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 ABSTRACT 

We present high-resolution near-

edge X-ray absorption fine structure 

(NEXAFS) measurements at the P L2/3-

edges, F K-edge, C K-edge and Se 

M2/3-edges of the quasi-one-dimensional (1D) conductor and superconductor (TMTSF)2PF6. 

NEXAFS allows probing the donor and acceptor moieties separately; spectra were recorded 

between room temperature (RT) and 30 K at normal incidence. Spectra taken around RT were 

also studied as a function of the angle (θ) between the electric field of the X-ray beam and the 

1D conducting direction. In contrast with a previous study of the S L2/3-edges spectra in 

(TMTTF)2AsF6, the Se M2/3-edges of (TMTSF)2PF6 do not exhibit a well resolved spectrum. 

Surprisingly, the C K-edge spectra contain three well defined peaks exhibiting strong and 

non-trivial θ and temperature dependence. The nature of these peaks as well as those of the F 

K-edge spectra could be rationalized on the basis of first-principles DFT calculations. Despite 

the structural similarity, the NEXAFS spectra of (TMTSF)2PF6 and (TMTTF)2AsF6 exhibit 

important differences. In contrast with the case of (TMTTF)2AsF6, the F K-edge spectra of 

(TMTSF)2PF6 do not change with temperature despite stronger donor-anion interactions. All 

these features reveal subtle differences in the electronic structure of the TMTSF and TMTTF 

families of salts. 

 

 INTRODUCTION 

Since the discovery of organic superconductivity more than 35 years ago in the pressurized 

Bechgaard salt (TMTSF)2PF6,1 a considerable amount of work has been devoted to the study 

of the cation radical (TMTSF)2X family of organic conductors and the sulfur analogues, the 

so-called Fabre salts, (TMTTF)2X.2 In these salts TMTSF is tetramethyl-tetraselenafulvalene, 
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TMTTF is tetramethyl-tetrathiafulvalene and X is a monovalent anion. These salts are low 

dimensional conductors due to an anisotropic structure made of (a,b) layers of donors whose 

zig-zag stacking along a leads to the formation of methyl group cavities in the perpendicular 

c* direction which are filled with anions, X (Figure 1a). The charge transfer to the anion 

leaves one hole per two donor molecules leading to a quarter-filled band of holes. The 1D 

electronic properties of these salts are due to the preponderant overlap of the π-type HOMO 

(highest occupied molecular orbital) of the TMT(S/T)F donors along the stack direction, a.  

Inside the methyl group cavities of these salts (Figure 1) each anion interacts with its 

surroundings by establishing upon cooling either short contact distances with neighboring 

Se/S donor atoms or H-bonds with close donor methyl groups. The relevance of these 

interactions is well documented in the salts incorporating non-centro-symmetric anions. The 

anions in these salts are disordered at RT but order upon cooling for entropy reasons. Their 

ordering process breaks the RT inversion symmetry of the cavity either by establishing one 

short Se…F contact out of two, as observed in (TMTSF)2ReO4,3 or by setting O…H bonds 

with selected methyl groups, as observed  in (TMTSF)2X (X = ClO4 or NO3).4 In both cases 

the occurrence of anionic short contacts distorts the packing of donor stacks and the 

asymmetry of donor-anion contacts induces inter-donor charge transfer. All these features 

significantly modify the electronic structure of the (TMTSF)2X salts and the nature of their 

ground state.5 In salts incorporating centro-symmetric anions such as X = PF6, AsF6 or SbF6, 

no anion ordering transition occurs but the two types of coupling of the anion with the donor 

remain relevant. In particular, as we will see below, the donor-anion coupling has a key 

influence on the nature of the electronic ground state especially when charge degrees of 

freedom are involved. 

The Bechgaard salt (TMTSF)2PF6 exhibits a complex thermal behavior at ambient 

pressure. At high temperature, due to the 1D nature of the electronic overlaps and to the 
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presence of sizeable electron-electron repulsions, (TMTSF)2PF6  behaves as a Tomonaga-

Luttinger liquid.6,7 Upon cooling, the electronic structure exhibits a 1D to 2D dimensional 

crossover around 100 K8 which is achieved by de-confinement of the wave function in the b 

direction due to the sizeable overlap of the Se wave functions in the inter-stack directions 

(Figure 1b). Upon further cooling, the PF6-librational motion in the methyl group cavity and 

the methyl group thermal rotational disorder freeze9 below ~76 K and ~55 K respectively, 

causing a strengthening of the two types of donor-anion interactions considered above. Then, 

(TMTSF)2PF6 undergoes a spin density wave (SDW) metal-insulator transition at 12 K 

stabilized by the nesting of its open but sizably warped Fermi surface. Upon pressure the 

nesting condition deteriorates, the SDW ground state vanishes and when the metallic state is 

restored at low temperature (TMTSF)2PF6 exhibits superconductivity below about 1 K.1 

The Fabre salts, (TMTTF)2X, with weaker inter-stack S…S interactions are more 1D 

materials at ambient pressure. They exhibit a charge localization around 200 K, then a charge 

ordering transition around 100 K, both effects achieving a spin-charge decoupling. At low 

temperature, and for salts with centro-symmetric anions, the remaining spin degrees of 

freedom either couple antiferromagnetically or pair-up in singlet configurations leading to 

antiferromagnetic or spin-Peierls ground states, respectively (see for instance ref. 10). Under 

strong pressure the inter-stack interactions strengthen and the Fabre salts behave as the 

Bechgaard salts. 

Although the phase diagram of salts with centro-symmetric anions can be rationalized11 on 

the basis of the evolution of the quasi-1D donor electronic structure with pressure, donor 

substitution and size of the anions, recent NEXAFS and HAXPES (Hard X-Ray Photoelectron 

Spectroscopy) investigations of (TMTTF)2AsF6 and SbF6 Fabre salts, respectively, have 

shown that the interaction between donors and anions is far from being negligible12 and that 

anions play a subtle role in the stabilization of  the charge ordering ground state.12,13 In 
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particular the NEXAFS study showed unambiguously that the strengthening of F…S 

interactions upon cooling accompanies the charge localization. However at the present stage 

of our investigation it was not clear if the strengthening of the donor-anion interaction is 

simply due to the thermal contraction of the lattice or if it is a specific feature of the charge 

localization process. 

In order to discriminate between these two possibilities we have performed a NEXAFS 

study of the unoccupied electronic levels of (TMTSF)2PF6 which exhibits a similar lattice 

contraction 14 as the Fabre salts15 but, having a more 2D electronic structure, does not exhibit 

the charge localization phenomena at ambient pressure. In addition, this study should also 

probe the influence of the freezing of the PF6-librational motion in the methyl group cavity 

and of the methyl group thermal rotational disorder on the electronic structure of 

(TMTSF)2PF6. Finally, since the NEXAFS study probes the unoccupied orbitals of both anion 

and donor, we will be able to evaluate how the donor-anion coupling influences the electronic 

structure of these salts. 

In the following we report a combined experimental and theoretical study of the 

unoccupied electronic levels of (TMTSF)2PF6. In previous studies of molecular conductors 

(TTF-TCNQ,32,35 (TMTTF)2AsF6
12)  we have found that a qualitative information concerning 

the nature, shape and relative ordering of the unoccupied electronic levels probed by 

NEXAFS is needed in order to have a clear microscopic interpretation of the NEXAFS 

results. Here we report NEXAFS measurements and a density functional theory (DFT) 

investigation of (TMTSF)2PF6 and we will compare the results with those of our previous 

study of (TMTTF)2AsF6.12 The paper is organized as follows: experimental and 

computational methods are described in section II; NEXAFS spectra are presented in section 

III; the energy levels of PF6, TMTSF and (TMTSF)2PF6 are discussed in section IV; then in 

section V the NEXAFS spectra will be discussed on the basis of the electronic structure 
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calculations and finally, in section VI, we summarize the results commenting the differences 

with the case of the Fabre salt (TMTTF)2AsF6. 

 

 METHODS  

Sample Preparation. (TMTSF)2PF6 single crystals were grown using the standard 

electrocrystallization procedure including THF (tetrahydrofuran) solvent which was also used 

to obtain the (TMTTF)2X crystals previously studied.12,13 Two crystals obtained by this 

technique and with similar dimensions of about 1.5x1x0.1mm3 were studied. The largest 

crystal dimensions are those of the (a,b) donor layer with the longer direction being the stack 

direction, a, while the shortest direction is the interlayer direction c*.  

The samples were mounted in such a way that the (a, b) plane was put in contact with the 

sample holder. At normal incidence (θ = 0° to incoming x-ray beam; see inset in Figure 3a) 

the (a, b) plane is located in the plane of storage ring and oriented in such a way that the stack 

direction, a, is parallel to the electric field of the beam. By varying θ, the angle between the 

electric field and the surface plane was increasing accordingly, starting from pure s-polarized 

excitation (θ = 0°). Some data were also compared with those taken from pure TMTSF 

powder (from Sigma-Aldrich).  

 



7 
 

Figure 1. Structure of (TMTSF)2PF6. (a) Quasi-planar organic molecules stack along the a-

axis and are separated by PF6 anions in the c*-direction. (b) Projection of (TMTSF)2PF6 

structure along the stack direction. This projection shows in red the location of inter-stack 

interactions in the (a, b) donor layer through Se…Se short contacts and in blue the short 

contact Se…F donor –anion interactions.  

 

Experimental Details. The experiments were performed at the synchrotron radiation I1011 

beamline of the MAX II storage ring in Lund, Sweden.16 The monochromator at I1011 

delivers photons in the energy range of 130-1200eV and the radiation has a linear polarization 

in the plane of the storage ring. The degree of polarization is close to 100%. Spot size of the 

photon beam was 1x0.2mm2. NEXAFS spectra were collected at different angles of incidence 

θ and at different temperature in total electron yield (TEY) detection mode. Excitation 

energies were varied in intervals of typically 20 eV around the ionization energies.  All 

temperature measurements (rate of temperature variation < 1K min-1) were done in normal 

incidence mode. Due to the large depth (3-5 nm) probed by NEXAFS samples have been 

directly measured without any pre-cleaning procedure. No radiation damage was detected 

during 12 hours of measurements and the spot position was varied after each scan. NEXAFS 

spectra recorded from the two (TMTSF)2PF6 crystals investigated were identical. 

 

Computational Details. The present calculations were carried out using a numerical atomic 

orbitals density functional theory (DFT) approach17,18 which was developed for efficient 

calculations in large systems and implemented in the SIESTA code.19-21 We have used the 

generalized gradient approximation (GGA) to DFT and, in particular, the functional of 

Perdew, Burke and Ernzerhof.22 Only the valence electrons are considered in the calculation, 

with the core being replaced by norm-conserving scalar relativistic pseudopotentials23 
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factorized in the Kleinman-Bylander form.24 We have used a split-valence double-ζ basis set 

including polarization orbitals with an energy shift of 10 meV for all atoms.25 The energy 

cutoff of the real space integration mesh was 250 Ry. The Brillouin zone was sampled using a 

grid of (20×20×10)  k-points26 in the irreducible part of the Brillouin zone. Calculations for 

the “isolated” PF6
- and TMTSF were carried out exactly as for the (TMTSF)2PF6 solid using 

an isolated species within a periodic box of 30×30×30 Å3. In the case of PF6
- a compensating 

uniformly distributed background charge amounting to one positive charge per unit cell was 

included. The experimental 4 K14 and room temperature27 crystal structures were used for the 

calculations.  

 

 NEXAFS SPECTRA OF (TMTSF)2PF6 

NEXAFS spectroscopy detects the resonant excitations from a selected core level (F 1s, C 

1s, Se 3p, and P 2p in the case of (TMTSF)2PF6) into the unoccupied density of states above 

the Fermi level. Being a local probe, NEXAFS is able to probe both the electronically active 

TMTSF molecule (through C K- and Se M2/3-edges) and the PF6 anion (through F K- and P 

L2/3-edges) separately. However our previous study of the Fabre salts revealed12 that even 

when the emitter atom is located in the anion layer, information on the unoccupied wave-

functions of the donor layer can be obtained because of the hybridization of TMTSF 

wavefunctions with those of the anion.  

Angular dependent NEXAFS, which will be considered in part A below, provides pertinent 

information for a macroscopically ordered structure built with well oriented emitting entities. 

Owing to the zig-zag structure of the stacks (see Figure 1) (TMTSF)2PF6 is a perfect 

candidate for such investigations. The interpretation of the results should be strongly 

simplified because of the quasi-planar structure of TMTSF donors building the stacks. Thus 
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NEXAFS spectra were taken at θ  = 0°, 20°, 40° and 60° impact angle between the electric 

field and the TMTSF surface, containing the stacking direction, a.  

We report separately in parts A and B below the angular- and temperature-dependence of 

the NEXAFS spectra of (TMTSF)2PF6 single crystals. The angular dependence is studied 

around room temperature while the temperature dependence is followed at normal incidence 

(θ = 0°). The main results of section III will be discussed in depth later in section V on the 

basis of first-principles DFT calculations. 

 

Angular Dependence Around Room Temperature. Figure 2 compares the RT spectra of 

the Se M2/3-edges of a (TMTSF)2PF6 single crystal and of a TMTSF powder. It reveals broad 

3p1/2 and 3p3/2 core-level signals. The spin-orbit doublet is more clearly resolved in the neutral 

powder than in the (TMTSF)2PF6 charge transfer salt, because the peaks are narrower. The 

3p3/2 transition of (TMTSF)2PF6, is significantly broader than in TMTSF powder and the 

signal is shifted to lower photon energies. The 3p1/2 transition is barely visible due to its larger 

width and since it sits on a steeply dropping background curve. The Se 3p1/2,3/2 spin-orbit 

splitting appears increased by about 2.8 eV in (TMTSF)2PF6.  

Figure 3 presents the angular dependent spectra of the F K-edge, C K-edge, P L2/3-edges 

and Se M2/3-edges taken for θ = 0°, 20°, 40° and 60° at 260 K. Let us first briefly discuss the 

results for the PF6 anion and then for the TMTSF donor. 

The F K-edge NEXAFS spectrum exhibits clear peaks at photon energies of 688.2, 693.5 

and 697 eV, labelled 1, 2 and 3 in Figure 3a. For (TMTSF)2PF6  signals 1 and 2 are shifted to 

higher photon energies than the corresponding signals of (TMTTF)2AsF6. 
12

 NEXAFS spectra 

show a slight variation of the total intensity when θ increases which could be due to the 

varying photon penetration depth with θ. The positions of the peaks remain unchanged when 
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θ is varied. Sing at al. 28 obtained similar results for a (TMTSF)2PF6 single crystal by means 

of X-ray photoelectron spectroscopy of the F 1s edge.  

The P spectrum consists of a well-resolved 2p1/2,3/2 spin-orbit doublet at energies of 137.8 

and 138.8 eV (Figure 3c). The angular sequence shows essentially the same monotonous 

global intensity variation as found for F K-edge. Note that the L2/L3 intensity ratio of the P 

L2/3-edges are inverted with respect to that of the Se M2/3-edges (Figure 2). Similarly to the P 

signal, a reversed L2/L3 intensity ratio was previously reported for SF6.29 This effect has been 

explained as being due to exchange between the core hole and the excited electron. Such an 

effect should be strong for anions, since the excited electron is sizably confined in the "cage" 

of fluorine atoms so that the overlap with the core hole is large. This process mostly affects 

transition probabilities, not the line splitting. 

                                             

Figure 2. Room temperature NEXAFS spectra of the Se M2/3-edges of (TMTSF)2PF6 single 

crystal in comparison with TMTSF powder.   

 

In contrast to the F K-edge and P L2/3-edges of the PF6, the C K-edge exhibits a 

pronounced dependence upon angular variation (Figure 3b). The carbon spectrum is split into 

three components at photon energies of 283.4, 284.2, and 285.2 eV. Upon increasing θ, the 
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intensity of the second signal increases while that of the third signal decreases. This is a non-

trivial intensity variation which must be connected with the planar orientation of donors in the 

(TMTSF)2PF6 structure.  

Unlike the S L2/3 edges measured in (TMTTF)2AsF6, the Se M2/3-edges of (TMTSF)2PF6 

do not exhibit a well resolved spectrum (Figures 2 and 3d), very likely due to the much 

shorter lifetime of the Se 3p core hole (Figures 2 and 3d). The possibility of Coster-Kronig or 

even super-Coster-Kronig decays for Se 3p core holes increases the approximate lifetime 

width from 0.1 eV for S L2/3 to 1.5-2 eV for Se M2/3.30,31 The Se M2/3-edges spectrum does not 

show any significant angular dependence.  
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Figure 3. NEXAFS spectra of the F K-edge (a), C K-edge (b), P L2/3-edges (c) and Se M2/3-

edges (d) of a (TMTSF)2PF6 single crystal as a function of the angle θ between the electric 

field vector and the surface plane (containing the stack direction, a). The inset in (a) shows 

the experimental configuration. 

 

Figure 4. Carbon 1s NEXAFS spectra of (TMTSF)2PF6 taken at 260, 90 and 30 K in normal 

incidence.  
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Temperature Dependence at Normal Incidence. The temperature dependence 

measurements, reported at 260, 90 and 30 K  in this part were obtained at normal incidence 

where the electric vector of the X-ray beam is aligned along the stack direction a.  

The C 1s spectrum which consists of three pronounced features exhibits strong temperature 

dependence (Figure 4). The intensity of peak 2 strongly increases upon cooling while the 

intensity of peak 3 strongly decreases. Note that the same trend is observed for the angular 

dependence when θ increases at constant temperature (Figure 3b). No peak shift larger than 

0.1 eV (the experimental uncertainty in the determination of the peak position) could be 

detected upon cooling.  

Figure 5 displays the temperature dependence of the F 1s spectrum. Clearly, there is no 

thermal shift of the peak position upon cooling for any of the three peaks of the spectra. This 

is in contrast with our previous work on (TMTTF)2AsF6 where significant shifts were 

observed as a function of temperature. 12 The intensity of the three peaks does not change 

appreciably upon cooling. There is however a slight broadening of peaks 1 and 2 upon 

cooling. Interestingly, the lower energy peak 1 is twice larger than the corresponding peak 1 

of (TMTTF)2AsF6.12 All these features suggest the presence of one or several additional 

transitions of weak intensity at energies intermediate between those of peaks 1 and 2. A de-

convolution procedure using a multi-peak fit routine provides evidence of such additional 

transitions. However due to their weakness it was not possible to locate them precisely. 

Additional transitions giving rise to a four peak F K–edge spectrum was clearly detected in 

(TMTTF)2AsF6 .12 

The P L2/3-edges spectra (Figure 6) as well as the Se M2/3-edges spectra (Figure 7) of 

(TMTSF)2PF6  do not show any significant change upon cooling.  
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Figure 5. Fluorine 1s NEXAFS spectra of (TMTSF)2PF6 taken at 260, 90 and 30 K in normal 

incidence.  

 

Figure 6. Phosphorous 2p NEXAFS spectra of (TMTSF)2PF6 taken at 260, 90 and 30 K in 

normal incidence. 

Summary of the NEXAFS Results. The more salient results of our NEXAFS study can be 

summarized as follows: 

(a) The F K-edge spectra consist of three visible peaks which do not exhibit any sizeable 

temperature dependence. The position of these peaks remains unchanged and only a small 
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intensity variation occurs when θ, the angle between the light polarization vector and the 

stack axis a, is varied.  

(b) The C K-edge spectra contain also three main peaks. These peaks exhibit a strong and 

non-trivial angular  and temperature dependence.  

(c) In contrast with a previous studies of the S L2/3-edges spectra in (TMTTF)2AsF6,12 the 

Se M2/3-edges of (TMTSF)2PF6 do not exhibit a well resolved spectrum. The spectra do not 

show any significant angular or temperature dependence. 

(d) The P L2/3-edges spectrum consists of a well-resolved 2p1/2 and 2p3/2 spin-orbit doublet 

without significant angular or temperature dependence. 

 

 

Figure 7. Selenium 2p NEXAFS spectra of (TMTSF)2PF6 taken at 260, 90 and 30 K in 

normal incidence. 

 

 ENERGY LEVELS OF PF6
-, TMTSF AND (TMTSF)2PF6 

In previous studies of molecular conductors12,32 we found that important guidelines to 

understand their NEXAFS spectra are provided by the analysis of the empty levels of the solid 
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and those of the associated donor and anion according to first-principles calculations. Here we 

follow the same approach and report in this section the results of first-principles DFT 

calculations for metallic (TMTSF)2PF6, TMTSF donor and PF6
- anion using the room 

temperature and 4 K crystal structures. Remarkable differences between the sulfur and 

selenium bearing (TMT(T/S)F)2X salts emerge from this study. 

 

A. Energy levels of the PF6
- anion 

The relevant orbitals of the PF6
- anion are shown in Figure 8. These orbitals are obtained 

using the geometry of the anion in the crystal structure of (TMTTF)2PF6 at 4 K14 and the 

energy values (in eV) are relative to the energy of the HOMO. In a perfect octahedral 

environment, the three HOMO, HOMO-1 and HOMO-2 levels would be a degenerate triplet. 

This is also the case for the three LUMO+1, LUMO+2 and LUMO+3 levels. The LUMO 

(lowest unoccupied molecular orbital) has as the major component the P 3s orbital which 

mixes with some F 2p orbitals in an antibonding way. The LUMO+1, LUMO+2 and 

LUMO+3 levels are strongly antibonding levels composed of the p orbitals of both P and F. 

In contrast the HOMO, HOMO-1 and HOMO-2 orbitals are really nonbonding because there 

are no P orbitals of appropriate symmetry to mix with.  
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Figure 8. PF6
- molecular orbitals relevant for the analysis of the NEXAFS spectra of 

(TMTSF)2PF6. Energy values (in eV) are given with respect to the energy of the HOMO. 

 

Although the shape of these orbitals is similar to those previously reported for the AsF6
- 

anion12 (see Figure S1 in the supplementary information for a comparison) there is a very 

significant difference: the energy separation between the LUMO and LUMO+i orbitals is now 

around 3.1 eV whereas for AsF6
- the difference obtained with the same computational 

approach was found to be considerably larger, 4.8 eV. This observation is in agreement with 

the fact that in our previous work concerning (TMTTF)2AsF6
12 we attributed peaks 1 and 3 of 

the F 1s spectra, which were separated by 6.8 eV, to the LUMO and LUMO+i levels of the 

anion. In the present case (see Figure 5) these levels are associated with peaks 1 and 2 and 

now the separation is noticeably smaller, 5.3 eV. The larger separation found for the AsF6
- 

anion is mostly due to the more extended nature of the As orbitals which overlap better with 

the F 2p orbitals leading to a larger splitting. 

 

Energy Levels of the TMTSF Donor. The calculated HOMO, LUMO and the next six 

unoccupied molecular orbitals of TMTSF are shown in Figure 9. The geometry used is based 

on the 4 K crystal structure of (TMTSF)2PF6
14 in which the TMTSF molecules were slightly 

modified so as to exhibit D2h symmetry. The energy values (in eV) are relative to the energy 

of the HOMO. Although the shape of these orbitals is similar to that of the TMTTF molecules 

in (TMTTF)2AsF6
12 (see Figure S2 in the supplementary information for a comparison) the 

ordering of such levels is clearly different. Whereas four orbitals, HOMO, LUMO, LUMO+2 

and LUMO+6, remain in the same relative position in the two salts, three of them change. The 

LUMO+3, LUMO+4 and LUMO+5 of (TMTTF)2AsF6 become respectively the LUMO+4, 

LUMO+1 and LUMO+3 of (TMTSF)2PF6. The important consequence is that in the present 
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case it is not possible to separate the five orbitals from LUMO+1 to LUMO+5 into two 

groups, π and σ, differing by their symmetry with respect to the molecular plane, as it was 

possible for the TMTTF levels in (TMTTF)2AsF6
12 or the TTF levels in TTF-TCNQ.32 In 

these TTF-based salts  there occurs a group of three π type orbitals and then a group of two σ 

type orbitals (and somewhat higher in energy lies another σ orbital). In the TMTSF salt the 

energy differences among the five orbitals are smaller and the sequence is σ, π < σ < π < π. 

The LUMO and LUMO+6 levels remain well separated from the other five levels, as it was 

the case for (TMTTF)2AsF6. Thus, we conclude that replacement of Se for S in TMTTF leads 

to an important electronic rearrangement among the unoccupied molecular orbitals which 

must become apparent in the NEXAFS spectra. 

 

 

 

Figure 9. TMTSF molecular orbitals relevant for the analysis of the NEXAFS spectra of 

(TMTSF)2PF6. The geometry of TMTSF is based on the 4 K crystal structure of 

(TMTSF)2PF6 where the TMTSF donors where symmetrized so as to possess D2h symmetry. 

Energy values (in eV) are given with respect to the energy of the HOMO. 

 



19 
 

At this point we note that the energy range in which the five orbitals LUMO+1 to 

LUMO+5 occur in Figure 9 is 0.27 eV. This is clearly much smaller than the energy range of 

0.92 eV obtained in (TMTTF)2AsF6
12 using exactly the same computational approach for the 

TMTTF donor. Without entering for the moment into a detailed discussion of the C 1s spectra 

of (TMTSF)2PF6, let us remark that the separation between the two main peaks of this spectra 

(peaks 2 and 3 in Figure 4), which are associated with these levels, is only 0.9 eV in 

(TMTSF)2PF6 but 2.3 eV in the C 1s spectra of (TMTTF)2ReO4
33 and 2.25 eV in the S 2p 

spectra of (TMTTF)2AsF6.12 Consequently, the theoretically predicted narrowing of the 

energy range where the five levels from LUMO+1 to LUMO+5 occurs, seems well justified 

from the available NEXAFS information. Such a narrowing is obviously in favor of the 

occurrence of different level orderings among the unoccupied orbitals of the TMTTF and 

TMTSF salts. 
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Figure 10.  Total DOS and local projections (PDOS) of the contributions of the C, Se, P and 

F atoms calculated for (TMTSF)2PF6. The molecular energy levels of TMTSF are also 

included. The energy zero is the Fermi level. 

 

Energy Levels of Metallic (TMTSF)2PF6. Figure 10 shows the calculated density of states 

(DOS) for (TMTSF)2PF6 using the 4 K crystal structure as well as the separate  contribution of 

the C, Se, P and F orbitals. We report in Figure 11 the decomposition of the partial DOS of 

the C and Se atoms into σ and π type contributions. The calculated discrete levels of TMTSF 

at the same temperature are also shown in these figures where the LUMO orbital has been 

aligned with the corresponding peak in the DOS. If these results are compared with those 

previously reported for (TMTTF)2AsF6,
12 two features are surprising. First, no P or F levels 

occur within the whole energy range of the LUMO to LUMO+6 levels of TMTSF. This 

means that the LUMO of PF6
- is now located at higher energies. This is very different from 

the case of (TMTTF)2AsF6 where the LUMO of AsF6 was practically aligned with the 

LUMO+1 of the donor. The origin of this important difference is that the d orbitals of Se are 

considerably more spread and thus, the interaction between the TMTSF and PF6
- molecular 

orbitals is considerably stronger so that the PF6
- levels are pushed quite high in energy. 

Second, it is clear from Figure 11 that, as already discussed for the isolated TMTSF molecule, 

in the solid there is not a clear separation between σ and π levels of TMTSF. This will render 

the interpretation of the NEXAFS spectra more complex. 
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Figure 11.  Decomposition of the contributions of the C (a) and Se (b) to the DOS of  

(TMTSF)2PF6 into σ (red) and π (blue) type components. The molecular energy levels of 

TMTSF are also included. 

 

Se for S Replacement Has a Strong Effect on the Empty Donor Levels of 

(TMT(T/S)F)2X  Salts. Although the previous discussion makes clear that the Se for S 

substitution in TMTTF must induce quite important modifications in the NEXAFS spectra of 

their conducting salts, there is an important aspect of our calculations that we still have not 

discussed. When the molecular orbitals of the discrete TMTSF molecule are calculated 

without any symmetrization, i.e. using exactly the same geometry that they exhibit in the 4 K 

or room temperature crystal structures (see Figures S3 and S4 in the Supplementary 

Information), several of the LUMO+i orbitals of TMTSF noticeably depart from the clear σ or 

π separation of orbitals in the symmetrized model (Figure 9). Indeed, these orbitals can be 

expressed as a combination of orbitals of the two symmetries. This feature is due to the fact 

that the TMTSF donors are not exactly planar in the real crystal structure. Although the non-

planarity is relatively weak and the effect is practically nil for the LUMO and all the occupied 
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orbitals, it has a non-negligible effect (Figures S3 and S4 in supplementary information) for 

the LUMO+i orbitals. The reason for which this happens is that these orbitals are located 

exactly in the same energy region as the d orbitals of Se which, being much extended, couple 

orbitals of quite distant atoms within the molecule. We have verified that the same effect 

occurs in TMTTF although, but since the S d orbitals are considerably less extended, which 

leads to a weaker coupling strength, the non-planarity effect really does not influence the 

results in a perceptible way in that case.  

Essentially, the above observations mean that replacement of Se for S in the molecular 

network of the TMTTF donors leads to a strong intermingle of σ and π type components of 

the molecular levels in the region of the LUMO+1 to LUMO+5 orbitals, i.e. those responsible 

for the stronger peaks in the C 1s spectra. Since the geometry of the TMTSF donor varies 

with temperature, the proportion of the two components may change in the spectra at different 

temperatures. Thus, as the temperature variation may affect both the separation of the 

different levels and the mixing of σ and π components, it is difficult to have some guideline to 

understand the temperature evolution of the C 1s spectra (Figure 4). Yet, this is a crucial 

aspect to settle the differences between the Fabre (i.e. sulfur-containing) and Bechgaard (i.e. 

selenium-containing) (TMT(T/S)F)2X salts.  

In order to have some hint of the intrinsic behavior of the donor we have taken the 

different TMTSF levels calculated for the discrete molecules using their geometry in the 

crystal structures at room temperature and 4 K and constructed TMTSF DOS with an 

appropriate Gaussian smoothing (as used for solid state calculations) at the two temperatures 

and projected the σ and π type contributions. The results are shown in Figure 12. These 

results suggest two important guidelines: (1) the σ and π contributions are more evenly 

distributed at room temperature, and (2) when lowering the temperature the π/σ levels tend to 

concentrate more strongly in the lower/higher energy levels. In contrast, no major changes 
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occur for TMTTF when the same model calculations are carried out using the room 

temperature and low temperature (4 K) crystal structures of (TMTTF)2AsF6 (Figure S5 in 

supplementary information).    

 

  

Figure 12.  Projection of the σ (red) and π (blue)  contributions of the 2p orbitals of C to the 

”DOS” of  discrete TMTSF levels calculated using the crystal structure of (TMTSF)2PF6 at 4 

K (a) and room temperature (b). Energies (in eV) are relative to the energy of the HOMO. 

 

 

Summary of the DFT Calculations. Noteworthy results of the DFT study differing from 

previous work on the sulphur based TMTTF salts are: 

(a) The energy separation between the LUMO and the three LUMO+i orbitals of PF6
- is 

considerably smaller (around 1.7 eV) than in AsF6
-.  

(b) Replacement of Se for S in TMTTF and the slight non-planarity of TMTSF in the 

(TMTSF)2PF6 salt lead to an important rearrangement of the unoccupied molecular orbitals: 
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they cannot be considered anymore as pure σ or π type levels and, even taking into account 

this fact, they cannot be separated in blocks of mostly σ and mostly π type orbitals. 

(c) When lowering the temperature the π contributions tend to concentrate in the lower-

lying empty orbitals whereas the opposite occurs for the σ contributions. 

 

 DISCUSSION OF THE NEXAFS SPECTRA OF (TMTSF)2PF6 

On the basis of the above DFT results and our previous analysis of the NEXAFS spectra of 

the related (TMTTF)2AsF6 salt12 we can now discuss the experimental results for 

(TMTSF)2PF6, and more specially those of the C 1s and F 1s spectra. Let us remind that the 

NEXAFS transitions probe the unoccupied orbital structure which spatially overlaps with the 

initial-state orbital, in our case C 1s and Se 2p in the donor moiety and P 2p and F 1s in the 

anion. Besides the orbital overlap, the matrix element of the photon operator sorts out the 

proper angular momenta via the dipole selection rules (Δl = ±1) and the polarization effects 

due to the orientation of the linearly polarized photon beam.  

 

C 1s spectra: Angular and Temperature Evolution. The C 1s spectra (Figures 3b and 4) 

exhibit three distinctive peaks. The first and smaller one (labeled 1 in Figure 4) is easily 

assigned to the σ type LUMO of TMTSF. Then, there are two peaks (labeled 2 and 3 in 

Figure 4) displaying a puzzling behavior when both the temperature and θ dependences are 

considered. The intensity of peak 2 increases when either the temperature decreases or θ 

increases. Peak 3 follows an opposite behavior. Measurements were carried out with an 

orientation such that the electric field vector is parallel to the TMTSF stacking direction when 

the incoming beam is normal to the sample (θ = 0°) but perpendicular to this direction for θ = 

90°. Thus, for values of θ around 0°, there are the π type levels which are mostly probed. 

When the sample is tilted the contribution of the π empty states is reduced whereas that of the 
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empty σ states is enhanced. Looking at Figure 3b it is clear that the intensity of the second 

peak is strongly enhanced with θ so that this peak, which contains both σ and π type TMTSF 

contributions, should be dominated by the σ type states. In contrast, the third peak, exhibiting 

the opposite θ dependence, which contains both σ and π type TMTSF contributions should 

be dominated by the π type states. Note that the small peak 1 which slightly increases in 

intensity with θ which corresponds to a σ type orbital (LUMO). The contribution of the σ 

type LUMO+6 most likely overlap with the strong absorption occurring around 286 eV. 

To understand the temperature dependence of the spectra (Figure 4) we must remind that 

the π levels tend to concentrate in the lower energy levels when the temperature decreases. 

This provides a simple rationalization for the intensity increase of peak 2 which according to 

the θ dependence should be dominated by σ levels at room temperature. For the same reason, 

the intensity decrease of peak 3 is easily understandable because it is dominated by π levels at 

room temperature. Consequently, we suggest that the σ and π type levels associated with the 

LUMO+1 to LUMO+5 of TMTSF (Figure 9) experience a complex redistribution as a 

function of temperature, something which strongly contrasts with the case of the 

(TMTTF)2AsF6 salt.12 In the latter case the nature of the different peaks remains constant for 

all temperatures even if their intensity evolves as a result of the charge localization 

phenomenon and the charge ordering transition.  

 

F 1s spectra: Differences with the (TMTTF)2AsF6 Salt. As noted above, an important 

difference with the (TMTTF)2AsF6 salt is that the first and second peaks of the F 1s spectra 

(Figure 5) occur now around 3 and 2.5 eV higher in energy than peaks 1 and 3 (i.e. the most 

intense ones) in (TMTTF)2AsF6. Thus, it appears that there is a positive shift of the spectra. In 

addition, peak 1 in the present salt is noticeably broader than in (TMTTF)2AsF6. Let us briefly 

consider the contribution of the anion levels to the calculated DOS in order to trace back the 
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origin of these differences (see Figure 13a). This contribution is quite different from that 

previously found in the (TMTTF)2AsF6 salt. In the present case there is a very broad and 

continuous contribution of the PF6 projected DOS with two peaks centered at around 6.6 and 

10.2 eV. Note that the ratio of the integrated projected DOS associated with the two peaks is 

~1/3 so that these two peaks are associated with the LUMO and the three LUMO+i levels of 

the PF6
- anion (see Figure 8). The contribution of the LUMO+i levels was also found quite 

broad for (TMTTF)2AsF6 but the contribution of the LUMO was found to be narrow. In 

addition the lower peak is centered now at around 6.6 eV from the Fermi level which is 

approximately 4 eV higher than in (TMTTF)2AsF6 (see Figure 7b in reference 12). This is in 

good agreement with the above mentioned shift of the first peak in the F 1s spectra of the two 

salts. We thus conclude that the first peak originates from the anion LUMO level and that 

peaks 2 and 3 must be associated to the LUMO+i levels.  

 

 

Figure 13. (a) Projection of the PF6 (blue), P (red) and F (green) contributions to the DOS of  

(TMTSF)2PF6. The dashed black line is the integrated contribution of PF6 above the Fermi 



27 
 

level. (b) Se d orbital and F contributions to the DOS of (TMTSF)2PF6. Note that the DOS 

scale in (b) is smaller. 

 

Before considering more in depth the F 1s spectra let us examine the reason for the shift as 

well as the broad nature of the contribution of all empty levels of PF6
-. Figure 13b shows the 

projected Se d orbitals in the region of the empty states of (TMTSF)2PF6. The chalcogen d 

orbitals contribution is considerably stronger than it was in the (TMTTF)2AsF6 salt. The 

important observation which can be made from this figure is that all along the DOS region 

with F contributions there is also Se d orbitals participation. This is specially the case in the 

region of the LUMO+i levels. This means that there is a strong interaction between donor and 

anion empty levels mostly mediated by the F 2p…Se 4d interactions through the short F…Se 

contact distances shown in Figure 1b, and that this affects more strongly the LUMO+i. The 

first consequence of this strong interaction is that the LUMO and LUMO+i orbitals of the 

anion are pushed to considerably higher energies than in (TMTTF)2AsF6, as clearly shown by 

the F 1s spectra. The second consequence is that both the LUMO and LUMO+i levels, but 

more specially the last ones, become very broad leading to a continuous contribution of more 

than 10 eV as probed in the F 1s spectra (Figure 3a). The LUMO+i levels lead to the strong 

peak 2, the somewhat higher lying peak 3 and most likely to another sizeable contribution at 

lower energies overlapping with part of peak 1. Because of the strength of the interactions and 

the overlap of contributions, a de-convolution of the F 1s spectra, as carried out in our 

previous study of (TMTTF)2AsF6 would not be very insightful in the present case. In addition, 

the temperature dependence of the spectra does not exhibit any noticeable displacement of the 

peaks. All these observations are consistent with a description of the F 1s spectra with two 

main contributions, peak 1 (LUMO) and peaks 2 and 3 (LUMO+i) considerably broadened 

because of the large mixing of donor-anion levels through the F 2p…Se 4d interactions. Also, 
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the small temperature variation indicates some reorganization within the very broad energy 

range associated with the F 2p…Se 4d interactions but without noticeable variation of the 

main peaks.  This broadness is most likely the reason for the fact that we did not find any 

evidence in NEXAFS spectra of the freezing of the PF6-librational motion in the methyl group 

cavity or of the methyl group thermal rotational disorder.  

 

Absence of Angular Dependence of the P L2/3-Edges and Se M2/3-Edges Spectra. In view 

of the very isotropic nature of the combination of three LUMO+i orbitals and the nature of the 

HOMO (of a1 type symmetry) of the PF6 no significant changes should be expected in the P 

2p spectra for measures at different θ values even if the P d orbitals are taken into account. 

The same conclusion applies to the F 1s spectra.  

Coming back to Figure 13b, note that all along the Se d orbitals contribution, there is a 

strong overlap of d orbitals in the plane of the TMTSF molecules (x2-y2, xy: blue line) and d 

orbitals perpendicular to this plane (z2, xz, yz: red and green lines). This confers a quite 

isotropic nature to the Se d contribution consistent with the practically nil angular dependence 

of the Se M2/M3-edges spectra (Figure 3). 

 

 CONCLUDING REMARKS.  

High-resolution NEXAFS spectra at the P L2/3-edges, F K-edge, C K-edge and Se M2/3-

edges have been used to probe the nature of the unoccupied levels of the (TMTSF)2PF6 quasi-

1D molecular conductor and superconductor and the results have been discussed on the basis 

of first-principles DFT calculations. Despite the structural similarity, the NEXAFS spectra of 

(TMTSF)2PF6 and (TMTTF)2AsF6 exhibit very remarkable differences: 

(i) The donor-anion interactions are stronger in the Se-based salt (TMTSF)2PF6 than in 

(TMTTF)2AsF6 because the whole F K-edge spectrum is globally shifted towards higher 
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energies (and towards lower energies for the C1s if our results are compared with the 

available XANES data33 of (TMTTF)2ReO4).  

(ii) The donor-anion interactions do not appreciably change with temperature for 

(TMTSF)2PF6 whereas they do considerably for (TMTTF)2AsF6. This is a very significant 

feature clearly illustrated by NEXAFS and related with the different phase diagram of the two 

materials. The thermal increase of the donor-anion interactions in the TMTTF salts is 

intimately related with its progressive charge localization upon cooling. In contrast, the 

enhanced interaction between the conduction electrons and the anions in the TMTSF salts is 

however smoothed because of the more 2D electronic structure and the more polarizable 

nature of TMTSF. This is at the basis of the different NEXAFS results for the two salts. 

(iii) The selenium for sulfur replacement in the TMTTF donor induces an important 

reorganization of the empty molecular orbitals of the system which leaves practically 

unaffected the occupied and LUMO donor orbitals. Such reorganization induces some σ/π 

mixing in these empty levels such that a combined study of the angular and temperature 

dependence is required in order to fully characterize them. This is in striking contrast with the 

situation in the sulfur TTF based salts like those of TMTTF12,33 of TTF,32,34 where the 

temperature dependence already allows a full characterization.    
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