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ABSTRACT 26 

Aim  Our current understanding of migratory strategies and the reasons for their high 27 

variability along the phylogenetic tree remains relatively poor. Most of the hypotheses 28 

relating to migration have been formulated for terrestrial taxa; classically, oceanic migrations 29 

were considered as merely dispersive due to the scarcity of observations in the open ocean. 30 

We describe for the first time, the migration strategy of a small seabird, the Bulwer’s petrel 31 

(Bulweria bulwerii), and provide new insights into the ecology and evolution of long-distance 32 

marine migrations. 33 

Location  Subtropical and tropical Atlantic Ocean. 34 

Methods  Using cutting-edge geolocators, we examined the year-round distribution and at-sea 35 

activity patterns of adult Bulwer’s petrels sampled at 5 localities throughout its breeding 36 

range in the Atlantic: the Azores, Salvages, Canary and Cape Verde archipelagos. We 37 

assessed the migratory connectivity of the species and its habitat use at population and meta-38 

population scales. 39 

Results  Our results provide the first evidence of an oriented leapfrog migration in oceanic 40 

seabirds. Ecological niche models based on breeding-season data effectively predicted that 41 

subtropical waters of the South Atlantic would be the preferred habitat for the northern 42 

populations of Bulwer's petrels during the non-breeding season. Habitat modelling also 43 

highlighted similarities in distributions between the breeding and non-breeding periods for the 44 

southern populations. Data on at-sea activity patterns suggested that birds from the northern 45 

and southern populations behave differently during the breeding season, as well as in the 46 

northern and southern non-breeding ranges during the non-breeding period.  47 

Main conclusions  These results indicate that specific habitat preferences, presumably related 48 

to differences in prey availability, explain the observed distributions and hence the pattern of 49 

leapfrog migration described for Bulwer's petrel. Our study demonstrates the utility of 50 
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integrating diverse tracking data from multiple populations across international boundaries, 51 

and habitat modelling, for identifying important areas common to many marine species in the 52 

vast oceanic environments. 53 

 54 

Keywords: Activity patterns, Bulweria bulwerii, Bulwer's petrel, capture-mark-recapture, 55 

geolocator data, habitat modelling, Macaronesian seabirds, meta-population studies, oceanic 56 

migrations. 57 
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INTRODUCTION 58 

Migration is an integral part of the annual life-cycle and life-history of many animal species. 59 

Migration strategies differ greatly not only among species, but between populations, age and 60 

sex classes (Ketterson & Nolan, 1983; Alerstam & Hedenström, 1998). However, our current 61 

understanding of migratory connectivity among different breeding populations of the same 62 

species, as well as of the mechanisms underlying intra-specific variation in migratory 63 

strategies, is much less extensive (e.g. Zink, 2002; Bairlein, 2003). This is despite the 64 

profound implications for conservation biology and management of these populations, many 65 

of which are threatened by ongoing climatic and other deleterious environmental changes 66 

(Esler, 2000). 67 

 68 

Migratory species show various patterns of partial and differential migration (at intra-69 

population level; Cristol et al., 1999; Holberton & Able, 2000), as well as different degrees of 70 

segregation among breeding populations (Bell, 2005; Newton, 2008). For instance, at the 71 

meta-population level, chain migration occurs when a northerly breeding population winters 72 

within the breeding range of another population that migrates further south. In such cases, 73 

migration distances are broadly similar among populations breeding along a latitudinal 74 

gradient (Lundberg & Alerstam, 1986; Fort et al., 2012). In other species, northerly breeding 75 

populations migrate longer distances to spend the non-breeding season further south than 76 

individuals from the southerly breeding populations. Such systems have generally been 77 

termed leapfrog migrations (Salomonsen, 1955; Alerstam & Högstedt, 1980). The latter is an 78 

unusual migration pattern at the species level, first described in a North American passerine, 79 

the Fox sparrow (Passerella iliaca; Swarth, 1920) and later reported in other passerine (Bell, 80 

1996, 1997; Fraser et al., 2012; Stanley et al., 2014) and non-passerine species, particularly 81 

waders (Charadriiformes; Salomonsen, 1955; Pienkowski et al., 1985; Boland, 1990; Alves et 82 
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al., 2012; Duijns et al., 2012). Among seabirds however, leapfrog migration has never been 83 

reported, suggesting it is uncommon in this group of birds (but see Wernham et al., 2002; 84 

Hallgrimsson et al., 2012).  85 

 86 

Classically, three explanations or hypotheses have been suggested by different authors that 87 

would favour the evolution of a leapfrog migration pattern (reviewed in Lundberg & 88 

Alerstam, 1986): conspecific competition (Salomonsen, 1955; Pienkowski et al., 1985), 89 

environmental predictability at the onset of the breeding season (Alerstam & Högstedt, 1980), 90 

and time allocation (Greenberg, 1980). The first hypothesis -competition among conspecifics 91 

for limited food resources on the non-breeding grounds- is also considered to explain chain 92 

migrations; however, competition and food availability may not fully explain why the 93 

northernmost populations of a leapfrog migrant bear the additional energetic cost of the extra 94 

flight distance. Similarly, the environmental predictability hypothesis suggests that birds 95 

wintering closer to the breeding grounds might more easily predict the occurrence of optimal 96 

environmental conditions for breeding; these individuals might better time their return to the 97 

nest site and achieve higher breeding success as a consequence (e.g. Bregnballe et al., 2006; 98 

Garthe et al., 2012). However, again, this fails to explain why the northern populations of a 99 

given species should leapfrog those that breed to the south. Finally, the hypothesis relating to 100 

optimal time allocation in migratory birds predicts that the benefits of wintering at a more 101 

distant site with better survival prospects (through high food availability, for instance) may be 102 

higher if the leapfrog migrants can arrive sooner and so spend more time at the favourable 103 

site. In this regard, northerly populations that breed later may winter further south to take 104 

advantage of late spring food availability (e.g. Bell, 1997). However, results from other 105 

species tend not to support this hypothesis (reviewed in Sandercock & Jaramillo, 2002).  106 

 107 
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In addition to the three hypotheses outlined above, a further hypothesis, here termed 108 

differential habitat preference, could explain spatial segregation among populations, in some 109 

cases leading to leapfrog migration, during the non-breeding season. For instance, migrants 110 

from the north of the breeding distribution may be adapted to specific climatic conditions or 111 

to feeding on particular resources that only occur in the southernmost areas of the non-112 

breeding range, which would compensate for the extra flight time and energetic cost of the 113 

longer-distance movement. Surprisingly, to our knowledge, habitat selection has never been 114 

considered as a driver of the evolution of leapfrog migration. At present, there is no consensus 115 

on how leapfrog migration originated or why it occurs, although this is crucial for answering 116 

fundamental questions about the evolution of migration patterns in general. 117 

 118 

Here, using miniaturized geolocator-immersion loggers, we examined the at-sea distribution 119 

and activity patterns of a small oceanic seabird, Bulwer’s petrel (Bulweria bulwerii, Jardine & 120 

Selby, 1828) from the major colonies across its breeding range in the North Atlantic (the 121 

Azores, Salvages, Canary and Cape Verde archipelagos). This species is relatively abundant 122 

in offshore waters of the northeast and central east Atlantic, during the summer, but, like 123 

many subtropical and tropical seabirds, little is known about individual movements and 124 

foraging ecology, particularly during the non-breeding season. Based on at-sea observations 125 

from the last century, the Macaronesian populations of Bulwer’s petrel were thought to winter 126 

in a huge area in the central Atlantic between 20°N and 20°S (van Oordt & Kruijt, 1953; 127 

Cramp, 1977; Bourne, 1995). However, at-sea observation does not allow determination of 128 

the origin of birds, is subject to major sampling biases, and provides no information on the 129 

timing of movements, segregation among populations, or variation within populations. A 130 

recent study showed the first preliminary tracks of Bulwer's petrels for a few days after 131 

breeding (Rodríguez et al., 2013). Although valuable, the study only included three birds 132 
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tracked for 11-15 days after colony departure and devices were heavy in relation to body 133 

mass, which may have affected the documented behaviour of the birds (>5% of body mass; 134 

Phillips et al., 2003), therefore precluding any fruitful comparison with our data. Our aims 135 

here were to: (1) identify for the first time the foraging areas used during the breeding and 136 

non-breeding seasons by the main populations of Bulwer’s petrel in Macaronesia, (2) define 137 

the migration strategy of this small predator in the subtropical and tropical Atlantic Ocean, 138 

and most importantly, (3) provide new insights into the ecology and evolution of long-139 

distance seabird migrations. To do so, we quantified the relative importance of different 140 

foraging areas for each breeding population; assessed the degree of spatial overlap among 141 

populations as well as the annual variability in at-sea distributions; characterized at-sea 142 

activity patterns, and finally; defined the key oceanographic factors determining habitat use 143 

by Bulwer's petrels at population and meta-population scales. 144 

 145 

METHODS 146 

Species ecology 147 

Bulwer’s petrel is a small (80-120g) procellariiform seabird (Fig. 1), which shows a highly 148 

pelagic, pan-tropical and subtropical distribution, including the Atlantic, Pacific and Indian 149 

oceans (Brooke, 2004). Within the Atlantic, it breeds on a few islets and islands throughout 150 

much of Macaronesia (from the Azores to the Cape Verde archipelagos, including Madeira, 151 

Salvages and Canary Islands), with an estimated total population of ca. 11,000 breeding pairs 152 

(Mougin, 1989; Hernández et al., 1990; Hazevoet, 1995; Monteiro et al., 1996; Nunes & 153 

Vicente, 1998; Luzardo et al., 2008). Most adults arrive at the colony in late April, females 154 

lay a single egg in late May/early June, chicks hatch at the end of July and fledge in mid to 155 

late September (Nunes & Vicente, 1998). During the breeding season, Bulwer’s petrels are 156 

thought to be nocturnal feeders, specialized in exploiting mesopelagic prey that perform daily 157 
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vertical migrations (from 200 to 1000 m depth), including fish, especially lanternfish 158 

Myctophidae (Zonfrillo, 1986; Mougin & Mougin, 2000; Neves et al., 2011). 159 

 160 

Bird tracking data 161 

The present study was conducted at five breeding colonies at four Macaronesian archipelagos 162 

(Fig. 2), over seven years (2007-2013; Table 1). At each colony, breeding adults incubating 163 

an egg or rearing a chick were fitted with a small, leg-mounted, combined geolocator-164 

immersion logger (Mk13, Mk14, Mk18 [British Antarctic Survey, Cambridge, UK] and W65 165 

[Migrate Technology Ltd, Cambridge, UK] models, weighing 1.8, 1.4, 1.9, and 0.65g, 166 

respectively, corresponding to 0.7-2.0% of body mass). We deployed a total of 172 167 

geolocators of which 115 (55.2-74.2%, depending on the colony) were recovered. To check 168 

for short term effects of the logger deployment on adult survival, we constructed capture-169 

mark-recapture models (M-Surge version 1.8; Choquet et al., 2006; we analysed 311 capture-170 

recapture histories over the period 2007-2014; see Table S1 in Appendix S1for details). 171 

 172 

Geolocators provide two positions per day based on light levels (one at local midday and 173 

other at local midnight), with an average accuracy of ~200 km (or ~ 2°; Phillips et al., 2004). 174 

Positions were calculated using TransEdit and BirdTracker software (British Antarctic 175 

Survey, 2008) by inspecting the integrity of the light curve day-by-day, and estimating dawn 176 

and dusk times. We excluded long periods spent in burrows during incubation, based on light 177 

data recorded by the logger. To filter unrealistic positions, we removed those that were (1) 178 

obtained from light curves showing interference at dawn or dusk; (2) within the 20 closest 179 

days to the equinoxes; and (3) that resulted in unrealistic flight speeds (>40 km h-1 sustained 180 

over 48 h) using bespoke software routines written in R (R Development Core Team, 2010). 181 

Validated data were smoothed twice by interpolating intermediate fixes between successive 182 
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locations with fixed start and end points around any periods of missing data (Phillips et al., 183 

2004).  184 

 185 

The loggers also registered saltwater immersion (wet/dry) at 3-s intervals using 2 electrodes 186 

and stored the number of positive tests from 0 (continuously dry) to 200 (continuously wet) at 187 

the end of each 10-min period. Light and immersion data were used simultaneously to (1) 188 

distinguish time spent at sea from time at the colony (darkness in the burrows) and (2) 189 

estimate the percentage of time spent on the sea surface as a proxy of foraging effort (Shaffer 190 

et al., 2001), separately for daylight and night periods. Following Dias et al. (2012), we 191 

calculated a ‘night flight index’ (NFI) as the difference between the proportion of time spent 192 

flying during night and during daylight, divided by the highest of these two values; this index 193 

varies between -1 (flight activity restricted to daylight) and 1 (flight restricted to night).  194 

 195 

Spatial analyses and migratory connectivity 196 

We estimated six phenological and spatial parameters for every complete migration cycle (i.e. 197 

non-breeding event): (1) departure date, (2) arrival date, (3) duration of the non-breeding 198 

period (in days), (4) area exploited throughout the non-breeding period (as indicated by the 199 

50% Utilization Distribution from kernel analysis, hereafter referred to as UD; in 106 km2), 200 

(5) non-breeding range (orthometric distance between the breeding colony and the average 201 

position of locations within the 5% UD; in km), and (6) latitude of the centroid of the non-202 

breeding period (i.e. mean latitude of all positions within the 5% UD; in degrees). After 203 

normality checks (using Q-Q plots) and using model information criteria, we evaluated the 204 

effect of colony of origin on migration parameters by fitting a set of candidate generalised 205 

linear mixed models (GLMMs), where each of the six parameters described above was the 206 

response variable and breeding colony was the main (fixed) explanatory variable (Table S2 in 207 
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Appendix S1). To account for annual and potential individual heterogeneity in migration 208 

parameters, year of sampling and bird identity were included in all the GLMMs as random 209 

terms. Gaussian distribution of error terms and the identity link function were used in the 210 

modelling. The best-supported models were selected using the Akaike Information Criteria 211 

corrected for small sample sizes (AICc) and the corresponding AICc weights (Johnson & 212 

Omland, 2004). GLMMs were conducted in R with additional functions provided by the R 213 

packages ‘lme4’ (lmer; Bates et al., 2008) and ‘MuMIn’ (dredge; Bartoń, 2009).  214 

 215 

To quantify spatial overlap among colonies during the non-breeding period, and also to assess 216 

the effect of year within each colony, we also calculated the overlap in distribution between 217 

the 14 non-breeding events (Table 2). Overlap indices between every pair of non-breeding 218 

distributions were calculated using the 95% UDs and the ‘kerneloverlap’ function in the 219 

‘adehabitat’ package (VI method; Fieberg & Kochanny, 2005). Following Ambrosini et al. 220 

(2009), we assessed the migratory connectivity among the five sampled colonies (using 221 

breeding and non-breeding matrices of orthometric distances and Mantel correlation 222 

coefficients), and the number of potential clusters in case of migratory structuring and sub-223 

structuring (using the ‘pamk’ function in the R package cluster). Importantly, this approach 224 

did not force us to define a priori the number of breeding and non-breeding sub-ranges (or 225 

clusters), which may be difficult when the species of interest shows continuous distributions 226 

both in the breeding and non-breeding ranges. Statistical significance of the Mantel 227 

correlation coefficient was determined by 9,999 random permutations. The number of clusters 228 

was identified as the number that maximized the overall average silhouette width (oasw), a 229 

measure of the goodness of fit of the overall classification of points in a given number of 230 

clusters (Rousseeuw, 1987). 231 

 232 
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Environmental data and habitat modelling 233 

To determine the oceanographic characteristics of areas used by the tracked birds, we 234 

considered the seafloor depth (BAT, m), surface chlorophyll a concentration (CHLa, mg m−3), 235 

salinity (SAL, g of salt per kg of water), sea surface temperature (SST, °C), and wind speed 236 

(WIND, m s−1). All remote sensing products were extracted from NOAA CoastWatch 237 

(http://coastwatch.pfeg.noaa.gov/) for a grid including the whole Atlantic Ocean. The static 238 

BAT variable and monthly composites of CHLa, SST and WIND (dynamic variables 239 

downloaded for the period 2007-2013) were rescaled to a common spatial resolution of 2.0°, 240 

which matches the accuracy of geolocation data. In addition to these five oceanographic 241 

variables, gradients for BAT, CHLa and SST were also considered (BATG, CHLG and 242 

SSTG, respectively). Dynamic variables were averaged by: a) breeding period, from April to 243 

August, b) non-breeding period, from October to February, and c) year-round, from January 244 

to December, for every year. To exclude redundant variables, pairwise correlations among the 245 

eight environmental variables were evaluated separately for each period (i.e. breeding, non-246 

breeding, and year-round) using Spearman methodology with Holm adjustments (Table S3 in 247 

Appendix S1). 248 

 249 

Bulwer’s petrel habitat probability models were developed using the MaxEnt v.3.3.3e 250 

software (Phillips et al., 2006), a program for modelling ecological niches from presence-only 251 

records. In a first modelling approach, habitat probability models were run with six non-252 

redundant variables (i.e. BAT, BATG, CHLa, SST, SSTG and WIND) for each of the ten data 253 

subsets, including the five colonies (separately and jointly) during the breeding period (6 254 

models), the two main wintering regions (i.e., the two main clusters derived from the 255 

migratory connectivity assessment; separately and jointly) during the non-breeding period (3 256 

models), and year-round (1 model). All habitat use models were developed on the basis of a 257 
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logistic output format and with 100 bootstrapped replicates, each of them built on randomly 258 

sampled subsets of 10% of the bird positions as training points. This conservative approach 259 

(i.e. 90% of seabird records were used for model testing) avoids model over-fitting and 260 

minimizes effects of spatial autocorrelation in both seabird presence and environmental 261 

covariates. The data were jack-knifed to evaluate each variable’s importance in explaining the 262 

observed distribution. The percentage of contribution of each variable was calculated on the 263 

basis of how much the variable contributed to an increase in the regularized model gain as 264 

averaged over each model run. To determine the permutation importance of each variable, the 265 

values in the training presence and background data were randomly varied and the resulting 266 

change in the area under the curve (AUC) statistic was examined, normalized to percentages 267 

(Phillips et al., 2006). The results were summarized as the average of the 100 models, and 268 

model evaluation was performed using the AUC statistic, which measures the ability of model 269 

predictions to discriminate seabird presence from background points (Table 3). In a second 270 

modelling approach, the five predictive models developed for the breeding period (and for 271 

each colony) were used to build probability maps for each of the populations during the non-272 

breeding season using the relevant environmental variables averaged for the non-breeding 273 

period (Fig. 3). 274 

 275 

RESULTS 276 

First of all, capture-mark-recapture models revealed no effect of logger deployment on the 277 

survival probability of Bulwer’s petrel (estimated annual survival rate=0.76±0.19), although 278 

recapture probability was higher in equipped birds due to the incentive of the researchers to 279 

recover devices (p=0.66±0.14 and 0.77±0.15 for non-equipped and equipped birds, 280 

respectively). Likewise, studies using geolocators on another small seabird species (thin-281 

billed prions Pachyptila belcheri weighing ca.130 g; Quillfeldt et al., 2012) found no obvious 282 
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effect of logger deployment on foraging ability, although a significant ecophysiological effect 283 

is expected on those birds carrying devices due to the higher load. 284 

 285 

We obtained 104 complete tracks from 98 individual Bulwer’s petrels from five different 286 

colonies during the breeding and non-breeding seasons (Table 1). After filtering and 287 

interpolation, we obtained a total of 50,543 positions, of which 38.4% and 61.6% were from 288 

the breeding and non-breeding periods, respectively. 289 

 290 

Non-breeding distribution and migratory characteristics 291 

During the non-breeding period, Bulwer’s petrels were concentrated around a core area in 292 

equatorial waters in the central Atlantic (Fig. 2). Overall, 60.4% of the birds (range among 293 

colonies 40.0-85.0%) spent the entire non-breeding period in this area. However, a substantial 294 

proportion of birds from Vila (45.5%), Selvagem Grande (53.3%) and Montaña Clara (50.0%) 295 

migrated further south to an area in the southern Atlantic Ocean situated between 10º and 30º 296 

S. Most of these birds staged in the equatorial region for several days during their outward 297 

and return migrations.  298 

 299 

Substantial variation in migratory phenology and in the spatial components of migration 300 

occurred among populations but also among individuals (Table 1). Overall, the duration of the 301 

non-breeding period, the non-breeding range, the area visited and the latitude of the core area 302 

exploited during the non-breeding period tended to be greater in the birds from subtropical 303 

colonies (i.e. Vila, Selvagem Grande and Montaña Clara), than those from Cape Verde (Table 304 

S2 in Appendix S1). In particular, the distance between the breeding colony and the average 305 

position of the non-breeding area (i.e. the non-breeding range) was colony-dependent (Fig. 1), 306 

with subtropical colonies ranging 1,646.5-7,342.5 km (on average 4,631.7±1,629.3), and Cape 307 
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Verde colonies ranging 256.2-3,540.2 km (on average 1,691.4±911.3) from their respective 308 

wintering areas.  309 

 310 

Migratory connectivity and overlap of non-breeding grounds 311 

Bulwer’s petrels showed significant migratory connectivity (n = 104, Mantel correlation 312 

coefficient rM = 0.042, P = 0.047), and could be grouped into two distinct clusters (overall 313 

average silhouette width value, oasw = 0.529; Fig. S1 in Appendix S2). The northern cluster 314 

(A) included petrels from all five breeding colonies that wintered north and south of the 315 

Equator in the central Atlantic, whereas the southern cluster (B) was mainly constituted by 316 

individuals from northern colonies that wintered further south of the Equator (Fig. 2). While 317 

the southern cluster showed non-significant connectivity (n = 42, rM = 0.065, P = 0.128), the 318 

northern cluster was structured as two significant sub-clusters (n = 62, rM = 0.071, P = 0.019, 319 

oasw = 0.547): sub-cluster A1 only included individuals breeding in the northern colonies, 320 

whereas sub-cluster A2 consisted exclusively of birds from the two Cape Verde colonies. 321 

 322 

In agreement with the results shown above, overlap analyses identified two distinctive groups 323 

of non-breeding birds: (i) Cape Verde colonies (Raso and Cima Islets) which showed a 324 

relatively high overlap (68.6% on average; Table 2), and (ii) Vila, Selvagem Grande and 325 

Montaña Clara, which also showed considerable overlap (52.6%). In contrast, there was 326 

considerably less overlap between these two groups (33.9%; Table 2). In addition, the areas 327 

exploited by birds from the same colony in different years showed a relatively high overlap 328 

(mean of 57.1, 51.9, 70.6, 73.1 and 72.6% for Vila, Selvagem Grande, Montaña Clara, Raso 329 

and Cima Islets, respectively; Table 2).  330 

 331 

Habitat modelling 332 
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The MaxEnt variable importance and the percentage of variable contribution rankings differed 333 

both between seasons, and among groups of birds (i.e., colonies and clusters; Table 3). Jack-334 

knife tests identified SST as the most important variable, which also accounted for the highest 335 

percentage contribution to both breeding and non-breeding model sets. During the breeding 336 

season, the highest-ranked variable was either SST or WIND, whereas for the non-breeding 337 

season, SST and SSTG (for cluster A), and SST and CHLa (for cluster B) were the most 338 

important variables. In general during the breeding season, there was a consistent preference 339 

by birds from all colonies for areas with warm waters (range: 15-25 ºC for subtropical 340 

colonies and 24-28 ºC for Cape Verde colonies) and low wind intensity (5-8 m s-1 for all 341 

colonies). Similarly, modelling of the habitat used during the non-breeding period also 342 

indicated that birds tended to select areas of warm waters (Table 3). 343 

 344 

Habitat modelling for the birds from the Azores, Salvages and Canary Islands suggested that 345 

the calm and warm waters around the Azores archipelago were the most suitable habitat for 346 

these populations (Figs 3a, 3c & 3e), whereas for the birds from Cape Verde, it was the 347 

warmer areas south of this archipelago in the Central Atlantic (Figs 3g & 3i). Additionally, 348 

suitable non-breeding habitats were also estimated for the different populations using 349 

prediction models developed for birds during the breeding season. The predicted wintering 350 

distributions of the birds from the Azores, Salvages and Canary Islands were similar, and 351 

indicated that oceanic areas in the South Atlantic should be the most preferred (Figs 3b, 3d & 352 

3f). The most suitable areas predicted for the two Cape Verde colonies expanded over the 353 

central equatorial area of the Atlantic Ocean (Figs 3h & 3j), therefore differing from those 354 

predicted for the subtropical populations.  355 

 356 

At-sea activity patterns 357 
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Analysis of at-sea activity patterns revealed substantial heterogeneity between seasons, 358 

among breeding colonies, among non-breeding latitudes, and between daylight and darkness 359 

periods (Table 4). Overall, birds tended to spend more time flying at night than during the day 360 

throughout the year (Fig. 4), and this was particularly noticeable during the non-breeding 361 

period (i.e. there was a significant interaction between period and day/night factors; Table 4). 362 

Night flight index showed a latitudinal gradient during both the breeding and non-breeding 363 

periods. During the breeding period, birds foraging at northern latitudes spent more time 364 

flying at night than during the day, whereas those foraging at southern latitudes spent similar 365 

amounts of time in flight during the day and at night. Conversely, birds that spent the non-366 

breeding period at northern latitudes displayed more diurnal activity than those at southern 367 

latitudes (Figs 4a & 4c). During the breeding period, the best-supported models for the time 368 

spent flying included an interaction between colony and day/night (Table 4), i.e., the time 369 

spent flying differed between daylight and darkness, but only for the birds from the 370 

northernmost colonies (Fig. 4b). These differences among colonies were observed during 371 

daylight, but not during darkness, when the time spent flying was always substantial, 372 

representing around 80% of time. During the non-breeding period, the best supported model 373 

also revealed a significant interaction in time spent flying between latitude and day/night, 374 

highlighting that the variation in flying activity duration followed a latitudinal trend which 375 

differed between daylight and darkness (Table 4). That is, the proportion of time spent flying 376 

during the night was constantly high irrespective of latitude, whereas during daylight, it was 377 

lower in those birds that wintered further south (Fig. 4d). 378 

 379 

DISCUSSION 380 

Non-breeding distribution of Bulwer’s petrel in the Atlantic Ocean 381 
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During the non-breeding season, the tracked Bulwer’s petrels congregated in large numbers 382 

within a relatively restricted area in the mid-equatorial Atlantic Ocean, north of the Saint 383 

Peter and Saint Paul archipelago (0°55’N, 29°20’W; hereafter Saint Paul’s Rocks). Previous 384 

results from at-sea surveys had suggested that this might be an important wintering area for 385 

Bulwer’s petrels (van Oordt & Kruijt, 1953; Bourne, 1995). Our results confirm this for a 386 

large proportion of birds from different breeding populations. Among these birds, those from 387 

Cape Verde highlighted by their strategy of partial migration (Chapman et al., 2011), where 388 

many birds remained during the non-breeding period in broadly the same area that they used 389 

during the breeding season while others dispersed south, around the Equator (Fig. 2).  390 

 391 

In addition, a substantial proportion of birds from the northernmost populations (Azores, 392 

Salvages and Canary Islands) leapfrog the birds from more southerly colonies, which winter 393 

north of Saint Paul’s Rocks, to spend the non-breeding period further south. There have been 394 

few reports of Bulwer’s petrels in these subtropical waters (van Oordt & Kruijt, 1953; 395 

Bourne, 1995), probably because of the extensive areas and the apparent absence of high 396 

concentrations of wintering birds (Fig. 2). Thus, at a meta-population scale, all the 397 

Macaronesian populations of Bulwer’s petrels largely overlap during the non-breeding season 398 

in tropical waters north of Saint Paul’s Rocks, and only birds from the northern populations 399 

exploit the subtropical Atlantic Ocean further south than 20º. 400 

 401 

Leapfrog migration: avoidance of competition or differential habitat preference hypothesis? 402 

The decision of an individual to spend time in a given area is dictated by the suitability of the 403 

habitat (Guisan & Zimmermann, 2000). The latter depends largely on two non-exclusive 404 

factors: the number of conspecifics and competitors, and the inherent productivity and quality 405 

of the habitat itself. In addition, for long-distance migrants, the distance between the foraging 406 
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habitat and the breeding grounds might also play a role in habitat selection (e.g., Duijns et al., 407 

2012). Therefore, oceanic migrants must take complex decisions when selecting their habitat, 408 

at least twice a year: during the breeding period, when they behave as central place foragers 409 

and are tied to the waters surrounding their colonies, and also in the non-breeding season, 410 

when, unconstrained, they can virtually access any area where conditions are suitable. 411 

 412 

In oceanic areas, the trophic resources of pelagic predators are patchy and very often 413 

dispersed over immense oligotrophic waters. Spatial predictability and general availability of 414 

prey in these vast pelagic environments are thus expected to be lower than in productive but 415 

spatially restricted upwelling regions. Under these conditions, direct competition among 416 

individuals for specific prey in pelagic areas could be considered very low indeed. Therefore, 417 

individual movements and specific migratory strategies in a long-distance migrant such as 418 

Bulwer’s petrel could be linked more to the habitat characteristics of both the breeding and 419 

non-breeding areas than to intra-specific competition for food.  420 

 421 

The habitat modelling of the geolocation data from Bulwer’s petrels accurately predicted the 422 

foraging range of five populations during the breeding season. According to the ecological 423 

niche models for this period, the key habitat variables were sea surface temperature and wind 424 

intensity (Table 3). These environmental characteristics differed substantially between 425 

seasons in the subtropical areas of both hemispheres, but remained relatively constant year-426 

round in the equatorial waters. Based on the ecological niche models for the breeding season, 427 

the spatial distribution of each population was predicted well during the non-breeding season 428 

(Fig. 3). The breeding-season models for the subtropical populations of Bulwer’s petrels 429 

extrapolated to the non-breeding period tended to assign more importance to the subtropical 430 

waters of the southern Atlantic than to tropical waters. For the tropical populations, the 431 
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MaxEnt models predicted similar distributions during the breeding and non-breeding periods 432 

(within tropical waters). These models performed relatively well when predicting non-433 

breeding distributions, especially for tropical populations. For the subtropical populations, the 434 

most preferred habitat was predicted to be the subtropical waters of the southern hemisphere 435 

(Fig. 3), which was exploited by around half of the tracked birds, whereas the others remained 436 

in equatorial waters, sharing this habitat with conspecifics from Cape Verde. 437 

 438 

In addition to habitat modelling, we provide critical clues to the variety of foraging tactics 439 

used by Bulwer’s petrel. Indeed, the exploitation of different areas throughout the year 440 

indicates a degree of habitat specialization by some individuals or populations, as well as 441 

differences in habitat quality. Activity patterns clearly differed among breeding populations, 442 

but also among wintering areas (Fig. 4). On the one hand, individuals from subtropical 443 

populations tended to forage more intensively at night than during the day during breeding, as 444 

did the birds that wintered in the southern subtropical Atlantic. On the other hand, birds from 445 

tropical populations tended to forage during the day as much as at night while breeding, as did 446 

those individuals that spent the non-breeding season around the equator. This suggests that 447 

prey behaviour and availability in the area exploited by tropical populations during the 448 

breeding season are similar to those in tropical waters during the non-breeding season, which 449 

would allow petrels to forage day and night. Such habitat or prey specialization might reflect 450 

local adaptation by the Bulwer’s petrels breeding in the Cape Verde archipelago. In contrast, 451 

prey availability would be mainly restricted to darkness in the areas exploited by subtropical 452 

populations during the breeding period, and in the subtropical waters of the south Atlantic 453 

during the non-breeding season. Thus, prey availability and specific habitat preferences 454 

(rather than the need to avoid competitors) could be the main factors explaining the observed 455 

distribution and the leapfrog migration described for Bulwer’s petrel.  456 
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 457 

However, another factor should be taken into account that might explain the non-breeding 458 

distribution of Bulwer’s petrels in the Atlantic. Otherwise, why did half of the individuals 459 

from the subtropical populations migrate to the subtropical (and preferred) non-breeding sub-460 

range, while the other half stayed closer in the tropical (and less suitable) sub-range? A trade-461 

off might exist between the benefit of exploiting a more suitable, familiar habitat and 462 

energetic constraints. The higher costs of longer migrations might be compensated by a more 463 

efficient exploitation of more distant wintering grounds, so that neither a short- nor a long-464 

distance migratory strategy is consistently more successful (e.g. Hestbeck et al., 1992). In this 465 

regard, the longer period spent in subtropical wintering areas by individuals from subtropical 466 

colonies (see Table 1), compared with the relatively shorter non-breeding season of tropical 467 

birds (by ca. 50 days on average), would further support the differential habitat preference 468 

hypothesis for leapfrog migrations in this species. This would explain why southerly birds 469 

migrated relatively short distances and remained within the tropics in winter, while part of the 470 

northern populations engaged in longer migrations, and spent the winter south of the Tropic 471 

of Capricorn. The cost of transit to this more distant area would encourage other individuals 472 

from the northern populations to stay within the tropical, less-preferred region during the non-473 

breeding season, where they overlap with the southern populations.  474 

 475 

Conclusions 476 

Understanding the spatiotemporal importance of habitats and areas used by marine fauna, 477 

defined at local, regional and international scales, should be a first priority to try and ensure 478 

their  conservation (Game et al., 2009). In this regard, our study not only provides evidence 479 

and tools to researchers for designing appropriate studies aiming to disentangle migratory 480 

patterns of marine species at sea, but also provides a good example for those investigations 481 
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focussing on understanding the ecological basis for inter- and intra-specific variation in 482 

strategies of long-distance migrants. Using tracking technology and habitat modelling, we 483 

determined the spatiotemporal distribution and migration pattern of a given species; assessed 484 

migratory connectivity and habitat use; and explored alternative explanations for the 485 

strategies observed. Our study demonstrates the utility of integrating diverse tracking data 486 

from multiple populations/species across international boundaries, and habitat modelling, for 487 

identifying important areas common to many marine species in the vast oceanic 488 

environments. This will ultimately allow improving and optimizing the targeting of broad-489 

scale marine conservation efforts. 490 

 491 

To our knowledge, this is the first time that an oceanic seabird has been identified as a 492 

leapfrog migrant. As discussed above and as reported for several leapfrog migratory species 493 

occurring in terrestrial habitats (e.g., Duijns et al., 2012; Fraser et al., 2012; Stanley et al., 494 

2014), competition per se and food availability may not fully explain why some individuals 495 

from the northernmost populations of Bulwer's petrel undertake a leapfrog migration during 496 

which they bear the additional energetic cost of the extra flight distance. Instead, these 497 

individuals may prefer specific environmental conditions or be adapted to feed on particular 498 

resources that only occur in the southernmost part of the non-breeding range, which would 499 

partially compensate for the extra flight time and cost (Boland, 1990; Bell, 1997; Garthe et 500 

al., 2012). Comparative studies conducted on individuals tracked over several years under 501 

contrasting conditions and at several localities would add valuable information on individual 502 

plasticity. Furthermore, complementary studies of trophic ecology based on, for example, 503 

stable isotope analyses of feathers moulted at different periods of the annual cycle would shed 504 

light on habitat and diet preferences in the different breeding and non-breeding quarters, and 505 
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potentially provide more insights into the reasons underlying leapfrog migration (Ramos & 506 

González-Solís, 2012). 507 

 508 
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Table 1. Migration characteristics (mean±SD) of Bulwer’s petrels (Bulweria bulwerii) tracked from five colonies in the Macaronesian 709 

archipelagos of the Azores, Salvages, Canaries, and Cape Verde. For each population, “Total” refers to total number of migrations tracked. 710 

Breeding colony 
(archipelago) 

 

Year 
 

n 
 

Colony 
departure  

date 

Colony 
arrival  
date 

Duration of the 
non-breeding  
period (days) 

Area during the  
non-breeding 

period (106 km2) 

Distance to  
non-breeding  
range (km) 

Centroid latitude  
of the non- 

breeding period (°) 
Vila Islet  2007 8 03 Sep ± 4.1 05 May ± 3.6 244.6 ± 5.7 3.5 ± 1.4 5605.7 ± 1528.9 -12.7 ± 13.9 
(Azores Islands) 2008 1 21 Sep 14 May 235 5.6 5705.6 -12.8 
 2010 5 01 Sep ± 6.1 06 May ± 0.9 247.2 ± 5.5 2.2 ± 0.9 4786.2 ± 1372.4 -4.9 ± 12.8 
 2012 1 12 Oct 24 Apr 194 1.8 3306.9 8.6 
 Total 15 06 Sep ± 12.1 05 May ± 4.7 241.5 ± 14.4 3.1 ± 1.5 5185.9 ± 1461.5 -8.7 ± 13.4 
Selvagem Grande  2009 4 26 Aug ± 14.0 13 Apr ± 3.3 230.2 ± 14.2 1.7 ± 1.2 3885.3 ± 1883.3 -1.6 ± 18.1 
(Salvages Islands) 2012 7 01 Sep ± 0.8 30 Mar ± 0.8 209.6 ± 1.0 1.9 ± 1.2 5135.5 ± 1159.1 -14.2 ± 11.9 
 Total 11 30 Aug ± 8.6 04 Apr ± 7.3 217.1 ± 13.0 1.8 ± 1.1 4680.9 ± 1506.0 -9.6 ± 14.9 
Montaña Clara  2010 14 27 Aug ± 19.9 28 Apr ± 7.9 244.4 ± 20.7 4.1 ± 2.2 4555.3 ± 1736.6 -8.4 ± 18.1 
(Canary Islands) 2011 6 05 Sep ± 30.8 29 Apr ± 3.0 237.0 ± 28.4 4.6 ± 1.6 5387.2 ± 1311.0 -16.0 ± 13.8 
 2012 21 09 Sep ± 29.0 21 Apr ± 6.1 223.6 ± 28.1 2.7 ± 1.8 4045.1 ± 1724.1 -4.0 ± 16.9 
 Total 41 04 Sep± 26.7 25 Apr ± 7.4 232.7 ± 27.0 3.5 ± 2.0 4415.7 ± 1703.5 -7.3 ± 17.1 
Raso Islet  2007 8 24 Oct ± 15.5 22 Apr ± 6.8 181.0 ± 13.5 0.8 ± 0.4 2097.5 ± 1047.1 0.1 ± 9.2 
(Cape Verde) 2008 5 09 Sep ± 26.7 24 Apr ± 8.6 227.6 ± 24.9 1.4 ± 1.4 2212.0 ± 1220.3 -1.9 ± 9.9 
 2009 4 25 Sep ± 18.9 19 Apr ± 3.5 205.5 ± 15.9 1.1 ± 0.4 1343.4 ± 810.8 8.5 ± 10.5 
 Total 17 04 Oct ± 27.4 22 Apr ± 6.8 200.5 ± 26.6 1.1 ± 0.8 1953.7 ± 1048.6 1.5 ± 9.9 
Cima Islet  2010 6 09 Aug ± 11.5 03 Feb ± 14.7 177.5 ± 19.4 1.3 ± 0.4 1210.1 ± 751.6 6.5 ± 6.3 
(Cape Verde) 2011 14 03 Aug ± 17.5 14 Jan ± 29.5 164.1 ± 28.7 1.8 ± 0.7 1579.2 ± 720.4 3.7 ± 6.7 
 Total 20 05 Aug ± 15.9 22 Jan ± 27.2 168.1 ± 26.5 1.6 ± 0.7 1468.4 ± 730.6 4.5 ± 6.6 
  711 
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Table 2. Overlap in the 95% kernel UD of Bulwer’s petrels (Bulweria bulwerii) tracked during the non-breeding period. Pairwise comparisons are 712 

of the fourteen non-breeding events considered in this study. 713 

 714 

Non-breeding  
event 

Vila  
2007-08 

Vila  
2008-09 

Vila  
2010-11

Vila  
2012-13 

Selvagem 
2009-10 

Selvagem 
2012-13 

M. Clara  
2010-11 

M. Clara  
2011-12 

M. Clara  
2012-13 

Raso  
2007-08 

Raso  
2008-09

Raso  
2009-10 

Cima  
2010-11 

Vila 2008-09 65.8             
Vila 2010-11 73.6 52.0            
Vila 2012-13 51.3 34.7 65.1           
Selvagem 2009-10 45.0 27.4 53.9 48.7          
Selvagem 2012-13 58.6 44.7 51.8 34.3 51.9         
M. Clara 2010-11 57.6 51.5 54.7 43.1 60.2 49.3        
M. Clara 2011-12 56.2 52.4 54.1 35.3 59.5 57.9 76.1       
M. Clara 2012-13 49.5 44.4 49.2 41.1 59.2 47.5 75.5 66.2      
Raso 2007-08 35.5 30.6 39.1 33.2 38.1 21.8 38.0 25.9 40.7     
Raso 2008-09 30.8 31.1 31.1 26.6 32.0 20.2 33.7 23.6 38.6 76.1    
Raso 2009-10 34.0 30.9 37.2 35.6 35.5 22.0 37.5 27.5 45.0 73.4 68.3   
Cima 2010-11 33.2 22.7 39.6 40.1 45.7 21.2 35.2 24.8 36.0 69.3 62.0 57.9  
Cima 2011-12 41.0 31.7 46.8 44.8 48.0 25.7 40.9 29.4 44.4 73.3 68.1 65.4 72.6 
 715 

 716 

 717 
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Table 3. Estimates of model fit (AUC) and relative importance (contribution percentage and permutation importance, both normalized to percentages) of the 718 

environmental variables to the modelled Bulwer’s petrel (Bulweria bulwerii) presence probability (relevant values > 20% in bold). The percentage contribution 719 

of each variable was calculated on the basis of how much the variable contributed to an increase in the regularized model gain as averaged over each model run. 720 

Permutation importance of a given variable derived from the resulting change in training AUC when values of this variable on training presence and background 721 

data were randomly varied. Analyses were carried out separately for the breeding and non-breeding periods, and year-round. Colony of origin and main non-722 

breeding areas (i.e. connectivity cluster) were included as fixed factors for the breeding and non-breeding datasets, respectively. Values shown are averages over 723 

100 model replicates. AUC: area under the receiver operating characteristic curve; BAT: bathymetry; BATG: gradient of BAT; CHLa: chlorophyll a 724 

concentration; SST: sea surface temperature, SSTG: gradient of SST, and WIND: wind speed.  725 

      Percentage of contribution  Permutation importance 
    AUC BAT BATG CHLa SST SSTG WIND  BAT BATG CHLa SST SSTG WIND
Breeding period               
 Vila 0.966±0.004 4.1 1.9 4.5 37.4 12.1 40.0  3.4 1.1 1.5 26.6 8.7 58.7 
 Selvagem 0.902±0.008 4.5 6.0 4.4 38.6 7.5 38.9  8.8 4.8 7.2 31.2 11.2 36.7 
 Montaña Clara 0.915±0.007 3.7 3.9 5.1 48.8 8.3 30.2  6.0 4.0 6.3 40.2 15.0 28.5 
 Raso 0.920±0.008 9.4 2.4 13.9 60.5 3.5 10.3  10.5 4.5 14.7 56.3 5.5 8.6 
 Cima 0.943±0.005 12.1 2.6 15.1 55.4 2.3 12.5  15.4 3.3 14.3 43.1 3.2 20.8 
 Total breeding 0.864±0.008 7.3 4.8 7.9 30.3 6.7 43.0  12.3 7.2 10.7 25.6 12.0 32.1 
                
Non-breeding period               
 cluster A 0.851±0.006 3.8 3.4 13.3 58.1 19.2 2.3  7.4 3.7 7.0 57.1 21.7 3.2 
 cluster B 0.838±0.006 4.4 3.2 32.0 49.4 4.7 6.4  11.1 5.4 15.5 46.7 9.6 11.7 
 Total non-breeding 0.829±0.006 4.7 3.2 27.9 54.2 8.1 1.9  9.8 5.8 12.5 53.6 15.6 2.7 
                
Year round 0.812±0.006 6.4 5.1 18.3 54.6 9.1 6.6  12.8 6.8 9.8 45.4 16.3 8.9 

 726 
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Table 4. Parameter estimates (±SE) from generalised linear mixed models fitted to at-sea activity (estimated as number of hours spent flying) of 727 

Bulwer’s petrels (Bulweria bulwerii) throughout the year. Time spent flying was modelled considering breeding colony and day/night as fixed 728 

factors for the breeding period, ranges of 15 degrees of latitude and day/night as fixed factors for the non-breeding period, and season (i.e. breeding 729 

and non-breeding periods) and day/night as fixed factors for the entire annual period. In all cases, the interaction between the two fixed effects was 730 

included (i.e. colony*daynight, latitude*daynight, and season*daynight, respectively). All evaluated models included individual and year of 731 

sampling as random factors. AICc refers to the corrected (c) Akaike’s Information Criterion (AIC). 732 

    Time spent flyingbreeding     Time spent flyingnon-breeding    Time spent flyingyear 
 k AICc ∆AICc AICc Wgt  k AICc ∆AICc AICc Wgt  k AICc ∆AICc AICc Wgt 
colony * daynight 13 127565.8 0.0 1.0 latitude * daynight 13 188023.9 0.0 1.0 season * daynight 7 323853.8 0.0 1.0 
colony + daynight 9 129460.1 1894.4 0.0 latitude + daynight 9 189433.6 1409.8 0.0 season + daynight 6 326824.3 2970.5 0.0 
colony 8 131867.1 4301.4 0.0 latitude 8 210197.2 22173.3 0.0 season 5 345114.3 21260.6 0.0 
daynight 5 129590.2 2024.5 0.0 daynight 5 190820.8 2796.9 0.0 daynight 5 334415.7 10561.9 0.0 
null 4 132009.7 4443.9 0.0 null 4 210828.2 22804.3 0.0 null 4 350022.5 26168.8 0.0 
Fixed effects (estimate±SE)   Fixed effects (estimate±SE)   Fixed effects (estimate±SE)   
   Cima & day (Intercept) 10.5±0.8     Lat 40N-25N & day (Intercept) 6.7±0.2     Breeding & day (Intercept) 7.1±0.3  
   Raso   -5.9±0.4     Lat 25N-10N   -0.6±0.1     Non-breeding   -2.0±0.0  
   Montaña Clara   -1.1±0.4     Lat 10N-5S   -1.8±0.1       
   Selvagem   -4.0±0.4     Lat 5S-20S   -3.0±0.1       
   Vila   -2.1±0.4     Lat 20S-40S   -3.9±0.1       
   night   0.3±0.1     night   2.3±0.2     night   3.0±0.0  
   Raso & night   3.5±0.1     Lat 25N-10N & night   -0.4±0.2     Non-breeding & night   -0.2±0.0  
   Montaña Clara & night   1.5±0.2     Lat 10N-5S& night   0.6±0.2       
   Selvagem & night   2.2±0.1     Lat 5S-20S & night   2.0±0.2       
   Vila & night   2.9±0.1     Lat 20S-40S & night   1.9±0.2       
Random effect (variance±SE)   Random effect (variance±SE)   Random effect (variance±SE)   
   Individual   0.9±0.9     Individual   1.6±1.2     Individual   0.8±0.9  
   Year   3.7±1.9     Year   0.1±0.4     Year   0.6±0.8  
   Residual     2.8±1.7      Residual     2.8±1.7      Residual    3.3±1.8   
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Figure 1. Estimated distance (in kilometres) between the breeding and non-breeding areas of 733 

every tracked petrel from each of the five study colonies. Latitude of each colony (in degrees) 734 

is used in the x-axis. Picture courtesy of Olli Tenouvo. 735 

 736 

Figure 2. Kernel density distributions (25, 50, 75, and 95%, from darker to lighter tone 737 

contours, respectively) of Bulwer’s petrels (Bulweria bulwerii) tracked during the non-738 

breeding periods from different colonies: (a) Vila Islet in the Azores, (b) Selvagem Grande in 739 

Salvages Islands, (c) Montaña Clara in the Canaries, and (d) Raso Islet and Cima Islet both in 740 

Cape Verde. Black circles show the location of the respective breeding colony and white/grey 741 

symbols represented individual averaged non-breeding positions (computed as averaged 742 

coordinates of every individual 5% UD) in the appropriate plot. In addition to that, migratory 743 

connectivity at meta-population scale is also indicated in the figures; two differentiated and 744 

significant clusters are depicted in white and grey (for A and B, respectively) and relevant 745 

sub-clusters of the first cluster are shown in white squares and white circles (for A.1 and A.2, 746 

respectively, see Results for details). 747 

 748 

Figure 3. Habitat suitability of Bulwer’s petrels (Bulweria bulwerii) from five different 749 

colonies assessed from MaxEnt models. Five right habitat modellings were performed with 750 

the breeding positions of the individuals from each colony and the environmental conditions 751 

while breeding (in a, c, e, g, and i).Complementarily, five probability maps (on the left) for 752 

each of the populations were built for the non-breeding season using the respective and 753 

aforementioned breeding habitat models and the non-breeding environmental conditions (in b, 754 

d, f, h, and j). Kernel density distributions (25, 50, 75 and 95%, from thicker to lighter line 755 

contours, respectively) of each petrel colony during the breeding and non-breeding seasons 756 

are also depicted in the respective map. White stars indicate the position of the colony. 757 
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 758 

Figure 4. Spatial variation in activity patterns during daylight and night by Bulwer’s petrels 759 

(Bulweria bulwerii) tracked during the breeding and non-breeding seasons. Night flight index 760 

(in a and c, breeding and non-breeding, respectively) reflects the relative amount of flight 761 

during night, ranging from -1 (i.e., flying exclusively during the daytime) to +1 (i.e. flying 762 

exclusively at night). Meta-population kernel density distributions (25, 50, 75 and 95%, from 763 

thicker to lighter line contours) during the breeding and non-breeding periods are also 764 

depicted. Box-plots represent number of hours spent flying during daylight and night by 765 

petrels tracked during the breeding (by colony in b) and non-breeding (by each 15 degrees of 766 

latitude in d) seasons. White and grey boxes represent diurnal and nocturnal activity, 767 

respectively. 768 
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Table S1. Modelling capture (p) and survival () probabilities of the adult Bulwer’s petrels (Bulweria bulwerii) which were included in the 8 

study. Demographic parameters were estimated with capture-mark-recapture (CMR; Lebreton et al. 1992) models, using M-Surge version 1.8 9 

(Choquet et al. 2006) and a total of 311 adult capture-recapture histories (172 equipped birds and 139 non-equipped controls, i.e., the breeding 10 

partners of those equipped birds), over the 2007-2014 period. We started with the Cormarck-Jolly-Seber (CJS) model where survival (Φ, 11 

probability that a petrel alive at year t survives at year t+1) and capture (p, probability that a petrel alive and present at the breeding colony at 12 

year t is captured during the year t) were time (t) and group (GLS deployment) dependent. The fit of the general model to the data was 13 

investigated with goodness-of-fit (GOF) tests for each group using program U-Care version 2.2 (Choquet et al. 2005). Model selection was done 14 

using the Akaike Information Criterion corrected for small sample sizes and overdispersion (QAICc; Burnham and Anderson 1998). When 15 
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comparing two models, if ΔQAICc > 2, the preferred model is the one with the smallest QAICc value (i.e. the most parsimonious model in terms 16 

of the number of parameters and model deviance; Lebreton et al. 1992). First, models with various capture probability structures were compared, 17 

and then we considered models with various survival probability structures. The most parsimonious model obtained was Φ(t) p(gls*t) , where 18 

survival only depended on the year of sampling, and capture probability both on year and whether the bird was fitted with a GLS logger. This 19 

suggests there was no effect of logger deployment on subsequent survival. 20 

 21 

 22 

 23 

 24 

 25 

 26 

27 

nº Model np DEV QAICc ∆QAICc
Modelling capture probability (p)    
1  (gls*t) p (gls*t) 78 841.4 997.4 19.7 
2  (gls*t) p (t) 62 883.7 1007.7 30.0 
3  (gls*t) p (·) 49 914.5 1012.5 34.8 
Modelling survival probability ()    
4  (t) p (gls*t) 62 853.7 977.7 0.0 
5  (·) p (gls*t) 49 885.4 983.4 5.7 
np number of parameters estimated; DEV deviance; QAICc quasi-likelihood 
Akaike’s information criterion values; ∆QAIC difference between the current 
and the lowest QAICc model. 
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Table S2. Parameter estimates (± standard error) from generalised linear mixed models fitted to six migratory characteristics of Bulwer’s petrels 28 

(Bulweria bulwerii) from five Macaronesian colonies. The best supported model (in bold) included breeding colony as a fixed effect in all cases. 29 

All evaluated models included individual identity and year of sampling as random effects. AICc refers to the corrected (c) Akaike’s Information 30 

Criterion (AIC). 31 

 32 

 

Colony 
departure 

date* 

Colony 
arrival  
date* 

Duration of the non-
breeding period 

(days) 

Area of the non-
breeding 

period (106 km2) 

Distance to non-
breeding range 

(km) 

Centroid latitude  
of the non- 

breeding period (°) 
AICc values       

Breeding colony 901.6 806.3 917.1 372.0 1729.4 813.4 
Null 958.8 1216.2 1022.7 409.4 1857.0 846.8 

Fixed effects (estimate±SE)       
Cima (Intercept) 219.9±7.0 386.0±3.9 168.7±8.6 1.5±0.5 1291.7±394.4 5.8±3.7 
Raso 58.1±9.4 -274.5±5.4 28.5±10.9 -0.5±0.6 551.7±559.2 -3.4±5.3 
Montaña Clara 23.6± 6.8 -269.4±4.1 71.2±7.4 2.3±0.5 3186.3±432.0 -13.4±4.2 
Selvagem Grande 18.5±9.6 -289.1±5.7 56.6±10.6 0.8±0.7 3625.9±595.5 -17.2±5.7 
Vila 26.3±8.8 -261.4±5.2 74.4±9.8 1.6±0.6 3831.0±545.1 -13.9±5.3 

Random effect (variance±SE)       
Individual 183.5±13.6 0.0±0.0 131.4±11.5 1.2±1.1 1033518.0±1016.6 107.8±10.4 
Year 71.9± 8.5 16.9±4.1 155.3±12.5 0.2±0.5 123521.0±351.5 8.8±3.0 
Residual 254.9±16.0 167.6±13.0 366.9±19.2 0.9±1.0 904191.0±950.9 79.7±8.9 

* expressed as ordinal date (numerical within the Julian year) 33 

 34 

 35 
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Table S3. Analysis of collinearity between the eight oceanographic variables used in the habitat models (breeding: April to August, non-36 

breeding: October to February of consecutive years, and year-round: January to December). For each combination, the matrices show the sign 37 

and magnitude of the Spearman correlation coefficient (above diagonal) and the significance level (P-values; below diagonal). Highly correlated 38 

(-rs- > 0.5) predictors depicted in bold. BAT: bathymetry, BATG: bathymetry gradient, CHLa: chlorophyll a concentration, CHLG: CHLa 39 

gradient, SAL: salinity, SST: sea surface temperature, SSTG: SST gradient, WIND: wind speed. 40 

Breeding period BAT BATG CHLa CHLG SAL SST SSTG WIND 
BAT ***** 0.254 0.482 0.425 -0.183 -0.198 0.422 0.087 

BATG <0.001 ***** 0.244 0.209 -0.112 -0.140 0.164 0.031 

CHLa <0.001 <0.001 ***** 0.915 -0.728 -0.058 0.487 -0.087 

CHLG <0.001 <0.001 <0.001 ***** -0.663 0.122 0.411 -0.131 

SAL <0.001 0.026 <0.001 <0.001 ***** -0.154 -0.343 0.140 

SST <0.001 0.003 0.402 0.011 0.001 ***** -0.375 -0.418 

SSTG <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ***** 0.038 

WIND 0.126 0.659 0.126 0.006 0.003 <0.001 0.659 ***** 

Non-breeding period BAT BATG CHLa CHLG SAL SST SSTG WIND 
BAT ***** 0.254 0.336 0.357 -0.144 -0.197 0.393 0.014 
BATG <0.001 ***** 0.227 0.193 -0.124 -0.157 0.195 0.084 

CHLa <0.001 <0.001 ***** 0.909 -0.438 -0.206 0.430 0.465 

CHLG <0.001 <0.001 <0.001 ***** -0.613 0.036 0.366 0.264 

SAL 0.001 0.008 <0.001 <0.001 ***** -0.222 -0.174 0.040 

SST <0.001 <0.001 <0.001 0.922 <0.001 ***** -0.489 -0.426 

SSTG <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ***** 0.195 

WIND 0.922 0.115 <0.001 <0.001 0.922 <0.001 <0.001 ***** 
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 8 

Figure S1. Silhouette plot showing the classification of Bulwer’s petrel (Bulweria bulwerii) individuals in two first-level clusters. Each bar 9 

represents the silhouette values si for a single petrel (see also Methods: Spatial analyses and migratory connectivity) and is displayed according 10 

the breeding colony of origin (yellow for Cima-Cape Verde, orange for Raso-Cape Verde, green for Montaña Clara-Canaries, sky blue for 11 

Salvages and dark blue for Vila-Azores). Within each cluster, bars are drawn in decreasing length order. Large values indicate good 12 

classification. 13 

 14 

 15 
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