y2�

= �0� ;x1,x2�H�0� ;y1,y2� , �225�

defined in NRQCD. The aim of the matching is to cal-
culate this quantity. As discussed above, it will contain a
part that is analytic in 1/m and another that is not.

1. Matching of the analytic terms: quantum-mechanical
matching

The analytic part of E0 can be calculated, by defini-
tion, in a strict 1 /m expansion. The idea is to split the
NRQCD Hamiltonian as

H = H�0� + HI, �226�

where H�0� is the static Hamiltonian, whose eigenstates
and eigenvalues have been discussed in Sec. VI.A, and

HI =
H�1,0�

m1
+

H�0,1�

m2
+

H�2,0�

m1
2 +

H�0,2�

m2
2 +

H�1,1�

m1m2
+ ¯

�227�

is the sum of all higher-order terms in the 1/m expan-
sion of the NRQCD Hamiltonian. Then solve Eq. �222�
using quantum-mechanical perturbation theory around
the static solution. Calculated in this way, the eigenstates
�and eigenvalues� of Eq. �222� result as expansions in
powers of 1/m:

�n� ;x1,x2� = �n� ;x1,x2��0� +
1

m1
�n� ;x1,x2��1,0�

+
1

m2
�n� ;x1,x2��0,1� +

1

m1
2 �n� ;x1,x2��2,0�

+
1

m2
2 �n� ;x1,x2��0,2� +

1

m1m2
�n� ;x1,x2��1,1�

+ ¯ . �228�

A complete derivation can be found in the original lit-
erature �Brambilla, Pineda, et al., 2001; Pineda and
Vairo, 2001; Brambilla, Eiras, et al., 2003�.23 Here we
only make a few remarks. First, the expressions for
�n� ;x1 ,x2��1,0� and �n� ;x1 ,x2��2,0� look similar to the well-
known formulas of time-independent perturbation

theory in quantum mechanics, the only difference being
the fact that the energies En

�0� depend on spatial coordi-
nates and that the matrix elements of H�1,0� and H�2,0�

are operators in the quantum-mechanical sense. Second,
as usually done in quantum mechanics, we have set the
relative phase between �n� ;x1 ,x2� and �n� ;x1 ,x2��0� to 1 in
Eq. �228�. This choice is arbitrary. The freedom of choice
reflects the fact that the eigenvalues and eigenstates so-
lution of Eq. �222� are defined up to a unitary transfor-
mation eiOn �with On

† =On�:

�n� ,x1,x2� →� d3x1�d
3x2��n� ,x1�,x2��e

iOn�x1�,x2�,p1�,p2�,S1,S2�

���3��x1� − x1���3��x2� − x2� , �229�

En�x1,x2,p1,p2,S1,S2�

→� d3x1�d
3x2�e

iOn�x1�,x2�,p1�,p2�,S1,S2�En�x1�,x2�,p1�,p2�,S1,S2�

�e−iOn�x1�,x2�,p1�,p2�,S1,S2���3��x1� − x1���3��x2� − x2� . �230�

Our choice preserves the power counting and allows us
to obtain rather compact expressions for the potentials.
Third, from the expression for the state �0� ;x1 ,x2�, the
expression for the energy E0 may be derived straightfor-
wardly, order by order in 1/m, from Eq. �225�. Finally,
the matching condition �224� gives the pNRQCD Hamil-
tonian.

In order to transform the quantum-mechanical ex-
pressions into expressions that only contain expectation
values of gluon fields, the following steps are necessary.

�i� The first step is to integrate out the fermion fields.
They appear in the matrix elements of H�1� and H�2� ei-
ther in the states �see Eq. �198�� or in the Hamiltonian
itself as two- or four-fermion interaction terms. In the
first case, we have, for instance,

�0��n� ;x1,x2� � d3��†���O��������m� ;y1,y2��0�

= �0��n ;x1,x2�O�x1��m ;x1,x2��0���3��x1 − y1�

���3��x2 − y2� , �231�

in the second case

�0��n� ;x1,x2� � d3��†���OA�������c
†���OB���c���

��m� ;y1,y2��0�

= ��3��x1 − x2��0��n ;x1,x2�OA�x1�OB�x2�

��m ;x1,x2��0���3��x1 − y1���3��x2 − y2� , �232�

where O, OA, and OB are combinations of gluon fields.
In the last case, the interaction is local ����3��r��. At this
stage, the expressions only contain matrix elements of
gluon fields on the pure gluonic states �n ;x1 ,x2��0�

��n��0�. At this point, it is also possible to use the Gauss
law �197�. It allows us to write all the terms of the type
�D ,gE� in terms of ��3��r� times some color matrices, up

23A similar approach has been used by Szczepaniak and
Swanson �1997� in order to derive, from the QCD Hamiltonian
in the Coulomb gauge, the spin-dependent part of the poten-
tial up to O�1/m2�.
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to terms proportional to ��3��0� that vanish in DR. We
shall assume this regularization scheme from now on.

�ii� Further simplifications may be achieved using the
identities �F1,2�F�x1,2��
�0��n�D1�n��0� = �1, �0��n�Dc2�n��0� = �2, �233�

�0��n�D1�j��0� =
�0��n�gE1�j��0�

En
�0� − Ej

�0� , �234�

�0��n�Dc2�j��0� = −
�0��n�gE2

T�j��0�

En
�0� − Ej

�0� ∀ n � j ,

�0��n�gE1�n��0� = − ��1En
�0��, �0��n�gE2

T�n��0� = ��2En
�0�� ,

�235�

where Dc is the charge conjugate of D. The first equality
follows from symmetry considerations, the second and
the third may be derived from �0��n��H�0� ,D��j��0�

=En
�0� �0��n�D�j��0�− �0��n�D�j��0�Ej

�0� and the canonical com-
mutation relations.

�iii� The last step consists in rewriting the quantum-
mechanical expressions in terms of Wilson-loop ampli-
tudes. We proceed by considering an interpolating state
�in the Heisenberg representation� that has a nonvanish-
ing overlap with the ground state:

�†�x1���x1,x2�c
†�x2��vac� , �236�

where � makes the above state overlap with the ground
state �0� ;x1 ,x2��0�. We use here the popular choice �107�,
which assumes that the ground state has the �g

+ quantum
numbers. We also define ��y ,x ; t=0����y ,x�. Then we
have

�†�x1���x1,x2�c
†�x2��vac� = �

n
an�x1,x2��n� ;x1,x2��0�,

�237�

or, without fermion fields,

��x1,x2��vac� = �
n

an�x1,x2��n ;x1,x2��0�, �238�

with a0�0. At this point, we define the Wilson-loop av-
erage �¯����¯W��. The gauge fields are, in general,
localized on the static quark lines of the Wilson loop.
Therefore �¯�� is gauge invariant. Inserting the identity
operator ��n��0��0��n� into the Wilson-loop averages, from
Eq. �238� it follows that

�W�� = �
n

e−iEn
�0�TW�an�2, �239�

�F�1��t1� ¯ F�n��tn���

= �
n,m,s1,. . .,sn−1

an
*am

�0��n�F�1��s1��0�
¯

�0��sn−1�F�n��m��0�

�e−i�En
�0�+Em

�0���TW/2�ei�En
�0�−Es1

�0��t1
¯ ei�Esn−1

�0� −Em
�0��tn, �240�

��F�1��t1� ¯ F�n��tn���

� lim
TW→�

�F�1��t1� ¯ F�n��tn���

�W��
�0�

= �
s1,. . .,sn−1

�0��0�F�1��s1��0�
¯

�0��sn−1�F�n��0��0�

�ei�E0
�0�−Es1

�0��t1
¯ ei�Esn−1

�0� −E0
�0��tn, �241�

where TW /2� t1� t2�¯� tn�−TW /2 and F�n� are
gluon fields localized on the static Wilson loop. All the
quantum-mechanical expressions obtained at the end of
step �ii� may be expressed as combinations of

�
0

�

dt1 ¯ �
0

tn−1

dtnt1
j1
¯ tn

jn��F�1��t1� ¯ F�n��tn���c,

�242�

where ��¯��c stands for the connected part of ��¯��.

2. Matching of the analytic terms: the real pNRQCD
potential

We give here and in the following section the explicit
formulas for the part of the pNRQCD potential that is
analytic in 1/m. For the real part, we give formulas up to
�and including� order 1/m2, for the imaginary part up to
�and including� order 1/m4. The formulas are given in
four dimensions. Divergences have been regularized, if
necessary, in DR. We have explicitly used the Gauss-law
constraint �197�. Note that we would need to generalize
these formulas to d dimensions to work in a MS-like
scheme and consistently use the same scheme used for
renormalizing the NRQCD matching coefficients.

Up to �and including� order 1/m2, the real part of the
potential V1/m may be written as in Eq. �63� and the
1/m2 potentials may be decomposed in terms of their
momentum and spin content as in Eqs. �65�–�71�. The
different pieces are given by Brambilla, Pineda, et al.
�2001�; Pineda and Vairo �2001�:

V�0��r� = lim
TW→�

i

TW
ln�W�� , �243�

V�1,0��r� = −
1
2�0

�

dtt��gE1�t� · gE1�0���c, �244�

V�0,1��r� = V�1,0��r� , �245�
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Vp2
�2,0��r� =

i

2
r̂ir̂j�

0

�

dtt2��gE1
i �t�gE1

j �0���c, �246�

VL2
�2,0��r� =

i

4
��ij − 3r̂ir̂j��

0

�

dtt2��gE1
i �t�gE1

j �0���c, �247�

Vr
�2,0��r� =

�CF�scD
�1�

2
��3��r� −

icF
�1�2

4 �
0

�

dt��gB1�t� · gB1�0���c +
1
2

��r
2Vp2

�2,0�� −
i

2
�

0

�

dt1�
0

t1
dt2�

0

t2
dt3�t2 − t3�2

���gE1�t1� · gE1�t2�gE1�t3� · gE1�0���c +
1
2
�r

i�
0

�

dt1�
0

t1
dt2�t1 − t2�2��gE1

i �t1�gE1�t2� · gE1�0���c�
−

i

2
��r

iV�0���
0

�

dt1�
0

t1
dt2�t1 − t2�3��gE1

i �t1�gE1�t2� · gE1�0���c +
1
4
�r

i�
0

�

dtt3��gE1
i �t�gE1

j �0���c��r
jV�0���

−
i

12
�

0

�

dtt4��gE1
i �t�gE1

j �0���c��r
iV�0����r

jV�0�� −
c1

g�1�

4
fabc� d3x��gG	


a �x�G	�
b �x�G
�

c �x��� , �248�

Vp2
�0,2��r� = Vp2

�2,0��r�, VL2
�0,2��r� = VL2

�2,0��r�, Vr
�0,2��r� = Vr

�2,0��r ;m2 ↔ m1� , �249�

Vp2
�1,1��r� = ir̂ir̂j�

0

�

dtt2��gE1
i �t�gE2

j �0���c, �250�

VL2
�1,1��r� = i

�ij − 3r̂ir̂j

2 �
0

�

dtt2��gE1
i �t�gE2

j �0���c, �251�

Vr
�1,1��r� = −

1
2

��r
2Vp2

�1,1����3��r� − i�
0

�

dt1�
0

t1
dt2�

0

t2
dt3�t2 − t3�2��gE1�t1� · gE1�t2�gE2�t3� · gE2�0���c

+
1
2
�r

i�
0

�

dt1�
0

t1
dt2�t1 − t2�2��gE1

i �t1�gE2�t2� · gE2�0���c�
+

1
2
�r

i�
0

�

dt1�
0

t1
dt2�t1 − t2�2��gE2

i �t1�gE1�t2� · gE1�0���c�
−

i

2
��r

iV�0���
0

�

dt1�
0

t1
dt2�t1 − t2�3��gE1

i �t1�gE2�t2� · gE2�0���c −
i

2
��r

iV�0���
0

�

dt1�
0

t1
dt2�t1

− t2�3��gE2
i �t1�gE1�t2� · gE1�0���c +

1
4
�r

i�
0

�

dtt3��gE1
i �t�gE2

j �0���c + ��gE2
i �t�gE1

j �0���c���r
jV�0���

−
i

6
�

0

�

dtt4��gE1
i �t�gE2

j �0���c��r
iV�0����r

jV�0��,−
CA

2
�Re f1�1S0� + 3 Re f1�3S1����3��r� , �252�

VLS
�2,0��r� = −

cF
�1�

r2 ir · �
0

�

dtt��gB1�t�� gE1�0��� +
cS

�1�

2r2 r · ��rV
�0�� , �253�

VLS
�0,2��r� = VLS

�2,0��r ;m2 ↔ m1� , �254�

VL2S1

�1,1� �r� = −
cF

�1�

r2 ir · �
0

�

dtt��gB1�t�� gE2�0��� , �255�

VL1S2

�1,1� �r� = VL2S1

�1,1� �r ;m1 ↔ m2� , �256�
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VS2
�1,1��r� =

2cF
�1�cF

�2�

3
i�

0

�

dt��gB1�t� · gB2�0��� + 2CA�Re f1�1S0� − Re f1�3S1����3��r� , �257�

VS12

�1,1��r� =
cF

�1�cF
�2�

4
ir̂ir̂j�

0

�

dt���gB1
i �t�gB2

j �0��� −
�ij

3
��gB1�t� · gB2�0���� . �258�

Equations �245�, �249�, �254�, and �256� follow from in-
variance under simultaneous charge conjugation and
m1↔m2 exchange.

Equation �243� is the well-known formula that gives
the static potential in terms of the static Wilson loop
�Susskind, 1977; Brown and Weisberger, 1979�. In the
weak-coupling case, this formula requires corrections
from US degrees of freedom �in that case, US gluons�.
Here, by assumption, we do not have other US degrees
of freedom besides the heavy-quarkonium singlet field,
hence there are no corrections. Once Goldstone bosons
are taken into account, their contribution will eventually
correct Eq. �243�. With respect to the power counting,
for dimensional reasons V�0� would count as �p�. In Sec.
VII.B we have argued, however, that the NR dynamics
constrains V�0� to count as E. The extra suppression of
order E / �p��v has to arise on dynamical grounds. In the
perturbative case, it originates from the factor �s�v in
the potential. In the nonperturbative case little can be
said and some other mechanism must be responsible.

Equation �244� gives the 1/m corrections to the static
potential. They were first calculated by Brambilla,
Pineda, et al. �2001�. In accordance with the power
counting of Sec. VII.B, these corrections are of the or-
der �QCD

2 /m�E when �p���QCD. Therefore they may,
in principle, be as large as the static potential. In the
weak-coupling regime, the first nonvanishing contribu-
tion to V�1,0� is of order �s

2 and gives V�1,0��r�
=−CFCA�s

2 /4r2, which is suppressed by �s
2 with respect

to the static potential.
Equations �246�, �247�, �250�, and �251� are

momentum-dependent 1/m2 potentials. They were first
derived using a quantum-mechanical path-integral ap-
proach by Barchielli et al. �1988�. Equations �248� and
�252� are momentum- and spin-independent 1/m2 poten-
tials. Their calculation was first done by Pineda and
Vairo �2001�. Note that they are necessary in order to
solve the ordering ambiguity that plagues the calculation
of the momentum-dependent potentials. The
momentum- and spin-independent 1/m2 potentials also
depend on some of the matching coefficients of
NRQCD. The last term of Eq. �248� comes from the
1/m2 corrections to the Yang-Mills Lagrangian of
NRQCD. It is somehow different from the other terms
since the fields are not localized on the Wilson-loop
lines. Moreover, it exhibits a fictitious dependence on
the time at which the operator insertion is made, which
disappears in the limit TW→�. However, the term is not
as peculiar as it may at first appear if we notice that V�0�

could also be written in a similar way: V�0�

= 1
2 �d3x����a�a+BaBa��x���.
Equation �255� gives the spin-orbit, Eq. �257� the spin-

spin, and Eq. �258� the spin-tensor 1/m2 potential. These
potentials were first derived, by Eichten and Feinberg
�1981�, in the approach that we discuss in Sec. VII.E.4
and rederived later by several authors in similar or dif-
ferent approaches, for instance, by Peskin �1983�;
Gromes �1984�; Barchielli et al. �1988�. None of the early
derivations included the NRQCD matching coefficients,
which were first included by Chen et al. �1995�; see also
Brambilla and Vairo �1999b�. Pineda and Vairo �2001�
corrected an error in the formula of the spin-orbit po-
tential VL2S1

�1,1� that can be found in the original papers
�Eichten and Feinberg, 1981; Gromes, 1984; Barchielli et
al., 1988; Chen et al., 1995�. For a detailed analysis and
comments on this, see Brambilla, Gromes, and Vairo
�2001� and Pineda and Vairo �2001�.

In the �p���QCD regime, the leading terms contribut-
ing to the 1/m2 potentials are of the order �QCD

3 /m. Not
all the terms contribute, however, to the same order.
Terms involving �rV

�0� have an extra O�v� suppression
coming from the specific counting of V�0�. Terms involv-
ing matching coefficients of NRQCD also have an ex-
pansion in �s. Since the matching coefficients of the
four-fermion and of the pure Yang-Mills operators of
NRQCD start at order �s, terms involving them are sup-
pressed by a factor �s. In particular, if we consider the
potentials with more terms, Vr

�2,0� and Vr
�1,1�, only the

terms in the first two and three lines listed in Eqs. �248�
and �252�, respectively, are expected to contribute at LO.
In the weak-coupling regime, there is an extra �s sup-
pression coming from the g2 in the Wilson-loop ampli-
tudes and the 1/m2 potentials give the familiar m�s

4

relativistic, fine, and hyperfine corrections to the pertur-
bative spectrum.

The Poincaré invariance constraints �86� become in
the present case with different masses

VLS
�2,0��r� − VL2S1

�1,1� �r� +
V�0���r�

2r
= 0, �259�

VL2
�2,0��r� + VL2

�0,2��r� − VL2
�1,1��r� +

r

2
V�0���r� = 0, �260�
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− 2�Vp2
�2,0��r� + Vp2

�0,2��r�� + 2Vp2
�1,1��r� − V�0��r�

+ rV�0���r� = 0. �261�

These are general symmetry relations, independent of
the dynamics. However, due to the potentials given
above, they now impose specific relations among the
Wilson-loop amplitudes and the matching coefficients of
NRQCD, which can be tested independently. Taking at
tree level the NRQCD matching coefficients, Eq. �259�
was proved by Gromes �1984�, and Eqs. �260� and �261�
by Barchielli et al. �1990�. A way to proceed is the fol-
lowing �Brambilla, Gromes, and Vairo, 2001�. Consider a
chromoelectric- or a chromomagnetic-field insertion in a
static Wilson loop and then apply an infinitesimal Lor-
entz boost with velocity v. The following identities hold:

��gB�x1,t���boosted + ���v� gE�x1,t����boosted

− ��gB�x1,t��� = 0, �262�

��igv̂ · E�x1,t��� − ��igv̂ · E�x1,t���boosted = 0. �263�

Expanding both equations at order v and v2, respec-
tively, and considering that the difference between the
boosted and the static Wilson loop corresponds to inser-
tions of chromoelectric fields, we obtain from the first
equation

− i�
0

�

dtt���gB�x1,t�� gE�x1,0��� − ��gB�x1,t�

� gE�x2,0���� + r̂V�0���r� = 0, �264�

and from the second equations �260� and �261�. These
relations have also been tested on the lattice, as we shall
discuss in Sec. VII.G.

Finally, we emphasize that the freedom we noticed at
the level of NRQCD to perform a unitary transforma-
tion of the states and energies, Eqs. �229� and �230�, is
obviously preserved at the level of pNRQCD. The effect
of a unitary field redefinition U of the singlet field is to
transform hs→U†hsU, where hs is the pNRQCD Hamil-
tonian. This means that no special physical meaning is
associated with a single potential term, which may be
reshuffled into another by means of a suitable unitary
transformation. In other words, unlike physical observ-
ables, which are unambiguous, potentials depend on the
specific scheme adopted. The potentials listed in Eqs.
�243�–�258� are given in the scheme defined by Eq. �228�,
which fixes the relative phase to 1 between �n� ;x1 ,x2� and
�n� ;x1 ,x2��0�. We refer the reader to Brambilla, Pineda, et
al. �2001�; see also Brambilla, Gromes, and Vairo �2001�
for more details.

3. Matching of the analytic terms: the imaginary
pNRQCD potential

Let us consider heavy quarkonia made of a quark and
an antiquark of the same flavor �m1=m2=m�. Annihila-

tion processes happen in QCD at the scale of the mass
m. Integrating them out in the matching from QCD to
NRQCD gives rise to imaginary contributions to the
four-fermion matching coefficients. Under the assump-
tions that led to Eq. �216�, they are the only source of
contribution to the imaginary pNRQCD Hamiltonian,
which can be calculated in the same way as the real part.
In practice, the calculation reduces to picking up from
the right-hand side of Eq. �225� only contributions that
involve four-fermion operators.

From the above general considerations, the imaginary
part of the potential V1/m is

Im V1/m =
Im V�2�

m2 +
Im V�4�

m4 + ¯ . �265�

The functions Im V�2� and Im V�4� encode the informa-
tion from the dimension-6 and the dimension-8 four-
fermion operators of NRQCD, respectively. They will
have the following structure:

�spin�� �delta�� �Im f�

��nonperturbative matrix element� . �266�

The first factor, which is one of the projectors �77�–�81�,
accounts for the spin structure. The second is a delta
function or �for Im V�n#2�� consists of derivatives of delta
functions due to the fact that the four-fermion operators
are local. The third is the imaginary part of a four-
fermion matching coefficient of NRQCD. Note that, in
general, the potential may also depend on some real
matching coefficients of NRQCD. Finally, the last term
is a matrix element that contains all soft gluons inte-
grated out from NRQCD. These matrix elements are
Wilson amplitudes, similar to those that appear in the
real part of the pNRQCD potentials, taken in the r→0
limit due to the delta function. In other words, they are
nonlocal �in time� correlators of gluonic fields F:
�F�1��t1 ,0���t1 , t2�¯F�n��tn ,0���tn , t1��. In the following
we omit the Wilson lines � connecting the fields and the
spatial location of the fields which are irrelevant. The
correlators that show up at order 1/m2 and 1/m4 are
encoded in the nonperturbative parameters E1, E3, B1,
E3

�2,t�, and E3
�2,EM�, where

En �
1

Nc
�

0

�

dttn�gE�t� · gE�0�� , �267�

Bn �
1

Nc
�

0

�

dttn�gB�t� · gB�0�� ,

and the definitions of E3
�2,t� and E3

�2,EM�, which involve
four chromoelectric fields, can be found in the article by
Brambilla, Eiras, et al. �2003�.

The explicit expression for Im V�2� is equal to Eq. �75�,
while Im V�4� is given by Brambilla, Eiras, et al. �2002,
2003�:
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Im V�4� = CATSJ
ij�r

i��3��r��r
j�Im f1�2S+1PJ� + Im fEM�2S+1PJ�� +

CA

2
�SJ

ij 	�r
i�r

j +
�ij

3
E1,��3��r���Im g1�2S+1SJ�

+ Im gEM�2S+1SJ�� +
TF

3
TSJ

ii��3��r�Im f8�2S+1PJ�E1 +
TF

9
�r�

�3��r��r4 Im f8�1S0� − 2S2�Im f8�1S0�

− Im f8�3S1���E3 + 2TFcF
2��3��r�
Im f8�3S1� +

1
6

S2�Im f8�1S0� − 3 Im f8�3S1���B1 +
TF

3
��3��r�4 Im f8�1S0�

− 2S2�Im f8�1S0� − Im f8�3S1���E3
�2� −

CA

3
��3��r�4 Im f1�1S0� − 2S2�Im f1�1S0� − Im f1�3S1���E3

�2,t�

− CA
2
9

�r
2,��3��r��
Im f1�1S0� + Im fEM�1S0� +

S2

2
�Im f1�3S1� − Im f1�1S0� + Im fEM�3S1� − Im fEM�1S0���E3

− 2CAcF
2��3��r�
Im f1�1S0� + Im fEM�1S0� +

S2

6
�Im f1�3S1� − 3 Im f1�1S0� + Im fEM�3S1� − 3 Im fEM�1S0���B1

−
CA

3
��3��r�4 Im fEM�1S0� − 2S2�Im fEM�1S0� − Im fEM�3S1���E3

�2,EM�. �268�

Note that there are more terms in Eq. �268� than in Eq.
�76� due to the nonperturbative counting. Similar to the
real case, the quantities Im V�2�, Im V�4� , . . . are defined
up to unitary transformations. A discussion and an ex-
plicit example may be found in the article of Brambilla,
Eiras, et al. �2003�.

4. Matching of the analytic terms: direct matching of
Wilson-loop amplitudes

In the previous sections we performed the matching
to pNRQCD first by deriving quantum-mechanical ex-
pressions, then by translating them into Wilson-loop am-
plitudes. Hence one may wonder whether it would be
possible to directly perform the matching to Wilson-loop
amplitudes. This is possible and simply requires applying
to the strong-coupling regime the Wilson-loop matching
used in Sec. IV.F for the weak-coupling regime. The only
difference will be that no US corrections have to be sub-
tracted from the Wilson-loop amplitudes in this case. It
should be noted that historically the first derivation of
some of the heavy-quarkonium potentials was done by
direct computation of Wilson-loop amplitudes, namely,
the static potential �Susskind, 1977; Brown and Weis-
berger, 1979� the 1/m2 spin-dependent potentials �Eich-
ten and Feinberg, 1981; Gromes, 1984�, and the pipj /m2

spin-independent potentials �Barchielli et al., 1988�. We
now �re�derive the heavy-quarkonium potential up to
�and including� order 1/m by directly matching Wilson-
loop amplitudes to pNRQCD Green’s functions �Bram-
billa, Pineda, et al., 2001�.

Let us consider the following Green’s function of
NRQCD:

GNRQCD = �vac�c�x2,TW/2���x2,x1;TW/2���x1,TW/2�

� �†�y1,− TW/2���y1,y2;− TW/2�

�c
†�y2,− TW/2��vac� . �269�

Expanding GNRQCD order by order in 1/m, GNRQCD

=GNRQCD
�0� + �1/m1�GNRQCD

�1,0� + �1/m2�GNRQCD
�0,1� +¯, and

integrating out the fermion fields we obtain

GNRQCD
�0� = �W����3��x1 − y1���3��x2 − y2� , �270�

GNRQCD
�1,0� =

i

2
�

−TW/2

TW/2

dt�D1
2�t����

�3��x1 − y1���3��x2 − y2� .

�271�

For simplicity we shall not display here and in the fol-
lowing the analogous formulas for GNRQCD

�0,1� . From time
reversal it follows that �B1�t���=−�B1�−t���, which elimi-
nates the spin-dependent term in Eq. �271�. After some
algebra it follows that

GNRQCD
�1,0� =

i

2	TW

2
�x1

2 �W�� +
TW

2
�W���x1

2

+ TW�Of�TW/2� · Oi�− TW/2���

+ ig�
−TW/2

TW/2

dt
TW

2
− t��Of�TW/2� · E�t���

− ig�
−TW/2

TW/2

dt
TW

2
+ t��E�t� · Oi�− TW/2���

+
g2

2 �−TW/2

TW/2

dt�
−TW/2

TW/2

dt��t − t��

��E�t� · E�t�������3��x1 − y1���3��x2 − y2� ,

�272�

where the explicit form of the operators Oi and Of does
not matter here and can be found in the article by Bram-
billa, Pineda, et al. �2001�.
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As discussed in the previous section, the state
�†�x1���x1 ,x2�c

†�x2��vac� has a nonvanishing overlap
with the NRQCD ground state �0� ;x1 ,x2�:

Z1/2�x1,x2,− i�x1
,− i�x2

���3��x1 − y1���3��x2 − y2�

= �vac�c�x2���x2,x1���x1��0� ;y1,y2� . �273�

Since we are only interested in the analytic terms in
1/m, the normalization factor Z may also be expanded
in 1/m:

Z�x1,x2,− i�x1
,− i�x2

�

= Z�0��r� + 
 1

m1
+

1

m2
�Z�1��r� + iZ�1,p��r�

�r · 
− i�x1

m1
−

− i�x2

m2
� + ¯ . �274�

The NRQCD ground state is the degree of freedom that
we identify with the singlet field of pNRQCD. Therefore

the Green’s function in pNRQCD that matches GNRQCD
is

GpNRQCD = �vac�Z1/2�x1,x2,− i�x1
,− i�x2

�

�S�x1,x2,TW/2�S†�y1,y2,− TW/2�

�Z†1/2�y1,y2,− i�y1
,− i�y2

��vac�

= Z1/2e−iTWhsZ†1/2��3��x1 − y1���3��x2 − y2� .

�275�

Matching Eq. �275� with Eq. �269� we obtain at O�1/m0�

V�0� = lim
TW→�

i

TW
ln�W�� , �276�

ln Z�0� = lim
TW→�

�ln�W�� + iV�0�TW� . �277�

Equation �276� coincides with Eq. �243� and is equiva-
lent �up to US corrections� to the weak-coupling result
of Sec. IV.F.2. Matching at O�1/m� we obtain

V�1,0� +
1
2

��rV
�0�� · r

Z�1,p�

Z�0� = lim
TW→�

	−
1
8

 ��rZ

�0��
Z�0� �2

+ i
TW

4
��rZ

�0��
Z�0� · ��rV

�0�� +
TW

2

12
��rV

�0��2 −
g

4
�

−TW/2

TW/2

dt�
1 −
2t

TW
�

�
�Of�TW/2� · E�t���

�W��
− 
1 +

2t

TW
� �E�t� · Oi�− TW/2���

�W�� � −
1
2

�Of�TW/2�Oi�− TW/2���

�W��

−
g2

4TW
�

−TW/2

TW/2

dt�
−TW/2

TW/2

dt��t − t��
�E�t� · E�t����

�W�� � . �278�

From Eq. �278� we cannot disentangle V�1,0� from Z�1,p�.
This reflects, in the framework of the Wilson-loop
matching, the freedom to perform unitary field redefini-
tions on the pNRQCD Lagrangian. Indeed, the Green’s
function �275� does not uniquely define hs, but only up
to a unitary transformation of Z and hs. Note that Eq.
�273� allows one to calculate Z�1,p� only after a procedure
that fixes �0� ;x1 ,x2�, which is defined up to a transforma-
tion �229�, has been given. A possible choice of Z�1,p� is
the one that fixes V�1,0� to the value found in Eq. �244�.
Here this choice appears arbitrary and no obvious crite-
ria to prefer it seem to be at hand. Naturally, the same
result would follow by calculating Z�1,p� from Eq. �273�
with the “quantum-mechanical” procedure �228�.

In the same way we perform the matching at order
1/m2. In that case, the Wilson amplitude to match would
be the sum of all amplitudes made by an insertion of a
1/m2 or of two 1/m NRQCD operators. In order to fix
the ambiguity between Z and hs at order 1/m2, some
prescription for the 1/m2 terms in Z is required. Again
we have no obvious criteria to guide us. However, with a
suitable choice we would reproduce the potentials
�246�–�258�.

In concluding, we remark that there appear to be
some advantages in using the quantum-mechanical
matching rather than the direct matching of Wilson-loop
amplitudes. The first one is that it provides a natural and
physical procedure for calculating the potentials and the
normalization factors which works for all orders in the
1/m expansion. It is physical because the potentials
come out independent of the initial and final interpolat-
ing fields, while dependence is encoded in the normal-
ization factor. Moreover, the power counting is pre-
served. The second one is that the quantum-mechanical
expressions come out manifestly finite in the large-time
limit. This is not obvious for an expression similar to Eq.
�278�, which contains several divergent pieces that even-
tually cancel each other. Finally, we mention that the
calculation of V1/�m using the direct matching of Wilson-
loop amplitudes has not been addressed yet.

5. Matching of the nonanalytic terms

In this section, we calculate V1/�m, which is the part of
the potential that is nonanalytic in 1/m. We consider
real and imaginary contributions at the same time and
therefore restrict ourselves to the case m1=m2=m. In
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Sec. VII.D, we have shown that V1/�m arises from quark-
antiquark pairs of relative three-momentum of order
�m�QCD. This momentum region shows up in loops
where gluons of energy �QCD are involved �see Fig. 16�.
When p��QCD, the scale �m�QCD is the largest after m
and therefore the first to be integrated out from
NRQCD.

Following the procedure of Brambilla, Pineda, et al.
�2004�, we go through these three steps.

�i� The first step is to make explicit at the level of
NRQCD the existence of different degrees of freedom
by splitting the quark �antiquark� field into two: a semi-
hard field for the �three-momentum� fluctuations of
O��m�QCD�, �sh �sh�, and a potential field for the
�three-momentum� fluctuations of O�p�, �p �p�:

� = �p + �sh,  = p + sh. �279�

The NRQCD Lagrangian then reads

LNRQCD = LNRQCD
sh + LNRQCD

p + Lmixing + Lg + Ll,

�280�

where the Lagrangians LNRQCD
sh and LNRQCD

p are identi-
cal to the NRQCD Lagrangian expressed in terms of
semihard and potential fields, respectively, the quantities
Lg and Ll are the NRQCD Lagrangians for gluons and
light quarks, respectively, and Lmixing contains the mixing
terms.

�ii� The second step is to integrate out gluons and
quarks of energy or three-momentum of O��m�QCD�.
This leads to the EFT NRQCD�:

LNRQCD → LNRQCD� = LpNRQCD�
sh + LNRQCD

p

+ Re Lmixing
�0� + Im Lmixing

�0�

+ Re Lmixing
�1� + ¯ + Lg + Ll.

�281�

Let us discuss the different terms.
�ii.a� LpNRQCD�

sh comes from integrating out gluons and
quarks of energy or three-momentum of O��m�QCD�
from LNRQCD

sh . The scale �m�QCD��QCD is perturbative
and therefore we can use weak-coupling techniques. If
we further project onto the quark-antiquark sector, the
Lagrangian LpNRQCD�

sh will formally coincide with Eq.
�60�. The multipole-expanded gluons in LpNRQCD�

sh have

�four-� momentum much smaller than �m�QCD.
�ii.b� In order to simplify the calculation of Lmixing, we

assume

�m�QCD�m�s��m�QCD� , �282�

which implies that whenever a momentum of order
�m�QCD flows into a Coulomb potential �note that at
the scale �m�QCD the potential is perturbative�, the po-
tential can be expanded about the kinetic energy. If this
is not the case, then a Coulomb resummation is needed.
Here we avoid the technical complications connected
with this case. However, there may be situations in

which this cannot be avoided. For instance, this may be
the case for the � system if the following attribution of
scales holds for the ��1S�: p��1S��mb�s�p��1S�� and
�QCD�mb�s

2�p��1S��, where p��1S� is the typical momen-
tum transfer of the ��1S� and mb the bottom-quark
mass. In this case one would have �mb�QCD�p��1S�
�mb�s��mb�QCD� instead of Eq. �282�.

The leading-order contribution to the real part of
Lmixing comes from the one-Coulomb-exchange graph of
Fig. 17:

Re Lmixing
�0� = −� d3R� d3rTrJ†�R�Vs

�0��r�Ssh�R,r��

+ H.c. −� d3R� d3rTrJ†�R�Vo
�0��r�

�Osh�R,r�� + H.c., �283�

J†�R� � p�R��p
†�R� , �284�

where Ssh and Osh are semihard singlet and octet quark-
antiquark fields, respectively. The potentials Vs

�0� and
Vo

�0� are perturbative: Vs
�0�=−CF�s /r and Vo

�0�

= �1/2Nc��s /r. The coupling constant is calculated at the
semihard scale �m�QCD.

The leading contribution to the imaginary part of
Lmixing may be read off from the imaginary part of the
pNRQCD Lagrangian at order 1/m2 in the weak-
coupling regime:

Im Lmixing
�0� = −� d3R� d3rTr	Ssh

† �R,0�
Ks

m2�
�3��r�J�R��

+ H.c. −� d3R� d3rTr	Osh
† �R,0�

Ko

m2�
�3��r�

�J�R�� + H.c., �285�

where

Ks = −
CA

2
4 Im f1�1S0� − 2S2�Im f1�1S0� − Im f1�3S1��

+ 4 Im fEM�1S0� − 2S2�Im fEM�1S0� − Im fEM�3S1��� ,

�286�

FIG. 17. The Coulomb-exchange graph contributing to the
leading mixing interaction between semihard and potential
fields.
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Ko = −
TF

2
4 Im f8�1S0� − 2S2�Im f8�1S0� − Im f8�3S1��� .

�287�

The NLO term of the real part of Lmixing in the
p /�m�QCD expansion is given by

Re Lmixing
�1� = −� d3R� d3rTrJ†�R� · rVs

�0��r�Ssh�R,r��

+ H.c. −� d3R� d3rTrJ†�R� · rVo
�0��r�

�Osh�R,r�� + H.c., �288�

J†�R� � p�R�
DI

2
�p

†�R� , �289�

which can be obtained by expanding the Coulomb po-
tential of Fig. 17 in p /p�. In a similar way higher-order
terms may be obtained. Note that, as expected, the po-
tential fields always appear as local currents in Lmixing.

�iii� The final step consists of integrating out degrees
of freedom of O��QCD�. This leads to the pNRQCD La-
grangian �216�. How to calculate the analytic part of the
potential V1/m has been discussed in Secs. VII.E.1,
VII.E.2, and VII.E.3. For the explicit computation of
V1/�m, we refer the reader to the work of Brambilla,
Pineda, et al. �2004�. The results for Re V1/�m�r� and
Im V−1/�m�r� turn out to be

Re V1/�m�r� = �2CF + CA�2 4

3��9/2�
��s

2E7/2
E �

�3��r�
m3/2 ,

�290�

Im V1/�m�r� = �2CF + CA�
4

3��7/2�
Ks�sE5/2

E �
�3��r�
m5/2 ,

�291�

where, in order to avoid the phase ambiguity in the defi-
nition of the fractional power of a complex number, we
have written the chromoelectric correlator of Eq. �267�
in Euclidean space,

En
E �

1

Nc
�

0

�

d$$n�gE�t� · gE�0��E. �292�

In accordance with the power counting of Sec. VII.B,
Eq. �290� gives a contribution of order p3 /m2

�m�s /�m�QCD��s and Eq. �291� gives one of order
p3 /m2�m�s /�m�QCD��QCD/m. Therefore the correc-
tion �290� is suppressed with respect to the largest 1 /m2

potentials calculated in Sec. VII.E.2. The correction
�291� is suppressed with respect to the imaginary part of
the 1/m2 potential, given in Eq. �75�. However, its size
relative to the imaginary part of the 1/m4 potential,
given in Eq. �268�, depends on the size of �s��m�QCD�
about which no definite statement can be made at this
point.

F. Matching for �p���QCD�E

Although it is not clear whether quarkonia states ful-
filling �p���QCD�E exist in nature, this situation is
worth investigating. The reason is that the calculation in
the �p���QCD�E case can be divided into two steps,
the first of which can be carried out by a perturbative
calculation in �s. The second step, even if it is nonper-
turbative in �s, admits a diagrammatic representation
which makes the calculation somewhat more intuitive.

1. pNRQCD�

We shall call pNRQCD� the EFT for energies below
�p�. Since �p���QCD, integrating out the energy scale �p�,
namely, the matching between NRQCD and pNRQCD�,
can be carried out perturbatively in �s. The resulting
EFT Lagrangian entirely coincides with the pNRQCD
one in the weak-coupling regime, which at lower orders
has been displayed in Eqs. �60� and �74�. Here we need
higher-order terms in the multipole expansion �at tree
level�:

�LpNRQCD� =
1
8

TrO†rirjgDiEjO − O†OrirjgDiEj�

+
1
24

TrO†rirjrkgDiDjEkS + H.c.�

+
cF

2m
TrO†��1 − �2� · gBS + H.c.� ,

�293�

where the traces are in color space only. S and O are
chosen to transform as a 1/2 � 1/2 representation in spin
space �hence �1−�2=�1 � 12−11 � �2�.

2. Matching pNRQCD to pNRQCD�

The matching of pNRQCD� to pNRQCD can no
longer be done perturbatively in �s, but it can, indeed,
be done perturbatively in the following ratios of scales:
�QCD/ �p� �multipole expansion�, �QCD/m, and E /�QCD.
Therefore the basic skeleton of the calculation consists
of an expansion in x= ��QCD/ �p��2 and y= ��QCD/m�2.
This suggests writing the pNRQCD Hamiltonian as

h = hs + hx + hx2 + hy + ¯ . �294�

The interpolating fields of pNRQCD� and pNRQCD
will be related by

�S�pNRQCD� = Z1/2�S�pNRQCD

= �1 + Zx + Zx2 + Zy + ¯ �1/2�S�pNRQCD.

�295�

The matching calculation is
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�
−�

�

dte−iEt� d3R��vac�TS�x,R,t�S�x�,0,0��

��vac��pNRQCD�

= �
−�

�

dte−iEt� d3RZ1/2��vac�TS�x,R,t�S�x�,0,0��

��vac��pNRQCDZ�1/2�†
. �296�

The right-hand side of the matching calculation has the
following structure:

1

E − hs
+

1

E − hs
�hx + hx2 + hy�

1

E − hs
+

1
2

Zx + Zx2

+ Zy −
Zx

2

4
� 1

E − hs
+

1

E − hs

1
2

Zx + Zx2 + Zy

−
Zx

2

4
�†

+ 
Zx

2
� 1

E − hs

Zx

2
�†

+
1

E − hs
hx

1

E − hs
hx

1

E − hs

+ 
Zx

2
� 1

E − hs
hx

1

E − hs
+

1

E − hs
hx

1

E − hs

Zx

2
�†

.

�297�

Hence once we have made sure that, up to contact
terms, the left-hand side of Eq. �296� has exactly the
same structure, we can easily identify the contributions
to the pNRQCD Hamiltonian from the second term of
expression �297�.

Let us illustrate how the calculation of the left-hand
side of Eq. �296� proceeds by concentrating on the fol-
lowing contribution:

1

E − hs

i

Nc
�

0

�

dt�ir · gE�t�e−i�ho−E�tir · gE�0��
1

E − hs
.

�298�

One might naively think that because E /�QCD is small,
it can be implemented by expanding the exponential �t
takes the typical value of 1/�QCD� �Brambilla, Eiras, et
al., 2002, 2003�. However, this is not entirely correct.
Whereas it is true that ho, between the heavy quarko-
nium states we are considering, has size E, it may expe-
rience fluctuations of a larger size, for instance, ��QCD
since the cutoff of the relative three-momentum is only
constrained to be smaller than m, and hence it may well
reach values ��m�QCD. Nevertheless, the energy E can
indeed always be expanded, which guarantees that we
eventually get usual, energy-independent, potentials. If
ho could not be expanded, we obtain potentials which
are nontrivial functions of m, �QCD, and r. Fortunately,
we can do much better by exploiting the fact that the
momenta, which prevent us from expanding, fulfill �p�
��m�QCD��QCD. We shall proceed as follows. We
split the relative momentum into two regions. The first
region fulfills �p���m�QCD and ho can be expanded and

the second region contains the momentum fluctuations
��m�QCD.

�i� The matching in the region �p���m�QCD.
�i.a� The real part of the potential.
At LO in the expansion, the exponential in Eq. �298�

reduces to 1 and we obtain the leading nonperturbative
correction to the Coulomb potential:

�Vs = − i
g2

Nc
TF

r2

3 �0

�

dt�Ea�t���t,0�ab
adjEb�0�� . �299�

This expression was first derived by Balitsky �1985�.
Higher orders in the E /�QCD expansion can be easily
calculated. They induce contributions to potentials
which are higher order in 1/m as well as further contri-
butions to the static potential. Some of these have been
calculated by Brambilla et al. �2000�.

�i.b� The imaginary part of the potential.
Since the imaginary parts, which are inherited from

NRQCD, are contained in local ���3��r�, ���3��r��, etc.�
terms in the pNRQCD� Lagrangian, they tend to vanish
when being multiplied by the r’s arising from the multi-
pole expansion. Hence for an imaginary part to contrib-
ute, it must have a sufficient number of derivatives �usu-
ally arising from the E /�QCD expansion� in order to
cancel all the r’s. Since derivatives are always accompa-
nied by powers of 1/m, it implies that at a given order in
1/m, only a finite number of terms in the multipole ex-
pansion contributes. We are only interested in collecting
the imaginary parts that contribute up to order 1/m4 in
order to provide an independent calculation to support
the results of Sec. VII.E. Consider again the contribu-
tion of Eq. �298�. The first imaginary terms arise at
O�E /�QCD� from the O�1/m4� parts of the singlet and
octet potentials displayed in Eq. �76�:

i

E − hs

TFT SJ

ii Im f8�2S+1PJ�
3Ncm

4

+
TS�Im g1�2S+1SS� + Im gEM�2S+1SS��

m4 �
� �

0

�

dtt�gE�t� · gE�0��
��3��r�
E − hs

, �300�

where T SJ
ij are defined are defined in Eqs. �77�–�80� and

TS=�SS
ii /3. The calculation may be systematically ex-

tended to higher orders. Details are given by Brambilla,
Eiras, et al. �2003�. Here we just point out two subtleties.
First, ill-defined expressions arise in the calculation from
products of distributions �both products of two delta
functions and products of delta functions with nonlocal
potentials, which diverge as r→0�. It is most convenient
to use DR in this case, which sets all these terms to zero.
This is shown in Appendix D in the article by Brambilla,
Eiras, et al. �2003�, where the relation to other regular-
ization schemes is also discussed. Second, there is a free-
dom in organizing the calculation, which may lead to
different forms of the potentials. Let us consider, as an
example, the term
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1

E − hs
r�E − hs�2r

1

E − hs
. �301�

If we decide to take one power �E−hs� to the right and
one to the left, we have

r2 + r�r,hs�
1

E − hs
+

1

E − hs
�hs,r�r +

1

E − hs
�hs,r�

��r,hs�
1

E − hs
, �302�

which does not produce any imaginary part. However,
an equally acceptable expression is

r2 +
1
2

�r,�r,hs��
1

E − hs
+

1

E − hs

1
2

��hs,r�,r�

+
1

E − hs

1
2

��r,hs�,hs�,r�
1

E − hs
, �303�

which does produce an imaginary part. The apparent
paradox only reflects the fact that expression �301� by
itself �as well as others from the calculation� does not
determine uniquely its contribution to the potential. It
leads to contact terms, wave-function normalization and
potential, as is apparent in Eqs. �302� and �303�, but de-
pending on how we decide to organize the calculation,
the terms associated with each of these pieces change.
For instance, when matched to Eq. �297�, Eq. �302� gives
hx= �hs ,r��r ,hs�, Zx=r�r ,hs�, whereas Eq. �303� gives hx

= 1
2 †�r ,hs� ,hs‡ ,r�, Zx= 1

2†r , �r ,hs�‡. This should not be a
surprise. It corresponds to the freedom of making uni-
tary transformations in a quantum-mechanical Hamil-
tonian already discussed in the previous sections, and
does not affect any physical observables. In order to fix
the contribution to the potential of any term once and
forever, we use the prescription described in detail in
Sec. V of Brambilla, Eiras, et al. �2003�. With this pre-
scription, Eq. �301� gives rise to the potential obtained in
Eq. �302� and hence to no imaginary part. Eventually,
combining all the contributions, we obtain for the imagi-
nary part of the pNRQCD potential when p��QCD
�E the same result, up to a unitary transformation, as
obtained in Sec. VII.E when p��QCD and explicitly
listed in Eqs. �75� and �268�. The explicit form of the
unitary transformation can be found in the article by
Brambilla, Eiras, et al. �2003�.

�ii� The matching in the region �p���m�QCD.
The contributions due to heavy quarks of three-

momentum of order �m�QCD may be calculated similar
to Sec. VII.E.5. The main difference is that now poten-
tial and semihard degrees of freedom need not be sepa-
rated at the level of NRQCD, but of pNRQCD�.

�ii.a� The first step consists in rewriting the pNRQCD�
Lagrangian in terms of semihard fields Ssh and Osh

a asso-
ciated with three-momentum fluctuations of
O��m�QCD� and potential fields Sp and Op

a associated
with three-momentum fluctuations of O�p�:

S = Sp + Ssh, Oa = Op
a + Osh

a . �304�

The pNRQCD� Lagrangian is then

LpNRQCD� = LpNRQCD�
sh + LpNRQCD�

p + Lmixing + Lg

+ Ll, �305�

where LpNRQCD�
sh and LpNRQCD�

p are identical to the
pNRQCD� Lagrangian in the heavy-quarkonium bilin-
ear sector except for the changes S, Oa, Vs, Vo→Ssh,
Osh

a , Vs
sh,sh, Vo

sh,sh, and S, Oa, Vs, Vo→Sp, Op
a, Vs

p,p, Vo
p,p,

respectively. Lg and Ll are the parts of the pNRQCD�
Lagrangian that contain only gluons and light quarks,
respectively, and Lmixing contains the mixing terms. We
recall that the gluons left dynamical have energies of
O��QCD� and that analytic terms in r do not mix semi-
hard and potential fields. Therefore the multipole ex-
pansion in Eq. �293� is an expansion in either the scale
r�1/�m�QCD in LpNRQCD�

�sh� or the scale r�1/p in
LpNRQCD�

p .
�ii.b� The second step consists of integrating out glu-

ons and quarks of energy and three-momentum of
O��m�QCD�. We assume, as in Eq. �282� and for the
same reasons as discussed there, that �m�QCD

�m�s��m�QCD�. As an example, we consider the real
part of the singlet mixing term due to the static Cou-
lomb potential. The matching works exactly as in para-
graph �ii.b� of Sec. VII.E.5 and leads to

�Re Lmixing�singlet

= −� d3R� d3rSp
†�R,r�Vs

�0��r�Ssh�R,r� + H.c.

→ −� d3R� d3r�Sp
†�R,0� + r · �rSp

†�R,0� + ¯ �

�Vs
�0��r�Ssh�R,r� + H.c. �306�

At the order of interest, we have Vs
�0�=−CF�s /r and �s

=�s��m�QCD�. Analogous results hold for the real part
of the octetmixing term due to the static Coulomb po-
tential.

The leading contribution to the imaginary part of
Lmixing is given by

Im Lmixing = −� d3R� d3rTr	Ssh
† �R,0�

Ks

m2�
�3��r�

�Sp�R,0� + H.c.�
−� d3R� d3rTr	Osh

† �R,0�
Ko

m2�
�3��r�

�Op�R,0� + H.c.� , �307�

where Ks and Ko have been defined in Eqs. �286� and
�287�, respectively.

�ii.c� The final step consists in integrating out from
pNRQCD� all fluctuations that appear at the energy
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scale �QCD. These are light quarks and gluons of energy
or three-momentum of order �QCD, and singlet and oc-
tet fields of energy of order �QCD or three-momentum
of order �m�QCD. We are then left with pNRQCD. The
part V1/m of the potential �see Eq. �220�� has been calcu-
lated in paragraph �i� of this section. The part V1/�m of
the potential develops a real and an imaginary part.
They turn out to be equal to Eqs. �290� and �291�, re-
spectively, i.e., to the results obtained in the kinematical
situation p��QCD. We refer the reader to Brambilla,
Pineda, et al. �2004� for a detailed diagrammatical calcu-
lation.

In summary, we have presented a derivation of the
pNRQCD potential �real and imaginary� in a kinemati-
cal situation and with a technical procedure that are
quite different from the ones of Sec. VII.E. The agree-
ment of the results �up to unitary transformations� in the
case when the potentials are local �nonanalytic and
imaginary terms� is reassuring and confirms in an ex-
plicit calculation what is expected in Sec. VII.D on gen-
eral grounds. Despite this, it should be noted that the
matching coefficients of the terms in the multipole ex-
pansion in pNRQCD� �293� were only calculated at tree
level here, whereas the expressions in Sec. VII.E corre-
spond to an all-order result. This indicates that there
must be a symmetry protecting these terms against
higher-loop corrections.24 This symmetry does not ap-
pear to be Poincaré invariance �Brambilla, Gromes, and
Vairo, 2003�.

G. Potentials and spectra: lattice and models

The heavy-quarkonium spectrum is obtained by solv-
ing the Schrödinger equation for the pNRQCD Hamil-
tonian hs:

hs�njls�r� = Enjls�njls�r� . �308�

Since hs is known from Eqs. �243�–�258�, �75�, �268�,
�290�, and �291�, the Schrödinger equation �308� is com-
pletely defined in terms of QCD quantities.

At LO, Eq. �308� becomes

hs
�0��njls

�0� �r� = 
 p1
2

2m1
+

p2
2

2m2
+ VLO��njls

�0� �r�

= Enjls
�0� �njls

�0� �r� . �309�

What VLO is depends on the power counting. We have
argued in Sec. VII.E.2 that when p��QCD and in the
most conservative power counting, we have VLO=V�0�

+V�1� /m. On the other hand, if p��QCD, we have VLO
=V�0�. In both cases, at this order the potential is spin
independent �Enjls

�0� �Enl
�0�� and therefore the leading-

order S- and P-wave functions read

�ns0s
�0� �r� = Rn0

�0��r�
1

�4�
�s�spin and

�nj1s
�0� �r� = Rn1

�0��r��r̂�js� , �310�

where �s�spin denotes the normalized spin component, �r̂�
the normalized eigenstate of the position, and �js� the J
�total angular momentum� and S eigenstate such that
�r̂ � j0�=Yj

m�r̂��0�spin �j= l=1� and �r̂ � j1�=Yjm
1 �r̂�. The label

m denotes the third component of the angular momen-
tum.

At NLO, the 1/m2 potentials calculated in Sec.
VII.E.2 have to be considered, except for the ones that
may have extra suppression. The contribution to the
spectrum that comes from the V1/�m potential given in
Eq. �289� also turns out to be suppressed. Indeed, we
have �mred is the reduced mass�

�Enjls
1/�m = �2CF + CA�2 1

3��9/2�
�s

2E7/2
E �Rnl�0��2

�2mred�3/2�l0, �311�

which is of order �p�3 /m2�m�s /�m�QCD��s, i.e., sup-
pressed with respect to the contribution coming from
the 1/m2 potentials of Eqs. �243�–�258�, which in the
conservative counting is of order p3 /m2.

We would like to emphasize that in order to be con-
sistent with the power counting, subleading terms in the
expansion of the kinetic energy and the potential should
be treated as perturbations when solving Eq. �309�. This
differs from the common practice in potential models. In
an EFT framework, the calculation of the spectrum is
not plagued by the inconsistencies emerging in higher-
order calculations in potential models. It is, for instance,
known that at second order in quantum-mechanical per-
turbation theory the spin-dependent terms result in a
contribution that is ill defined. Regulating it requires the
introduction of a cutoff �or DR�. A large cutoff gives rise
to a linear and to a logarithmic divergence. These diver-
gences can be renormalized by redefining the coupling
constant of a delta potential �Lepage, 1997�. On the
other hand, when one matches QCD to NRQCD, one
expands in the energy and the three-momentum. In gen-
eral, this induces IR divergences in the matching coeffi-
cients and, in particular, in the calculation of a matching
coefficient of a four-fermion operator at two loops,
which leads to the delta potential mentioned above. If
one uses a consistent regularization scheme for both the
QCD-NRQCD matching calculation and the quantum-
mechanical calculation in pNRQCD, the divergences ex-
actly cancel and eventually a totally consistent scale-
independent result is obtained �for a QED example, see
Czarnecki et al. �1999a, 1999b��. Notice that an EFT
framework is crucial for understanding this second-
order calculation and for making the result meaningful.

For a determination of the spectrum at order p3 /m2 in
the conservative counting, one needs to consider, be-
sides the static and the 1/m potential, the O�1/m2� po-
tentials given in Eq. �63�, of which for Vr

�2,0� and Vr
�1,1�

only the terms in the first three lines of Eqs. �248� and
�252� need to be considered. How can one get the ex-

24For the leading-order term, the nonrenormalization was
verified at one loop by Pineda and Soto �2001�.
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plicit form of these potentials? The EFT provides the
expressions for such potentials in terms of Wilson-loop
amplitudes typically involving chromoelectric- and
chromomagnetic-field insertions. In the case of the
imaginary parts, they reduce to chromoelectric and
chromomagnetic correlators. These are low-energy ob-
jects that do not depend on the quarkonium state, in-
volve only integrations over gluon fields and light
quarks, are gauge invariant, and perfectly suited for lat-
tice calculations. We emphasize that the EFT approach
greatly reduces the lattice effort necessary to produce
heavy-quarkonium spectra and decay widths. This is for
two reasons. The first reason is that the objects to be
calculated on the lattice involve only integrations over
low-energy gluons and light quarks. The second is that
one does not need to repeat a lattice evaluation for each
quarkonium state �with the problems related to the mass
extraction of the excited states� but only to extract the
form of all the potentials with one simulation. These,
once inserted in the Schrödinger equation �309�, will
produce the spectrum. One should check a posteriori
which states in the obtained spectrum fulfill the hypoth-
esis of the strong-coupling regime. The ones that do will
be the ones for which the calculation is reliable.

1. Potentials and spectrum from the lattice

If DR is used in the continuum, the Wilson-loop am-
plitudes involved in the static and 1/m potentials can be
renormalized by the counterterms of light degrees of
freedom only, and hence they do not display a factoriza-
tion scale dependence. For the 1/m2 and higher poten-
tials, counterterms involving local potentials are also
necessary and the Wilson-loop amplitudes depend on
the factorization scale. In a physical observable, this
scale dependence, together with the one induced by the
quantum-mechanical perturbation theory, will cancel
against the scale dependence of the NRQCD matching
coefficients. In the strong-coupling regime, there are no
US divergences, at least when the US degrees of free-
dom �pseudo-Goldstone bosons� are neglected.

In a lattice regularization scheme, the situation is
more complicated for several reasons. The Wilson-loop
amplitudes contain additive 1/a-dependent self-energy
contributions �a being the lattice spacing�, even in the
static case. This dependence on 1/a is canceled by the
quark-mass shift and is removed by a suitable renormal-
ization condition �see the discussion on the static poten-
tial in Sec. VI and below�. Moreover, large terms are
generated having their origin in self-interactions within
the plaquette as well as between plaquette and static
propagator �to higher orders�. These affect all Wilson-
loop amplitudes. They would be canceled by NRQCD
matching coefficients calculated in a lattice regulariza-
tion. Without those the scale dependence can be dra-
matic and several ad hoc lattice methods have been ap-
plied to get rid of it without actually calculating the
matching coefficients, which would be the definite solu-
tion. In addition, the Wilson-loop amplitudes will gener-
ate a- and r-dependent terms which are specific to the

lattice. On top of this, Lorentz invariance is broken on
the lattice. Thus order a corrections to coefficients oth-
erwise protected by Lorentz invariance may appear.

All these issues are related to the lattice regulariza-
tion and renormalization. A proper treatment would re-
quire the calculation of both the NRQCD matching co-
efficients and the Wilson-loop amplitudes in a proper
lattice regularization and renormalization scheme. The
Schrödinger equation would also need to be solved in
the same scheme, due to the quantum-mechanical diver-
gences. The NRQCD matching coefficients are known
at different accuracy in the continuum and in DR, see
Sec. II.D, but up to now no calculation of the coeffi-
cients here relevant exists within a lattice scheme apart
from the one in the work of Trottier and Lepage �1998�.
Another strategy would be to use a nonperturbative
renormalization �Martinelli et al., 1997� on both parts in
lattice regularization. Alternatively, if the available MS
NRQCD matching coefficients are to be used, one
should change the Wilson-loop amplitudes from the lat-
tice renormalization scheme to MS. This can be done in
lattice perturbation theory since the cutoff of these di-
vergences is close to m �Bodwin et al., 2002�. Then the
divergences arising in the quantum-mechanical pertur-
bation theory should also be MS renormalized.

A proper lattice treatment of pNRQCD has so far not
been implemented. NRQCD matching coefficients were
never considered in the lattice calculation of the poten-
tials with the exception of the work of Bali et al. �1997�
and Bali �2001�, in which an estimate of the NRQCD
matching coefficients was used. Therefore this work may
be considered the closest to a lattice treatment of
pNRQCD. We shall mainly refer to it in the following.

The static potential is given only in terms of the static
Wilson loop �243� and it has been one of the first objects
to be evaluated on the lattice in relation to quark con-
finement �Wilson, 1974�. Today the static potential is
known with great accuracy �Bali et al., 1997; Bali, 2001;
Lüscher and Weisz, 2002; Necco and Sommer, 2002�
even in the unquenched case �Bali et al., 2000; Bolder et
al., 2001�. In Fig. 4, the curve labeled �g

+ displays the
static-potential data obtained by Bali et al. �2000� in
units of r0�0.5 fm. The squares refer to a quenched
simulation at �=6.2 and the bullets to unquenched simu-
lations at �=5.6 with two mass-degenerate quark fla-
vors. The value of the mass parameter is %=0.1575. The
physical units follow from a choice of the lattice spacing
a. This is often fixed on the bottomonium spectrum �Bali
et al., 1997; Bali, 2001�. This procedure may potentially
introduce large uncertainties if the set of potentials at
our disposal is not complete, if the power counting not
consistent, or if as is usually done, lower and higher bot-
tomonium states are fitted with the same confining po-
tentials. However, such a determination seems to be nu-
merically in agreement with others obtained from the
m� /m� ratio. The continuous curve in Fig. 4 represents
the Cornell parametrization V�0��r�=−e /r+�r with e
�0.368 and ���445 MeV�2. An additive self-energy
contribution, associated with the static sources and di-
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verging in the continuum limit, has been removed by
normalizing the data to V�r0�=0. This corresponds to the
elimination of the static-potential renormalon described
in Sec. V. As shown in Sec. VI, QCD perturbation
theory perfectly agrees with the lattice data up to about
0.25 fm �actually the analysis done by Pineda �2003b�
shows agreement up to 0.4 fm�, while from about 0.5 fm
on the data are described very well by an effective string
theory at NLO �Lüscher and Weisz, 2002�. However, this
seems to be specific to the ground-state energy: the en-
ergy spectrum is still far from being stringlike at such
distances �Lüscher and Weisz, 2004�. This is more appar-
ent for the excited-state energies �Baker and Steinke,
2001�.

For the potential at order 1/m given in Eqs. �244� and
�245�, no lattice evaluation is available yet. The spin-
dependent 1/m2 potentials instead have a quite long
record of calculations �Campostrini, 1985; Michael, 1986;
Huntley and Michael, 1987; Born et al., 1994; Bali et al.,
1997�. In the absence of a proper implementation of the
NRQCD matching coefficients, the method proposed by
Huntley and Michael �1987� was to obtain lattice spacing
and scale-independent results for the spin-dependent
Wilson-loop potentials based on the substitutions
��FF��→ ��FF�� / �FF�, F being the gluon field strength.
The notations used by Bali �2001� for the spin-
dependent and momentum-dependent Wilson-loop po-
tentials differ from what we presented in Sec. VII.E.2.
The objects that were evaluated on the lattice were V1��r�
�equal to −r times the first term on the right-hand side of
Eq. �253� with cF=1� and V2��r� �equal to −r times the
right-hand side of Eq. �255� with cF=1� for the spin-
orbit, V3�r� �equal to the first term on the right-hand side
of Eq. �257� with cF=1� for the spin-spin, and V4�r�
�equal to the right-hand side of Eq. �258� with cF=1� for
the tensor potential. All the lattice determinations of the
spin-dependent potentials use the correct expression for
the spin-orbit potential �see comments in Sec. VII.E.2�.
An example is shown in Fig. 18�a�. For the momentum-
dependent part, the objects evaluated on the lattice were
Vb=−2/3 VL2

�1,1�−Vp2
�1,1�, Vc=−VL2

�1,1�, Vd=Vp2
�2,0�+2/3 VL2

�2,0�,

and Ve=VL2
�2,0�. An example is shown in Fig. 18�b�. The

spin-independent and momentum-independent poten-
tials at order 1/m2 have not yet been calculated.

The Poincaré invariance constraints �259�–�261�
�which in the above notation are V2�−V1�=V0�, Vb+2Vd

=rV�0�� /6−V�0� /2, and Vc+2Ve=−rV�0�� /2� have been
used to test the quality and the continuum limit of the
lattice simulation by Bali et al. �1997�. The lattice data
satisfy well the relations especially in the short and me-
dium range. For the long range, the data become noisy.
We refer the reader to the original literature for more
details.

More lattice plots may be found in the articles of Bali
et al. �1997� and Bali �2001�. In general the lattice curves
appear to be quite noisy for large interquark separa-
tions. This calls for new determinations in a fully consis-
tent lattice renormalization context. The lattice data
have been compared with fits motivated in the short

range by the perturbative behavior and in the long range
by QCD vacuum-model calculations. We briefly mention
some of them in the next subsection.

2. QCD vacuum models

The EFT has allowed us to systematically encode the
low-energy contributions to the potentials into Wilson-
loop amplitudes. These are also very convenient objects
for evaluation in a QCD vacuum model. A QCD
vacuum model may be defined by the behavior that it
attributes to �not necessarily static� Wilson-loop expec-
tation values in the large-distance region. Once this is
known, it is possible to obtain all Wilson-loop ampli-
tudes with field-strength insertions by means of func-
tional derivatives of the Wilson loop �Migdal, 1983;
Brambilla et al., 1994�. In this way the nonperturbative
form of all potentials is derived from only one assump-
tion on the Wilson-loop behavior. The lattice data on the
potentials can be compared with the expectations from
different QCD vacuum models. We note that more
knowledge may be gained here on the mechanism of
confinement. Indeed, while all models predict confine-
ment and thus a linear increase of the static potential,
the predictions for the relativistic corrections to the
static potential vary and give nontrivial information. We
refer the reader to Brambilla and Vairo �1997� for calcu-
lations within the stochastic vacuum model �Dosch and
Simonov, 1988�, to Baker, Ball, Brambilla, Prosperi, et al.

FIG. 18. �a� The spin-orbit potential −V1� with the fit �+h /r2

and �b� the potential Vd together with the curve −� /9r. The
lattice simulations are quenched. The fitting parameters are
���468 MeV�2 and h�0.067. From Bali et al., 1997.
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�1996� and Baker, Ball, Brambilla, and Vairo �1996� for
calculations inside dual QCD �dual superconductor
mechanism of confinement; Baker et al., 1991�, to Baker
et al. �1998� for a comparison between the two, and to
Brambilla �1998� for a comparison also with the flux-
tube model �Isgur and Paton, 1985� and the Bethe-
Salpeter NR reduction of a scalar confining kernel. In
the articles of Brambilla and Vairo �1999a, 2000b�, one
will find reviews of several QCD vacuum models and
results relevant to the nonperturbative behavior of the
potentials.

H. Inclusive decay widths into light particles

The inclusive decay width of a heavy quarkonium H
into light particles is �at LO in Im hs�

��H → light particles� = − 2�n,l,s,j�Im hs�n,l,s,j� .

�312�

The imaginary part of the pNRQCD Hamiltonian has
been written in Eqs. �75�, �268�, and �291�, and the wave
functions �njls�r�= �r �n , l ,s , j� have been discussed in Sec.
VII.G. For present purposes, a LO calculation is suffi-
cient for P-wave functions, while a NLO analysis, which
involves the 1/m2 potentials, is necessary for S-wave
ones.

With the above specifications and from Eq. �312�, we
can now list the pNRQCD expressions for S- and
P-wave decays. We proceed as follows. First, we give the
expressions for the matrix elements of NRQCD that ap-
pear in Eqs. �42�–�47� distinguishing between terms that
are analytic in 1/m and terms that are not ��H�O�H�
= �H�O�H�1/m+ �H�O�H�1/�m�, since as we have seen in the
previous sections they have been calculated in
pNRQCD to different precision. Finally, we explicitly
give the decay widths in pNRQCD at the precision to
which they are presently known.

The analytic contributions in 1/m to the NRQCD ma-
trix elements have been calculated up to �once normal-
ized to m0� O„p3 /m3� ��QCD

2 /m2 ,E /m�… for S-wave
�Brambilla, Eiras, et al., 2003� and up to O�p5 /m5� for
P-wave matrix elements �Brambilla, Eiras, et al., 2002�:

�VQ�nS��O1�3S1��VQ�nS��1/m

= CA
�Rn0

V �0��2

2�

1 −

En0
�0�

m

2E3

9
+

2E3
�2,t�

3m2 +
cF

2B1

3m2 � , �313�

�PQ�nS��O1�1S0��PQ�nS��1/m

= CA
�Rn0

P �0��2

2�

1 −

En0
�0�

m

2E3

9
+

2E3
�2,t�

3m2 +
cF

2B1

m2 � , �314�

�VQ�nS��OEM�3S1��VQ�nS��1/m

= CA
�Rn0

V �0��2

2�

1 −

En0
�0�

m

2E3

9
+

2E3
�2,EM�

3m2 +
cF

2B1

3m2 � , �315�

�PQ�nS��OEM�1S0��PQ�nS��1/m

= CA
�Rn0

P �0��2

2�

1 −

En0
�0�

m

2E3

9
+

2E3
�2,EM�

3m2 +
cF

2B1

m2 � , �316�

�Q�nJS��O1�2S+1PJ��Q�nJS��1/m

= �Q�nJS��OEM�2S+1PJ��Q�nJS��1/m

=
3
2

CA

�
�Rn1

�0���0��2, �317�

�VQ�nS��P1�3S1��VQ�nS��1/m

= �PQ�nS��P1�1S0��PQ�nS��1/m

= �VQ�nS��PEM�3S1��VQ�nS��1/m

= �PQ�nS��PEM�1S0��PQ�nS��1/m

= CA
�Rn0

�0��0��2

2�
�mEn0

�0� − E1� , �318�

�VQ�nS��O8�3S1��VQ�nS��1/m

= �PQ�nS��O8�1S0��PQ�nS��1/m

= CA
�Rn0

�0��0��2

2�

−

2�CA/2 − CF�E3
�2�

3m2 � , �319�

�VQ�nS��O8�1S0��VQ�nS��1/m

=
�PQ�nS��O8�3S1��PQ�nS��1/m

3

= CA
�Rn0

�0��0��2

2�

−

�CA/2 − CF�cF
2B1

3m2 � , �320�

�VQ�nS��O8�3PJ��VQ�nS��1/m

2J + 1

=
�PQ�nS��O8�1P1��PQ�nS��1/m

9

= CA
�Rn0

�0��0��2

2�

−

�CA/2 − CF�E1

9
� , �321�

�Q�nJS��O8�1S0��Q�nJS��1/m =
TF

3

�Rn1
�0���0��2

�m2 E3, �322�

where the radial part of the vector S-wave function is
Rn101�Rn0

V and the radial part of the pseudoscalar
S-wave function is Rn000�Rn0

P . The quantity Rn1
�0�� is the

derivative of the radial part of the LO P-wave function.
Any other dimension-6 and dimension-8 S-wave matrix
elements are 0 at the order considered here.

The nonanalytic contributions in 1/m to the NRQCD
matrix elements have been calculated up to �once nor-
malized to m0� O�p3 /m3��QCD/m�m�s /�m�QCD� for
S-wave matrix elements �Brambilla, Pineda, et al., 2004�:
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�VQ�nS��O1�3S1��VQ�nS��1/�m

= �VQ�nS��OEM�3S1��VQ�nS��1/�m

= CA
�Rn0

V �0��2

2�

1 +

4�2CF + CA�
3��7/2�

�sE5/2
E

m1/2 � , �323�

�PQ�nS��O1�1S0��PQ�nS��1/�m

= �PQ�nS��OEM�1S0��PQ�nS��1/�m

= CA
�Rn0

P �0��2

2�

1 +

4�2CF + CA�
3��7/2�

�sE5/2
E

m1/2 � . �324�

All other matrix elements receive contributions which
are O�m�s /�m�QCD� suppressed, under the condition
�282�, with respect to those listed in Eqs. �313�–�322�.

Some comments are in order. All matrix elements are
factorized into a part that is the wave function at the
origin and a combination of gluon-field correlators. The
wave function carries the dependence on the state and
flavor content of the decaying heavy quarkonium �apart
from the residual dependence on m and n in the binding
energy and on m in the logarithms in cF�, while the cor-
relators only depend on the low-energy properties of
QCD and are in this sense universal. They may be cal-
culated once and forever, by means of lattice simulations
�D’Elia et al., 1997; Bali et al., 1998; Foster and Michael,
1999; Bali and Pineda, 2004�, specific models of the
QCD vacuum �Baker et al., 1998; Brambilla, 2000; Di
Giacomo et al., 2002�, or extracted from experimental
data �Brambilla, Eiras, et al., 2002; see also Sec. VIII.D�.
We emphasize that the factorization holds only if �QCD
�E, otherwise it would not be possible to disentangle
the heavy quarkonium, whose energy is E, from the non-
perturbative gluons.

The factorization is also the reason for the reduction
in the number of nonperturbative parameters in going
from NRQCD to pNRQCD. In pNRQCD these are the
wave functions and the gluon-field correlators. Among
these only the wave functions depend on the specific
heavy-quarkonium state that we are considering. As dis-
cussed at the beginning of the section, the wave function
may be calculated, in principle, in terms of QCD quan-
tities by solving the Schrödinger equation �308�. At the
order at which they are given, Eqs. �313�–�316� are sen-
sitive to the difference between the pseudoscalar and
the vector S-wave function. For the other S-wave opera-
tors, the difference is not important at the present level
of accuracy. The reduction in the number of parameters
is more evident if we consider ratios of matrix elements
of hadronic operators and electromagnetic ones. The
wave-function dependence drops out and we are left
with a combination of a few universal gluon-field corr-
elators. In Sec. VIII.D, we discuss the phenomenological
relevance of this for the calculation of bottomonium and
charmonium inclusive decay widths.

Finally, we recall that, apart from the matrix elements
�VQ�nS��O1�3S1��VQ�nS�� and �PQ�nS��O1�1S0��PQ�nS��
that are affected at relative order �QCD/m

�m�s /�m�QCD, all other matrix elements listed above
receive nonanalytic contributions from the three-
momentum scale �m�QCD at relative order
m�s /�m�QCD with respect to the leading piece. It may
turn out that these contributions are numerically impor-
tant since the suppression factor m�s /�m�QCD may not
be that small. In this case it would be important to have
the leading nonanalytic contributions for all matrix ele-
ments. As long as this is not the case, nonanalytic con-
tributions give the dominant source of uncertainty for
the factorization formulas �317�–�322�.

We conclude by giving the explicit formulas in
pNRQCD for the electromagnetic and inclusive decay
widths of heavy quarkonium into light particles at the
present level of knowledge. This means that S-wave de-
cay widths are given up to and including O�Im f
�p3 /m2��QCD/m�m�s /�m�QCD� and P-wave decay
widths up to and including O�Im f�p5 /m4�:

�„VQ�nS� → LH… =
CA

�

�Rn0
V �0��2

m2 Im f1�3S1�

�
1 +
4�2CF + CA�

3��7/2�
�sE5/2

E

m1/2 � ,

�325�

�„PQ�nS� → LH… =
CA

�

�Rn0
P �0��2

m2 Im f1�1S0�

�
1 +
4�2CF + CA�

3��7/2�
�sE5/2

E

m1/2 � ,

�326�

�„Q�nJS� → LH… =
CA

�

�Rn1
�0���0��2

m4 
3 Im f1�2S+1PJ�

+
2TF

3CA
Im f8�2S+1SS�E3� , �327�

�„VQ�nS� → e+e−
… =

CA

�

�Rn0
V �0��2

m2 Im fee�
3S1�

�
1 +
4�2CF + CA�

3��7/2�
�sE5/2

E

m1/2 � ,

�328�

�„PQ�nS� → ��… =
CA

�

�Rn0
P �0��2

m2 Im f���
1S0�

�
1 +
4�2CF + CA�

3��7/2�
�sE5/2

E

m1/2 � ,

�329�

�„Q�nJ1� → ��… = 3
CA

�

�Rn1
�0���0��2

m4 Im f���
3PJ�

for J = 0,2. �330�
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VIII. PHENOMENOLOGICAL APPLICATIONS

A. Determinations of mb and mc from the 1S resonances

Here we present state-of-the-art determinations of the
bottom and charm masses from the ground-state botto-
monium and charmonium masses.

For precise determinations of those parameters, we
need a situation where the dynamics can be described by
a weak-coupling analysis �at least in a first approxima-
tion� and where nonperturbative effects are small.
Therefore the first question we should answer is are we
in such a dynamical situation? For the bottomonium and
charmonium systems, we believe that the masses mb and
mc are much larger than �QCD. This is not enough, how-
ever, since we also need mv��QCD. If this is the case
then we are dealing �in a first approximation� with a
Coulomb-type bound state. In this situation we can ap-
ply the results of Sec. IV.G once the renormalon cancel-
lation along the lines of Sec. V has been used. In other
words, our starting point will be Eq. �194�. Let us see
whether the assumption mv��QCD is reasonable for
bottomonium and charmonium ground states. The mo-
mentum transfer in the first case is around �2 GeV
whereas in the second case it is around �1 GeV. The
momentum transfer between the heavy quark and anti-
quark lies in the deep Euclidean domain. Therefore the
computation does not rely on local duality �at least to
low orders in perturbation theory�. The assumption mv
��QCD then becomes equivalent to believing in pertur-
bative calculations in the Euclidean domain in the above
range of energies. We report on work in which this as-
sumption is taken for the bottomonium as well as for the
charmonium ground state. The relative size between the
US scale and �QCD remains to be fixed.

Let us now consider recent determinations available
in the literature, which we cite in Table III. In the first
three references, as well as in the article by Penin and
Steinhauser �2002�, finite charm-mass effects due to the
potential and self-energy, calculated by Gray et al.

�1990�; Eiras and Soto �2000�; Hoang �2000�; Melles
�2000�, were not included. In all the references except
Beneke and Signer �1999� �at the moment of that com-
putation the conversion from the pole to the MS masses
was not known with the required accuracy�, the conver-
sion from the threshold �or pole� masses to the MS has
been performed to three loops. The NNNLO analyses
should be understood only as almost complete, since the
three-loop static-potential coefficient was only esti-
mated. In the work of Beneke and Signer �1999�, a
NNLO analysis was done in the PS scheme. In that of
Hoang �1999�, a NNLO analysis was done in the 1S
scheme. In Pineda’s work �2001�, a NNLO analysis was
done in the RS scheme as well as an analysis at NNNLO
including the logarithms at this order and the large-�0
result. In Brambilla, Sumino, and Vairo �2002�, a NNLO
analysis was done in the MS scheme using the upsilon
expansion. Penin and Steinhauser �2002� used a
NNNLO analysis in the on-shell scheme. We believe
that the difference with respect to the other results is
due to the presence of the renormalon, as well as the
way US and nonperturbative effects were implemented
since the authors assume mv2��QCD. In the work of
Lee �2003a� a NNNLO analysis was done in a scheme
similar to the RS one. He included the US contribution
within perturbation theory. Contreras et al. �2004� also
used a NNNLO analysis in a scheme similar to the RS
one. In this case, the US contribution was also treated
perturbatively but in a different way from the soft one.
It would be extremely interesting to repeat these analy-
ses without the US contribution. Actually, in the Contr-
eras et al. �2004� analysis, it is easy to separate out the
US contribution �although it is not fully clear in which
scheme�. If one eliminates the US contribution in this
case, the bottom mass goes down by around 50 MeV
leading to good agreement with previous analyses. Nev-
ertheless, it remains to be seen what would happen �Lee,
2003a� if a similar approach were applied.

We would also like to mention the determination of
the charm mass from the J /��1S� mass �Brambilla,
Sumino, and Vairo, 2001�. The authors perform a com-
plete NNLO analysis in the 1S scheme. It would be very
interesting to perform a similar analysis with a different
threshold mass, as well as to do the NNNLO analysis in
order to see whether the result remains stable.

In the above analyses, with the exception of that of
Penin and Steinhauser �2002�, the nonperturbative ef-
fects have been left unevaluated. In some cases the non-
perturbative results obtained in the limit mv2��QCD
have been used to estimate their size.

The main sources of errors and possible improve-
ments are the following. None of the above analyses has
yet incorporated the resummation of logarithms avail-
able at NNLLO. It would be interesting to see its effect
on the mass of the heavy quarkonium. So far all �almost
complete� NNNLO evaluations have been done assum-
ing that the US contribution can be computed within
perturbation theory. It would be most interesting to per-
form the NNNLO analysis without the US piece. Two of
the �potentially� major sources of errors in these kinds of

TABLE III. Recent determinations of m̄b and m̄c in the MS
scheme from the ��1S� and J /��1S� masses.

Reference Order m̄b�m̄b� �GeV�

Beneke and Signer, 1996 NNLO 4.24±0.09
Hoang, 1999 NNLO 4.21±0.09
Pineda, 2001 NNLO 4.210±0.090±0.025

Brambilla, Sumino,
and Vairo, 2002

NNLO 4.190±0.020±0.025

Penin and Steinhauser, 2002 NNNLO 4.349±0.070
Lee, 2003a NNNLO 4.20±0.04

Contreras et al., 2004 NNNLO 4.241±0.070

Reference Order m̄c�m̄c� �GeV�

Brambilla, Sumino,
and Vairo, 2001

NNLO 1.24±0.020
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evaluations of the heavy-quarkonium mass are the non-
perturbative contribution �140� and possible effects due
to subleading renormalons �see the discussion by Pineda
�2001��. Any reliable determination of Eq. �140� will
have an immediate impact on our understanding of the
theoretical errors. On the one hand, it would put on
more solid ground our implicit assumption that the LO
solution corresponds to a Coulomb-type bound state.
Once this is achieved, it would bring the error estimates
of the nonperturbative effects from a qualitative level to
a quantitative one, �hopefully� decreasing their size sig-
nificantly. On the other hand, one may think of cross-
checking these results with other determinations. The
fact that the difference happens to be relatively small
supports the belief that �perturbative and nonperturba-
tive� higher-order effects are indeed not very large. In
order to have an independent handle on the size of the
nonperturbative corrections, one may consider the dif-
ference between the lattice simulation of the static po-
tential and the perturbative prediction �Pineda, 2003b�.
If one neglects possible effects of unquenching, one gets
�in the static limit� nonperturbative contributions, which
are not larger than �100 MeV. A precise determination
would require an accurate determination of the chromo-
electric correlator which appears in Eq. �140� from the
lattice. In this respect, we note that by using the data on
the gluelump masses reported in Table II one obtains
�E�1.25 GeV, which is much larger than the US scale.
This may indicate that the actual situation, even for the
ground-state bottomonium, is mv��QCD�mv2, at least
as far as the computation of Eq. �140� is concerned.
Then the results of Sec. VII.F would apply.

B. Spectroscopy in the weak-coupling regime

Along the lines of the previous section, once it is as-
sumed that the ��1S� can be described by the weak-
coupling version of pNRQCD, it should be possible to
give a prediction for the �b�1S� mass. If this belief is
extended to the J /��1S�, it should also be possible to
give predictions for the Bc�1S�25 and Bc�1S�* masses, as
well as to check the theory by comparing them with the
experimental value of the �c�1S� mass.

Working in the 1S scheme at NNLO, Brambilla and
Vairo �2000a� obtained a prediction for the Bc�1S� mass:

M�Bc� = 6326−9
+29 MeV, �331�

where the error accounts only for higher-order perturba-
tive corrections and uncertainties in �s�MZ�. The error
due to nonperturbative contributions has been esti-
mated to be 40–100 MeV. It is argued there that the
nonperturbative contributions to the Bc mass in
the 1S-mass scheme come out as the following combina-
tion of nonperturbative contributions in the pole-
mass scheme: −�E�J /��np/2−�E„��1S�…np/2+�E�Bc�np.

Therefore cancellations may occur if all three correc-
tions are of the same type and size. This may substan-
tially reduce the total size of the nonperturbative correc-
tions to the Bc in the 1S-mass scheme. Brambilla,
Sumino, and Vairo �2001� made a similar determination
using the MS c and b masses. The result is very similar:
M�Bc�=6324±23 MeV. Again the error only accounts
for higher-order perturbative corrections and uncertain-
ties in �s�MZ�. The error due to nonperturbative contri-
butions has not been estimated there. Brambilla,
Sumino, and Vairo �2002� also included charm-mass ef-
fects in the analysis. They lower slightly the central
value: M�Bc�=6309±17 MeV. The error is as above.

In the case of bottomonium, Kniehl et al. �2004� cal-
culated the hyperfine splitting of the ground state at
NLLO in the on-shell scheme �the effects due to the
pole-mass renormalon are subleading�. For this observ-
able, the resummation of the logarithms along the lines
discussed in Sec. IV.H seems important. The authors
have given a rather precise prediction for the mass of
the �b�1S�, which uses the experimental value of M��1S�,

M„�b�1S�… = 9421 ± 11�th�−8
+9���s� MeV, �332�

where the errors due to the higher-order perturbative
corrections and the nonperturbative effects are added
up in quadrature in “th,” whereas “��s” stands for the
uncertainty in �s�MZ�=0.118±0.003. They also obtained
a value for the charmonium ground-state hyperfine split-
ting, M„J /��1S�…−M„�c�1S�…�104 MeV, to be com-
pared with the experimental value of 117.7 MeV. Reck-
siegel and Sumino �2004� have performed a numerical
NLO analysis of these hyperfine splittings. For bottomo-
nium they get �44 MeV, which compares well with the
above number, and for charmonium �88 MeV, which is
somewhat lower.

Penin et al. �2004a� have also calculated the hyperfine
splitting of the Bc ground state at NLLO in a way similar
to that of Kniehl et al. �2004�. They obtain

M�Bc
*� − M�Bc� = 65 ± 24�th�−16

+19���s� MeV, �333�

where the errors are as in Eq. �332�. This result, com-
bined with Eq. �331�, or, eventually, with a more accu-
rate experimental determination of the Bc mass, pro-
vides a prediction for the Bc

* mass.
Brambilla, Sumino, and Vairo �2001, 2002� considered

higher excitations of the bottomonium system at NNLO
in the MS mass scheme using the upsilon expansion �the
latter reference also included finite charm-mass effects�.
It is not obvious a priori that these can be described
under the kinematical assumption mv��QCD, however,
it is worth investigating this possibility. The results for
the levels that turn out to be stable in this analysis are
shown in Table IV. We note that at least a part of the
higher bottomonium levels seems to be reasonably well
described in perturbation theory. In particular, the equal
level spacing, characteristic for the quarkonium spec-
trum, is reasonably well reproduced without making use
of a confining potential. This behavior seems to origi-
nate from self-energy contribution remnants of the

25Although its mass has been measured to be
6.40±0.39±0.13 GeV �Abe et al., 1998�, the precision is not
good enough to test the theory.
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renormalon cancellation and may reflect, from the point
of view of the spectrum, the numerical agreement men-
tioned in Sec. VI that is found in some situations be-
tween the perturbative static potential and the lattice
data up to very large distances. Indeed, it was this phe-
nomenological analysis that triggered part of the subse-
quent analysis of the static potential measured on the
lattice in terms of perturbative QCD. Moreover, since
for higher levels the experimental data agree with the
theoretical results within the uncertainties, we may ex-
pect this to be the case also for the bottomonium ground
state, suggesting very small nonperturbative corrections
to it. Along similar lines, but within a numerical analysis,
fine splittings of bottomonium and charmonium levels
have been considered at NLO by Recksiegel and
Sumino �2004�.

C. Electromagnetic inclusive decay widths in the weak-
coupling regime

The electromagnetic inclusive decay widths are
known at NNLO �see Sec. IV.G�. Nevertheless, they suf-
fer from large-scale uncertainties, which have so far pre-
vented their use in phenomenological analysis. This also
affects the accuracy of sum rules �see the discussion in
Sec. VIII.E�.

Recently, there have been a few phenomenological
analyses including the resummation of logarithms �see
Sec. IV.H�. The impact of these logarithms appears to be
large and the overall convergence of the series seems to
improve. For bottomonium, Penin et al. �2004b� consid-
ered the complete result with NNLLO accuracy for the
ratio of the spin-1 and spin-0 production in the on-shell
scheme �at this order effects due to the pole-mass renor-
malon are subleading�. The logarithmic expansion shows
nice convergence and stability �see Fig. 19�a�� despite
the presence of US contributions with �s evaluated at a
rather low scale 
2 /mb. At the same time, the perturba-
tive corrections are important and reduce the LO result
by approximately 40%. For illustration, at the scale of

minimal sensitivity, 
=1.295 GeV, one has the following
series:

Rb �
�„��1S� → e+e−

…

�„�b�1S� → ��…
=

1

3eb
2 �1 − 0.302 − 0.111� .

�334�

In contrast, the fixed-order expansion blows up at the
scale of the inverse Bohr radius. Nonperturbative effects
contribute in the next-to-next-to-next-to-next-to-
leading-logarithmic approximation, which is far beyond
the precision of this computation. Note that the nonper-
turbative contribution to the ratio of decay rates is sup-
pressed by a factor v2 in comparison to the binding en-
ergy and decay rates, where the leading nonperturbative
effect is due to chromoelectric dipole interaction. Thus
by using the available experimental data on the � meson
as input, one can predict the production and annihilation
rates of the yet undiscovered �b meson. In particular,
one can predict the �b�1S� decay rate using the experi-
mental value for the ��1S� decay rate �Penin et al.,
2004b�:

TABLE IV. Comparison of the theoretical predictions of some
of the bottomonium levels obtained by Brambilla, Sumino, and
Vairo �2002� with the experimental data. The errors come from
summing quadratically uncertainties in �s, higher-order correc-
tions, and finite charm-mass corrections �Brambilla et al.,
2004�.

� M���exp �MeV� M��� �MeV�

��1 3P0� 9860 9995 �83�
��1 3P1� 9893 10 004 �86�
��1 3P2� 9913 10 012 �89�
��2 3S1� 10023 10 084 �102�
��1 3P0� 10232 10 548 �239�
��1 3P1� 10255 10 564 �247�
��1 3P2� 10269 10 578 �258�
��3 3S1� 10355 10 645 �298�

FIG. 19. �Color online� The spin ratio as a function of the
renormalization scale 
 in LO�LL �dotted line�, NLO �short-
dashed line�, NNLO �long-dashed line�, NLL �dot-dashed line�,
and NNLL �solid line� approximation. For the NNLL result
the band reflects the errors due to �s�MZ�=0.118±0.003. �a�
The bottomonium ground-state case for which 
h=mb. �b� The
charmonium ground-state case for which 
h=mc. In the char-
monium case, the upper band represents the experimental er-
ror of the ratio �Eidelman et al., 2004�, where the central value
is given by the horizontal solid line. From Penin et al., 2004b.
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�„�b�1S� → ��…

= 0.659 ± 0.089�th�−0.018
+0.019���s� ± 0.015�expt� keV,

�335�

where 
=1.295 GeV was taken as the central value, the
difference between the NLLO and NNLLO result for
the theoretical error, and �s�MZ�=0.118±0.003. The last
error in Eq. �335� reflects the experimental error of
�„��1S�→e+e−

…=1.314±0.029 keV �Eidelman et al.,
2004�. This value considerably exceeds the result for the
absolute value of the decay width obtained by Pineda
�2003a� on the basis of a full NLLO analysis including
the spin-independent part: �„�b�1S�→��…
=0.35±0.1�th�±0.05���s� keV. This can be a signal of
slow convergence of the logarithmic expansion for the
spin-independent contribution, which is more sensitive
to the dynamics of the bound state and in particular to
the US contribution, as has been discussed above. On
the other hand, renormalon effects �Braaten and Chen,
1998; Bodwin and Chen, 1999� could produce some sys-
tematic errors in the purely perturbative evaluations of
the production or annihilation rates. The problem is ex-
pected to be more severe for the charmonium case dis-
cussed below.

We would like to point out that the one-loop result for

=mb overshoots the NNLLO result by approximately
30%. This casts some doubts on the accuracy of the
existing �s determination from the ���
→ light hadrons� /���→e+e−� decay rate ratio, which
gives �s�mb�=0.177±0.01, well below the “world aver-
age” value �Eidelman et al., 2004�. The theoretical un-
certainty in the analysis is estimated through the scale
dependence of the one-loop result. The analysis of the
photon-mediated annihilation rates indicates that the ac-
tual magnitude of the higher-order corrections is most
likely quite far beyond such an estimate and the theo-
retical uncertainty given by Eidelman et al. �2004� should
be increased by a factor of 2. This brings the result for �s
into a 1� distance from the world average value.

For charmonium, the same analysis was performed by
Penin et al. �2004b�. The NNLO approximation becomes
negative at an intermediate scale between �smc and mc
�see Fig. 19�b�� and the use of the RG is mandatory in
order to get a sensible perturbative approximation. The
NNLLO approximation has good stability against the
scale variation but the logarithmic expansion does not
converge well. This is the main factor that limits the
theoretical accuracy since the nonperturbative contribu-
tion is expected to be under control. For illustration, at
the scale of minimal sensitivity, 
=0.645 GeV, one ob-
tains

Rc �
�„J/��1S� → e+e−

…

�„�c�1S� → ��…
=

1

3ec
2 �1 − 0.513 − 0.326� .

�336�

The central value is 2� below the experimental one. The
discrepancy may be explained by large higher-order con-
tributions. This should not be surprising because of the

rather large value of �s at the inverse Bohr radius of
charmonium. For the charmonium hyperfine splitting,
however, the logarithmic expansion converges well and
the prediction of the RG is in agreement with the ex-
perimental data. One can try to improve the conver-
gence of the series for the production or annihilation
rates by accurately taking into account the renormalon-
related contributions. One point to note is that with a
potential-model evaluation of the wave-function correc-
tion the sign of the NNLO term is reversed in the char-
monium case �Czarnecki and Melnikov, 2001�. At the
same time the subtraction of the pole-mass renormalon
from the perturbative static potential makes explicit that
the potential is steeper and closer to lattice results and
to phenomenological potential models, as we have seen
in Sec. VI. Therefore the incorporation of higher-order
effects from the static potential may improve the agree-
ment with experiment. Finally, we mention that a NLLO
evaluation for the �c�1S�→�� decay reproduces in the
minimal sensitivity region the experimental value
�Pineda, 2003a�.

D. Inclusive decay widths in the strong-coupling regime

At the end of Sec. II, we pointed out that the applica-
tion of the NRQCD factorization formulas to inclusive
annihilation widths of quarkonium was somehow limited
by the large number and poor knowledge of the
NRQCD four-fermion matrix elements. The pNRQCD
factorization formulas presented in Sec. VII.H make
both problems less severe by reducing the number of
nonperturbative parameters and by factorizing the
wave-function dependence. As a consequence, for sys-
tems to which it may be applied, pNRQCD in the
strong-coupling regime has more predictive power than
NRQCD. In the following, we present some of the pre-
dictions that are specific to pNRQCD. We remark that
the problem of the poor convergence of the perturbative
series for the NRQCD matching coefficients, also
pointed out at the end of Sec. II, is specific to the hard-
scale factorization and will persist at the level of pN-
RQCD.

Let us consider the following ratios of hadronic and
electromagnetic annihilation widths for states with the
same principal quantum number �J=0,2�:

Rn
V =

�„VQ�nS� → LH…

�„VQ�nS� → e+e−
…

,

Rn
P =
�„PQ�nS� → LH…

�„PQ�nS� → ��…
, Rn

 =
�„Q�nJ1� → LH…

�„Q�nJ1� → ��…
.

�337�

It is a specific prediction of pNRQCD that for states for
which the assumption �QCD�E holds, the wave-
function dependence drops out of the right-hand side of
the above equations. The residual flavor dependence is
encoded in the powers of 1/m, in En0

�0�, and in the Wilson
coefficients, while the residual dependence on the prin-
cipal quantum number is encoded in the LO binding
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energy En0
�0�. The Wilson coefficients may be calculated in

perturbation theory and the binding energy may be de-
rived from the quarkonium mass M�nS�: M�nS�−2m
�En0

�0�. The only unknown quantities are the gluon-field
correlators. The crucial point is that these do not depend
on the flavor and the quarkonium quantum numbers.
Therefore on the whole set of quarkonium states for
which the pNRQCD formulas apply the number of non-
perturbative parameters has decreased with respect to
NRQCD. As discussed in Sec. VII.H, the gluon-field
correlators may be extracted either from lattice simula-
tions or specific models of the QCD vacuum or from
experimental data. We shall come back to this last pos-
sibility at the end of the section.

Here we consider combinations of ratios in which
even the dependence on the correlators drops out and
predictions based purely on perturbative QCD are pos-
sible. Let us consider the ratios between Rn

V and Rn
P with

different principal quantum numbers at order E /m.
Contributions coming from the nonanalytic scale
�m�QCD have not been calculated to that order, how-
ever, they appear to be suppressed in the ratio. We ob-
tain

Rn
V

Rm
V = 1 + 
 Im g1�3S1�

Im f1�3S1�
−

Im gee�
3S1�

Im fee�
3S1�

�M�nS� − M�mS�
m

,

�338�

Rn
P

Rm
P = 1 + 
 Im g1�1S0�

Im f1�1S0�
−

Im g���
1S0�

Im f���
1S0�

�M�nS� − M�mS�
m

.

�339�

Due to the pNRQCD factorization, the octet-type con-
tributions cancel in the ratio, differently from what is
predicted in NRQCD within the standard power count-
ing �Gremm and Kapustin, 1997�. In the vector case we
get for the ��2S� and ��3S� state �mb�5 GeV� R2

� /R3
�

�1.3, which is close to the experimental central value
of about 1.4 from Eidelman et al. �2004�. In the
pseudoscalar case, since Im g1�1S0� / Im f1�1S0�
−Im g���

1S0� / Im f���
1S0� is of O��s�, we find that, at or-

der E /m, Rn
P is the same for all radial excitations.

As mentioned above, it is possible to fix the gluon-
field correlators on some experimental set of data and
use them on some other. For instance, one may extract
them from charmonium data and calculate bottomo-
nium widths. This is particularly useful since at present,
bottomonium data are less abundant than charmonium
ones. The program has been carried out for P-wave de-
cays by Brambilla, Eiras, et al. �2002�. These depend on
just one correlator, E3, which may be extracted from
P-wave charmonium decay data. The result is shown in
Fig. 20. At the scale of 1 GeV one finds

E3�1 GeV� = 5.3−2.2
+3.5�expt� , �340�

where errors refer only to experimental uncertainties on
the charmonium decay widths �in particular, uncertain-
ties related to higher orders in the perturbative series,

which may be potentially large, have not been included�.
In any case, the given value is compatible with the val-
ues that are usually assigned to the NRQCD octet and
singlet matrix elements �e.g., from the fit given by Mal-
toni �2000� one obtains E3�1 GeV�=3.6−2.9

+3.6�expt��, while
the bottomonium lattice data given by Bodwin et al.
�1996, 2002� appear to give a lower value. Once E3 is
known it may be inserted into Eqs. �327� and �330� to get
the ratios of annihilation widths of bottomonium P
waves. In practice, in pNRQCD at the order at which
Eqs. �327� and �330� are valid, the 12 P-wave bottomo-
nium and charmonium states that lie below threshold
depend on 4 nonperturbative parameters �3 wave
functions+1 chromoelectric correlator E3�. The reduc-
tion of the number of unknown nonperturbative param-
eters by 2 with respect to NRQCD allows one to formu-
late two specific new predictions of pNRQCD:

�„b0�1P� → LH…

�„b1�1P� → LH…

=
�„b0�2P� → LH…

�„b1�2P� → LH…

= 8.0 ± 1.3,

�341�

or alternatively

�„b1�1P� → LH…

�„b2�1P� → LH…

=
�„b1�2P� → LH…

�„b2�2P� → LH…

= 0.50−0.04
+0.06,

�342�

where E3 is taken from Fig. 20 and the NRQCD match-
ing coefficients are taken at NLO. The errors refer only
to the uncertainty in E3. In Fig. 21 we plot the above
ratios as functions of the factorization scale 	. We note
that the scale dependence of E3 �see Fig. 20� has been
smoothed out in the plots of Fig. 21, as expected in a
physical quantity �compare the cancellation of the
leading-order IR divergences between the singlet match-
ing coefficients and the octet matrix elements discussed

FIG. 20. �Color online� Plot of the one-loop
RG-improved expression for E vs 	 : E�	�=E�m�
+ �24NcCF /�0�ln��s�m� /�s�	��. E�m� has been extracted from
charmonium P-wave data. The error band accounts only for
the uncertainties inherited from the charmonium data. From
Vairo, 2003.
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in the paragraph after Eq. �47��. The large NLO correc-
tions are reflected by the extension of the nonoverlap-
ping regions in the two bands in Fig. 21. Recent CLEO
measurements give �see Cinabro et al. �2002�, corrected
by Brambilla et al. �2004�� �„b0�2P�→LH… /�„b2�2P�
→LH…=6.1±2.8, which agree inside the large errors
with the above predictions, and �„b1�2P�
→LH… /�„b2�2P�→LH…=0.25±0.09, which is some-
what lower than above.

The above approach may eventually be extended to a
global fit of all correlators appearing in S- and P-wave
annihilation widths. The obtained values could then be
used to predict annihilation ratios of quarkonium states
that are unknown or to improve present determinations.
This program still requires the calculation of the contri-
bution coming from the nonanalytic scale �m�QCD, at
least at relative order E /m and �QCD

2 /m2, for S waves
�that is with the same accuracy as the contributions com-
ing from the analytic scales listed in Sec. VII.H� and the
resummation of large contributions in the perturbative
series of the four-fermion matching coefficients.

E. Nonrelativistic sum rules

NR sum rules are a classical example for the applica-
tion of NR EFTs and the determination of the heavy-
quark masses such as charm and bottom. The key point
is the relation between ��q2� at q2=0 to moments of the

total cross section ��e+e−→QQ̄�. ��q2� is defined in
terms of the correlator of two electromagnetic heavy-
quark currents in the following way:

�q	q
 − g	
q
2���q2� = i� d4xeiq·x�0�Tj	

v �x�j

v�0���0� ,

�343�

where j	
v �x��Q̄�	Q�x�. Using causality and the optical

theorem one obtains

Pn =
12�2eQ

2

n!

 d

dq2�n

���q2��q2=0 = �
�smin

� ds

sn+1RQQ̄�s� ,

�344�

where RQQ̄���e+e−→QQ̄� /��e+e−→	+	−� and eQ is
the quark electric charge. For low values of n, the left-
hand side of Eq. �344� can be computed using perturba-
tion theory due to the fact that the energy necessary to
reach the threshold for heavy-quark production is much
larger than �QCD,26 whereas the right-hand side can be
obtained from the experimental data. However, we are
concerned here with the NR sum rules. These are de-
fined by taking n large. This implies the existence of new
scales in the problem besides m and �QCD, such as
m /�n, m /n, and so on. Therefore it is not so clear that
one can actually perform computations within perturba-
tion theory. For n large enough, one will have �n�s�1
and a complete resummation of these terms should be
achieved. The quantity �n�s appears in the computation
through the ratio of two different scales: m�s / �m /�n�.
Hence we see the following analogy with the NR situa-
tion: 1 /�n plays the same role as v, the velocity of the
heavy quark, and by taking �n�s�1 we are considering
the NR limit.

There is also another problem. For sufficiently large n,
we can no longer claim that the induced scales are much
larger than �QCD and nonperturbative effects need to be
considered. How to handle them is a delicate issue.
Here, we only consider m /�n��QCD. This seems to be a
safe requirement �at least for bottomonium�. It is not
clear, however, that we can also assume m /n��QCD. In
practical applications the boundary for doing so is usu-

26One should not forget, however, that potential problems
may appear beyond NNLO due to the appearance of physical
decay channels of the heavy quarkonium �Groote and Pivo-
varov, 2002; Portoles and Ruiz-Femenia, 2002�.

FIG. 21. �Color online� The left-hand side of Eqs. �341� and �342� plotted vs 	. We have taken E3 from Fig. 20. The LO and NLO
bands refer to the Wilson coefficients at LO and NLO, respectively. From Vairo, 2003.
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ally taken around n�10. We discuss this issue further
below.

In spite of the above remarks, the NR sum rules are
ideal from the experimental point of view. By taking n
large on the right-hand side of Eq. �344�, the contribu-
tion from high momenta �the continuum region� is sup-
pressed. Actually, this is the region which is less well
known on the experimental side. Therefore by using NR
sum rules, the experimental errors are significantly re-
duced. In practice, the following parametrization is used:

Pn
ex = �

k=1

6
9�

�2�2m�

���k�

M��k�
�2n+1� + �

�sBB̄

ds

sn+1rcont�s� . �345�

The theoretical expressions for the moments Pn
th can

be computed order by order in the NR expansion in
1/�n and �s, which at each order resums all the terms
proportional to �s

�n to any power. Nowadays they are
known in the on-shell scheme at NNLO in the NR ex-
pansion, which includes all corrections up to order 1/n,
�s /�n, and �s

2 �Kuhn et al., 1998; Penin and Pivovarov,
1998; Beneke and Signer, 1999; Hoang, 1999; Melnikov
and Yelkhovsky, 1999a�. With this accuracy, the disper-
sion integration for the moments Pn takes the form

Pn =
18CA

4nm2n+2�2�2m��E1

� dE

m
exp
−

E

m
n�

�
1 −
E

2m
+

E2

4m2n�Im��r = 0�Gs�E��r = 0��

�
Im fEM
pNR�3S1� + Im gEM

pNR�3S1�
E

m
� , �346�

where E��s−2m and E1 is the binding energy of the
lowest-lying resonance. The exponential form of the LO
NR contribution to the energy integration has to be cho-
sen because E scales as v2�1/n. For explicit expres-
sions, we refer the reader to Hoang �1999�.

As we have pointed out before, working in the on-
shell scheme introduces large errors. Therefore most of
the analyses nowadays use threshold masses, where the
cancellation of the pole-mass renormalon is explicit �see
Table V�. In practical terms this amounts to re-
expressing the results obtained in the on-shell scheme in
terms of the threshold masses. Nevertheless, even if

some improvement is obtained, large uncertainties re-
main due to a rather strong scale dependence. This scale
dependence can be traced back to the fact that the decay
width of the heavy quarkonium to e+e− is strongly scale
dependent. For a more detailed discussion of this point,
see Beneke and Signer �1999�. In this respect, RG tech-
niques have not yet been applied to these computations.
It would be most interesting to do that and to see
whether a more stable result is obtained.

Nonperturbative effects in sum rules are parametri-
cally of the same size as in the ��1S� mass in the stan-
dard counting 1/�n��s. Nevertheless, it may happen
that they are numerically suppressed. This is indeed the
case considering that one can describe the nonperturba-
tive effects by local condensates �Voloshin, 1995; Onish-
chenko, 2000�. However, one can use the expression in
terms of local condensates only when m /n��QCD �al-
though one can use that result as an order of magnitude
estimate of the nonperturbative effects�. This would be
analogous to the assumption m�s

2��QCD, which may be
difficult to fulfill. Therefore it is more likely that the
nonperturbative corrections will also depend on a non-
local condensate of the same type �chromoelectric cor-
relator� as the ��1S� mass does. Thus in order to esti-
mate the nonperturbative errors in sum-rules
evaluations, it would be most welcome to have at least
the explicit expression of the nonperturbative effects
when m /n��QCD, which is still lacking. In that way one
could relate the nonperturbative effects for different
moments in the sum rules to each other or to the non-
perturbative effects in the ��1S� mass.

F. t-t̄ production near threshold

Future linear electron-positron colliders will produce
large samples of t-t̄ pairs near threshold �Bagger et al.,
2000; Abe et al., 2001a, 2001b; Aguilar-Saavedra et al.,
2001�. In this regime, the top and the antitop will move
slowly with respect to each other and pNRQCD be-
comes applicable. Since the top-quark mass mt
�175 GeV and the expected �electroweak� decay width
�t�1.5 GeV are large in comparison with �QCD, non-
perturbative effects due to �QCD are expected to be
small in the whole threshold region and hence a weak-

TABLE V. Recent determinations of m̄b and m̄c in the MS scheme from NR sum rules.

Reference Order m̄b�m̄b� �GeV�

Melnikov and Yelkhovsky, 1999a NNLO �kinetic mass� 4.20±0.10
Penin and Pivovarov, 1999 NNLO �pole mass� 4.21±0.11
Beneke and Signer, 1999 NNLO �PS mass� 4.26±0.09

Hoang, 2000 NNLO �1S mass� 4.17±0.05
Eidemüller, 2003 NNLO �PS mass� 4.24±0.10

Reference Order m̄c�m̄c� �GeV�

Eidemüller, 2003 NNLO �PS mass� 1.19±0.11
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coupling analysis is very reliable. In addition, since �t

�mt�s
2, which is the US scale, a remnant of the

would-be toponium 1S state is expected to show up as a
bump in the total cross section. This will serve to obtain
the top-quark mass with a high accuracy.

The t-t̄ pair will be dominantly produced via e+e−

→�*, Z*→ tt̄. The total production cross section may be
written as �Hoang et al., 2000�

�tot
�,Z�s� =

4��2

3s
�Fv�s�Rv�s� + Fa�s�Ra�s�� , �347�

where Fv�s� and Fa�s� contain electroweak parameters
�Hoang et al., 2002� and

Rv�s� =
4�

s
Im
− i� d4xeiq·x�0�Tj	

v �x�jv	�0��0�� ,

Ra�s� =
4�

s
Im
− i� d4xeiq·x�0�Tj	

a �x�ja	�0��0�� ,

�348�

where q= ��s ,0� and j	
v �j	

a � is the vector �axial-vector�
current that produces a quark-antiquark pair defined by
Eq. �12� �Eq. �13��. Hence the full QCD calculation can
be split into �i� calculating the matching coefficients
b1

v�mt ,
�, b2
v�mt ,
�, and b1

a�mt ,
�, and �ii� calculating cur-
rent correlators in pNRQCD. Up to NNLO �O��s

2� cor-
rections�, the latter reduces to a purely quantum-
mechanical calculation along the lines of Sec. IV.G �US
gluons do not play any role�. The potential is only
needed at the order displayed in Eqs. �101� and �102�.
This calculation has been carried out by several groups27

and the final outcome is summarized by Hoang et al.
�2000� �previous computations at LO �Fadin and Khoze,
1988� and NLO �Strassler and Peskin, 1991� relied on
potential models which needed phenomenological in-
put�. Several comments are in order.

�1� At NNLO, the scale dependence which appears in
the matching coefficient b1

v�mt ,
� �b2
v=b1

a=1 at this or-
der� is compensated by the scale dependence introduced
by regulating and renormalizing the UV divergences of
the quantum-mechanical perturbation theory �potential
loops�.

�2� The top-quark width is introduced by replacing mt
by mt− i�t /2. A consistent inclusion of electroweak ef-
fects is still lacking.

�3� In order to obtain stable results for the top-quark
mass in going from LO to NLO to NNLO, it is very
important to use the so-called threshold masses rather
than the pole mass. These are discussed in Sec. V.

�4� The large logarithms arising due to the various
scales in the problem can be resummed using RG tech-
niques as described in Sec. IV.H. This problem is non-
trivial because all scales �hard, soft, potential, and US�
play a role. It was first addressed within the velocity

NRQCD framework �Hoang, Manohar, Stewart, et al.,
2001�. However, the correct result for b1

v�mt ,	� at NLLO
was first given within pNRQCD by Pineda �2002a� and
later reproduced within velocity NRQCD �Hoang and
Stewart, 2003�. Hoang and co-workers �2004�; Hoang et
al. �2002� computed some partial results for the NNLLO
contribution. The resulting series �Hoang, 2004� does
not show a very good convergence �even if the absolute
value of the corrections is small�. This, however, may be
due to the scheme dependence of the result. Penin et al.
�2004b� have obtained a complete �and therefore
scheme-independent� result with NNLLO accuracy for
the ratio of the spin-1 and spin-0 production. In this case
good convergence is found, but one should keep in mind
that this ratio is less sensitive to the US scale than the
full current. Therefore it is premature to draw any defi-
nite conclusion about the convergence of the series be-
fore getting the complete NNLLO evaluation, which,
even if difficult, is within reach. This is of utmost impor-
tance for future determinations of the top mass and the
Higgs-top coupling at a future linear collider �Martinez
and Miquel, 2003�.

�5� At NNNLO, as well as for the resummations
above, US gluons start to play a role. The double loga-
rithmic contributions were calculated by Kniehl and Pe-
nin �2000c� and the single logarithmic ones by Kniehl et
al. �2003�. The finite pieces are still missing. These can,
in principle, be calculated with the potentials given by
Kniehl, Penin, Smirnov, et al. �2002� together with the
three-loop static potential �which is still missing�, and
the LO terms for the US gluons given by Eq. �60�. The
matching coefficients b1

v�mt ,
�, b2
v�mt ,
�, and b1

a�mt ,
�
also need to be calculated to one order higher in �s.

Figure 22 shows the current status of theoretical re-
sults for the total cross section for e+e−→�*→ t+t−.

G. Semi-inclusive radiative decays

We have seen that NRQCD and pNRQCD are par-
ticularly suitable for describing inclusive decays of heavy
quarkonia to light particles. Semi-inclusive and fully ex-
clusive decays can also be addressed but they require
additional theoretical considerations. Similar to what
happens for inclusive decays, pNRQCD is expected to
provide supplementary information here as well. Semi-
inclusive radiative decays to light hadrons in which only
the photon energy is measured are the simplest of them
and will be briefly discussed in the following.

We shall restrict our discussion to the so-called direct
contributions, for which the photon is emitted from a
heavy-quark electromagnetic current. Fragmentation
contributions also play an important role �Catani and
Hautmann, 1995�. The starting point is the QCD for-
mula �Rothstein and Wise, 1997�

d�

dz
= z

M

16�2 Im T�z� , �349�
27For an analytical expression for the ��→ tt̄ cross section at

NNLO, see Penin and Pivovarov �2001�.
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T�z� = − i� d4xe−iq·x�VQ�nS��Tj	
v �x�j


v�0��

��VQ�nS��g�
	
,

where M is the heavy-quarkonium mass, and we have
restricted ourselves to 3S1 states. q is the photon mo-
mentum, which in the rest frame of the heavy quarko-
nium is q= �q+ ,q− ,q��= �zM ,0 ,0�. We have used light-
cone coordinates q±=q0±q3. z� �0,1� is defined as z
=2E� /M, namely, the fraction of the maximum energy
that the photon may have in the heavy-quarkonium rest
frame.

For z away from the lower and upper end points �0
and 1, respectively�, no further scale is introduced be-
yond those inherent in the NR system. The integration
of the scale m in the time-ordered product of currents in
Eq. �349� leads to local NRQCD operators with match-
ing coefficients which depend on m and z. At LO one
obtains

1

�0

d�LO

dz
=

2 − z

z
+

z�1 − z�
�2 − z�2 + 2

1 − z

z2 ln�1 − z�

− 2
�1 − z�2

�2 − z�3 ln�1 − z� , �350�

where

�0 =
32
27
��s

2eQ
2 �VQ�nS��O1�3S1��VQ�nS��

m2 , �351�

and eQ is the charge of the heavy quark. The �s correc-
tion to this rate was calculated numerically by Krämer
�1999�. The contribution of color-octet operators turns
out to be strongly suppressed away from the upper end-
point region �the lowest-order color-octet contribution
identically vanishes� �Maltoni and Petrelli, 1999�. The
expression corresponding to Eq. �351� in pNRQCD is
obtained at lowest order in any of the possible regimes
by just making the substitution

�VQ�nS��O1�3S1��VQ�nS�� =
Nc

2�
�Rn0�0��2. �352�

The final result coincides with the result of early QCD
calculations �Brodsky et al., 1978; Koller and Walsh,
1978�.

For z→0, the emitted low-energy photon can only
produce transitions within the NR bound state without
destroying it. Hence the direct low-energy photon emis-
sion takes place in two steps: �i� the photon is emitted
�dominantly by electric dipole and magnetic dipole tran-
sitions� and �ii� the remaining �off-shell� bound state is
annihilated into light hadrons. It has a suppression �z3

with respect to �0 �see Manohar and Ruiz-Femenia
�2004� and Voloshin �2004� for recent analyses of this
region in QED�. Hence at some point the direct photon
emission is overtaken by the so-called fragmentation
contributions Q̄Q→ggg→ggq̄q� �Catani and Haut-
mann, 1995; Maltoni and Petrelli, 1999�.

For z→1, momentum conservation implies that the
gluons emitted in the short-distance annihilation process
must have a direction roughly opposite to that of the
photon. They produce a jetlike event with momentum
pX= „�1−z�M ,M ,0… �in light-cone coordinates�. This im-
plies that two more scales become relevant, pX+

= �1
−z�M and pX

2 = �1−z�M2, producing an additional hierar-
chy M�M�1−z�M�1−z�. In recent years an EFT
named soft-collinear effective theory �SEFT� has been
introduced in order to efficiently exploit this hierarchy
of scales. The main ideas which led to SEFT were out-
lined by Bauer, Fleming, and Luke �2001�. Nowadays, it
is being developed by several groups �Bauer, Fleming,
Pirjol, et al., 2001; Beneke et al., 2002; Chay and Kim,
2002; Hill and Neubert, 2003� and it has been applied to
��1S� radiative decays by Bauer, Chaing, et al. �2001�;
Fleming and Leibovich �2003a, 2003b, 2004�; Garcia i
Tormo and Soto �2004�. We shall not review SEFT here
�a complete analysis connecting pNRQCD and SEFT is
still lacking�, but only mention its relevant features for
the case we are concerned with. For z→1, upon inte-

FIG. 22. �Color online� �a� The results for et
2Rv �et=2/3 is the

top-quark electric charge� with mt=175 GeV �the 1S threshold
mass is used, see Sec. V� and �t=1.43 GeV in fixed-order per-
turbation theory at LO �dotted lines�, NLO �dashed lines�, and
NNLO �solid lines�. �b� The results for et

2Rv with the same
parameters in RG-improved perturbation theory at LL �dotted
lines�, NLL �dashed lines�, and �partial� NNLL �solid lines�
order. For each order, curves are plotted for 
p /mt=0.15, 0.20,
and 0.3. From Hoang, 2003.
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grating out the scale m, the time-ordered product of cur-
rents in Eq. �349� does not reduce to local NRQCD op-
erators anymore. Additional degrees of freedom are
needed. These are collinear gluons �and collinear light
quarks�, which are defined as those having a typical mo-
mentum �in light-cone coordinates� p� „�1
−z�M ,M ,�1−zM…. They are incorporated in SEFT to-
gether with the remaining degrees of freedom in
NRQCD. Then one matches the QCD electromagnetic
currents j	

v �x� �rather than the full time-ordered product�
to SEFT currents. Next, the scale �1−zM is integrated
out �assuming that it is large enough to use perturbation
theory� by matching the time-ordered product of cur-
rents in SEFT �now renamed SCETI� to �nonlocal� op-
erators of the so-called SCETII, which does not contain
collinear modes of virtuality ��1−z�M2 anymore �see
Beneke and Feldmann �2004� for a detailed description
of the modes involved in SCETI and in SCETII�. By cal-
culating the anomalous dimensions of the various opera-
tors appearing in both matchings and using standard RG
techniques, one can resum large �Sudakov� logarithms
ln�1−z�. For the color-octet currents, this was done by
Bauer, Chiang, et al. �2001� and for the color-singlet ones
by results of Fleming and Leibovich �2003a, 2004�. For
the color-octet sector, the final outcome corrects the old
results obtained by Photiadis �1985�. For the color-octet
sector, the final result may be given in terms of so-called
shape functions �Rothstein and Wise, 1997�, which in-
volve expectation values in the heavy-quarkonium state
of two color-octet NRQCD currents separated along a
light-cone direction, for instance,

S��+� =� dx−

4�
e−i/2�+x−

�VQ�nS����†Tb��x−��bc
adj�0,x−�

��†Tc���0��VQ�nS�� . �353�

If the heavy-quarkonium state is in the weak-coupling
regime, as is likely in the case of the ��1S� system, one
can use pNRQCD in that regime to calculate the shape
functions. This was done by Garcia i Tormo and Soto
�2004� �see also Beneke et al. �2000��. When these results
are combined with those of the singlet sector, an excel-
lent description of data �Nemati et al., 1997� is obtained
�see Fig. 23� for the end-point region. Although, as dis-
cussed by Garcia i Tormo and Soto �2004�, there are still
some calculations missing in order to have a totally un-
ambiguous theoretical result, the agreement with data is
very encouraging. Indeed, the end-point region of the
photon spectrum has been very elusive to theoretical
descriptions. The color-singlet contribution �sometimes
referred to as the color-singlet model� lies well above the
data. For the color-octet contributions, different models
were used in the past to estimate the shape functions,
generically producing results incompatible with data
�Bauer, Chiang, et al., 2001; Wolf, 2001�. These facts
were used to argue that the introduction of a nonvanish-
ing gluon mass was necessary in order to fit the experi-
mental data �Field, 2002�. This is no longer the case, at
least as far as the ��1S� system is concerned.

IX. CONCLUSIONS

The application of QCD EFTs to heavy quarkonia has
considerably increased our understanding of those sys-
tems from a fundamental point of view. This has oc-
curred at several levels.

• Long-standing puzzles have been resolved. For in-
stance, the fate of IR divergences in the decay widths
to light particles has been resolved in NRQCD by
introducing color-octet operators, and the fate of the
IR divergences in the QCD static potential has been
resolved in pNRQCD by the explicit use of US glu-
ons.

• Heavy-quarkonium physics in the strong-coupling re-
gime has been brought into the realm of systematic
calculations in QCD. This has led to the discovery of
new terms in the potential which were missed in the
past, both analytic and nonanalytic in 1/m, and to
express the color-octet NRQCD matrix elements in
terms of wave functions at the origin and additional
bound-state-independent nonperturbative param-
eters. This puts NR phenomenological potential
models in a QCD context in the kinematic regime
where this EFT description applies.

• In the weak-coupling regime, it has allowed higher-
order calculations to be carried out in a systematic
and much simpler manner. Errors are under para-
metric control. Moreover, it has made possible the
application of RG techniques, which have been used
to resum infinite series of IR QCD logarithms, being
so far the only known way to carry out such resum-
mations. This has opened up the possibility of having
precision determinations of the Standard Model pa-
rameters to which the heavy quarkonium is sensitive:
�s and the heavy-quark masses.

Although the virtues by far exceed the drawbacks, the

FIG. 23. �Color online� End-point region of the photon spec-
trum in semi-inclusive � decay. The points are CLEO data
�Nemati et al., 1997�, the dashed line is the �best� curve ob-
tained by Fleming and Leibovich �2003a�, and the solid and
dot-dashed lines are the results of Garcia i Tormo and Soto
�2004� �the solid line is the central value and the dot-dashed
lines are obtained by a 2±1 variation of the relevant scale�.
From Garcia i Tormo and Soto, 2004.
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latter are not absent in EFTs of heavy quarkonium.
They are all related to the fact that the actual bottom
and especially charm masses, are not so much larger
than �QCD �for toponiumlike states the EFT should
work very well�. This means that the scales m�p�E,
which are assumed to be well separated, may actually
not be that well separated, and hence expansions in vari-
ous ratios may show a slow convergence. In the strong-
coupling regime it is still too early to judge. For ��1S� in
the weak-coupling regime, the convergence seems to be
good. In addition, most of the matching coefficients of
NRQCD show a poor convergence in �s�m� for both
bottom and charm masses, which is jeopardizing many
practical applications of NRQCD. We may expect, how-
ever, that once the renormalon singularities in each se-
ries have been identified and properly subtracted, the
situation will improve considerably, as has occurred with
the introduction of threshold masses.

X. PROSPECTS

NR EFTs for heavy quarkonium still have an enor-
mous potential and may evolve in many different direc-
tions. Some of them are more or less obvious improve-
ments or extensions of what has been presented here.
Others require the introduction of new concepts and
techniques.

Among the obvious improvements are those which
consist of calculating matching coefficients and observ-
ables to a higher accuracy in both NRQCD and
pNRQCD. In NRQCD, it would be important to have
the NNLO calculation of the imaginary parts of the
matching coefficients of the four-fermion operators, at
least for S and P waves. This would allow one to see
whether the poor convergence observed at NLO is cor-
rected or remains, and in either case it would facilitate
renormalon-based improvements. It would also be im-
portant to have further and more accurate lattice calcu-
lations of the NRQCD matrix elements �see Sec. II.F.2�.
In the weak-coupling regime of pNRQCD, some pertur-
bative calculations are missing, which seem to be in
reach of the current computational power. Let us only
mention the complete three-loop static potential, which
is necessary for the complete NNNLO spectrum and for
electromagnetic production processes �for instance, in
t-t̄�; the complete NNLLO resummation of the creation
and annihilation currents; and the NNNLO calculation
of electromagnetic production. These would allow an in-
crease in the precision of the determinations of mb, mc,
�s, and, eventually, mt �see Sec. VIII.A�. For the case of
��1S�, the accuracy is limited by the poor knowledge of
the nonperturbative contributions, which are precisely
given in terms of chromoelectric-field correlators. A
proper lattice evaluation of the latter would be most
welcome. For the t-t̄ system, the level of accuracy calls
for the consistent inclusion of electroweak effects, which
is also missing �see Sec. VIII.F�.

In the strong-coupling regime of pNRQCD, on the
one hand, it is necessary to update the early lattice

evaluations of the potentials including the more recently
found 1/m and 1/m2 potentials. On the other hand, a
systematic matching procedure of the potentials to the
continuum limit and a rigorous lattice renormalization
scheme should be developed �see Sec. VII.G�. This will
lead to a fully consistent lattice version of pNRQCD.

In the same regime, the inclusion of pseudo-
Goldstone bosons �pions� and low-energy photons is still
lacking. This would allow a description of electromag-
netic and hadronic transitions in that situation.

Let us next mention some applications of EFTs to
heavy quarkonium that require further theoretical
elaborations.

The systematic study of semi-inclusive �see Sec.
VIII.G� and exclusive decays may need the introduction
of further degrees of freedom in addition to those of
NRQCD or pNRQCD.

NRQCD production matrix elements should also
have definite expressions in pNRQCD both in the weak-
and in the strong-coupling regimes, which have not been
worked out yet. It is expected that as for the decay ma-
trix elements, new relations may appear and the number
of nonperturbative parameters consequently reduced.

States close to or above the heavy-light meson pair
threshold cannot be treated using pNRQCD, at least in
its current formulations. Hence one has to stay at the
NRQCD level. A hadronic version of NRQCD, includ-
ing heavy-quarkonium states, heavy-light mesons, and
pseudo-Goldstone bosons, in the spirit of Burdman and
Donoghue �1992�; Casalbuoni et al. �1997�; Mannel and
Urech �1997�; Voloshin �2003�, might prove useful and
will eventually help to understand the nature of present
�Choi et al., 2003� and possibly future potential states in
that region.

Including finite temperature in NRQCD and
pNRQCD would make it possible to address important
questions such as J /� suppression as a sign of deconfine-
ment �Matsui and Satz, 1986� in current and future
heavy-ion collision experiments.

Finally, by slightly changing the fundamental degrees
of freedom, EFTs may be built which are similar to
pNRQCD, but also suitable for describing bound states
made of two heavy particles other than heavy quarko-
nium. An example is heavy baryons made of two heavy
quarks, similar to those recently discovered at SELEX
�Mattson et al., 2002�. These systems are theoretically
quite interesting due to the interplay of HQET and
NRQCD �Rösch, 2003; Soto, 2003�. Quarkonia-
quarkonia scattering may also be studied along the lines
of the work of Bhanot and Peskin �1979�; Peskin �1979�;
Fujii and Kharzeev �1999�; Vairo �2000�.

We feel that we are at the beginning of a time where
most aspects of the physics of heavy quarkonium, and of
similar systems, will be addressed in terms of EFTs of
QCD. This is more than a change in language. It is mov-
ing this physics from being a battleground of competing
models to being a source of some of the fundamental
parameters of the Standard Model, a reliable test of its
validity in the strong interaction sector, and a unique
laboratory for the study of QCD properties.
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TABLE OF ACRONYMS

2PI Two-particle irreducible
2PR Two-particle reducible
DR Dimensional regularization
EFT Effective field theory
IR Infrared
HQET Heavy-quark effective theory
LO Leading order
MS Minimal subtraction
NLO Next-to-leading order
NNLO Next-to-next-to-leading order
NNNLO Next-to-next-to-next-to-leading order
LL Leading-logarithm order
NLL Next-to-leading-logarithm order
NNLL Next-to-next-to-leading-logarithm order
NR Nonrelativistic
NRQCD Nonrelativistic quantum chromodynamics
NRQED Nonrelativistic quantum electrodynamics
pNRQCD Potential NRQCD
PS Potential subtracted
QFT Quantum field theory
RG Renormalization group
RS Renormalon subtracted
SCET Soft-collinear effective theory
US Ultrasoft
vNRQCD Velocity NRQCD
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