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Semi-autonomous vehicles: usage-based data evidences of what could be 
expected from eliminating speed limit violations  

 

Abstract 

The use of advanced driver assistance systems and the transition 
towards semi-autonomous vehicles are expected to contribute to a 
lower frequency of motor accidents and to have a significant impact 
for the automobile insurance industry, as rating methods must be 
revised to ensure that risks are correctly measured. Telematics 
information and usage-based insurance research are analyzed to 
identify the effect of driving patterns on the risk of accident. This is 
used as a starting point for addressing risk quantification and safety 
for vehicles that can control speed. The effect of excess speed on 
the risk of accidents is estimated with a real telematics data set. 
Scenarios for a reduction of speed limit violations and the 
consequent decrease in the expected number of accident claims are 
shown. If excess speed could be eliminated, then the expected 
number of accident claims could be reduced to half of its initial 
value, applying the average conditions of the data used in this study. 
As a consequence, insurance premiums also diminish. 

 

Keywords: advanced driver assistance systems, semi-autonomous 
vehicles, insurance, pay-how-you-drive. 
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1. Introduction 
 
This paper focuses on usage-based insurance (UBI) schemes and Advanced Driver 
Assistance Systems (ADAS) as a step before semi-automation. Specifically the effect of 
speed control systems on the risk of accident is analyzed. Many automobiles nowadays 
incorporate automatic speed control devices, which allow the driver to keep the vehicle 
at a predetermined constant speed, and ensure that the speed limit is not going to be 
violated. At the same time, the driver does not need to look at the speedometer and just 
needs to concentrate on the road, which contributes to safer driving. What would be the 
effect of automatic speed controlled driving on the risk of accidents? A revision of the 
existing literature and an empirical research is carried out based on real UBI information 
in order to answer this question. 
 
Many insurance companies around the world are currently offering UBI policies. 
Depending on the level of telematics information accounted for in automobile insurance, 
UBI can have different forms, such as pay-as-you-drive (PAYD) and pay-how-you-drive 
(PHYD) insurance. In PAYD insurance, the premium depends on the real distance 
traveled by the insured party, which is monitored by a telematics device installed in the 
car. On the other hand, in PHYD insurance the premium calculation also depends on other 
telematics variables such as the type of road, time, speed, sudden braking events, etc. 
Therefore, such automobile insurance contracts are a step towards a more personalized 
concept of motor insurance.  
 
Many recent research articles have analyzed real vehicle usage data in the context of UBI 
and have determined the effect of driving patterns on the risk of accident. This knowledge 
can be used as a baseline for approaching risk quantification in insurance policies for 
vehicles incorporating ADAS as well as for semi-autonomous vehicles.  
 
The contribution of this paper is centered on the role of speed control and it is based on 
the premise that automated procedures can reduce and eventually eliminate the violation 
of speed limits on the road. Based on real data the reduction in the frequency of accidents 
and its impact on safety and insurance premiums are calculated. 
 
Specifically, a real case study is presented where the impact of automatic speed control 
is measured in different scenarios by using a PHYD insurance database provided by a 
Spanish company. Thereby, this is a contribution towards the transition to a new model 
for semi-autonomous vehicle insurance. Additionally, urban driving is also analyzed as a 
risk factor in the literature on UBI, as the frequency of accidents is higher in urban areas 
than elsewhere. Therefore, the effect of new devices which make driving easier on urban 
roads could also be approached, such as the assisted parking systems, proximity sensors, 
and so on.  
 
The paper is organized as follows. Section two presents the background. In section three, 
the theory used to assess the impact of speed on the risk of accidents is presented. In 
section four the material and methods are presented. Section five applies the empirical 
data and builds scenarios using existing models that emphasize the role of speed 
limitation and automation for the assessment of accident risk. The results are discussed. 
Additionally the role of automated speed control on safety from the perspective of traffic 
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authorities and society is analyzed, as well as the role of speed control in insurance 
premiums. Finally, section six concludes. 
 
 

2. Background 
 
ADAS support drivers by providing warnings to reduce risk exposure or automating some 
driving tasks to relieve them from the manual control of the vehicle (Piao and McDonald, 
2008). These systems are intended to increase road safety by enhancing driver 
performance, and include lane maintenance systems, crash-avoidance technologies and 
systems for keeping safe speed and safe distance (referred to as SASPENCE) among 
others. Technological advances (Jiménez et al., 2009 and Jiménez and Naranjo, 2011) 
and the identification of the factors which influence and cause traffic accidents (Staubach, 
2009) are the basis for designing and implementing ADAS. There are evidences of the 
positive effects of such technologies, according to Reagan et al. (2018) emergency 
braking systems reduce rates of insurance claims compared to vehicles that do not have 
these systems. ADAS afford safety advantages, but also challenge the traditional role of 
drivers (Rahman et al., 2017). This is the reason why there are also potential downsides 
that may undermine their acceptability. The use of ADAS may also generate false or 
unnecessary alarms, induce distraction, overload and fatigue (Ruscio et al, 2017). Many 
authors argue that automation has the potential to significantly reduce the number of 
vehicle crashes and their associated economic burden (Fagnant and Kockelman, 2015), 
but driver acceptance is a precondition for a successful implementation (Rahman et al., 
2017). Many authors have analyzed drivers’ acceptability of ADAS (Adell et al, 2011, 
Rahman et al., 2017, Reagan et al., 2018,). Son et al. (2015) found that there were 
significant age and gender differences in the acceptance and effectiveness of the ADAS, 
and that the roadway environment also affected their effectiveness.  
 
It is widely accepted that speeding is one of the critical factors that has a negative effect 
on traffic safety. It is well established that speeding is related to the severity of accidents 
(see, among others, Dissanayake and Lu, 2002; Elvik, 2004 and Jun et al., 2007 and 
2011). Ayuso et al. (2010) found that traffic violations related to excess speed 
significantly increase the odds of serious or fatal accidents versus small accidents, by 
using a multinomial logistic regression model. Additionally, Yu and Abdel-Aty (2014) 
concluded that large variations of speed prior to the crash would increase the likelihood 
of severe crash occurrence. More recently, Imprialou et al. (2016) revisited the crash–
speed relationship by creating a new crash data aggregation approach that enables 
improved representation of the road conditions just before crash occurrences and they 
found that higher speed is related to increasingly serious crashes. 
 
Many articles have made a contribution to the understanding of speeding by young drivers 
and its effect on accident risk in the context of UBI. Ayuso et al. (2014) concluded that a 
higher proportion of kilometers traveled at speeds above the limits is associated with a 
higher risk of accident among young drivers with UBI. The association between gender 
and risky driving was also stressed by Ayuso et al. (2014, 2016a and 2016b), who 
concluded that, on average, men have riskier driving patterns than women, as men travel 
more kilometers per day, during the night and at speeds above the limit, than women. All 
these three factors were found to correlate with a larger expected number of accidents. 



 

5 
 

Paefgen et al. (2014) investigated the differences between vehicles that get involved in 
crashes and those that do not, by using PAYD insurance data and found that the risk 
fluctuates throughout the day, and is higher at nightfall, during the weekends, on urban 
roads and at low-range or higher-range speeds (0-30 km/h and 90-120 km/h, 
respectively).  
 
Nowadays, semi-autonomous vehicles incorporate automatic speed control devices, 
which ensure that the speed limit is not going to be violated. This can potentially remove 
a leading cause of vehicle accidents and therefore may lead to more safety and lower 
claim rates. Today, drivers face an evolution from manual to semi-autonomous driving 
with the ultimate aim of introducing driverless vehicles. This transition will progressively 
reduce accident frequency, resulting in lower losses and lower premiums for motor 
insurance. Nevertheless, some authors claim that driving performance is safer with lower 
rather than higher levels of automation, in situations with automation failures (Strand et 
al., 2014). In that context, the insurance industry should be able to change their rating 
methods in order to ensure that risks are correctly measured, but most importantly they 
should be able to contribute to preventive actions and risk mitigating procedures to 
influence the way drivers perceive their driving performance and to engage them in safer 
attitudes. As part of that process, telematics information and UBI background are going 
to play an important role. Tselentis et al. (2017) provided a recent review of UBI schemes 
and concluded that there is evidence that UBI implementation implies lower insurance 
costs for less risky and exposed drivers. These authors also provide a strong motivation 
for drivers to improve their driving behaviors and reduce their degree of exposure by 
receiving feedback and monitoring their performance, which would result in crash risk 
reduction. Along those lines, in a study in the Netherlands, Zantema et al. (2008) showed 
that if PAYD were to be implemented the total crash reduction estimate would be more 
than 5%, resulting in 60 fewer fatalities and a reduction of over 1,000 people injured by 
traffic accidents, each year.  
 
Recently, Baecke and Bocca (2017) investigated how driving behavior data can improve 
the risk selection process in an insurance company. They proved that including standard 
telematics variables significantly enriches the risk assessment of customers and insurance 
companies are better able to tailor their products to the customers’ risk profile. According 
to their results, this new type of telematics-based insurance product can be implemented 
very quickly, since just three months of data is enough to get the best estimations. 
 
Sheehan et al. (2017) proposed using a Bayesian Network statistical approach to estimate 
aggregate claims losses from a range of risk factors which are based on PAYD and PHYD 
insurance approaches. They showed the use of this method for a Level 3 Automation 
vehicle, where the vehicle can perform many aspects of driving such as steering, 
acceleration/deceleration and monitoring the driving environment, but requires the driver 
to be ready to intervene, at any moment, at the vehicle’s request. These authors considered 
two scenarios: one where the driver is in control and one where the vehicle is in control. 
As expected, the automated features remove driver error and reduce accident risks. They 
found that the aggregate claims loss is one tenth of that where control is by the driver. 
This question is also analyzed here, as well as the influence of speed control on accident 
risk. 
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Payre et al. (2014) investigated the acceptability of fully automated driving (FAD) by 
using an online questionnaire addressed to French drivers. They found that around 68% 
of respondents accepted FAD a priori, and that preferred uses were on major highways, 
in traffic congestion and for automatic parking. Jeong et al. (2017) claimed that it is 
implausible to expect that autonomous driving systems will reach 100% market 
penetration rate in the near future, therefore, the interaction between equipped and 
unequipped vehicles must be investigated. More recently, Kyriakidis et al. (2015) also 
investigated public opinion on automated vehicles in an international study. They found 
that on average manual driving was rated the most enjoyable mode of driving, with 33% 
of respondents indicating that fully automated driving would be highly enjoyable. 
Respondents were found to be most concerned about software hacking/misuse and they 
were also concerned about legal issues and safety. Recently Guo et al. (2017) stressed the 
need to explore driver–vehicle cooperation as an opportunity to improve driving 
performance through human–automation synergy. Harper et al. (2016) investigated the 
benefits and costs of partially-automated vehicle collision avoidance technologies. These 
authors considered fleet-wide deployment of blind spot monitoring, lane departure 
warning, and forward collision warning crash avoidance systems and concluded that this 
early form of automation has a positive net benefit, suggesting that fleet-wide adoption 
of such technologies would be beneficial from both an economic and social perspective. 
 
Finally, the advantages for users and their level of acceptance of UBI schemes have also 
been investigated in the literature. Litman (2011) discussed the advantages of UBI 
policies compared to the traditional ones. Usage-based insurance reduces accidents, 
increases insurance affordability and reduces uninsured driving, among others. Tselentis 
et al. (2017) also argued that UBI policies have potentially a significant impact on traffic 
safety and congestion. More recently, Tselentis et al. (2018) investigated which factors 
affect users’ willingness to pay for UBI policies. They concluded that women and 
smartphone owners are more likely to choose UBI schemes. Moreover, the higher the 
speed reduction imposed by the insurer to the user, the lower the probability to choose 
UBI schemes. Finally, they also found that people over 40 years old are less likely to 
choose UBI products than younger drivers. 
 
 

3. Theory 
 
To assess the impact of automatic speed controlled driving on the risk of accidents the 
claim frequency is modeled as a function of the proportion of speed violations by using 
telematics variables. This can easily be done using a Poisson regression model (Boucher 
and Guillen, 2009). In this case, the classical offset variable that measures exposure time 
can be changed by a generalized offset variable that introduces into the model the distance 
traveled during a natural year (as suggested by Boucher et al., 2013 and Lemaire et al., 
2016). A generalized offset variable in the context of a Poisson regression model is simply 
an explanatory variable which is introduced in logarithm scale into the model with an 
associated parameter which is not constrained to be equal to one. Boucher et al. (2013) 
proposed this approach to avoid constraining the relationship between the frequency of 
claims and the distance traveled to be proportional.  
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The same approach is considered here, all telematics variables are entered into the 
Poisson regression model in the logarithm scale. The gender will be introduced as a binary 
variable. Let N be the total number of insured users and K the total number of explanatory 
variables (gender and K-1 telematics variables), then the model for the expected 
frequency of claims for insured user i = 1,.., N, which is denoted as ��, can be formulated 
as: 
 

�� = exp	�	
 + 	��� + ∑ 	�ln�����
��� �                                          (1) 

 
where 	
 is the intercept term, �� is the gender of individual i and 	� the corresponding 
coefficient in the model, and �� is the telematics variable � for individual i, and 	� is 
the corresponding associated parameter. Equation (1) is equivalent to 
  

�� = exp	�	
 + 	���� ∙ ∏ ��
���

���                                                 (2) 

 
which means that effects are combined multiplicatively. Note that according to this 
formulation 	� for telematics variables measures the elasticity of the frequency of claims 
with respect to �. So, if the value of the variable increases in percentage terms then the 
frequency changes 	� multiplied by this percent, accordingly. Based on the real data the 
reduction in the frequency of accidents is calculated and its impact on society in terms of 
protection and savings in human lives is analyzed. 
 
 

4. Material and methods 
 
An empirical analysis is carried out by using a data set of PHYD insurance policyholders 
which was collected by a Spanish insurer. The sample consists of 9,557 young drivers 
who had a PHYD insurance policy in force during the year 2010. Age ranges from 18 to 
35 because this PHYD policy was only offered to young drivers. The temporal exposure 
to the risk of accident for all of them is one year, as their insurance policies were in force 
during the entire year 2010. The variables considered in the analysis are summarized in 
Table 1. 

Table 1. Variable description 

Variable Description 
km Distance traveled during the year measured in kilometers 
sex Sex (1 = men, 0 = women) 
speed % of kilometers traveled at speeds above the limit 
urban % of kilometers traveled on urban roads 
age  Age of the driver at the beginning of 2010 
nsin Number of “at fault” accident claims during the year 

 

 
The exogenous variables are sex, km (which is the total distance traveled during the year 
in kilometers), speed (percentage of kilometers traveled at speeds above the mandatory 
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limits), urban (percentage of kilometers traveled on urban roads) and finally the age of 
the driver. The dependent variable is nsin, which is the total number of claims occurring 
during the year 2010 where the driver was at fault. The reason to model only  “at fault” 
claims is that these are a true indicator of accident occurrence that was actually caused 
by the driver. The existence of other accidents caused by other drivers may be due to 
hazard or third parties and these are not assumed to be related to the risk of accident 
directly caused by the insured driver’s fault. However, all accidents claimed by the 
insured user were modeled even if they were caused by third parties, but the main 
conclusions do not change much. Those results are available upon request from the 
authors. 
 
Table 2 shows some descriptive statistics. Drivers travel on average 13,031.27 km during 
the year (standard deviation 7,693.25). They travel on average 8.89% of total kilometers 
at speeds above the limit. There exists a high heterogeneity regarding speed (the standard 
error is 8.15 and 5% of them travel more than 26.34% of total kilometers at speeds above 
the limit). The average level of urban driving is 26.37% (standard deviation 14.18). All 
drivers are under the age of 35, the average age being 24.78 (standard deviation 2.82). 
They made on average 0.10 claims during 2010, most of them did not make a claim but 
some of them made 3 claims. Finally, regarding the variable sex, there are 50% men in 
the sample. 

Table 2. Descriptive statistics 

 
 Mean Standard 

deviation 
Minimum 5% 

percentile 
25% 
percentile 

Median 75% 
percentile 

95% 
percentile 

Maximum 

km 13,031.27 7,693.25 0.69 2,921.26 7,517.45 11,676.94 17,304.50 27,249.29 57,756.98 
speed 8.89 8.15 0.00 1.01 3.10 6.09 12.16 26.34 44.92 
urban 26.37 14.18 0.00 8.58 15.70 23.46 34.40 53.58 100.00 
age 24.78 2.82 18.11 20.36 22.66 24.63 26.88 29.46 35.00 
nsin 0.10 0.32 0 0 0 0 0 1 3 

 
 

5. Results and discussion 
 
A Poisson regression model is used to estimate the number of claims (nsin) as a function 
of the independent variables. The independent variables in the model are introduced in 
logarithms1 which is denoted by ln. The parameter estimates of the Poisson regression 
model are shown in Table 3. 
 

 
 
 
 
 

                                                           
1 Due to the fact that a very small percentage of drivers (0.34%) had speed equal to 0% and/or urban equal 
to 0%, it was added to these two variables 0.001 so that the logarithm could be calculated. 
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Table 3. Parameter estimates for a Poisson regression model 
 

Parameter Estimate Standard 
error 

Wald 95%  
confidence limits 

Wald chi 
square 

p-value 

Intercept         -3.0760 1.1695 -5.3682 -0.7837 6.92 0.0085 
sex 0.0632 0.0657 -0.0656 0.1921 0.92 0.3362 
ln(km) 0.3800 0.0598 0.2628 0.4972 40.39 <.0001 
ln(speed)        0.0721 0.0351 0.0033 0.1409 4.22 0.0400 
ln(urban)             0.4602 0.0697 0.3236 0.5968 43.61 <.0001 
ln(age)           -1.3666 0.2826 -1.9206 -0.8127 23.38 <.0001 

 
The model is globally significant (Likelihood Ratio Test statistic equals 111.08, p-value 
< 0.0001). The Akaike Information Criterion (AIC) equals 6,406.8 and the Bayesian 
Information Criterion (BIC) 6,449.8. A Negative Binomial Regression was also adjusted 
to the data, but it resulted in higher values of AIC and BIC. Note that the Poisson 
parameter estimates are consistent even though there could be overdispersion in the data. 
A Poisson regression model with random parameters has also been used to explore 
specifically the speed limit effect based on an individual level. The results suggest that 
only in the case of the percentage of kilometers travelled in urban areas some level of 
randomness could be accepted by doing a strained interpretation of the results. Actually, 
the results of the random parameter model (they are presented in the Appendix) are almost 
identical to those obtained with the classical Poisson regression model. Therefore, the 
classical Poisson regression model was chosen for the analysis because it is simpler, but 
similar conclusions follow from the Poisson regression with random parameters. 
 
According to the results in Table 3, sex does not have a significant effect. Vehicle usage 
(measured by the distance traveled), breaking the speed limits and urban driving are 
associated with a higher number of claims2. Regarding age, the number of claims 
decreases as the age increases.  
 
It is important to note that if the parameter estimate of the telematics variables is different 
from one, this means that the relationship between the corresponding variable and the 
number of claims is not proportional. Regarding the distance traveled (variable km) the 
parameter equals 0.38 and the Wald 95% confidence limits are 0.26 and 0.50, therefore, 
it is clearly different from one and the relationship is not proportional (as found by 
Boucher et al., 2013). The relationship between the distance traveled and the expected 
number of accidents is represented in Figure 1. 
 

                                                           
2 The effect of speed is significant at the 10% level, and almost significant at the 5% level (p-value 0.058). 
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Figure 1. The expected frequency of claims as a function of the distance traveled. The dots 
represent the average frequency of claims when the insured users are grouped by intervals of 

500 driven km. The line represents the fitted claim frequency as a function of the distance 
traveled. Dots may represent different number of drivers. 

 

Figure 1 shows the average frequency of claims as a function of the distance traveled. 
The dots represent the real average frequency when the insured users are grouped by 
intervals of 500 driven km. Note that each dot represents an average that has been 
calculated with a different number of drivers. In general, as the total number of kilometers 
increases, the number of drivers in each interval decreases. Above 20,000 km the data 
seems to be more heterogeneous, this is due to the fact that there are few insured users 
with such a large number of traveled kilometers. This is also the reason why the horizontal 
axis was limited to 30,000 km. The line represents the fitted claim frequency as a function 
of the distance traveled and it has been calculated by using the Poisson regression model 
(parameter estimates in Table 3) where the rest of covariates have been taken to be equal 
to the sample mean (see Table 2). The frequency of claims is far from increasing linearly 
with the number of kilometers. Instead, a high slope is observed for low values of the 
distance traveled, and it marginally decreases as more kilometers are driven. This effect 
is produced by the fact that the parameter associated to the distance traveled in the Poisson 
regression is lower than one, namely equal to 0.38. 
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Figure 2. The expected frequency of claims as a function of the percentage of 

kilometers traveled at speeds above the limit. The dots represent the average frequency 
of claims when the insured users are grouped according to their speed violations by 
intervals of 1%. The line represents the fitted claim frequency as a function of the 
percentage of kilometers traveled at speeds above the limit. Dots may represent 

different number of drivers. 

 

Similarly, in Figure 2 the frequency of claims is presented as a function of the percentage 
of kilometers traveled at speeds above the limit. The dots represent the real average 
frequency when the insured users are grouped by intervals of 1% according to the distance 
driven at speeds above the limit. As the speed increases there are fewer insured users with 
such a high level of speed limit violations. Again, the line represents the fitted claim 
frequency as a function of the percentage of kilometers traveled at speeds above the limit 
by using the Poisson regression model (the rest of covariates again have been taken to be 
equal to the sample mean, see Table 2). The frequency of claims increases very sharply 
for low values of speed violations and further on increases slowly. This effect is again 
produced by the fact that the associated parameter in the Poisson regression model equals 
0.0721, clearly lower than one and therefore far from a proportional relationship.  
 
The same type of analysis was carried out for urban driving and age. The results are 
plotted in Figures 3 and 4, respectively. In the case of urban driving the dots represent the 
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real average frequency when the insured users are grouped by intervals of 1% according 
to their urban driving. As the level of urban driving increases there are fewer insured 
users and the data are more heterogeneous. The line representing the prediction of the 
frequency of claims increases more sharply for low values of urban driving than further 
on (the corresponding parameter in the model equals 0.46). On the other hand, in Figure 
4, the dots represent the real average frequency of claims when the insured users are 
grouped according to their age at the beginning of 2010 by using intervals of one month. 
The relationship is the opposite, as a decrease in claim frequency as age increases is 
observed.  

 
Figure 3. The expected frequency of claims as a function of the percentage of 

kilometers traveled on urban roads. The dots represent the average frequency of claims 
when the insured users are grouped according to their urban driving by intervals of 1%. 

The line represents the fitted claim frequency as a function of the percentage of 
kilometers traveled on urban roads. Dots may represent different number of drivers. 
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Figure 4. The frequency of claims as a function of the age of the driver. The dots 
represent the average frequency of claims when the insured users are grouped according 
to their age by intervals of one month. The line represents the fitted claim frequency as 

a function of the age of the driver. Dots may represent different number of drivers. 
 

 
 
 

5.1. The role of automated speed control on safety 
 
In this section the impact on safety if vehicles incorporate speed control devices to avoid 
speed violations is analyzed. Firstly, different scenarios are considered where the number 
of claims per 1,000 drivers is measured as a function of their level of speed violations 
(measured by the percentage of kilometers traveled at speeds above the limit) if the rest 
of the variables are assumed to be equal to the corresponding sample mean. The 
calculations are done by using the results of the Poisson regression model in Table 3. 
These results are presented in Table 4.  
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Table 4. Expected number of claims per 1,000 drivers with different levels of speed 
violation. 

Speed Expected number of claims 
0% 59.46 
1% 97.84 
2% 102.85 
5% 109.87 
7% 112.57 
9% 114.63 
10% 115.50 
12% 117.03 
15% 118.93 
17% 120.01 
20% 121.42 

 

If the level of speed violations is reduced, for example from the average sample level of 
9% to 0%, then the number of claims per 1,000 drivers would change from 114 to 59, 
where the rest of the variables are kept constant. This is clearly a significant reduction. 
This is then the average impact on claim frequency and road safety if vehicles incorporate 
control devices to avoid speed violations. Additionally, Table 4 also shows the same 
calculations for different levels of speed violations, and it is very remarkable that if speed 
violations are reduced from 20% to 0%, then the claim frequency per 1,000 drivers 
decreases from 121 to 59. 
 
Given that the average level of speed limit violation is around 9%, which means that the 
expected number of claims per 1,000 drivers is 114 (see Table 4), a complete elimination 
of the violations, would lead to 0% levels and therefore to an expected number equal to 
59. This is more than half of the initial level, i.e. 59/114=52%, therefore the initial level 
is reduced by approximately 48%, one half. 
 
Finally, Table 5 shows the difference in the expected number of claims per 1,000 drivers 
and per year due to a change in the level of speed violation. The calculations are done by 
assuming that the speed level changes from some level before (rows in the table) to some 
level after (columns) by keeping the rest of the variables constant and equal to the sample 
mean. The cells in Table 5 show the number of claims per 1,000 drivers after minus 
before.  For example, reducing speed from 20% to 9% (which is approximately the 
sample mean) results in 7 fewer claims (per 1,000 drivers). Of course, the largest 
reduction occurs when speed violations are totally eliminated (by using speed control 
devices). The reduction equals 38 claims per 1,000 drivers if its initial level is just 1%, 
and reaches 62 claims per 1,000 drivers if initially the level was 20%.  
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  Table 5. Change in the yearly expected number of claims per 1,000 drivers due to a change in 
the level of speed violation (from some level before to some level after). The cells show the 
number of claims per 1,000 drivers after minus before. 

 After 

Before 0% 1% 2% 5% 7% 9% 10% 12% 15% 17% 20% 

0% 0 38.39 43.40 50.42 53.12 55.17 56.05 57.58 59.47 60.55 61.97 
1% -38.39 0 5.01 12.03 14.73 16.79 17.66 19.19 21.09 22.17 23.58 
2% -43.40 -5.01 0 7.02 9.72 11.78 12.65 14.18 16.08 17.15 18.57 
5% -50.42 -12.03 -7.02 0 2.70 4.75 5.63 7.16 9.05 10.13 11.55 
7% -53.12 -14.73 -9.72 -2.70 0 2.06 2.93 4.46 6.36 7.44 8.85 
9% -55.17 -16.79 -11.78 -4.75 -2.06 0 0.87 2.40 4.30 5.38 6.79 
10% -56.05 -17.66 -12.65 -5.63 -2.93 -0.87 0 1.53 3.43 4.50 5.92 
12% -57.58 -19.19 -14.18 -7.16 -4.46 -2.40 -1.53 0 1.90 2.98 4.39 
15% -59.47 -21.09 -16.08 -9.05 -6.36 -4.30 -3.43 -1.90 0 1.08 2.49 
17% -60.55 -22.17 -17.15 -10.13 -7.44 -5.38 -4.50 -2.98 -1.08 0 1.41 
20% -61.97 -23.58 -18.57 -11.55 -8.85 -6.79 -5.92 -4.39 -2.49 -1.41 0 

 
5.2. The role of speed control on insurance premiums  
 
The fundamental principle of insurance is the law of large numbers. In a large group of 
insured drivers and in a fixed period of time which is usually one year, only a small 
fraction of those drivers suffers an accident. Here it is assumed that all accidents are 
reported to the insurance company, but this is not always the case because many insurance 
companies penalize claims in order to save the cost of handling small claims. At the end 
of the day customers prefer not to claim a small accident in order to obtain a bonus in the 
following year and to avoid paying a higher premium due to the penalization.  
 
Based on the idea of pooling the risk of all policyholders, insurance companies calculate 
the price of the premium as the product of the expected number of claims per contract 
times the expected cost of each claim plus some general expenses, which cover 
administration, advertising, claims handling, commissions and legal requirements. 
 
Even if the price of insurance is not directly proportional to the expected number of 
claims, due to the presence of general expenses of the company, expenses are the smaller 
part (around 20% of the total price is due to the general expenses and loadings). So, a 
substantial decrease of the expected number of claims would naturally transmit to the 
final price. In addition, the impact could differ from one driver to the other due to the 
influence of some additional factors that are associated to the risk of having an accident 
such as driving experience, driving patterns in general and the personal driver’s 
characteristics.  
 
Using the scenarios mentioned above and the sample, it has been calculated the reduction 
of the price of insurance based on the assumption that the expected number of claims is 
a factor that proportionally to the average cost of claims accounts for 80% of the price of 
insurance. The results are shown in Table 6. Reducing the percentage of speed violation 
from 9% to 0% results in a 38.6% reduction in the premium. The highest percentage 
reduction in the premium is 41.2%, for those decreasing their percentage of speed 
violation from 20% to 0%.  



 

16 
 

 Table 6. Percentage of variation in the price of insurance due to a change in the level of 
speed violation (from some level before to some level after). The cells show the 
percentage of increase (positive values) or decrease (negative values) according to the 
formula ((# claims after - # claims before)/ # claims before)*0.8. 

 After 

Before 0% 1% 2% 5% 7% 9% 10% 12% 15% 17% 20% 

0% 0% 48,7% 55,1% 64,0% 67,4% 70,0% 71,1% 73,1% 75,5% 76,8% 78,6% 
1% -31,0% 0% 4,0% 9,7% 11,9% 13,6% 14,3% 15,5% 17,0% 17,9% 19,1% 
2% -33,5% -3,9% 0% 5,4% 7,5% 9,1% 9,8% 11,0% 12,4% 13,2% 14,3% 
5% -36,7% -8,8% -5,1% 0% 2,0% 3,5% 4,1% 5,2% 6,6% 7,4% 8,4% 
7% -37,8% -10,5% -6,9% -1,9% 0% 1,5% 2,1% 3,2% 4,5% 5,3% 6,3% 
9% -38,6% -11,8% -8,2% -3,3% -1,4% 0% 0,6% 1,7% 3,0% 3,8% 4,8% 
10% -39,0% -12,3% -8,8% -3,9% -2,0% -0,6% 0% 1,1% 2,4% 3,1% 4,1% 
12% -39,6% -13,2% -9,7% -4,9% -3,1% -1,6% -1,1% 0% 1,3% 2,0% 3,0% 
15% -40,3% -14,3% -10,9% -6,1% -4,3% -2,9% -2,3% -1,3% 0% 0,7% 1,7% 
17% -40,7% -14,9% -11,5% -6,8% -5,0% -3,6% -3,0% -2,0% -0,7% 0% 0,9% 
20% -41,2% -15,7% -12,3% -7,7% -5,9% -4,5% -3,9% -2,9% -1,7% -0,9% 0% 

 

6. Conclusions 
 
The transition towards semi-autonomous vehicles is expected to contribute to lowering the 
frequency of motor accidents and to have a significant impact for the automobile insurance 
industry, as rating methods must be revised to ensure that risks are correctly measured.  
 
The analysis carried out has some limitations, because the data were not collected in the same 
conditions for semi-autonomous vehicles, but rather they were collected from manual drivers. 
The data belong to a group of drivers that are not exactly representative of the general 
population of drivers. Indeed, they are younger drivers. Authors studying the driving 
population in Spain report the average age to be older than the age of our sample. Official 
figures on the age of citizens who have a driving license in Spain indicate that the average is 
48.63 years. Alcañiz et al. (2014) analyze a sample of random drivers who were stopped at 
sobriety checkpoints and they report similar results for Catalonia (Spain). Nevertheless, 
Kyriakidis et al. (2015) carried out a literature review on the public opinion on automated 
driving and found that several studies (Power, 2012) claimed that vehicle owners with the 
highest interest in fully autonomous driving are young drivers (between the ages of 18 and 
37), which are precisely those that are represented in the sample. Nevertheless, the results of 
this study should be taken with caution in the context of autonomous or semi-autonomous 
vehicle insurance, as they provide simply an orientation to the insurer about expected impacts. 
 
Telematics information and UBI research are used as a starting point for addressing risk 
quantification and safety for semi-autonomous vehicles. The real data used here have 
produced some scenarios for a reduction of speed limit violations and its impact on the 
decrease in the expected number of accident claims and premiums. If semi-autonomous 
vehicles could eliminate driving in excess of speed limits, the expected number of accident 
claims would be reduced. The benefits of this reduction would translate to a reduction in the 
number of victims on the road and an increase of overall safety. Specifically, if the percentage 
of kilometers traveled at speeds above the limit is reduced from the average level of 9% to 



 

17 
 

0%, then the number of claims is reduced by approximately one half. If all vehicles in Spain 
are equipped with automated speed control devices, so that this reduction would take place 
for all drivers, then the number of accidents with victims (bodily injuries and/or death) would 
be reduced by 1.77 accidents per 1,000 drivers. If only deaths are taken into account, the total 
number of victims would be reduced by 0.81 deaths per 26,514 drivers3. This is a significant 
reduction that provides relevant information for the insurance industry and the road safety 
authorities, besides the gains for society as a whole. 
 
Future research in the topic should necessarily be based on the analysis of real claim data of 
autonomous or semi-autonomous vehicles. The progressive introduction of automatization on 
driving is expected to reduce human errors, the foremost cause of accidents. Future analysis 
based on real data could provide a more accurate estimation of the reduction of claim rates 
due to speed limit violation reduction and other risk factors which could be controlled by the 
vehicle. Specifically, future lines of research should measure how accident rates will be 
reduced and the overall impact of autonomous vehicles on road safety. Accident risks will 
not be eliminated entirely, and circumstances surrounding accidents will be different when 
technical innovations become available. In this new context, insurance companies should 
measure how exactly increased vehicle safety will translate into lower claims losses and 
premiums. Finally, the effect of weather conditions on the severity of claims should also be 
investigated, as well as the season and hour effects. 
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3 According to the Traffic Authorities in Spain (Dirección General de Tráfico, http://www.dgt.es/es/) the 
total number of drivers in 2016 was 26,514,026, the total number of accidents with victims (bodily injuries 
and/or death) was 97,756 and the total number of deaths was 1,689. Therefore,  by applying the 48% 
reduction (due to automated speed control devices) to the number of accidents with victims (bodily injuries 
or death), it results in a reduction of 1.77 accidents (from 3.69 to 1.92) per 1,000 drivers. The same 48% 
reduction applied to the number of deaths results in a reduction of 0.81 deaths per 26,514 drivers. 
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Appendix 

Table A.1. shows the results of the estimation of alternative Poisson regression models with 
random parameters (assuming a normal distribution for individual parameters). Model 0 is 
the basic Poisson regression model with constant parameters for all variables. Model 1 is the 
Poisson regression model where ln(km), ln(speed), ln(urban) and ln(age) have random 
parameters. In Model 2, only ln(km), ln(speed) and ln(urban) have random parameters. In 
Model 3, only ln(speed) and ln(urban) have random parameters. Finally, in Model 4 only 
ln(urban) has a random parameter. For each model with random parameters, the values of the 
mean and standard deviation (sd) for each random parameter are shown. The log-likelihood, 
BIC and AIC are shown for each model. 

Table A.1.Parameter estimates of the Poisson regression model with random parameters (in 
brackets the standard error is shown). 

 Model 0 Model 1 Model 2 Model 3 Model 4 
Constant -3.076** -3.030* -3.030* -3.016* -2.975* 
 (1.170) (1.177) (1.177) (1.178) (1.181) 
Sex 0.063 0.063 0.064 0.063 0.064 
 (0.066) (0.066) (0.066) (0.066) (0.066) 
ln(km) 0.380***   0.379*** 0.378*** 
 (0.060)   (0.060) (0.060) 
ln(speed) 0.072*    0.072* 
 (0.035)    (0.035) 
ln(urban) 0.460***     
 (0.070)     
ln(age) -1.367***  -1.364*** -1.366*** -1.368*** 
 (0.283)  (0.284) (0.285) (0.285) 
mean.ln(km)  0.378*** 0.378***   
  (0.060) (0.060)   
mean.ln(speed)  0.072* 0.072* 0.070  
  (0.035) (0.035) (0.037)  
mean.ln(urban)  0.434*** 0.434*** 0.428*** 0.414*** 
  (0.079) (0.079) (0.078) (0.078) 
mean.ln(age)  -1.365***    
  (0.284)    
sd.ln(km)  0.006 0.007   
  (0.038) (0.040)   
sd.ln(speed)  0.004 0.000 0.042  
  (0.106) (0.102) (0.101)  
sd.ln(urban)  0.090 0.090 0.100 0.120** 
  (0.064) (0.064) (0.054) (0.045) 
sd.ln(age)  0.019    
  (0.060)    
Log-likelihood -3197.406 -3197.235 -3197.282 -3197.045 -3196.687 
BIC 6449.803 6486.120 6477.049 6467.410 6457.529 
AIC 6406.813 6414.470 6412.564 6410.090 6407.374 

*** p-value < 0.001, ** p–value < 0.01 and * p-value < 0.05. 
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