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Abstract The Cap de Creus granitic pegmatites in the eastern Catalan Pyrenees were dated using in 

situ U-Pb geochronology by laser ablation ICP-MS on zircon and columbite-group minerals 

(CGM), which are present in the different types of pegmatites from type I (K-feldspar pegmatites, 

least evolved) to type IV (albite pegmatites, most evolved) and therefore allow dating the different 
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pegmatitic pulses. In a type III pegmatite where zircon and CGM are co-genetically associated in 

the same sample, both minerals were dated using zircon and tantalite reference materials, 

respectively, to avoid laser-induced matrix-dependent fractionation. In one sample, xenotime 

genetically associated with zircon was also dated. Two ages were obtained for type I and three ages 

for type III pegmatites. Three of these 5 ages range from 296.2 ± 2.5 to 301.9 ± 3.8 Ma and are 

allocated to the primary magmatic stage of crystallization and therefore to the emplacement event. 

Two younger ages (290.5 ± 2.5 and 292.9 ± 2.9 Ma) obtained on secondary zircon and xenotime, 

respectively, are interpreted as late post-solidus hydrothermal remobilization. There is no age 

difference between type I and type III pegmatites. The mean 299 Ma primary magmatic age allows 

the main late Carboniferous deformation event to be dated and is also synchronous with other 

peraluminous and calc-alkaline granites in the Pyrenees. However, the youngest ages around 292 

Ma imply that tectonics was still active in Early Permian times in the Cap de Creus area. 

 

 

Introduction 

 

The Cap de Creus peninsula (NE Spain) in the easternmost end of the Pyrenean Axial Zone is a 

remarkable center of interest for geologists because of its well-exposed outcrops that reveal a 

complex tectonic, metamorphic and magmatic history. Several episodes of deformation and regional 

metamorphism are accompanied by calc-alkaline and peraluminous magmatism and affected a late 

Proterozoic series of metasediments and metavolcanics during the Variscan orogeny. An important 

group of mineralized granitic pegmatites is associated with these tectonic events. 

 The study of granitic pegmatites in Europe is gaining interest because these highly 

fractionated rocks are important sources of industrial minerals and strategic metals such as Li and 

the high field strength elements Nb-Ta and Sn (Linnen et al. 2012). In Europe rare-element granitic 
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pegmatites are abundant in the Variscan terrains (French Massif Central, Iberian Massif, 

Moldanubian domains of Czech Republic, Slovakia and Germany). The Cap de Creus area is one of 

these fields. 

 Studies on the geology of Cap de Creus essentially dealt with structural aspects and tectonic 

interpretations of the Variscan orogeny (Carreras 1975; Carreras and Druguet 1994; Druguet and 

Hutton 1998; Carreras 2001; Druguet 2001; Fusseis et al. 2006; Carreras and Druguet 2013) and the 

petrology of the peraluminous pegmatites (Corbella and Melgarejo 1993; Alfonso et al. 1995, 2003; 

Alfonso and Melgarejo 2008). Apart from the recent study by Druguet et al. (2014) that dated a 

granodiorite and a quartz diorite intrusion, geochronology of the Variscan in Cap de Creus was only 

indirectly inferred from other studies in the Eastern Pyrenees (e.g., Aguilar et al. 2014). 

 The peraluminous pegmatite swarm that crops out in the Cap de Creus area consists of 

different types of pegmatites, ranging from type I (K-feldspar pegmatites, least evolved) to type IV 

(albite pegmatites, most evolved), distributed along zones of increasing intensity of the deformation 

and metamorphic grade. Consequently, dating the Cap de Creus pegmatites could better frame the 

geological history of the Variscan orogeny in the Pyrenees and particularly could help to place a 

timeline on the succession of tectonic events. The pegmatites contain U-bearing accessory minerals 

such as zircon, xenotime and columbite-group minerals (CGM). The aim of our study is to date 

these minerals in order to constrain the pegmatite emplacement. Age correlations with published 

geochronological data on peraluminous granite and migmatitic rocks from the area may also help to 

establish a model for the anatectic versus granitic origin of the mineralized pegmatites during the 

Variscan orogeny. 

 Columbite-tantalite is well suited for U-Pb age determination of pegmatite emplacement. It 

generally contains around 500 ppm U, but values up to 10,000 ppm are not uncommon, and it 

accommodates low common Pb. Solid state U-Pb diffusion is also thought to be minor in CGM 

(Romer and Wright 1992). Columbite-tantalite is a common primary magmatic mineral phase in 
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pegmatites, and its refractory nature makes it resistant to hydrothermal alteration and weathering. 

Large crystals several hundred microns in size allow detailed characterization of their internal 

textural features, thus permitting precise location of the ablation laser spots with respect to possible 

late precipitation phases, metamict zones and U-bearing inclusions. Columbite-tantalite is a good 

alternative to date pegmatites where zircon is too U-rich and highly metamict. The present study 

gives ages from both zircon and CGM associated together in the same samples, using a thorough 

sorting out of metamict grains.  

 

 

Geological setting 

 

General features 

 

The study area is located in the Northern Cap de Creus peninsula (Fig. 1). It consists of 

metasedimentary rocks (metagreywackes, metapelites, rare quartzites) with minor metavolcanic 

intercalations. The protolith of this sequence is referred to as the Cadaqués series (Navidad and 

Carreras 1995) and is considered Neoproterozoic in age. During the Variscan, the rocks of the 

Cadaqués series were affected by polyphase deformation with three main deformation episodes 

(D1, D2, D3; Druguet 2001), the two first ones occurred during the prograde LP-HT regional 

metamorphism and the last one during late shearing events under retrograde conditions. 

Metasediments show a gradient from the chlorite-muscovite zone in the south (out of the map in 

Fig. 1) to the sillimanite-K feldspar zone in the north. Locally, migmatites were formed in the 

sillimanite-K feldspar zone (Druguet et al. 1995). High to medium grade schists in the northern part 

of the area are extensively intruded by pegmatite (Fig. 1; Carreras and Druguet 1994; Bons et al. 

2004). 
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 The oldest deformation in the area (D1) led to the development of a first continuous and 

penetrative N-S trending bedding-parallel schistosity (Sl) in the metasediments prior to the 

metamorphic climax. Later intense and inhomogeneous D2 deformation led to folding and shearing 

of S1 with upright or steeply inclined axial surfaces which trend approximately NE-SW in less 

deformed areas and E-W in more deformed areas. Parallel with the increase of metamorphic grade, 

the intensity of the D2 event increases from south to north, where a 200 m thick E–W trending zone 

of high strain is observed and S1 is transposed into a steeply dipping composite S1/S2 foliation with 

a few relics of tight to isoclinal D2 folds (Druguet and Carreras 2006). L2 lineations are generally 

steeply plunging towards the NW. D2 structures formed around peak metamorphic conditions, as 

shown by the presence of synkinematic sillimanite and by partial melting of metasediments. A third 

episode of deformation of unknown age occurred under retrograde (greenschist facies) metamorphic 

conditions and was characterized by strain localization that gave rise to a network of D3 shear 

bands with predominantly reverse-dextral movement. These form the classical Cap de Creus shear 

zones and mylonites which overprint and therefore postdate all the preexisting structures (Carreras 

2001). Unambiguous field relationships show that pegmatites intruded after D1 and before D3, that 

is more or less contemporaneously with D2 (Fig. 2). 

 

Published geochronological data of Cap de Creus 

 

The Cadaqués metasedimentary series, although not directly dated, is inferred to be older than the 

El Port de la Selva gneiss (located about 5 km west of the Punta dels Farallons, Fig. 1b), whose 

igneous precursor intruded the metasedimentary series and was dated at 553.0 ± 4.4 Ma (Castiñeiras 

et al. 2008). Zircons from the Tudela migmatite (northern part of the Cap de Creus, Fig. 1b) yield 

inherited ages from the Precambrian protolith, with two main age clusters at c. 2.9-2.2 Ga and c. 

730-542 Ma (Druguet et al. 2014). However, based on field structural relationships, Druguet et al. 
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(2014) interpret that the migmatization event was synchronous with the emplacement of a 

syntectonic quartz diorite from the Tudela migmatitic complex dated at 298.8 ± 3.8 Ma by these 

authors. The western and southern granitoid stocks, known as Rodes and Roses stocks respectively 

(Fig. 1a), consist of granodiorite and tonalite and were emplaced within lower-grade rocks at 290.8 

± 2.9 Ma (Druguet et al. 2014). For further geochronological data in the Pyrenees, the reader can 

refer to Laumonier et al. (2004), Cocherie et al. (2005), Casas et al. (2010), Liesa et al. (2011), 

Aguilar et al. (2013), Denele et al. (2014) and Casas et al. (2015). 

 

Pegmatites 

 

Four types of peraluminous, lithium-cesium-tantalum-family pegmatites (after the classification of 

Černỳ and Ercit 2005) were distinguished among the ~400 bodies that crop out in Cap de Creus. 

This distinction was made on mineralogical and textural criteria (Corbella and Melgarejo 1993). 

Type I pegmatites are barren with graphic textures and a relatively simple concentric structure 

roughly consisting of border, first intermediate and second intermediate zones; in addition to biotite 

and muscovite, peraluminous minerals as cordierite, sillimanite, andalusite, almandine and schorl 

are very common in all these zones. Xenotime is associated with zircon in this pegmatite type. Type 

II pegmatites are transitional with the most evolved pegmatites; the main differences with type I are 

the occurrence of a well developed quartz core and the existence of late albite units. In addition to 

the above mentioned peraluminous minerals, these pegmatites may contain chrysoberyl, gahnite, 

green beryl, Ca-Fe-Mn-Mg-phosphates and some Be- and Al-phosphates. Nb-rich minerals of the 

columbite group are scarce in all units as well as wolframite, Sc-rich rutile and uraninite. The 

internal structure of type III pegmatites is more complex with large quartz cores and well developed 

albite and quartz-muscovite replacement units. Biotite is absent and schorl is scarce; garnet is 

enriched in the spessartine component. White beryl, montebrasite and Li-Fe-phosphates are 
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common in the second intermediate unit and in the albite or quartz-muscovite replacement veins, as 

well as Ta-rich minerals of the columbite group, cassiterite and uraninite. Type IV pegmatites are 

the most evolved in the field. In addition to the above mentioned units, they may also contain late 

Al-phosphate veins. Beryl or chrysoberyl, montebrasite and Li-Mn phosphates are common. Ore 

minerals consist of Ta-Mn rich members of the columbite group, as well as cassiterite, tapiolite and 

aeschynite. Following the classical pegmatite classification (Černỳ and Ercit 2005), type II 

pegmatites belong to the beryl-columbite subtype, type III belong to the beryl-columbite-phosphate 

subtype, and type IV belong to the albite subtype. Type I pegmatites are nearly sterile and may be 

considered as pegmatitic granite rather than pegmatite sensu stricto. 

 The four types of pegmatites occupy different zones parallel to the tectono-metamorphic 

zoning (Fig.1): types I and II occur in high-grade and high-D2 strain rocks of the migmatite and 

sillimanite-muscovite zones that lie along the northern coast, whereas types III and IV occur in 

medium-grade metamorphic rocks of the cordierite-andalusite zone to the south. The size and 

frequency of the pegmatite bodies decrease from type I to type IV (Corbella and Melgarejo 1993): 

along the northern coast, large stocks of pegmatitic granite may reach a length of several hundreds 

of meters and a width of more than 50 m, whereas 2 km further to the southwest, only a few bodies 

outcrop with a maximum length of 30 m. 

 In general, pegmatite dykes follow the main S2 foliation, and are locally affected by late 

shearing. Some dykes that were emplaced oblique to S2 foliation are affected by ductile folding. 

 

 

Sampling and analytical procedure 

 

Rock samples were collected on six dykes representative of type I, III and IV pegmatites (Fig. 1), 

but only two locations (L3 and L7) were relevant for dating. Polished sections and thin sections 
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were prepared for mineralogical description and investigation of the mineral textures to determine 

the primary magmatic versus secondary nature of the dated minerals. In samples where zircon 

suitable for dating was observed, a larger sample volume was crushed and zircon was separated 

using a standard separation procedure: 1) gravity separation using either a shaking table or a gold 

pan; 2) heavy liquid separation using tetrabromo-ethane; 3) magnetic separation to eliminate the 

metamict zircon grains; 4) heavy liquid separation using metyleniodide. Thirty to 40 separated 

grains per sample were mounted in lines in epoxy resin blocks that were subsequently polished. In 

L7 sample, xenotime occurs in direct contact with zircon and was therefore dated together with it. 

Because of their coarse-grained habit, CGM crystals were directly dated on the polished sections. 

 Back-scattered electrons (BSE) images were taken for each zircon and CGM grain, and 

crack- and inclusion-free domains were selected for the laser spots. In sample L7 where zircon 

shows complex textures, additional cathodoluminescence (CL) images were taken in order to 

highlight the metamict parts of the altered domains.  

 Quantitative chemical analyses were carried out with a Cameca SX50 electron probe micro-

analyzer (EPMA) using a 15 kV accelerating voltage, 20 nA beam current, 1 μm beam diameter, 10 

s and 5 s acquisition times on peak and background respectively, natural and synthetic calibrant 

materials (Ta, Nb, and W metals, cassiterite, zircon, hematite, wollastonite, MnTiO3, ScPO4, UO2, 

ThO2, Pb glass), and ZAF correction procedures. 

 Uranium-lead dating of CGM, xenotime and zircon was carried out in-situ at the Goethe 

University of Frankfurt (GUF) using a slightly modified method as the one previously described in 

Gerdes and Zeh (2006, 2009) and Zeh and Gerdes (2012). Thermo-Scientific Element II sector field 

ICP-MS was coupled to a Resolution M-50 (Resonetics) 193 nm ArF Excimer laser (CompexPro 

102, Coherent) equipped with two-volume ablation cell (Laurin Technic, Australia). Samples were 

ablated in a helium atmosphere (0.6 l/min) and mixed in the ablation funnel with 0.7 l/min argon 

and 0.02 l/min nitrogen. Signal strength at the ICP-MS was tuned for maximum sensitivity while 
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keeping oxide formation below 1%. The laser was fired with 5.5 Hz at a fluence of about 2-3 J cm-2. 

This yielded with the above configuration at a spot size of 30 µm and depth penetration of 0.6 µm s-

1 a sensitivity of 11000-13000 cps/µg g-1 for 238U. Raw data were corrected offline for background 

signal, common Pb, laser induced elemental fractionation, instrumental mass discrimination, and 

time-dependent elemental fractionation of Pb/U using an in-house MS Excel© spreadsheet program 

(Gerdes and Zeh 2006, 2009).  

 Laser-induced elemental fractionation and instrumental mass discrimination were corrected 

by normalization to the reference zircon GJ-1 (0.0982 ± 0.0003; ID-TIMS GUF value). Repeated 

analyses of the reference zircon Plesovice and 91500 (Slama et al. 2008; Wiedenbeck et al. 1995) 

during the same analytical session yielded an accuracy of better 1% and a reproducibility of <2% (2 

SD). The same applies to monazite run as secondary standards normalized to GJ-1 using the same 

analytical setting and tune parameter except of the spot size: 15 µm relative to 33 µm for GJ-1. 

Repeated analyses (n =9) of the reference monazite Manangotry and Moacir (Horstwood et al. 

2003; Gonçalves et al. 2016) yielded an accuracy of around ~1% and reproducibility of 2-3% (2 

SD). This is in line with previous studies at GUF that have shown that LA-SF-ICP-MS with non-

matrix matched standardization can yield precise and accurate U–Pb ages for different phosphate 

minerals (e.g., Meyer et al. 2006; Millonig et al. 2013 and references therein). Thus no correction 

for phosphate matrix have been applied for xenotime analysis. However, in case of CGM the Coltan 

139 (Gäbler et al. 2011) was used as matrix matched standard. More details on the operating 

conditions and instrument settings are given in Gerdes and Zeh (2006, 2009) and in data tables 1 

and 2. All uncertainties are reported at the 2sigma level. 

 One zircon age was duplicated at the Laboratoire Magmas et Volcans of Clermont-Ferrand, 

equipped with an Excimer 193 nm laser coupled to a quadrupole Agilent 7500 ICP-MS, using 

zircon GJ-1 as reference material (analytical techniques described in Paquette et al. 2014). 

However, the Thermo-Scientific Element II sector field ICP-MS in Frankfurt is more adapted to 
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Hercynian ages since it has a better precision on the U/Pb ratios and its higher sensitivity allows 

better correction for common Pb. For CGM ages, an external manganotantalite crystal (Coltan 139; 

Gäbler et al. 2011) from Madagascar was used to correct for matrix-dependent U/Pb elementary 

fractionation. This reference was used to date CGM from African pegmatites with the goal to 

fingerprint illegally mined coltan (Melcher et al. 2008, 2015). The Coltan 139 reference is a large 

manganotantalite crystal that is isotopically and chemically homogeneous at the micrometer scale, 

has a U concentration of about 1600 ppm and low common Pb (Gäbler et al. 2011). It displays an 

intercept age of 505.6 ± 3.4 Ma obtained by LA-ICP-MS and verified by ID-TIMS. Where 

necessary, the various textural domains of zircon and CGM were dated, and most crystals were 

measured in both core and rim for comparison. Concordia diagrams were plotted using Isoplot 3.7 

(Ludwig 2008). 

 

 

Results 

 

Dated pegmatites and minerals 

 

Six pegmatite dykes (Fig. 1) were studied but only two of them displayed CGM, xenotime and/or 

zircon crystals that were suitable for dating. Textural and chemical features of CGM and zircon 

were studied in all pegmatites where they were observed. In type I pegmatites L1 and L5, no CGM 

was found and most zircon crystals were too small (c. 10 μm) to be dated. In type II pegmatite L2, 

zircon crystals were too small and altered to be dated, but CGM displayed a few prismatic crystals 

that could be dated in Clermont-Ferrand. However, standardization on zircon lead us to exclude 

those CGM ages. In type IV pegmatite L4, the zircon crystals were larger (c. 100 μm), but they 

were highly metamict and rich in uraninite inclusions, and displayed uninterpretable ages due to 
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loss of radiogenic Pb on one hand and entry of common Pb on the other. Although CGM are also 

common in type IV pegmatites, they are generally associated with the aplitic albite units and their 

crystals were too fine-grained to be dated. The two dated pegmatites belong to type I (L7) and type 

III (L3). Their geographic coordinates and description are given in Table 3. Pegmatite L3 (type III) 

is a well-zoned pegmatite located in the cordierite-andalusite metamorphic zone. The dyke is 100 m 

long and 10 m wide. Pegmatite L7 (type I) is a large (200 × 20 m) homogeneous dyke emplaced in 

the sillimanite-K-feldspar zone. 

 

Textural and chemical features of CGM and zircon 

 

In type II to type IV pegmatites, columbite-group minerals occur as millimeter to centimeter-sized 

tabular crystals included in major mineral constituents like mica and albite (Fig. 3a) and sometimes 

arranged in “star shape” (Fig. 3d-e). Backscattered electron images reveal complex chemical zoning 

including simple progressive zoning, oscillatory zoning and patchy zoning. Bizonal crystals with 

broad bands showing sharp chemical contrasts between a dark Nb-rich core and a bright thin Ta-rich 

rim are common (Fig. 3d-e). Other Nb-Ta-minerals associated with CGM include wodginite, 

cassiterite and microlite. Zircon and CGM may be found intimately associated, either as intergrowth 

(Fig. 3b) or as inclusions (Fig. 3c). Zircon is mostly found as fine-grained (<1 mm) euhedral 

crystals disseminated in major silicate minerals. It can be slightly zoned with concentric bands (Fig. 

3h), but radiation damage generally masks this zoning (Fig. 3i). Metamict and inclusion-rich 

crystals such as the ones shown in Fig. 3i-j were discarded for age dating. Zircons from the type I 

pegmatite L7 are coarser-grained and present complex oscillatory zoning with zones of porous 

inclusion-rich zircon (Fig. 3f-g); these two types of zircon zones are later distinguished as primary 

versus secondary based on their geochemistry. Xenotime occurs in direct contact with pegmatite L7 

zircons. It shows resorbed textures and systematically occurs near zircon cores, which evokes 
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exsolution during dissolution-reprecipitation of primary zircon. 

 CGM chemistry includes minor concentrations of TiO2 (<1.7 wt%), WO3 (<1.4 wt%), SnO2 

(<1 wt%), ZrO2 (<0.5 wt%), UO2 (<0.4 wt%) and Sc2O3 (<0.2 wt%). EPMA analyses show a large 

range of compositions (Table 4) that plot in the ferrocolumbite to ferrotantalite parts of the CGM 

quadrilateral (Fig. 4). Core to rim variations illustrate the common Ta over Nb enrichment that is 

generally observed during CGM fractionation. Nb-Ta fractionation is also visible from type II to 

type IV CGM, and can be illustrated in a Rayleigh-type Nb/Ta vs. Ta2O5 fractionation diagram (Fig. 

5). Fe-Mn fractionation leads to a general Fe enrichment over Mn. 

 Zircon chemistry reveals high concentrations of UO2 (up to 1.6 wt%), and HfO2 

concentrations ranging from 2.1 to 6.1 wt%, which slightly increase from type I to type III and IV 

pegmatites (Table 5). Figure 5 illustrates this Zr/Hf fractionation trend. In type I zircon from the L7 

pegmatite (Fig. 3f-g), three types of zircon zones were distinguished based on backscattered images 

and show distinct chemistry (Table 5; see Fig. 6 for outline of zircon zones). The highly porous and 

inclusion-rich cores have negligible UO2 and Y2O3 concentrations, whereas the oscillatory zones 

(zr1) have low UO2 and Y2O3 concentrations (0.6 and 0.1 wt% in average). On the Zr/Hf 

fractionation trend (Fig. 5), these two zircon zones plot on a continuous trend which can be 

interpreted as magmatic fractionation. These zircon zones are therefore interpreted as primary. 

Alternatively, the patchy zones (zr2), which crosscut the oscillatory zones, have high UO2 and Y2O3 

concentrations (up to 3 and 1.9 wt% respectively) and low totals due to metamictization. They also 

display high levels of impurities (P, Ca and Fe). The P+Y component is negatively correlated with 

Zr+Hf+Si (apfu); its incorporation is explained by the vector P5+ + Y3+ = Si4+ + Zr4+, which reflects 

the solid solution between zircon and xenotime (Fig. 6). This third zircon type plots outside the 

Zr/Hf fractionation trend and is therefore interpreted as secondary. Few EPMA analyses of 

xenotime revealed UO2 and ThO2 concentrations of 4 and 0.1 wt% in average, respectively. 
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U-Pb dating 

 

Full age data is available in Table 1 (pegmatite L3) and Table 2 (pegmatite L7). Table 6 summarizes 

the number of grains that were analyzed, the total number of analyses and the number of analyses 

that were used to calculate Concordia ages. Concordia ages are given except when they are too few, 

in this case intercept ages are given.  

 For pegmatite L3 (type III), U-Pb analyses of zircon and CGM reported in Concordia 

diagrams (Fig. 7) spread over a large range of isotopic ratios along discordant lines, indicating 

extensive lead loss. For CGM, 6 points plot on the Concordia line and give an age of 301.9 ± 3.8 

Ma (MSWDC+E = 1.3 with C+E = concordance + equivalence). No distinction can be made between 

the two main BSE zones (see laser spot locations in Fig. 3e). For zircon, only one age plots on the 

Concordia line but the 26 discordant ages define an upper intercept at 298.7 ± 5.7 Ma (MSWD = 

1.5). The BSE images of the analyzed zircon grains (Fig. 3j and Fig. 8) reveal highly porous and 

inclusion-rich crystals, supporting lead loss as the cause of the dispersion on the Discordia line. The 

duplicate analyses performed in Clermont-Ferrand (inset of Fig. 7b), indicate a combination of 

discordance and common Pb contribution. The eight remaining concordant analyses display a 

Concordia Age of 297.3 ± 2.1 Ma (MSWDC+E = 1.6, n=8). A second, smaller group of concordant 

analyses displays a younger age (ca. 275 Ma). 

 In pegmatite L7 (type I), oscillatory-zoned (primary, zr1 in Fig. 6) and porous (secondary, 

zr2 in Fig. 6) zones of zircon were thoroughly distinguished during laser spot location, and the age 

results display two age groups (Fig. 9). In primary zircon (zr1), 19 of the 28 U-Pb ages plot on the 

Concordia and display an age of 296.2 ± 2.5 Ma (MSWDC+E = 1.7, n=19). For secondary zircon 

(zr2), the 36 analyses are spread over a large range of isotopic ratios and 12 of them plot on the 

Concordia line and give an age of 290.5 ± 2.5 Ma (MSWDC+E = 0.7). Eight of the 12 xenotime U-

Pb analyses plot on the Concordia and display an age of 292.9 ± 2.9 Ma (MSWDC+E = 0.76). 
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Discussion 

 

Columbite versus zircon dating 

 

In-situ U-Pb geochronology by LA-ICPMS on columbite-group minerals has been developed in the 

2000s (Smith et al. 2004) and is now widely applied for pegmatite age determination (Melcher et al. 

2008; Dewaele et al. 2011; Melleton et al. 2012; Deng et al. 2013; Melcher et al. 2015). However, 

most geochronological studies have used zircon standardization, arguing that matrix-dependent 

effects are low (Melcher et al. 2008). Some of these geochronological results are Precambrian in 

age, and are therefore less sensitive to U/Pb fractionation. Che et al. (2015a, b) recently evaluated 

the effect of matrix-dependent fractionation by comparing U-Pb ages obtained on CGM using two 

different references (Zircon 91500 and Coltan 139), and noticed a significant matrix effect leading 

to approximately 7-15% younger ages where zircon references were used compared to the CGM 

reference. In our study, CGM ages were obtained using zircon GJ-1 primary reference and Coltan 

139 was only used as a secondary control reference, therefore the Concordia age of 301.9 ± 3.8 Ma 

may be slightly shifted on the Concordia, which may explain the slight difference between that age 

and the zircon Concordia age of 297.3 ± 2.1 Ma obtained in the same sample. However, the two 

ages are coeval within error, and the reliability of the CGM age is evidenced by the fact that Coltan 

139 yields a correct age when normalized to GJ-1 zircon in the same analytical series (Table 1). 

 

Dating pegmatite emplacement 

 

The primary magmatic origin of CGM and zircon dated at c. 299 Ma is evidenced by several 
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indicators. Textural relationships between zircon, CGM and major silicate minerals (feldspars, 

muscovite or garnet) indicate that zircon and CGM are cogenetic and crystallized at the pegmatitic 

stage. The patchy zones in L7 zircon (Fig. 3f-g and 6) are an exception; they are interpreted as 

secondary post-solidus phases. In CGM, the sharp chemical contrast between Nb-rich cores and Ta-

rich rims is not reflected by a detectable change in their ages. In pegmatite L7 (type I) zircon, the 

porous and inclusion-rich cores have similar chemistry compared to primary magmatic oscillatory-

zoned zircon (Fig. 6), which reflects their pegmatitic origin instead of being inherited cores. 

Generally, the high Zr (and HFSE in general) solubilities in F-Li-P-rich pegmatitic melts (Linnen 

1998) lower the chances to find inherited zircon cores in pegmatites. Consequently, it can be stated 

with high confidence that the obtained zircon and CGM ages dated at c. 299 Ma are representative 

of the pegmatite emplacement. The parallel trends followed by the Zr/Hf and Nb/Ta Rayleigh 

fractionation curves (Fig. 5) are also evidences that CGM and zircon both followed magmatic 

fractionation trends and therefore crystallized together at the magmatic stage (Hulsbosch et al. 

2014). 

 The different zones of pegmatite L7 (type I) zircon reflect several crystallization stages. 

Oscillatory-zoned zircon may have crystallized at magmatic stages, whereas the patchy zones, 

which crosscut the oscillatory zones (see Fig. 3f), could represent a secondary either magmatic or 

hydrothermal stage of crystallization. The highly porous nature of patchy zircon zones suggests a 

replacement texture, whereas its elevated U content indicates that it is strongly metamict. Such 

patchy textures could also be the result of the metamictization and alteration of the most U-rich 

zircon bands in the oscillatory zoning, as previously shown by Paquette et al. (2003), which would 

explain that the patchy zones follow the growth banding of magmatic zircon. In the Zr/Hf 

fractionation trend (Fig. 5), patchy zircon plots outside the Rayleigh trend at high Zr/Hf ratios, 

suggesting a non-magmatic origin, whereas all other zircon zones plot on a continuous Rayleigh 

curve typical of magmatic fractionation. The cores are also highly porous and inclusion-rich, and 
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may represent primary zircon which has undergone dissolution-reprecipitation processes with 

exsolution of its U and Y contents during the secondary event. The high Y+P concentrations of 

patchy zircon, negatively correlated with Zr+Hf+Si, suggest an important xenotime component, 

therefore implying that patchy zircon and xenotime are co-genetic. Whereas limited amounts of Y 

were integrated in primary magmatic zircon, Y was probably added by fluids during post-solidus 

alteration, and precipitated as Y-rich secondary zircon and xenotime replacing and overgrowing 

primary zircon. An alternative explanation is that xenotime was a primary magmatic phase like 

oscillatory-zoned zircon and it was dissolved and recrystallized during the hydrothermal event, with 

some Y being remobilized and integrated into secondary zircon. The U/Pb ratio of xenotime 

therefore dates the hydrothermal event. The slight age difference between primary (296.2 ± 2.5 Ma) 

and secondary (290.5 ± 2.5 Ma) zircon and its associated xenotime (292.9 ± 2.9 Ma) suggests that 

the secondary (hydrothermal?) event took place after pegmatite emplacement. 

 

Implications for the geochronology of late Variscan tectonics 

 

The five obtained ages define two groups of statistically distinct ages that lie between 296 and 302 

Ma for the first, and 290 and 293 Ma for the second (Fig. 11). Despite their small overlap when 2-

sigma error bars are considered, the two age groups remain distinct. These results have important 

implications for the geochronology of late Variscan tectonic events in the Cap de Creus. In a recent 

paper, Druguet et al. (2014) obtained similar results on syntectonic quartz diorite from the Tudela 

migmatitic complex, dated at 298.8 ± 3.8 Ma, and granodiorite from the Roses pluton, dated at 

290.8 ± 2.9 Ma (U-Pb zircon geochronology using SHRIMP). They concluded that the D3 ductile 

deformation extended into the Lower Permian as a transitional stage between the Variscan and 

Cimmerian cycles. Taking their age results and error bars into account, mean values of 298.9 ± 6 

Ma and 292.4 ± 4 Ma are calculated for the two age groups (Fig. 11). The 298.9 Ma age 
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corresponds to the emplacement and primary crystallization of the pegmatitic melts, regardless of 

type I or III, and is coeval with migmatization. The 292.4 Ma age correlates with zircon 

replacement and xenotime crystallization as a consequence of late hydrothermal reactions that 

affected the pegmatites after their crystallization. However, no other evidence of this late 

hydrothermal event was observed in our study, and its correlation with the granodiorite 

emplacement remains very hypothetic. 

 The pegmatites were emplaced near the peak of metamorphism, therefore the pegmatite age 

is contemporaneous or slightly younger than this metamorphic peak. Type I to type III pegmatites, 

were emplaced in the same time span, around 299 Ma. The high standard deviations on in-situ U-Pb 

geochronological methods do not permit the different pegmatitic pulses to be distinguished, 

although field evidences (early, syn and late D2 emplacement) support a multiple-emplacement 

history for the pegmatites. Alfonso et al. (1995) report columbite-tantalite crystals showing primary, 

pre-deformation oscillatory zoning broken during the deformation and subsequently overgrown by a 

“post-tectonic” Ta-rich rim. Field structural data indicate that the pegmatites are syn-tectonic with 

D2 and are affected by (and therefore predate) D3. The idea that this late deformation event could 

have occurred after the Carboniferous-Permian limit, concomitant with the hydrothermal event at 

the origin of zircon and xenotime recrystallization dated at c. 292 Ma, has to be further investigated. 

 Although the relationship between D2 and D3 deformations has been extensively 

investigated (Druguet 2001; Carreras et al. 2004), the lower geochronological limit for the Variscan 

tectonic event remains unclear. After Laumonier et al. (2015), this orogeny extended from 

Namurian to Stephanian times (c. 325-300 Ma) in the Pyrenees. However, the latest published data 

(Druguet et al. 2014) and our geochronological results indicate that the upper limit of the Variscan 

orogeny in Cap de Creus extended into the Early Permian. In this area, the granitoids and magmatic 

rocks are clearly syntectonic (syn- to late-D2 and pre-D3), and dated at c. 299 and 291 Ma (Late 

Carboniferous and Early Permian) by Druguet et al. (2014). Druguet et al. (2014) dated the 
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migmatization event at c. 299 Ma based on field structural relationships that indicate that the dated 

quartz dioritic magmas are synchronous with migmatites, in agreement with field relationships. 

Although the migmatites themselves only present inherited zircons with Precambrian ages (542 Ma 

at the earliest), strong field evidences in Cap de Creus and elsewhere in the Pyrenees indicate that 

they are Variscan. In the Pyrenees, a few granites were dated between 292 and 300 Ma (e.g., 298.5 

± 1.8 Ma for a syn-D2 leucogranite from the Albera massif, using Th-U-Pb geochronology on 

monazite by electron probe microanalysis, Cocherie 2008 in Laumonier et al. 2015). Our 

geochronological results, yielding two distinct age groups at c. 299 and 292 Ma, suggest that the 

last stages of the magmatic events in the Variscan Pyrenees could have extended into the Early 

Permian. 

 

The anatectic vs. granitic origin of pegmatites 

 

The anatectic (melting of country rock) versus granitic (extreme fractionation of granitic melt) 

origin of pegmatites is still strongly debated (see London 2008 for a synthetic view of this topic), 

especially in cases where no potential parental granite is observed and the pegmatites are associated 

with migmatites, which is the case in Cap de Creus. The distribution of the pegmatites and their 

fractionation trends indicate an origin by differentiation of a granitic melt originating from the north 

of the peninsula, whereas their spatial association with migmatites has been used to argue for an 

anatectic origin. The common absence of visible granite in the vicinity of granitic pegmatites is 

generally explained by the extreme mobility and the low solidus temperatures of the highly-fluxed 

melts that can travel through considerable distances before the onset of dyke crystallization (Baker 

et al. 1998). In general, pegmatites showing a zoned distribution with increasing fractionation 

degrees and mineralogical complexity are classically interpreted as being genetically related to a 

single melt source which evolved with fractional crystallization (London 2008). Arguments for a 
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granitic origin of the Cap de Creus pegmatites are 1) their zonal distribution with sterile bodies 

located near the zone of maximum deformation in the high metamorphic zones, and fractionation 

degree increasing when moving toward the south down the metamorphic gradients, and 2) 

progressive geochemical trends in feldspar, micas (Alfonso et al. 2003), and in Nb-Ta oxides 

(Alfonso et al. 1995) from type I to type IV pegmatites. The source granite could have been 

emplaced during the main deformation event in the migmatized area, and would now be hidden 

further to the north of the peninsula, or translated to the southeast by late dextral shear zones.  

 Arguments for the anatectic origin are provided by stable isotope constraints (Damm et al. 

1992). The authors conclude that the pegmatites are derived from anatexis of the metapelitic rocks 

at shallow crustal levels, but their study only takes into consideration the type I pegmatites near the 

lighthouse of Cap de Creus. In the Albera massif about 50 km northwest of the Cap de Creus 

peninsula, the peraluminous granites were interpreted as anatectic by Autran et al. (1970). Several 

hundred pegmatite dykes occur concentrically and zonally around muscovite-biotite granite stocks, 

close to their boundaries with the Precambrian orthogneisses and the Paleozoic series, therefore 

Autran et al. (1970) suggested an anatectic origin for the pegmatites as well. However, Malló et al. 

(1995) argue for an origin by magmatic fractionation of the Albera pegmatites based on the 

geochemical trends of the accessory minerals (phosphates and Nb-Ta-oxides). Malló et al. (1995) 

specify that the pegmatite source would be the anatectic muscovite-biotite leucogranites. The 

pegmatites in the Albera massif and in the Cap de Creus peninsula are comparable in their structure, 

mineralogy, geochemistry and regional distribution, which suggests a common origin.  

 The high fractionation degrees and highly mineralized nature of type III and IV pegmatites 

suggest an origin by extreme magmatic fractionation rather than in situ partial melting. Arguments 

are provided by the experimental work of London and Evensen (2002) and Evensen and London 

(2002) that shows taking the example of Be, that beryl saturation in pegmatites only occurs after 

extended crystal fractionation of large magma batches (>95% crystallization), themselves 
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originating from low partial melting of a fertile sedimentary source. Moreover, the continuous 

fractionation trends displayed by zircon and CGM indicate a genetic affiliation between all Cap de 

Creus pegmatites. However, this does not preclude that type I pegmatites, which are unmineralized 

and would be better named as pegmatitic granite, could be anatectic in origin. The large pockets of 

that pegmatitic granite observed in the north of the peninsula could have resulted from the partial 

melting of high-grade schists concomitant to the development of the migmatitic complexes. Their 

differentiation could have produced evolved pegmatitic melts that migrated down the metamorphic 

gradient and crystallized up to 3 km away from their source (Fig. 1). However, the presence of 

peraluminous granites associated with pegmatites in the Albera massif, also dated around 299 Ma 

(298.5 ± 1.8 Ma for a leucogranite, Cocherie 2008 in Laumonier et al. 2015), suggests that a 

peraluminous granite could also be the source of the Cap de Creus pegmatites. Therefore, to 

confirm one or the other model, geochemical and isotopic signatures of the migmatites, unmelted 

sedimentary units, granitic intrusives and pegmatites are necessary. 3D modeling of the pegmatite 

batch distribution in relation to the structural context of emplacement may also help quantifying the 

magma volumes implied in anatexy versus granitic fractionation (Demartis et al. 2011; Deveaud et 

al. 2013). 

 

 

Conclusion 

 

The U-Pb dating of magmatic zircon and columbite-group minerals in the Cap de Creus reveals that 

at least pegmatite types I and III were emplaced at c. 299 Ma. Although field relations clearly show 

that the various pegmatite types are not all simultaneously emplaced, our data demonstrate that they 

were formed and emplaced during the latest stages of the Variscan orogeny, more or less 

synchronously with the D2 deformation event and the associated thermal peak. Secondary zircon 
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and xenotime that probably formed during a late post-solidus hydrothermal event, were dated at c. 

292 Ma. This age correlates with the intrusion of late post-D2 calc-alkaline granites. This late 

hydrothermal event could be related to the D3 localized deformation event that is clearly post-

magmatic, which would imply that the Variscan deformation was still active during the Early 

Permian. However, the age of the D3 event is to date unconstrained, and correlating the 

hydrothermal event with the D3 deformation event on one side, and the granodiorite emplacement 

on the other side, remains very hypothetic because of the important overlap (considering 

uncertainties) between the different ages.  

 Our results are in agreement with recent geochronological results from granitic rocks in the 

Variscan Eastern Pyrenees, which show that the peak of magmatic activity is well dated around 306 

Ma. The pegmatitic melts were also generated simultaneously with the partial melting of the 

metasediments in high-grade metamorphic zones, but the extremely fractionated character of the 

most evolved pegmatite types III and IV suggests an origin by extreme magmatic fractionation 

rather than in situ partial melting. An alternative model would be that the most evolved pegmatitic 

melts could have originated from the extreme fractionation of low volumes of anatectic melts, but 

the presence of peraluminous granites associated with pegmatites in the Albera region, also dated at 

298.5 Ma, is an evidence that peraluminous magmatism was active at that time in the area, and 

therefore suggests that a peraluminous granite could be the source of the most evolved Cap de 

Creus pegmatites.  
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Figure Captions 

 

Fig. 1 a) Geological map of the central and eastern Pyrenean Axial Zone (modified from Druguet et 

al. 2014). b) Geological map of the north Cap de Creus area, showing the distribution of the four 

pegmatite types (after Corbella and Melgarejo 2003) within the three metamorphic zones (Sil-Mu: 

sillimanite-muscovite; Sil-Kfs: sillimanite-K-feldspar; Crd-And: cordierite-andalusite; Bt: biotite; 

the chlorite-muscovite zone is further to the south, out of the map). The main shear zones of the 

mylonite belt and the sampled pegmatite localities are also shown. Labels 2a, 2b and 2c correspond 

to the locations of photographs in Fig. 2. Modified from Druguet and Carreras (2006) 

 

Fig. 2 Field photographs showing the relationships between pegmatite dykes and deformation 

phases (see location on Fig. 1). a) Pegmatitic vein crosscutting bedding/S1 and being slightly folded 

by D2. Zone of low D2 strain south of Puig de Culip. b) Syntectonic pegmatite dykes are folded by 

D2 in a zone of strong D2 strain, as shown by a penetrative composite S1/S2 fabric. North of Puig 

de Culip. c) Mylonitic foliation (S3) affecting schists and a pegmatite body at the margin of a late 

dextral zone. NW Cala Culip 

 

Fig. 3 BSE pictures showing CGM inclusions within mica in pegmatite L4 (a), the intimate and 

cogenetic association between CGM and zircon in pegmatite L2 (b) and L3 (c), the star-shape habit 

of CGM at different scales, and its bizonal chemical zoning in pegmatite L2 (d) and L3 (e), 

complex zoning in type-I zircon and its association with xenotime in pegmatite L7 (f-g), various 

zircon habits, from slightly zoned (h, pegmatite L3) to highly metamict (I, pegmatite L4) and 

inclusion-rich (j, pegmatite L5). In Fig. 3e, laser-spot locations for U-Pb dating are marked with 

circles. ms: muscovite, zrn: zircon, xtm: xenotime 
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Fig. 4 Chemical variations of CGM in the columbite quadrilateral. Arrows indicate core to rim 

variations in single samples 

 

Fig. 5 Rayleigh fractionation trends for zircon and CGM of the different pegmatite types 

 

Fig. 6 BSE picture of a zircon crystal (pegmatite L7) showing an inclusion-rich core, oscillatory-

zoned primary zircon (zr1) and patchy-zoned secondary zircon (zr2), as well as xenotime (xtm). 

The graph shows Si+Zr+Hf vs. P+Y apfu contents for the different zircon zones 

 

Fig. 7 U-Pb data in Concordia diagrams for L3 CGM and zircon. The inset of b) shows duplicate 

ages from LMV Clermont-Ferrand. Data-point error ellipses are 2σ 

 

Fig. 8 Laser spot locations for U-Pb dating in pegmatite L3 zircon. Backscattered electron images. 

The 100 µm scale bar is valid for all pictures 

 

Fig. 9 U-Pb concordia diagrams for pegmatite L7 primary zircon, secondary zircon and xenotime. 

Data-point error ellipses are 2σ 

 

Fig. 10 Laser spot locations for U-Pb dating of pegmatite L7 zircon. Backscattered electron images. 

The 100 µm scale bar is valid for all pictures 

 

Fig. 11 Statistical distribution of the 5 ages obtained in this study compared with the two ages 
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Table 1 Age data obtained by LA-ICP-MS for pegmatite L3
spot 207Pba Ub Pbb Thb 206Pbcc 206Pbd ±2s 207Pbd ±2s 207Pbd ±2s rhoe 206Pb ±2s 207Pb ±2s 207Pb ±2s conc.

(cps) (ppm) (ppm) U (%) 238U (%) 235U (%) 206Pb (%) 238U (Ma) 235U (Ma) 206Pb (Ma) (%)

A07 5690 103 4.3 0.0027 1.70 0.04343 2.2 0.30760 4.1 0.05136 3.4 0.54 274 6 272 10 257 79 107
A08 7288 113 4.4 0.0024 1.70 0.03862 2.2 0.27910 3.7 0.05241 3.0 0.60 244 5 250 8 304 68 80
A09 16152 192 7.2 0.0018 5.47 0.03468 3.4 0.24800 6.7 0.05187 5.8 0.51 220 7 225 14 280 132 79
A10 8822 134 4.9 0.0027 1.81 0.03565 2.4 0.26040 3.8 0.05297 3.0 0.62 226 5 235 8 327 68 69
A11 8375 125 4.8 0.0026 1.78 0.03868 3.3 0.27900 4.8 0.0523 3.5 0.69 245 8 250 11 299 79 82
A12 8537 175 7.1 0.0038 10.41 0.03355 3.1 0.24260 9.4 0.05245 8.9 0.33 213 6 221 19 305 203 70
A13 7118 290 11.4 0.0034 1.84 0.04149 3.1 0.29920 4.8 0.05229 3.6 0.65 262 8 266 11 298 83 88
A14 7136 246 10.2 0.0028 3.02 0.04184 2.7 0.30100 5.3 0.05218 4.6 0.50 264 7 267 13 293 106 90
A15 8785 278 11.6 0.0026 1.67 0.04065 2.0 0.29170 3.1 0.05203 2.3 0.65 257 5 260 7 287 53 90
A16 4718 254 8.0 0.0016 1.20 0.03363 2.3 0.24170 3.7 0.05211 2.9 0.61 213 5 220 7 290 67 73
A17 7419 321 11.3 0.0022 1.10 0.03736 2.5 0.26720 3.4 0.05188 2.3 0.74 236 6 240 7 280 52 84
A18 4377 159 7.4 0.0034 1.90 0.04884 2.9 0.35570 4.5 0.05282 3.4 0.64 307 9 309 12 321 78 96
A19 3640 164 6.7 0.0017 0.54 0.04415 2.9 0.31810 4.5 0.05226 3.5 0.63 278 8 280 11 297 81 94
A20 7780 369 15.0 0.0021 1.21 0.04413 2.1 0.31740 3.8 0.05216 3.2 0.56 278 6 280 9 293 72 95
A21 1461 61 2.3 0.0033 1.59 0.04022 3.9 0.29520 5.7 0.05323 4.2 0.68 254 10 263 13 339 94 75
A22 3824 152 4.1 0.0024 1.89 0.02517 2.9 0.18150 5.1 0.05230 4.2 0.57 160 5 169 8 299 96 54
A23 2982 75 2.1 0.0017 0.96 0.02970 2.4 0.21240 3.8 0.05186 2.9 0.63 189 4 196 7 279 67 68
A24 3154 63 1.6 0.0018 2.11 0.02575 3.3 0.18670 6.1 0.05258 5.1 0.55 164 5 174 10 311 117 53
A25 3481 70 1.9 0.0017 1.46 0.02851 2.8 0.20440 4.8 0.05200 3.9 0.58 181 5 189 8 285 89 63
A26 3804 79 2.8 0.0018 2.06 0.03781 2.8 0.27130 4.8 0.05205 4.0 0.57 239 7 244 11 288 91 83
A27 4715 119 4.9 0.0027 2.35 0.03798 2.4 0.27530 6.0 0.05257 5.4 0.41 240 6 247 13 310 124 77
A28 2248 102 2.9 0.0020 0.79 0.03085 2.4 0.22030 4.6 0.05179 4.0 0.52 196 5 202 9 276 91 71
A29 2157 73 2.4 0.0028 2.78 0.03158 2.4 0.23250 4.8 0.05339 4.1 0.50 200 5 212 9 345 93 58
A30 1893 96 3.1 0.0015 0.32 0.03531 2.3 0.25200 3.9 0.05177 3.1 0.60 224 5 228 8 275 70 81
A31 2608 111 5.1 0.0018 1.63 0.04864 2.2 0.35080 4.5 0.05231 3.9 0.49 306 7 305 12 299 89 102
A32 3339 98 4.7 0.0013 1.09 0.04842 2.5 0.35020 5.5 0.05245 4.9 0.45 305 7 305 15 305 112 100
A39 3711 129 6.0 0.0020 1.86 0.04851 2.7 0.34840 4.9 0.05210 4.1 0.56 305 8 304 13 290 93 105
A40 10111 231 10.7 0.0014 2.88 0.04287 2.8 0.30710 5.3 0.05196 4.5 0.52 271 7 272 13 283 103 95
A41 4745 216 9.4 0.0016 0.44 0.04710 2.4 0.33900 3.7 0.05220 2.9 0.63 297 7 296 10 294 66 101
A42 3236 142 5.8 0.0025 1.55 0.04300 2.6 0.31110 4.7 0.05248 3.9 0.56 271 7 275 11 306 88 89
A43 36706 272 19.8 0.0061 11.77 0.04034 3.1 0.29010 6.9 0.05217 6.1 0.46 255 8 259 16 293 140 87
A44 3269 129 5.6 0.0021 1.08 0.04625 2.8 0.33310 4.2 0.05225 3.1 0.68 291 8 292 11 296 70 98
A45 7872 253 9.1 0.0025 1.66 0.03398 3.1 0.24520 5.1 0.05233 4.0 0.62 215 7 223 10 300 91 72
A46 7154 209 8.6 0.0024 1.99 0.04035 2.3 0.29140 4.3 0.05238 3.7 0.53 255 6 260 10 302 84 84

A47 48837 7979 247 0.0054 1.04 0.03334 2.1 0.24040 2.8 0.05230 1.9 0.73 211 4 219 6 299 44 71
A48 162591 30792 409 0.0046 2.43 0.01285 4.3 0.09108 5.0 0.05139 2.5 0.86 82 4 89 4 258 58 32

tantalite

zircon
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spot 207Pba Ub Pbb Thb 206Pbcc 206Pbd ±2s 207Pbd ±2s 207Pbd ±2s rhoe 206Pb ±2s 207Pb ±2s 207Pb ±2s conc.
(cps) (ppm) (ppm) U (%) 238U (%) 235U (%) 206Pb (%) 238U (Ma) 235U (Ma) 206Pb (Ma) (%)

A49 36135 4707 140 0.0040 0.88 0.03197 2.6 0.22970 3.1 0.05211 1.8 0.82 203 5 210 6 290 41 70
A50 20879 3170 53 0.0034 2.57 0.01671 4.2 0.11950 5.5 0.05187 3.5 0.77 107 4 115 6 280 81 38
A51 38483 9427 113 0.0052 2.29 0.01226 3.5 0.08769 4.7 0.05186 3.1 0.74 79 3 85 4 279 72 28
A52 63246 9761 279 0.0033 0.12 0.03127 1.9 0.22520 2.1 0.05224 0.8 0.92 199 4 206 4 296 18 67
A53 55134 8151 220 0.0024 0.28 0.02938 2.6 0.20980 2.8 0.05177 1.0 0.93 187 5 193 5 275 23 68
A54 92367 12086 385 0.0023 0.05 0.03489 2.2 0.25140 2.3 0.05226 0.7 0.96 221 5 228 5 297 16 75
A55 61176 6292 249 0.0021 0.36 0.04303 2.3 0.30960 2.6 0.05218 1.1 0.91 272 6 274 6 293 25 93
A56 34405 5076 90 0.0143 3.07 0.01775 2.1 0.12870 4.3 0.05257 3.7 0.49 113 2 123 5 310 85 37
A57 59118 12247 196 0.0034 1.98 0.01691 3.3 0.11970 4.5 0.05132 3.0 0.74 108 4 115 5 255 70 42
A58 60500 7065 251 0.0032 0.10 0.03883 2.1 0.28330 2.3 0.05292 0.9 0.92 246 5 253 5 326 21 75
A59 104102 10398 440 0.0019 0.07 0.04632 1.8 0.33460 1.9 0.05239 0.6 0.94 292 5 293 5 303 15 96
A60 47786 12713 105 0.0023 0.55 0.00884 3.2 0.06342 3.4 0.05206 1.3 0.93 57 2 62 2 288 29 20
A61 42443 5581 163 0.0038 1.42 0.03121 1.9 0.22670 3.0 0.05268 2.3 0.64 198 4 207 6 315 52 63
A62 68022 10627 191 0.0078 3.19 0.01811 3.1 0.13110 4.9 0.05252 3.8 0.62 116 4 125 6 308 88 38
A63 56045 6135 227 0.0026 0.31 0.04046 2.3 0.28990 2.5 0.05196 0.9 0.93 256 6 258 6 284 21 90
A64 135655 16552 667 0.0026 0.30 0.04390 2.3 0.31910 2.4 0.05271 0.8 0.95 277 6 281 6 316 18 88
A65 82176 8328 347 0.0017 0.03 0.04573 1.8 0.32790 2.0 0.05200 0.8 0.92 288 5 288 5 285 18 101
A66 165733 14988 535 0.0017 1.07 0.03780 2.0 0.27250 2.6 0.05228 1.7 0.76 239 5 245 6 298 39 80
A73 51895 7507 184 0.0055 0.84 0.02635 2.4 0.18930 2.9 0.05209 1.6 0.84 168 4 176 5 290 36 58
A74 96940 9990 344 0.0018 0.02 0.03775 1.9 0.27030 2.0 0.05193 0.7 0.93 239 4 243 4 282 16 85
A75 107160 14471 582 0.0014 0.09 0.04401 1.8 0.31840 2.0 0.05248 0.8 0.90 278 5 281 5 306 19 91
A76 139336 15704 543 0.0025 0.30 0.03760 1.7 0.27290 1.9 0.05264 0.9 0.88 238 4 245 4 313 21 76
A77 50140 12242 220 0.0031 0.26 0.01960 2.3 0.14000 2.6 0.05182 1.1 0.91 125 3 133 3 277 25 45
A78 19184 6149 108 0.0013 0.45 0.01918 3.1 0.13580 3.3 0.05133 1.3 0.93 123 4 129 4 256 29 48

Plešovice g 17315 705 36 0.08 0.19 0.05367 1.1 0.39226 0.7 0.05301 1.1 0.79 337 4 336 2 329 26 103
Col139 g 55336 1172 90 0.03 1.00 0.08037 5.9 0.63527 5.5 0.05733 0.9 0.81 498 28 499 22 504 20 99
91500 g 8160 72 14 0.31 0.52 0.17935 1.7 1.85625 1.6 0.07507 1.2 0.62 1063 17 1066 11 1070 23 99

a Within run background-corrected mean 207Pb signal in cps (counts per second). 
b U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon.
c percentage of the common Pb on the 206Pb. b.d. = below dectection limit.

e rho is the 206Pb/238U/207Pb/235U error correlation coefficient.
f degree of concordance =  206Pb/238U age / 207Pb/206Pb age × 100

reference materials

Spot size = 26 µm; depth of crater ~15µm.  206Pb/238U error is the quadratic additions of the within run precision (2 SE) and the external reproducibility (2 SD) of the reference zircon. 207Pb/206Pb error propagation (207Pb 

d corrected for background, within-run Pb/U fractionation (in case of 206Pb/238U) and common Pb using Stacy and Kramers (1975) model Pb composition and subsequently normalised to GJ-1 (ID-TIMS value/measured 

g Accuracy and reproducibilty was checked by repeated analyses (n = 12) of reference zircon Plešovice and 91500 and columbite 139; data given as mean with 2 standard deviation uncertainties



Table 2 Age data obtained by LA-ICP-MS for pegmatite L7
grain 207Pba Ub Pbb Thb 206Pbcc 206Pbd ±2s 207Pbd ±2s 207Pbd ±2s rhoe 206Pb ±2s 207Pb ±2s 207Pb ±2s conc.

(cps) (ppm) (ppm) U (%) 238U (%) 235U (%) 206Pb (%) 238U (Ma) 235U (Ma) 206Pb (Ma) (%)

A06 98165 11350 405 0.003 1.3 0.03800 2.8 0.27300 4.4 0.05210 3.4 0.64 240 7 245 10 290 77 83
A07 65219 8008 326 0.003 0.3 0.04433 2.8 0.32110 3.2 0.05254 1.6 0.88 280 8 283 8 309 35 91
A09 91517 10643 438 0.007 1.4 0.04369 2.8 0.31610 4.4 0.05246 3.3 0.65 276 8 279 11 306 76 90
A12 28197 3693 152 0.001 0.0 0.04519 2.8 0.32380 3.2 0.05197 1.5 0.89 285 8 285 8 284 34 100
A14 64080 8252 354 0.001 0.2 0.04688 2.7 0.33680 3.0 0.05210 1.3 0.91 295 8 295 8 290 29 102
A16 119645 11421 417 0.015 3.8 0.03633 3.0 0.26130 7.4 0.05217 6.7 0.41 230 7 236 16 293 154 79
A19 210424 11150 535 0.021 1.7 0.04412 2.6 0.32030 3.7 0.05265 2.6 0.70 278 7 282 9 314 60 89
A21 65704 8780 371 0.001 0.0 0.04629 2.6 0.33570 2.8 0.05259 1.1 0.93 292 7 294 7 311 24 94
A22 97380 12616 513 0.002 0.3 0.04444 2.8 0.32040 3.1 0.05228 1.4 0.90 280 8 282 8 298 32 94
A24 63963 8751 382 0.001 0.0 0.04783 2.8 0.34600 3.2 0.05247 1.4 0.90 301 8 302 8 306 31 98
A26 38271 4929 217 0.003 0.3 0.04800 2.5 0.35260 2.9 0.05328 1.6 0.85 302 7 307 8 341 35 89
A31 139566 14962 602 0.008 2.0 0.04210 2.8 0.30550 5.1 0.05264 4.3 0.55 266 7 271 12 313 97 85
A32 59163 5536 255 0.008 2.1 0.04802 2.8 0.34500 5.3 0.05210 4.5 0.53 302 8 301 14 290 103 104
A38 71407 9289 390 0.002 0.2 0.04599 2.7 0.33190 3.0 0.05234 1.3 0.89 290 8 291 8 300 30 97
A39 112599 9886 393 0.002 3.7 0.03975 3.3 0.28870 7.6 0.05268 6.9 0.44 251 8 258 17 315 156 80
A40 94785 10929 474 0.004 1.2 0.04640 2.8 0.33040 4.1 0.05164 3.0 0.68 292 8 290 10 270 68 108
A41 31337 4209 179 0.003 0.4 0.04638 2.8 0.33110 3.5 0.05178 2.0 0.81 292 8 290 9 276 46 106
A43 67728 9108 397 0.001 0.1 0.04784 2.7 0.34480 2.9 0.05228 1.1 0.93 301 8 301 8 298 25 101
A44 66334 8049 323 0.004 1.1 0.04315 2.6 0.30950 4.2 0.05202 3.3 0.61 272 7 274 10 286 76 95
A45 53102 6735 297 0.001 0.2 0.04824 2.7 0.34540 3.2 0.05193 1.8 0.83 304 8 301 8 282 41 108
A48 41021 4715 209 0.002 2.4 0.04760 2.6 0.34740 6.9 0.05293 6.4 0.38 300 8 303 18 326 146 92
A53 108805 12507 564 0.005 1.5 0.04791 2.6 0.34790 4.3 0.05266 3.4 0.61 302 8 303 11 314 77 96
A54 57794 7324 312 0.004 0.8 0.04627 2.8 0.32530 3.7 0.05100 2.4 0.76 292 8 286 9 241 55 121
A56 18717 2409 99 0.001 0.3 0.04492 2.7 0.31850 3.3 0.05143 2.0 0.79 283 7 281 8 260 47 109
A57 23856 2788 124 0.004 0.8 0.04774 2.6 0.34390 3.6 0.05224 2.5 0.73 301 8 300 9 296 57 102
A62 58937 7413 318 0.004 0.4 0.04672 2.6 0.33630 3.1 0.05221 1.7 0.84 294 8 294 8 294 38 100
A63 55029 7326 322 0.002 0.1 0.04810 2.7 0.34790 3.0 0.05246 1.3 0.91 303 8 303 8 305 29 99
A64 81550 10757 448 0.002 0.4 0.04541 2.7 0.32830 3.2 0.05243 1.7 0.85 286 8 288 8 304 38 94
A65 90210 11246 442 0.007 1.4 0.04175 3.5 0.30170 4.9 0.05241 3.5 0.71 264 9 268 12 303 79 87
A66 22750 3021 132 0.004 0.1 0.04801 2.9 0.34490 3.2 0.05211 1.4 0.90 302 9 301 8 290 33 104
A80 107614 12509 547 0.003 1.5 0.04665 2.5 0.33680 4.3 0.05236 3.5 0.58 294 7 295 11 301 80 98

A08 190575 18186 461 0.015 1.4 0.02322 3.7 0.1651 4.9 0.05155 3.1 0.76 148 5 155 7 265 72 56
A10 117548 11656 387 0.019 1.9 0.03282 3.0 0.2383 4.5 0.05265 3.4 0.67 208 6 217 9 314 76 66
A11 47795 4670 195 0.006 1.9 0.04363 2.8 0.3184 5.0 0.05293 4.2 0.55 275 7 281 12 326 95 85

zr1 primary zircon

zr2 secondary zircon
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grain 207Pba Ub Pbb Thb 206Pbcc 206Pbd ±2s 207Pbd ±2s 207Pbd ±2s rhoe 206Pb ±2s 207Pb ±2s 207Pb ±2s conc.
(cps) (ppm) (ppm) U (%) 238U (%) 235U (%) 206Pb (%) 238U (Ma) 235U (Ma) 206Pb (Ma) (%)

A13 178120 31016 652 0.014 3.5 0.02120 3.7 0.1499 7.3 0.05128 6.3 0.50 135 5 142 10 253 146 53
A15 19854 5285 209 0.002 0.8 0.04298 2.7 0.3065 3.6 0.05172 2.3 0.76 271 7 271 9 273 54 99
A17 168406 13221 498 0.017 2.3 0.03577 2.7 0.2601 5.1 0.05274 4.4 0.53 227 6 235 11 317 99 71
A18 193183 18911 663 0.017 2.1 0.03396 2.5 0.2382 4.7 0.05088 4.0 0.53 215 5 217 9 236 92 91
A20 175536 27332 852 0.010 3.3 0.03226 3.9 0.2281 7.4 0.05127 6.2 0.53 205 8 209 14 253 144 81
A23 69357 6352 269 0.012 0.8 0.04346 2.6 0.3089 3.1 0.05156 1.8 0.82 274 7 273 8 266 41 103
A25 152042 20320 568 0.013 1.3 0.02841 6.2 0.1998 6.9 0.05102 3.1 0.90 181 11 185 12 242 71 75
A27 24702 2803 119 0.005 1.2 0.04545 2.8 0.3285 4.1 0.05242 3.0 0.69 287 8 288 10 304 67 94
A28 118495 13590 570 0.015 4.2 0.04269 3.1 0.3093 7.5 0.05255 6.8 0.41 269 8 274 18 309 155 87
A30 37963 3667 135 0.004 0.5 0.03982 3.7 0.2894 4.1 0.05271 1.8 0.90 252 9 258 9 316 41 80
A42 302716 33669 713 0.004 9.2 0.01915 13.4 0.1454 17.3 0.05507 10.9 0.77 122 16 138 22 415 244 29
A46 129615 17921 349 0.010 3.4 0.01919 8.7 0.1374 11.0 0.05192 6.7 0.79 123 11 131 14 282 154 43
A47 57395 5777 214 0.006 1.8 0.03982 8.6 0.2882 9.8 0.05250 4.6 0.88 252 21 257 22 307 106 82
A49 96839 6634 307 0.003 2.4 0.04434 3.1 0.3186 5.1 0.05212 4.0 0.62 280 9 281 13 291 91 96
A50 24275 3320 138 0.003 0.2 0.04560 3.0 0.3288 3.7 0.05230 2.0 0.83 287 9 289 9 298 46 96
A51 18928 2152 86 0.004 0.1 0.04345 2.5 0.3119 2.8 0.05206 1.2 0.90 274 7 276 7 288 28 95
A52 34759 4742 197 0.003 0.1 0.04536 2.7 0.3254 3.0 0.05203 1.2 0.91 286 8 286 7 287 28 100
A55 85102 6071 289 0.022 5.2 0.04686 3.2 0.3347 9.3 0.05180 8.7 0.35 295 9 293 24 277 199 107
A58 84752 10582 362 0.009 0.7 0.03680 7.4 0.2602 7.7 0.05128 2.1 0.96 233 17 235 16 253 48 92
A59 78444 10256 436 0.001 0.3 0.04637 2.8 0.336 3.2 0.05256 1.4 0.89 292 8 294 8 310 33 94
A60 70836 7625 279 0.011 2.4 0.03791 4.2 0.2751 6.5 0.05264 5.0 0.64 240 10 247 14 313 113 77
A61 136725 23586 627 0.004 2.4 0.02779 22.0 0.2009 22.8 0.05244 6.0 0.96 177 38 186 39 305 136 58
A72 135308 14800 570 0.007 2.5 0.03983 2.5 0.2903 5.7 0.05286 5.1 0.44 252 6 259 13 323 115 78
A73 79761 4965 237 0.069 2.3 0.04514 3.5 0.3228 5.4 0.05187 4.0 0.66 285 10 284 13 280 92 102
A74 29020 5474 229 0.005 1.1 0.04497 3.4 0.3229 4.5 0.05208 2.9 0.76 284 9 284 11 289 66 98
A75 126701 14611 476 0.013 3.2 0.03295 3.0 0.2398 6.8 0.05279 6.1 0.44 209 6 218 13 320 138 65
A76 37515 5295 195 0.003 0.4 0.03997 3.5 0.2892 3.9 0.05247 1.7 0.90 253 9 258 9 306 38 83
A77 30580 2677 123 0.009 3.2 0.04663 3.0 0.3336 6.8 0.05189 6.2 0.43 294 9 292 18 280 141 105
A78 161662 11209 374 0.021 3.5 0.02870 3.6 0.2069 5.7 0.05228 4.5 0.63 182 6 191 10 298 102 61
A79 22642 2753 119 0.005 1.0 0.04632 2.6 0.3319 3.7 0.05196 2.7 0.69 292 7 291 9 284 62 103
A81 110982 4860 269 0.0086 11.7 0.04716 3.2 0.3344 12.4 0.05143 12.0 0.25 297 9 293 32 260 275 114

A82 18072 4974 214 0.006 0.8 0.04635 2.8 0.3368 3.7 0.05271 2.5 0.75 292 8 295 10 316 56 92
A83 47843 7720 370 0.055 1.4 0.04503 3.5 0.3237 4.2 0.05213 2.4 0.83 284 10 285 11 291 54 97
A84 95322 13731 609 0.121 0.0 0.04656 2.7 0.3358 3.0 0.05230 1.1 0.92 293 8 294 8 299 26 98
A85 113171 16758 726 0.040 0.0 0.04691 2.7 0.3362 3.0 0.05197 1.3 0.90 296 8 294 8 284 30 104
A86 94958 14380 716 0.102 1.5 0.04587 3.2 0.3283 3.8 0.05191 2.1 0.84 289 9 288 10 281 48 103

xenotime



grain 207Pba Ub Pbb Thb 206Pbcc 206Pbd ±2s 207Pbd ±2s 207Pbd ±2s rhoe 206Pb ±2s 207Pb ±2s 207Pb ±2s conc.
(cps) (ppm) (ppm) U (%) 238U (%) 235U (%) 206Pb (%) 238U (Ma) 235U (Ma) 206Pb (Ma) (%)

A87 62461 21803 949 0.074 b.d. 0.04643 2.6 0.3323 2.9 0.05191 1.1 0.92 293 8 291 7 281 26 104
A88 174450 25349 453 0.049 1.8 0.01655 6.0 0.1192 6.9 0.05223 3.5 0.87 106 6 114 8 296 79 36
A89 124888 22352 983 0.047 1.6 0.04613 4.7 0.3300 5.7 0.05188 3.3 0.82 291 13 290 15 280 76 104
A90 56918 4788 305 0.257 1.4 0.04697 2.6 0.3407 4.1 0.05262 3.2 0.63 296 7 298 11 312 72 95

Moacir g 24660 4098 2933 24 0.35 0.08256 2.5 0.6475 3.2 0.05688 1.8 0.63 511 12 507 13 487 40 105
Mana g 17195 1888 4389 79 0.38 0.0887 2.6 0.7152 2.0 0.05849 1.2 0.77 548 14 548 8 548 26 100
Ples. g 19922 850 44 0.10 0.41 0.05378 1.4 0.39506 2.2 0.05327 1.9 0.70 338 5 338 6 340 42 100
91500 g 21120 97 18 0.30 1.46 0.17935 1.9 1.85368 2.6 0.07496 1.6 0.69 1065 18 1063 18 1067 31 100

aWithin run background-corrected mean 207Pb signal in cps (counts per second). 
b U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon.
c percentage of the common Pb on the 206Pb. b.d. = below dectection limit.
d corrected for background, within-run Pb/U fractionation (in case of 206Pb/238U) and common Pb using Stacy and Kramers (1975) model Pb composition and 
subsequently normalised to GJ-1 (ID-TIMS value/measured value); 207Pb/235U calculated using 207Pb/206Pb/(238U/206Pb*1/137.88) 
e rho is the 206Pb/238U/207Pb/235U error correlation coefficient.
f degree of concordance =  206Pb/238U age / 207Pb/206Pb age × 100

reference materials

Spot size, zircon = 23 µm, xenotime = 15-23 µm; depth of crater ~15 µm.  206Pb/238U error is the quadratic additions of the within run precision (2 SE) and the external 

g Accuracy and reproducibilty was checked by repeated analyses of reference zircon Plesovice and 91500 (n = 5), and Moacir, Manangotry and Namaqualand monazites 
(n=9); data given as mean with 2 standard deviation uncertainties. Spot size were 23-33 µm for Plesocive, 50 µm for 91500 and 15 µm for Moacir and Manangotry monazite



Table 3 Description of the two dated pegmatite localities

GPS coord. Pegmatite 
type

Rock description Dated minerals

L3 N42°19'30'' - 
E03°15'31'' III Aplitic albite vein adjacent to quartz pocket in 

well-zoned pegmatite Zircon and CGM

L7 N42°20'01'' - 
E03°15'50'' I

Poorly-zoned, medium-grained, simple 
pegmatite with abundant garnet + tourmaline 
and minor sillimanite + cordierite

Zircon and 
xenotime
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Type II
Columbite

Type III
Columbite

Type III
Tantalite

Type IV
Tantalite

N 24 454 70 35
wt %
Ta2O5 19.09 25.57 54.93 47.04
Nb2O5 63.62 56.09 27.28 34.06
TiO2 0.52 0.62 0.86 0.40
SnO2 0.03 0.29 0.35 0.17
WO3 0.14 0.28 0.23 n.a.
UO2 0.05 0.05 0.05 0.05
ZrO2 bdl 0.02 0.03 bdl
PbO bdl 0.01 0.04 bdl
ThO2 bdl 0.03 0.02 n.a.
Sc2O3 0.03 0.04 0.10 n.a.
FeO 11.56 12.28 11.29 12.69
MnO 7.73 6.26 4.77 4.74

Totala 102.78 101.54 99.95 99.17

Structural formula for 6O
Ta5+ 0.31 0.43 1.07 0.89
Nb5+ 1.69 1.55 0.88 1.07
Ti4+ 0.02 0.03 0.05 0.02
Sn4+ 0.001 0.007 0.006 0.005
Total site B 2.02 2.02 2.01 1.99

Fe2+ 0.57 0.63 0.68 0.74
Mn2+ 0.38 0.33 0.29 0.28
Sc3+ 0.002 0.007 0.010
Total site A 0.95 0.96 0.98 1.02
aHigh totals on Nb-rich CGM are due to analytical problems on Nb
N  – number of analyses, n.a . not analyzed
bdl  below detection limit (0.02 wt% ZrO2 and ThO2, 0.01 wt% PbO)

Table 4 Chemical compositions of columbite-group 
minerals as determined by EPMA and structural formulae 
calculated for 6 oxygens
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Table 5 Chemical compositions of zircon as determined by EPMA

Label L5 L7-cores L7-zr1 L7-zr2 L3 L4
Type I I I I III IV
N 15 8 82 24 17 13
wt%
SiO2 31.38 32.02 31.71 28.29 30.88 30.71
ZrO2 63.28 63.83 63.32 58.14 62.18 61.47
HfO2 4.03 3.17 2.62 2.25 5.33 5.30
P2O5 0.15 0.25 0.50 2.22 0.08 0.14
CaO 0.02 0.01 0.01 0.24 0.03 0.04
FeO 0.17 0.16 0.16 0.97 0.05 1.16
Y2O3 0.06 0.00 0.09 0.96 0.05 0.06
Ce2O3 0.04 0.02 0.03 0.03 0.05 0.04
Ta2O5 0.12 n.a. n.a. n.a. 0.18 0.14
PbO2 0.14 n.a. n.a. n.a. 0.11 0.11
UO2 0.78 0.04 0.60 1.51 0.69 0.74
ThO2 n.a. 0.10 0.06 0.07 n.a. n.a.
Total 99.53 99.62 99.11 95.09 99.31 98.84
N  - number of analyses, n.a.  not analyzed
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Table 6 Synthesized age data

Pegmatite Mineral N1 N2 Mineral characteristics Crystal 
size 
(µm)

[U] (ppm) [Pb] (ppm) Reference 
material

Age C or 
I*

Zrn 26 17 Euhedral zoned crystals 200 3000 – 30000 50 – 600 zircon 298.7 ± 5.7 I [1]
CGM 34 3 Needle-shaped zoned crystals 500 60 – 400 2 – 20 CGM 301.9 ± 3.8 C [6]

Zrn (zr1) 28 28 Oscillatory-zoned crystals 500 2000 – 15000 100 – 600 zircon 296.2 ± 2.5 C [19]
Zrn (zr2) 36 36 Porous patchy zones 200 2000 – 34000 100 – 900 zircon 290.5 ± 2.5 C [12]
Xenotime 12 9 Anhedral grains overgrown on 

zircon
100 5000 – 25000 200 – 1000 titanite 292.9 ± 2.9 C [8]

N1  - total number of analyses, N2  - number of analyzed grains
*C or I – age determined by Concordia (C ) or Intercept (I). In brackets are the number of analyses that plot on the Concordia
Errors are given as 2σ

L3

L7
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