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Abstract: 

Frustration represents a particular aspect of the addictive process that is 
related to loss of control when the expected reward is not obtained. We 
aim to study the consequences of frustrated expected reward on gene 
expression in the mouse brain. For this purpose, we used an operant model 
of frustration using palatable food as reward combined with microarrays. 
Transcriptomic profiles of frontal cortex, ventral striatum and hippocampus 
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were analysed in five groups of mice: (1) positive control receiving 
palatable food and the cue light as conditioned stimulus; (2) frustrated 
group only receiving the cue light; (3) extinction learning group that did 
not receive palatable food nor the light; (4) negative control that never 
received the reinforcer nor the light during the whole experiment, and (5) 
yoked that received palatable food passively. Gene expression changes 
produced by frustration were revealed in the frontal cortex and ventral 
striatum, but not in the hippocampus. Most of the changes, such as the 
modification of the dopamine-DARPP-32 signalling pathway, were common 
in both areas and estimated to have neuronal origin. Extinction learning 
induced transcriptional changes only in the ventral striatum, with most 
genes showing down-regulation and without alteration in the dopamine-
DARPP-32 signalling pathway. Active palatable food seeking behaviour 
induced changes in gene expression in ventral striatum mainly affecting 
cell communication. In conclusion, frustration behaviour induced changes 
in frontal cortex and ventral striatum mainly related to dopamine-DARPP-
32 signalling that could play an important role in the loss of behavioural 
control during the addictive processes. 
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Abstract  

Frustration represents a particular aspect of the addictive process that is related to loss 

of control when the expected reward is not obtained. We aim to study the consequences 

of frustrated expected reward on gene expression in the mouse brain. For this purpose, 

we used an operant model of frustration using palatable food as reward combined with 

microarrays. Transcriptomic profiles of frontal cortex, ventral striatum and 

hippocampus were analysed in five groups of mice: (1) positive control receiving 

palatable food and the cue light as conditioned stimulus; (2) frustrated group only 

receiving the cue light; (3) extinction learning group that did not receive palatable food 

nor the light; (4) negative control that never received the reinforcer nor the light during 

the whole experiment, and (5) yoked that received palatable food passively. Gene 

expression changes produced by frustration were revealed in the frontal cortex and 

ventral striatum, but not in the hippocampus. Most of the changes, such as the 

modification of the dopamine-DARPP-32 signalling pathway, were common in both 

areas and estimated to have neuronal origin. Extinction learning induced transcriptional 

changes only in the ventral striatum, with most genes showing down-regulation and 

without alteration in the dopamine-DARPP-32 signalling pathway. Active palatable 

food seeking behaviour induced changes in gene expression in ventral striatum mainly 

affecting cell communication. In conclusion, frustration behaviour induced changes in 

frontal cortex and ventral striatum mainly related to dopamine-DARPP-32 signalling 

that could play an important role in the loss of behavioural control during the addictive 

processes. 

 

Key Words: Palatable food, frustration, gene expression, operant behaviour, 

progressive ratio, transcriptomics, DARPP-32. 
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Introduction 

A particular behavioural aspect that has received less attention in the study of addictive 

processes and eating disorders is the consequence of the frustrated state occurring when 

the reward is not available. The omission of reward after repeated exposure to consistent 

reinforcement generates a state of frustration (Amsel, 1958) that can be measured using 

a novel instrumental behavioural paradigm recently developed in mice (Burokas et al., 

2012). In this model, the most efficient rewarding stimulus omitted after repeated 

training in an operant paradigm was palatable food, and the frustrated expectation of 

reward produced perseverative operant responding and aggressiveness (Burokas et al., 

2012). In agreement, human subjects prevented from reaching expected rewards show 

affective alterations that include aggressiveness, irritability and anxiety (Henna et al., 

2008). This negative emotional state specifically generated by frustration could 

represent an early symptom of the later development of the compulsive behaviour 

characteristic of the behavioural loss of control occurring in addictive-like processes. 

Drug addiction and eating disorders share common mechanisms that reflect imbalances 

in the responses of the brain to rewarding stimuli. Thus, eating disorders leading to 

obesity are characterized by compulsive food consumption and inability to stop from 

eating despite the negative consequences. These symptoms are remarkably parallel to 

those of drug addiction, and the present model is therefore relevant to evaluate these 

manifestations of addictive-like behaviour promoted by palatable food. Other authors 

have developed animal models of compulsive overeating associated with some forms of 

frustration that appeared after cue presentation and food omission. These models of 

binge eating are based on an interaction between cyclic food restriction and 

environmental stress. In these models, pre-exposure to environmental cues that predict 

food availability increases operant responding for food, which correlates with increased 

Page 4 of 43Addiction Biology



For Review
 O

nly

E. Martín-García 

 3

hypothalamic-pituitary-adrenal axis activation (Cifani et al., 2009a; Cifani et al., 

2009b). 

Genetic studies have been used to determine the degree to which individual behavioural 

differences are due to genetic variations or to environmental influences that coordinate 

the brain circuits, and to identify the specific genes that contribute to individual 

behavioural differences (Hamer, 2002). One of the most used approaches involve the 

evaluation of gene expression changes at transcriptomic level in animal models. Using 

expression microarrays technology, it has recently been possible to identify alterations 

in the expression of numerous genes involved in the modulation of key signalling 

pathways that drive complex behaviours, such as drug self-administration in mice 

(Fernandez-Castillo et al., 2012). Similarly, previous studies have identified changes in 

gene expression related to dopaminergic and/or adrenergic systems in specific limbic 

structures due to caloric restriction and obesity in mice (Mathes et al., 2010; Lee et al., 

2010). In the same line, obesity-prone rats have decreased dopamine receptor 

expression and extracellular dopamine levels in limbic structures (Geiger et al., 2008; 

Geiger et al., 2009), and dopamine D1 receptors have been associated with palatable 

food intake (Terry and Katz, 1992; Katz et al., 2006).  

The aim of the present work was to study the differential transcriptional changes 

induced by frustrated expected reward of palatable food in the mouse brain, specifically 

in the frontal cortex, ventral striatum and hippocampus. The frontal cortex plays a 

complex role in cognition, including inhibitory control, decision making and emotional 

regulation, and dysfunctions in this region might impair the control over compulsive 

food and drug intake (Volkow and Fowler, 2000; Kalivas, 2004; Tomasi and Volkow, 

2013). Ventral striatum is involved in driving the initial motivation for the different 

rewarding stimuli and plays a crucial role in habits formation (Everitt et al., 2008). The 
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hippocampus is essential for memory and conditioning to reward associated cues that 

promote reward seeking behaviour and it plays a crucial role in relapse to drug and food 

consumption (Haber et al., 2006). These brain regions have been closely related to 

addictive processes and overeating and represent excellent targets to evaluate the 

transcriptomic consequences of frustration to an expected reward.  
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Materials and methods  

 

Animals 

Male C57BL/6J mice (Charles River, France), weighing 24-26 g at the beginning of the 

experiment were used in this study. Mice
 
were housed individually in controlled 

laboratory conditions with the temperature maintained at 21 ± 1 ºC and humidity at 55 ± 

10%. Mice were tested during the first hours of the dark phase of a reversed light/dark 

cycle (lights off at 8.00 h and on at 20.00 h). Mice were food-deprived (85% of the 

initial weight) and water was available ad libitum. Animal procedures were conducted 

in strict accordance
 
with the guidelines of the European Communities Directive 

86/609/EEC
 
regulating animal research and were approved by the local ethical 

committee (CEEA-PRBB). 

 

Food operant seeking behaviour apparatus 

Operant responding maintained by food was performed in mouse operant chambers 

(Model ENV-307A-CT, Med Associates, Georgia, VT, USA) equipped with two 

retractable levers, one randomly selected as active lever and the other as inactive. 

Pressing on the active lever resulted in a pellet delivery together with a stimulus-light 

named conditioned stimulus (CS), located above the active lever, while pressing on the 

inactive lever had no consequences. The chambers were made of aluminium and acrylic, 

and were housed in sound- and light-attenuated boxes equipped with fans to provide 

ventilation and white noise. A food dispenser equidistant between the two levers 

permitted delivery of food pellets when required.  

 

Highly palatable food pellets 
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During the operant self-administration sessions, animals were exposed to 20 mg highly 

palatable food pellets (TestDiet, Richmond, IN, USA) with a formula that has similar 

caloric value of standard food (20.5% protein, 12.7% fat and 66.8% carbohydrate, with 

a caloric value of 3.48 kcal/g). These pellets were modified by the addition of chocolate 

flavor (2% pure unsweetened cocoa) and with the addition of sucrose that represented 

the 50.1% of the carbohydrate content. Pellets were presented only during the operant 

behavioral sessions. Otherwise, animals were maintained on standard chow for their 

daily food intake. 

Experimental design 

C57BL/6J male mice (n=45) were trained during 1 h for 10 consecutive days to lever-

press for chocolate-flavoured food-pellets as reward, paired with the presentation of a 

cue-light serving as CS, on a fixed ratio (FR) 1 schedule of reinforcement followed by 

10 sessions under FR5 and 10 sessions under FR10. The criteria for acquisition of 

operant responding were achieved when mice maintained a stable responding with less 

than 20% deviation from the mean of the total number of food-pellets earned in three 

consecutive sessions, with at least 75% responding on the reinforced lever, and a 

minimum of 10 reinforcements per session (Burokas et al., 2012). Mice were food-

deprived during the whole experiment at 85% of their ad libitum initial weight adjusted 

for growth. Food deprivation was applied to facilitate operant learning and to optimize 

the number of responses in each session. After the 30 FR sessions, animals were trained 

during 10 days in a progressive ratio (PR) schedule where the response requirement to 

earn the reinforcer escalated according to the following series: 1-2-3-5-12-18-27-40-60-

85-115-150-300. The maximum duration of the PR session was 2 h or until mice did not 

respond on any lever within 1 h. After 10 days of PR with an end-point ratio of 300, one 

additional session of PR was performed under similar conditions with an end-point of 
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150. Mice that reached this end-point were divided in 5 different experimental 

conditions as previously reported (Burokas et al., 2012): 1) a first group receiving 

chocolate-flavoured pellets and the cue-light, interpreted as the positive control, 2) a 

second group that only received the cue-light, interpreted as the frustrating event group, 

3) a third group that did not receive chocolate nor the cue-light, interpreted as the 

extinction learning situation, 4) An additional control group that did not receive the 

reinforcer nor the light during all the phases of the operant training was also included, 

5) a group of mice was yoked to the first positive control group during the whole 

acquisition training period. This last group of mice received chocolate pellets non-

contingently, without receiving the CS at the same time that each master mouse 

obtained a contingent chocolate administration (Fig. 1). The end-point selected for the 

last PR session was lower than the breaking point obtained in previous studies under 

similar experimental conditions (366.88±77.73) to allow that all mice reach this 150 

end-point. After reaching the 150 end-point, animals remained in the training box 

during 10 additional min without any scheduled consequence when responding in the 

active lever, and their active and inactive responses were recorded.  

Mice were sacrificed by cervical dislocation 20 min after the end of last PR session. The 

brains were quickly removed and the frontal cortex, ventral striatum and hippocampus 

were dissected according to the mouse brain atlas (Paxinos and Franklin, 1997). Brain 

tissues were then frozen by immersion in 2-methylbutane surrounded by dry ice, and 

stored at -80ºC for later quantification of gene expression.  

 

RNA isolation and microarray hybridization 

Forty-five mice (nine animals per group of frustrated, extinction learning, positive 

control, yoked and negative control) and three brain areas (frontal cortex, ventral 
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striatum and hippocampus) were used in the expression microarray study. Three pools 

consisting of three mice per pool were used for each experimental group. The pools 

were homogeneous in the behavioural results obtained during the 10 additional min 

after achieving the 150 end-point in the last PR session (number and rate of responses). 

The pooled individuals were the same for all the brain regions. We used the GeneChip® 

Mouse Expression Set 430 array (Affymetrix, Santa Clara, CA, USA) that allows 

inspection of the expression levels of over 39,000 transcripts. A total of 45 chips were 

used: three pools of three individuals per condition (frustration, extinction learning, 

positive control, yoked and negative control) and three brain areas (frontal cortex, 

ventral striatum and hippocampus). See supporting information for additional details of 

the method. 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

To confirm expression changes obtained in the microarray data, we selected genes 

according to their function for qRT-PCR validation. Total RNA were reverse-

transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Foster city, CA, USA). Quantitative Real Time-PCR experiments were 

performed for 11 genes using the LightCycler 480 II system and the Universal Probe 

Library (Roche Applied Science, Penzberg, Germany). Gene assays were designed 

using the Universal ProbeLibrary Assay Design Center software (Roche Applied 

Science, www.roche-applied-science.com). Sequence of the primers and probes used 

are available upon request. The genes selected as endogenous controls, Gapdh 

(glyceraldehyde-3-phosphate dehydrogenase) and Hprt1 (hypoxanthine 

phosphoribosyltransferase 1), were chosen according to the microarray data. After 
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confirming stability across experiments by qRT-PCR, they were used to normalize the 

relative amounts of mRNA. 

 

Statistical and bioinformatic analyses 

The self-administration behavioural data were analysed using three-way or two-way 

repeated measures analyses of variance (ANOVA), for the acquisition of operant 

responding or the operant responding after the last PR150 respectively, with group as 

between-subject factor and lever (active/inactive) and day or min as within-subjects 

factors followed by post hoc tests (Newman-Keuls) for individual comparisons when 

appropriate. Statistical significance was set at p < 0.05. All results are expressed as 

mean ± S.E.M. The statistical analysis was performed using the Statistical Package for 

Social Science SPSS® 15.0 (SPSS Inc, Chicago, USA). 

For the microarray data, we used Bioconductor software for R environment, as 

described previously (Fernandez-Castillo et al., 2012) (see supporting information for 

details). We compared the expression patterns of frustrated – positive control, extinction 

learning– positive control, frustrated – positive control, positive control – yoked, 

positive control – negative control, and yoked – negative control.  

Canonical pathway enrichment analyses were performed using Ingenuity Pathway 

Analysis 8.8 software (Ingenuity Systems, Redwood city, CA, USA). Kyoto 

encyclopaedia of genes and genomes (KEGG) pathways as well as Gene Ontology (GO) 

enrichment analyses were performed using the WebGESTALT software 

(bioinfo.vanderbilt.edu/webgestalt). The identification of over-represented transcription 

factor binding sites (TFBSs) was performed using Single Site Analysis with the 

oPOSSUM 2.0 software (www.cisreg.ca/cgi-bin/oPOSSUM/opossum) (Ho Sui et al., 

2005), using the default parameters of the vertebrate Jaspar Core profile, and sorting the 
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top 20 results by Z -score. Analysis based on the estimation of glial or neuronal origin 

of transcripts was performed as described before (Sibille et al., 2008). Analyses were 

only performed in frontal cortex genes and the subset of 47 genes common between 

frontal cortex and ventral striatum (ventral striatum genes could not be tested since data 

was not available for this brain area). 

In the qRT-PCR experiments, changes in gene expression for each comparison were 

evaluated using a U-Mann–Whitney nonparametric test, since normality was rejected, 

and statistical significance was set at p < 0.05. 
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Results 

Frustrated expected reward after operant training to obtain chocolate-flavoured 

pellets 

Acquisition of operant responding maintained by palatable food 

The acquisition criteria for operant responding maintained by chocolate-flavoured 

pellets on FR1 were achieved by all the mice equally. No differences in the acquisition 

or the maintenance of operant responding under FR1, FR5 or FR10 schedule were 

revealed among the three experimental groups (frustration, positive control and 

extinction learning) that acquired operant responding before the PR training (for three-

way ANOVA see supporting information, Table S1). During de 10 days of PR training, 

no differences between the three groups were revealed. None of the animals included in 

the negative control or yoked groups achieved the acquisition criteria during FR1, FR5, 

FR10 and PR training, and significant differences were revealed between these two 

control groups and the other experimental groups from the first day of training (Fig. 

2A). 

 

Operant responding after the last PR150  

In the last session of PR, the operant responding in the active lever was evaluated 

during 10 additional min after achieving the end-point 150, without any scheduled 

consequence. As expected, none of the animals in the negative control or yoked groups 

achieved this end-point. As previously reported (Burokas et al., 2012), post-hoc 

Newman-Keuls comparison revealed that the group that underwent the frustrated 

delivery of the reward, showed a significant increase in operant responding after this 

end-point in comparison with the positive control group (p<0.05, Fig. 2B). Similar 

results were obtained in the operant responding rates (lever-presses/min) of the 

Page 13 of 43 Addiction Biology



For Review
 O

nly

E. Martín-García 

 12

frustrated group that were significantly higher 2, 5 and 10 min after the end-point 

compared with the positive control group (p<0.05), (for two-way ANOVA see 

supporting information, Table S2). Response patterns performed on the active and 

inactive levers during the 10 additional min after the end-point for representative mice 

in each experimental group are depicted in Fig. 2C. 

 

Transcriptional changes induced by frustration or extinction learning 

Transcriptomic profiles of frustrated, extinction and positive control mice were 

compared in three different brain areas (frontal cortex, ventral striatum and 

hippocampus), to assess changes in gene expression induced by acute frustration or 

extinction learning. Significant differences were observed in frontal cortex and ventral 

striatum in at least one comparison, but no differences in gene expression were observed 

for any comparison in the hippocampus. 

 

Frustration-induced changes in gene expression 

Under our experimental conditions, the frustration situation induced differences in gene 

expression in both frontal cortex and ventral striatum. In frontal cortex, 116 genes were 

differentially expressed only between frustrated and positive control mice, from which 

almost all of them showed up-regulation in the frustrated mice. No genes showed 

differential expression between frustrated and extinction learning animals (Fig. 3A, 3B 

and supporting information, Table S3). In ventral striatum a total of 1,195 genes were 

differentially expressed only between frustrated and extinction learning mice (Fig. 3A, 

3B, and supporting information, Table S4), most of them also up-regulated in the 

frustrated mice, although no changes could be identified when comparing frustrated and 

positive control mice. Surprisingly, the expression of 47 of these genes was similarly 
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changed in both brain areas, i.e., all of them were over-expressed in the frustrated mice 

(Fig. 3B). In order to identify possible common mechanisms involved in this up-

regulation, we performed an analysis of over-representation of transcription factor 

binding sites in up-regulated genes from each brain area as well as in the 47 genes 

identified in both of them. Binding sites for four transcription factors were over-

represented in the subset of genes identified in each brain region and in the subset of 

common genes: Nkx2-5, Pdx1, Sox5 and Sry (Table 1). Analysis of canonical pathways 

enrichment showed that the pathway “CREB signalling in neurons” was enriched in 

genes differentially expressed in frontal cortex, and ”Synaptic long term potentiation”, 

“Glutamate receptor signalling” and “Glutamate degradation” were enriched in ventral 

striatum (Fig. 3B). Interestingly, the “Dopamine-DARPP-32 feedback in cAMP 

signalling” was found to be enriched both in frontal cortex and in ventral striatum 

genes, in which several genes of this pathway were down-regulated or up-regulated 

(Fig. 3B and 4).  

To elucidate common mechanisms between both structures in frustrated mice, we also 

performed an analysis based on the estimation of glial or neuronal origin of 

differentially expressed transcripts. Gene transcript origin can be estimated by the ratio 

of expression between white matter (WM) and grey matter (GM) obtained by array data 

from adjacent WM samples, as previously described (Sibille et al., 2008). Thus, 

transcripts are estimated to be enriched in glia if WM/GM>1.5, in neurons if 

WM/GM<-1.5, or both cellular populations if -1.5<WM/GM<1.5. Using this analysis, 

we observed a predominance of neuronal genes, especially when considering those 

genes with a more pronounced over-expression, as visually represented by the overall 

blue colour in both panels (Fig. 5).  
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We selected 10 genes among those differentially expressed for validation by qRT-PCR, 

five in frontal cortex and five in ventral striatum, all of them involved in neurological 

processes: Crebbp, Cnr1, Plcb1, Nrxn1, Jak1 in frontal cortex and Camk4, Kalrn, 

Rph3a, Prkcb and Gprin3 in ventral striatum. Up-regulation in frustrated mice of all 

these genes was confirmed by qRT-PCR, except for Rph3a (Table 2). 

 

Extinction learning induced changes in gene expression 

Only in ventral striatum significant differences in gene expression in the extinction 

learning mice were revealed: extinction learning vs positive control (235 genes) and 

extinction learning vs frustrated (1,423 genes) (Fig. 3A). We focused on genes that were 

differentially expressed in both comparisons in the same direction, a total of 228 

transcripts (almost all the genes that showed a differential expression in the extinction 

learning vs positive control comparison), most of them down-regulated in the extinction 

learning mice (Fig. 3A, 3C, and supporting information, Table S5). The pathways 

"ERK5", "Janus kinase (JAK)" and "ciliary neurotrophic factor (CNTF) signalling" 

were found to be enriched. The pathways “spliceosome” and “RNA degradation” were 

also enriched in the KEGG pathway analysis, and canonical pathways showed a 

remarkable involvement of inositol metabolism, synthesis and degradation (Fig. 3C).  

We selected six genes among those differentially expressed in the two comparisons for 

validation by qRT-PCR, all of them involved in neurological processes: Crebbp, Cnr1, 

Plcb1, Nrxn1, Jak1 and Grit. Down-regulation in extinction learning mice of all these 

genes was confirmed by qRT-PCR results (Table 3). 

 

Transcriptional changes induced by palatable food self-administration  
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Gene expression profiles from positive control, yoked and negative control mice were 

compared in the three brain regions studied to identify transcriptional changes caused by 

active or passive palatable food administration. Significant differences were observed 

between the positive control and the yoked mice (624) and also between the positive 

control and the negative control mice (429), only in ventral striatum (Fig. 6A). No 

changes in gene expression were observed between the yoked and the negative control 

mice suggesting that differences exclusively due to palatable food intake could not be 

identified (Fig. 6A). We focused on genes that were differentially expressed as a 

consequence of active operant responding to obtain palatable food. For this purpose, we 

considered only those genes displaying changes in the same direction in the two 

comparisons: positive control vs yoked and positive control vs negative control (Fig. 

6B), and a total of 210 transcripts were differentially expressed due to active operant 

responding (see supporting information, Table S6). Interestingly, 50 of them 

corresponding to 48 different genes were involved in cell communication in the GO 

enrichment analysis (Fig. 6C). The pathways “Neurotrophin signaling pathway” and 

“MAPK signalling pathways” were also found to be enriched. The analysis of canonical 

pathways also revealed enrichment of the "cilliary neurotrophic factor (CNTF) 

signalling". 
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Discussion 

In the present study we have investigated the consequences of frustrated expected 

reward on gene expression in the mouse brain using an operant model of palatable food 

seeking. This model allows to investigate the consequences of the frustrated elimination 

of reward that produces perseverative operant responding, as previously reported 

(Burokas et al., 2012). The frustration was specifically driven by the cue light used as 

CS associated with the reward, and the perseveration in operant responding has been 

related to compulsive behaviour and loss of control that are core manifestations of 

human addictive processes (Burokas et al., 2012). Our results reveal that (1) frustration 

of expected reward changes gene expression in frontal cortex and ventral striatum, in 

which the dopamine-DARPP-32 signalling pathway may play an important role; (2) 

extinction learning modulates gene expression only in ventral striatum; (3) active food 

self-administration alters the expression of genes mainly involved in cell 

communication in ventral striatum; and (4) palatable food intake itself does not alter 

gene expression in the three brain areas analysed.  

The operant schedule of reinforcement used to measure frustration was an adaptation of 

the behavioural paradigm previously validated (Burokas et al., 2012). This schedule 

produces high levels of responding and great resistance to extinction. In this situation, 

the elimination of reward delivery produces extremely high perseverative operant 

responding. As expected, frustration produced significant behavioural consequences 

since mice that underwent this frustration showed a significant subsequent increase in 

operant responding, as previously described (Burokas et al., 2012). Differential changes 

in gene expression were identified depending on the experimental group and the brain 

area analysed (Fig. 7).  
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Frustration 

Interestingly, most of the changes in gene expression that were similarly identified both 

in ventral striatum and frontal cortex were up-regulated in frustrated mice. Based on our 

analysis, these common changes in gene expression in frontal cortex and ventral 

striatum in frustrated mice point to transcripts with predominantly neuronal origin, 

especially in genes that show a higher over-expression (Fig. 5). This suggests that 

frustration is mainly ruled by neural mechanisms in agreement with human studies 

suggesting that omission of rewards produces behavioural changes processed by 

dopaminergic neurons in the ventral striatum, and emotional reactions involving 

activation of prefrontal cortex and anterior insula (Abler et al., 2005). The over-

expression of these genes after the frustration event might be regulated by four 

transcription factors, Nkx2-5, Sox5 and Sry and Pdx1, identified in the enrichment 

analyses of transcription factor binding sites (Table 1). Nkx2-5 is involved in neuronal 

differentiation, Sox5 plays an important role in the specification of subcortically 

projecting axons and Sry localizes in midbrain dopaminergic neurons and participates in 

catecholamine metabolism (Pauwels et al., 2005; Leone et al., 2008; Czech et al., 2012), 

and Pdx1 is directly involved in food intake (Belgardt et al., 2008; Iskandar et al., 

2010).    

Interestingly, the dopamine-DARPP-32 feedback in cAMP signalling pathway was 

enriched in frontal cortex and ventral striatum genes in frustrated mice. We validated 

changes in frustrated mice in the expression of several genes of the dopamine-DARPP-

32 feedback in cAMP signalling pathway: Prkcb, Camk4 (up-regulated in ventral 

striatum), Crebbp and Plcb1 (up-regulated in frontal cortex). DARPP-32 is a substrate 

of cAMP-dependent protein kinase enriched in dopamine-innervated brain areas (Yger 

and Girault, 2011). Brain dopamine pathways modulate the behavioural responses to 
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environmental stimuli and play central roles in obesity and addiction (Volkow and 

O'Brien, 2007; Tomasi and Volkow, 2013). The dopamine-DARPP-32 signalling 

pathway integrates glutamate and dopamine signals in midbrain dopaminergic neurons 

affecting fronto-striatal function and plasticity, and it has been related to several 

behavioural alterations including drug addiction (Albert et al., 2002; Svenningsson et 

al., 2005; Fernandez et al., 2006; Reuter et al., 2009; Mahajan et al., 2009). Both drugs 

of abuse and food reinforcement promote the nuclear accumulation of DARPP-32, 

which leads to nucleosomal responses (Stipanovich et al., 2008). Accordingly, DARPP-

32 mutated mice showed decreased motivation for food and altered behavioural effects 

of drugs of abuse (Stipanovich et al., 2008). A previous microarray study performed in 

mice with caloric restriction also identified enrichment of the dopamine receptor 

signalling and demonstrated that caloric restriction specifically increased DARPP-32 in 

the amygdala, and altered expression of two related genes, Ppm1l and Ppp2r5e, which 

are also altered in frustrated mice in our study (Yamamoto et al., 2009). DARPP-32 

could be an interesting target for pharmacological interventions leading these 

behavioural alterations, with possibilities for modifying modulatory functions without 

altering vital mechanisms (Yger and Girault, 2011).  

On the other hand, the CREBB signalling pathway in neurons was enriched in frontal 

cortex genes in frustrated mice. CREBB signalling is a key pathway in drug addiction 

since long lasting changes induced by drugs of abuse, learning and memory, converge 

in this pathway (Maldonado et al., 1996; Nestler, 2002). Indeed, learning, memory and 

drug addiction are modulated by the same neurotrophic factors, showing overlap in 

certain intracellular signalling cascades and parallel adaptations in neuronal morphology 

(Nestler, 2002). Both processes are accompanied by alterations in synaptic plasticity 

such as long-term potentiation (LTP) and long-term depression (LTD) at particular 
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glutamatergic synapses (Kasanetz et al., 2010). Complex circuits involving the 

hippocampus, cerebral cortex, striatum and amygdala, influenced by CREBB signalling, 

are implicated both in addiction and learning and memory processes. Addiction could 

be considered as an aberrant learning with a strong association between the drug and the 

consequences of the reward (Kauer and Malenka, 2007). A better understanding of the 

molecular and cellular adaptations that occur in these neural circuits may lead to novel 

interventions to improve learning processes and develop novel therapeutic approaches 

for addiction and overeating. 

Several key pathways involved in learning and memory processes in ventral striatum, 

such as synaptic LTP, glutamate receptor signalling and glutamate degradation, were 

enriched in frustrated mice. We validated in frustrated mice changes in gene expression 

of several genes involved in LTP, such as Plcb1, Prkcb, synaptic transmission, such as 

Camk4 and Nrxn1, as well as Crebbp, which is a key molecule in CREBB signalling. 

Synaptic plasticity, as studied by LTP and LTD, represents the ability of the brain to 

strengthen or depress neuronal circuits to maintain adaptive behavioural responses to 

changes in environmental contingencies (Goto et al., 2010; Neiman and Loewenstein, 

2013). Drugs of abuse modify LTP and LTD in different areas of the mesocorticolimbic 

system that play a major role in motivation and addictive behaviour (Kauer and 

Malenka, 2007). Drug-induced alterations in LTP and LTD in ventral striatum and 

cerebral cortex have been proposed to play an important role in compulsive drug intake 

(Chen et al., 2008) and drug addiction (Kasanetz et al., 2010; Kasanetz et al., 2013).  

Extinction learning 

Extinction learning mice differed significantly from frustrated mice at both behavioural 

and gene expression level (Fig. 7). These mice did not show the frustrating responses 

because the behavioural consequences of the frustrated expected reward are minimized 
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without the exposure to the CS. This allows to differentiate the behavioural 

consequences of the frustrated expected reward from the effects produced by an 

extinction-like procedure that is mimicked in this extinction learning group (Burokas et 

al., 2012). An illustrative model of the possible network involved in the behavioural 

responding revealed in the frustrated and extinction learning mice is depicted in Fig. 7. 

The behavioural control exerted by the frontal cortex on the operant responding is 

disrupted in the frustrated mice. Extinction learning mice have impaired reward 

expectation mediated by ventral striatum mechanisms. The exposure of all the 

experimental groups to a similar operant training could explain the absence of gene 

expression modification at the hippocampal level (Fig. 7). As expected, the extinction 

learning induced changes in gene expression only in ventral striatum, in agreement with 

the differences of motivation and reward expectation driven by the CS (Fig.7). In 

contrast with frustrated mice, the dopamine-DARPP-32 signalling pathway was not 

enriched in extinction learning mice. In addition, the ERK5 signalling pathway was 

enriched in ventral striatum only in extinction learning mice, which has an important 

role in hippocampus-dependent memory, mainly contextual memory (Pan et al., 2013). 

Similarly, the JAK signalling pathway that is involved in drug addiction and mediates 

chronic cocaine effects on the VTA dopaminergic neurons (Berhow et al., 1996), was 

also found to be enriched in the ventral striatum of extinction learning mice and this 

change was validated. Furthermore, the enriched CNTF signalling pathway is 

interestingly involved in food intake since CNTF administration reduced food intake 

and body weight in obese (Stefater et al., 2012). All those enriched pathways involved 

in addiction, memory and food intake may play an important role in the neuronal 

adaptations and behavioural outcomes related to this extinction learning. 
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Palatable food operant training 

Ventral striatum was the only brain region that showed transcriptional changes induced 

by operant training to obtain palatable food. Most of the genes showing altered 

expression as a consequence of palatable food seeking behaviour were involved in cell 

communication, a key function for the establishment of new synapses, and neuronal 

remodeling processes essential for learning and memory. Among the pathways enriched 

by palatable seeking, it is worth to mention those involved in neuronal adaptive 

changes, such as “Neurotrophin signalling pathway” and “MAPK signalling pathways”. 

Interestingly, long-term exposure to palatable food itself did not produce differential 

effects on gene expression changes, which does not allow to identify differences due to 

palatable food intake under our experimental conditions. 

Several limitations should be taken into account in the present study: i) the 

heterogeneity of the samples regarding individual differences in behavioural responses, 

ii) the use of pooled samples, that was performed to obtain sufficient RNA from tissue 

samples of small size and to reduce the number of replicas in the microarray, iii) the 

small fold change in gene fluctuations that could limit detection of differences in lowly 

expressed genes. Gene expression profile was assessed 20 min after the last progressive 

ratio session, and gene expression changes at this time-point are therefore likely to 

reflect an acute effect rather than long-term changes. Therefore, important long-term 

changes in gene expression, such as those involved in synaptic plasticity and 

remodeling or other still unknown genes triggering long-term changes, could be missed 

out in our experiment design of frustrating behaviour in favour of acute expression 

changes. In this sense, the lack of gene expression changes in the hippocampus may be 

explained by our experimental conditions that prioritized acute effects of frustration. In 

contrast, other studies prioritizing long-term changes have revealed gene expression 
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modifications in this brain region after pharmacological and/or operant training 

manipulations (Krasnova et al., 2008; Fernandez-Castillo et al., 2012). Specific gene 

expression changes were detected in particular brain areas after a unique behavioral 

manipulation. In frontal cortex, differences were only detected between positive control 

and frustrated mice (Fig. 7). An inhibitory control of the motivation exerted by frontal 

cortex should occur in positive control mice after the reward acquisition, whereas this 

inhibitory control would not appear in frustrated mice that did not receive the reward. In 

contrast, differences in the striatum were identified between the extinction learning 

group and the other two groups, while no changes in gene expression were seen 

between frustrated animals and positive controls (Fig. 7). This dramatic change 

selectively promoted by omission of the secondary reinforcer, the cue light, reveals the 

relevance of the predictive value of this stimulus. 

In conclusion, the mechanisms underlying frustrated behaviour seem to involve mainly 

neuronal circuits pointing to the dopamine-DARPP-32 signalling pathway as a common 

target in frontal cortex and ventral striatum. In contrast, extinction learning does not 

involve dopamine-DARPP-32 signalling and the changes in gene expression are 

restricted to the ventral striatum. Active palatable food seeking also involves specific 

changes in ventral striatum and differences due to palatable food intake could not be 

identified. The dopamine-DARPP-32 signalling could play an important role in the loss 

of control and might represent a key common mechanism in the loss of behavioural 

control that appears in obesity and drug addiction raising the interest of this target for 

potential pharmacological interventions. Further studies should be performed to explore 

the role of dopamine-DARPP-32 signalling in these complex behavioural processes. 
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Figure legends 

Figure 1. Experimental design. Experimental sequence and groups included to reveal 

the behavioural consequences of the unexpected delivery of a natural reward (palatable 

food). CS, Conditioned stimulus; FR, Fixed ratio; PR, Progressive ratio. 

 

Figure 2. Acquisition of operant behaviour to obtain palatable food and active 

lever-presses after the frustrated expected reward. (a) Mean number of active lever-

presses during FR1, FR5, FR10 and PR schedule of reinforcement to obtain chocolate 

flavoured-pellets in frustration, positive control, extinction learning, yoked and negative 

control groups. (b) Mean number of active lever-presses during 10 additional min after 

end-point 150. (c) Representative patterns of active and inactive lever-presses during the 

10 additional min after the end-point 150 for the different groups (frustration, positive 

control, extinction learning). Each vertical line represents one active or inactive lever-

press. The horizontal line represents the 10 additional min after the end-point 150; the 

upper pattern corresponds to the active and the lower to the inactive lever-presses 

responses. Data are expressed as mean ± SEM (n = 9 per group). � p < 0.05 vs. positive 

control group (Newman-Keuls). 

 

Figure 3. Gene expression changes caused by food intake frustration or extinction 

learning. (a) Venn Diagrams of genes differentially expressed in each comparison for 

the three brain areas. (b) Frustration specific changes. On the left, total number of genes 

that are up-regulated or down-regulated only in frustrated mice in frontal cortex, ventral 

striatum and in both areas. On the right, canonical pathway enrichment analysis using 

“Ingenuity Pathway Analysis (IPA)” of the genes differentially expressed only due to 

frustration behaviour in the frontal cortex and in ventral striatum. Note the common 
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enrichment of the Dopamine-DARPP-32 signalling pathway (highlighted with a red 

frame). (c) Extinction learning specific changes. On the left, total number of genes that 

are up-regulated or down-regulated only in extinction learning mice. On the right, 

canonical pathway enrichment analysis of the genes differentially expressed only due to 

extinction learning. The significance of canonical pathways was determined by IPA’s 

default threshold [–log (p-value)>1.3] corresponding to Fisher’s exact test p-value=0.05 

and indicated by the yellow line. The yellow squares indicate the ratio between the 

number of genes in a given pathway that meet cut-off criteria and the total number of 

genes that make up that pathway.  

 

Figure 4. Dopamine-DARPP-32 feedback in cAMP signalling in frustration-like 

behaviour. The green and red nodes in this enriched canonical pathway indicate the 

down-regulated and up-regulated genes in the frustrated mice in ventral striatum and the 

red stars indicate up-regulated genes in the frustrated mice in frontal cortex. 

 

Figure 5. Glial/neuronal enrichment of altered gene expression in frontal cortex in 

the frustration model. (a) Transcripts differentially expressed (n=116) in frontal cortex 

between frustrated and positive control mice and (b) transcripts differentially expressed 

(n=47) in the frustrated mice but common in frontal cortex and ventral striatum. Left 

panel: Transcripts are organized vertically according to the extent of altered gene 

expression. Up and down arrows indicate up and down-regulation of gene expression, 

separated by a purple bar. Colour overlay indicates the cellular origin of the transcript: 

orange ̴ glial origin (white matter/grey matter: WM/GM>1.5), blue ̴ neuronal origin 

(WM/GM<-1.5) and white ̴ both cellular populations (-1.5>WM/GM<1.5) (Sibille et al., 
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2008). Right panel: percentage of transcripts of each cell type origin. Note the apparent 

increased representation of neuronal expression in both cases. 

 

Figure 6. Gene expression changes caused by food self-administration reinforced 

learning. (a) Venn diagrams of genes differentially expressed in each comparison for 

the three brain areas. (b) Number of genes that are up-regulated or down-regulated only 

in mice that learned to self-administer the food (positive control), common in the 

comparison of positive control – yoked and positive control – negative control. (c) Cell 

communication enriched genes in food self-administration reinforced learning. Heatmap 

showing the level of expression in the microarray of the 48 genes identified in the 

GO:0007154 cell communication (adjP = 8.2 e-3). For each experimental group the 

three replicates are shown. 

 

Figure 7. Theoretical model of frustration and extinction learning effects in mice 

behaviour and correlation with gene expression changes. (a) Model proposing a 

network of the main interacting circuits involved in addiction that may underlie 

frustration and extinction learning situations (adapted from (Volkow et al., 2003)). In 

positive control mice, the conditioned stimulus (CS) triggers an increased motivation 

for reward seeking (food) and also increases reward expectation in the ventral striatum 

(VS), leading to lever press. After the reward acquisition, there is an inhibitory control 

for the motivation exerted by the frontal cortex (FC). Frustrated mice do not receive a 

reward, and so no inhibition of the reward seeking is driven by FC, increasing 

motivation and reward expectation, and the number of lever-presses. Extinction learning 

mice behaviour is not driven by the CS, and the motivation for reward seeking therefore 

is not increased leading to a decreased expectation mediated by VS mechanisms. (b) 

Page 32 of 43Addiction Biology



For Review
 O

nly

E. Martín-García 

 31

Gene expression changes in each key brain region: hippocampus (HPC), VS and FC. No 

differences in HPC were detected since mice were exposed to the same training of 

active food self-administration. Those differences at VS and FC activation could lead to 

gene expression changes between each group, but they are not detectable in all 

comparisons. In VS, the most different group is extinction learning, without presence of 

cue-induced food-seeking, motivation and reward expectation, and so differences are 

only detected between this group and frustrated and positive control mice. In FC, 

differences in gene expression are only detected between frustrated and positive control, 

which are expected to have opposite effects in this brain region. 
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Table 1. Over-representation of transcription factor binding sites in frustration. 

Predicted targets for transcription factors in common in up-regulated genes in frustrated 

mice in frontal cortex, ventral striatum and genes common in both areas. 

 

 

Up-regulated 

Frontal cortex Frontal cortex Common changes in both areas 

Target gene 
hits/ non hits  

Z-score 
Fisher 
score 

Target gene 
hits/ non hits 

Z-score 
Fisher 
score 

Target gene 
hits/ non hits 

Z-score 
Fisher 
score 

Nkx2-5 90 / 4 20.34 3.1e-5 482 / 44 42.84 1.7e-11 37 / 2 7.76 1.4e-2 

SRY 87 / 7 22.16 1.1e-6 462 / 64 41.12 3.7e-17 35 / 4 12.01 8.4e-3 

Sox5 88 / 6 19.11 1.3e-6 473 / 53 37.83 5.8e-19 36 / 3 8.53 4.5e-3 

Pdx1 89 / 5 22.81 3.2e-5 485 / 41 31.63 1.5e-15 36 / 3 7.61 2.7e-2 
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Table 2. Changes in gene expression induced by frustration on qRT-PCR validation of 

microarray data of genes differentially expressed in frustrated mice. (a) Changes in frontal cortex 

in the comparison between frustrated vs positive control. (b) changes in ventral striatum between 

frustrated vs extinction learning. 

 

a) 
 

   Frustrated vs Positive control 

   Microarray               qRT-PCR 

Frontal Cortex  
 

Fold Change 
P-value                      

(Adj P value) 
 Fold Change 

       

Crebbp CREB binding protein  1.61 3.3 e -5 (1.6 e-2)  1.3 a 

Cnr1 Cannabinoid receptor 1 (brain)  1.99 2.9 e-5 (1.6 e-2)  1.4 a 

Plcb1 Phospholipase C, beta 1  2.03 2.6 e-5 (1.6 e-2)  1.2 a 

Nrxn1 Neurexin 1  1.49 3.2 e-4 (5 e-2)  1.2 a 

Jak1 Janus kinase 2  1.48 1.0 e-5 (1 e-2)  1.2 a 

 

 

 

a)b) 
 

      

   Frustrated vs Extinction learning 

   Microarray  qRT-PCR 

Ventral Striatum  
 

Fold Change 
P-value                      

(Adj P value) 
 Fold Change 

       

Camk4

bp 
Calcium/calmodulin-dependent protein kinase IV  2.00     4.8 e-5 (4.7 e-3)  1.3 a 

Kalrn Kalirin, RhoGEF kinase  1.93 1.5 e-5 (2.9 e-3)  1.3 a 

Rph3a Rabphilin, 3A  1.89 1.2 e-4 (7.3 e-3)  NS  

Prkcb Protein Kinase C, beta  2.21 1.9 e-3 (3.4 e-2)  1.5 a 

Gprin3 b GPRIN family membersse 2  1.88 2.9 e-5 (3.8 e-3)  1.2 a 

 
a 
 p-value < 0.05; normalized to Gadph.  

b Genes with differential expression following the same direction in two probe sets in the microarray analysis. The 

smallest absolute fold change is shown.  

NS, not significant 
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Table 3: Changes in gene expression induced by extinction learning: qRT-PCR validation of 

microarray data of genes differentially expressed common between extinction learning-positive 

control and extinction learning-frustrated comparisons in Ventral Striatum.  

 
 

  Extinction learning              
vs Positive control 

 Extinction learning                       
vs Frustrated 

  Microarray 
 

qRT-
PCR 

 Microarray  qRT-
PCR 

Ventral Striatum 
Fold 

Change 
P-value                      
(Adj P value) 

 

Fold 
Change 

 Fold 
Change 

P-value                 
(Adj P value) 

 Fold 
Change 

Crebbp CREB binding protein -2.23 6.5 e-6 (2 e-3)  -1.3 a  -2.86 6.7 e-5 (2.2 e-2)  -1.8 a 

Cnr1 Cannabinoid receptor 1 (brain) -1.87 2.5 e-6(1.4 e-3)  -1.3 a  -2.25  2.9 e-5 (1.9 e-2)  -1.5 a 

Plcb1 Phospholipase C, beta 1 -2.18  7.3 e-6 (2 e-3)  -1.2 a  -3.10 1.6 e-4 (3 e-2)  -1.5 a 

Nrxn1 Neurexin 1 -2.63  8.5 e-5(6.2 e-4)  -1.3 a  -2.38  3.5 e-5 (1.9 e-2)  -1.4 a 

Jak1 Janus kinase 2 -1.99 1.5 e-5 (2.8 e-3)  -1.2 a  -2.08 2.6 e-5 (1.9 e-2)  -1.3 a 

Grit Rho GTPase-activating protein -1.58 1.3 e-5 (2.6 e-3)  -1.3 a  -1.85 1.5 e-4 (2.9 e-2)  NS 

 
a 
 p-value < 0.05; normalized to Gapdh 

NS, not significant 
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Supporting Information 

Additional supporting information can be found in the online version of this article: 

Table S1. Operant responding maintained by chocolate during acquisition in the 

frustrated, extinction learning and positive control groups.  

Table S2. Operant responding and operant responding rates (lever-presses/min) 

maintained by chocolate during 10 additional min after achieving the end-point 150 in 

the frustrated, extinction learning and positive control groups.  

Table S3: Differentially expressed genes in frontal cortex only between frustrated and 

positive control mice after applying corrections for multiple testing (5% FDR). 

Table S4: Differentially expressed genes in ventral striatum only between frustrated 

and extinction learning mice after applying multiple testing corrections (5% FDR). 

Table S5: Differentially expressed genes in ventral striatum that are common between 

the comparisons extinction learning vs frustrated and extinction learning vs positive 

control after applying multiple testing corrections (5% FDR). 

Table S6: Differentially expressed genes in ventral striatum that are common between 

the comparisons positive control vs yoked and positive control vs negative control after 

applying multiple testing corrections (10% FDR). 
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Figure 1. Experimental design. Experimental sequence and groups included to reveal the behavioural 
consequences of the unexpected delivery of a natural reward (palatable food). CS, Conditioned stimulus; FR, 

Fixed ratio; PR, Progressive ratio.  

129x64mm (300 x 300 DPI)  
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Figure 2. Acquisition of operant behaviour to obtain palatable food and active lever-presses after the 
frustrated expected reward. (a) Mean number of active lever-presses during FR1, FR5, FR10 and PR 

schedule of reinforcement to obtain chocolate flavoured-pellets in frustration, positive control, extinction 

learning, yoked and negative control groups. (b) Mean number of active lever-presses during 10 additional 
min after end-point 150. (c) Representative patterns of active and inactive lever-presses during the 10 
additional min after the end-point 150 for the different groups (frustration, positive control, extinction 

learning). Each vertical line represents one active or inactive lever-press. The horizontal line represents the 
10 additional min after the end-point 150; the upper pattern corresponds to the active and the lower to the 
inactive lever-presses responses. Data are expressed as mean ± SEM (n = 9 per group). ∗ p < 0.05 vs. 

positive control group (Newman-Keuls).  
236x372mm (300 x 300 DPI)  
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Figure 3. Gene expression changes caused by food intake frustration or extinction learning. (a) Venn 
Diagrams of genes differentially expressed in each comparison for the three brain areas. (b) Frustration 

specific changes. On the left, total number of genes that are up-regulated or down-regulated only in 

frustrated mice in frontal cortex, ventral striatum and in both areas. On the right, canonical pathway 
enrichment analysis using “Ingenuity Pathway Analysis (IPA)” of the genes differentially expressed only due 
to frustration behaviour in the frontal cortex and in ventral striatum. Note the common enrichment of the 

Dopamine-DARPP-32 signalling pathway (highlighted with a red frame). (c) Extinction learning specific 
changes. On the left, total number of genes that are up-regulated or down-regulated only in extinction 

learning mice. On the right, canonical pathway enrichment analysis of the genes differentially expressed 
only due to extinction learning. The significance of canonical pathways was determined by IPA’s default 
threshold [–log (p-value)>1.3] corresponding to Fisher’s exact test p-value=0.05 and indicated by the 
yellow line. The yellow squares indicate the ratio between the number of genes in a given pathway that 

meet cut-off criteria and the total number of genes that make up that pathway.  
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Figure 4. Dopamine-DARPP-32 feedback in cAMP signalling in frustration-like behaviour. The green and red 
nodes in this enriched canonical pathway indicate the down-regulated and up-regulated genes in the 

frustrated mice in ventral striatum and the red stars indicate up-regulated genes in the frustrated mice in 
frontal cortex.  

183x186mm (300 x 300 DPI)  
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Figure 5. Glial/neuronal enrichment of altered gene expression in frontal cortex in the frustration model. (a) 
Transcripts differentially expressed (n=116) in frontal cortex between frustrated and positive control mice 
and (b) transcripts differentially expressed (n=47) in the frustrated mice but common in frontal cortex and 

ventral striatum. Left panel: Transcripts are organized vertically according to the extent of altered gene 
expression. Up and down arrows indicate up and down-regulation of gene expression, separated by a purple 

bar. Colour overlay indicates the cellular origin of the transcript: orange ̴ glial origin (white matter/grey 
matter: WM/GM>1.5), blue ̴ neuronal origin (WM/GM<-1.5) and white ̴ both cellular populations (-

1.5>WM/GM<1.5) (Sibille et al., 2008). Right panel: percentage of transcripts of each cell type origin. Note 
the apparent increased representation of neuronal expression in both cases.  

106x62mm (300 x 300 DPI)  
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Figure 6. Gene expression changes caused by food self-administration reinforced learning. (a) Venn 
diagrams of genes differentially expressed in each comparison for the three brain areas. (b) Number of 
genes that are up-regulated or down-regulated only in mice that learned to self-administer the food 

(positive control), common in the comparison of positive control – yoked and positive control – negative 
control. (c) Cell communication enriched genes in food self-administration reinforced learning. Heatmap 
showing the level of expression in the microarray of the 48 genes identified in the GO:0007154 cell 

communication (adjP = 8.2 e-3). For each experimental group the three replicates are shown.  
164x151mm (300 x 300 DPI)  
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Figure 7. Theoretical model of frustration and extinction learning effects in mice behaviour and correlation 
with gene expression changes. (a) Model proposing a network of the main interacting circuits involved in 
addiction that may underlie frustration and extinction learning situations (adapted from (Volkow et al., 

2003)). In positive control mice, the conditioned stimulus (CS) triggers an increased motivation for reward 
seeking (food) and also increases reward expectation in the ventral striatum (VS), leading to lever press. 
After the reward acquisition, there is an inhibitory control for the motivation exerted by the frontal cortex 
(FC). Frustrated mice do not receive a reward, and so no inhibition of the reward seeking is driven by FC, 
increasing motivation and reward expectation, and the number of lever-presses. Extinction learning mice 

behaviour is not driven by the CS, and the motivation for reward seeking therefore is not increased leading 
to a decreased expectation mediated by VS mechanisms. (b) Gene expression changes in each key brain 
region: hippocampus (HPC), VS and FC. No differences in HPC were detected since mice were exposed to 
the same training of active food self-administration. Those differences at VS and FC activation could lead to 
gene expression changes between each group, but they are not detectable in all comparisons. In VS, the 
most different group is extinction learning, without presence of cue-induced food-seeking, motivation and 
reward expectation, and so differences are only detected between this group and frustrated and positive 
control mice. In FC, differences in gene expression are only detected between frustrated and positive 

control, which are expected to have opposite effects in this brain region.  
152x102mm (300 x 300 DPI)  
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