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Abstract

Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play
tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to
enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes
supporting transport of gaseous heme ligands in Cygb. Carbon monoxide rebinding shows a complex kinetic pattern with
several distinct reaction intermediates, reflecting rebinding from temporary docking sites, second order recombination, and
formation (and dissociation) of a bis-histidyl heme hexacoordinated reaction intermediate. Ligand exit to the solvent occurs
through distinct pathways, some of which exploit temporary docking sites. The remarkable change in energetic barriers,
linked to heme bis-histidyl hexacoordination by HisE7, may be responsible for active regulation of the flux of reactants and
products to and from the reaction site on the distal side of the heme. A substantial change in both protein dynamics and
inner cavities is observed upon transition from the CO-liganded to the pentacoordinated and bis-histidyl hexacoordinated
species, which could be exploited as a signalling state. These findings are consistent with the expected versatility of the
molecular activity of this protein.
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Introduction

Shortly after the discovery of neuroglobin (Ngb), a globin

mainly expressed in vertebrate nervous tissues and the retina [1], a

fourth vertebrate globin was isolated in rat stellate cells using a

proteomic approach, and was named STAP (stellate cell activa-

tion-associated protein) [2]. This novel heme protein exhibited

peroxidase activity toward hydrogen peroxide and linoleic acid

hydroperoxide. Almost independently, the sequence of this globin

was identified in mouse, man and zebrafish and, given that it is

expressed in all types of human tissues, was eventually termed

cytoglobin (Cygb) [3]. Human Cygb consists of 190 amino acids,

showing extensions of about 20 amino acids at both C- and N-

termini with respect to standard globins. The amino acid sequence

fits well into the conserved globin fold pattern, covering helices

from A to H, and key residues such as the proximal (F8) and distal

(E7) histidines and phenylalanine CD1, at the CD corner [4].

Interestingly, Cygb shares about 30% amino acid sequence

identity with myoglobin (Mb), suggesting that Cygb and Mb

diverged from a common ancestor [3].

Together with Ngb, Cygb is the first example of bis-histidyl

hexacoordinated globin in humans and other vertebrates. In the

absence of exogenous ligands, the sixth heme iron coordination

position is occupied by the distal HisE7 residue in both the ferric

and ferrous forms [5,6]. Bis-histidyl hexacoordinated hemoglobins

(Hbs) have been found in animals, cyanobacteria [7] and plants

[8], and in their deoxy Fe2+ state they reversibly bind exogenous

diatomic ligands, usually with high affinities [9,10]. Binding of

exogenous ligands is possible only with concomitant displacement

of the distal HisE7, a regulatory mechanism which has been

suggested to require a substantial conformational change [11,12].

Despite the widespread occurrence of bis-histidyl hexacoordinated

Hbs, their physiological role is as yet largely unknown, although

recent studies have suggested their involvement in NO detoxifi-
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cation by acting as NO scavengers, playing a protective role

during hypoxia [8,13,14,15].

Cygb displays some peculiar structural features, like the N- and

C-terminal extensions, which might mediate specific protein–

protein interactions [4]. In addition, the crystal structure of bis-

histidyl hexacoordinated Cygb shows an extended apolar protein

matrix cavity, connected to the exterior through a narrow tunnel

nestled between helices G and H. On the other hand, the internal

cavity differs from those recognized to play a functional role in

Mb, Ngb, truncated Hb and C. lacteus mini-Hb [16], and may

provide a special ‘‘ligand tunnelling’’ pathway [4] that raises

intriguing questions about the functional role of Cygb. Under-

standing the involvement of cavities and conformational changes

in modulating ligand binding is crucial for the comprehension of

the mechanisms that are relevant to the function(s) of Hbs.

Although several hypotheses have been proposed for Cygb, so far

no clear-cut evidence has been obtained in favour of any of them.

Besides a role in NO or reactive oxygen species scavenging,

[4,17,18] Cygb has been suggested to act as an oxygen storage or

sensor protein [19], or as an enzyme involved in collagen synthesis

[4]. A role in cancer as a tumor suppressor gene has also been

discussed, following the finding that the promoter region of the

gene encoding for Cygb is hypermethylated and as such under-

expressed in tumours [20].

In order to understand the accessibility of internal cavities to

small gaseous ligands and explain how this accessibility is tuned by

HisE7 hexacoordination, we have performed flash photolysis

experiments on CO complexes of Cygb in solution and gels

[21,22]. Thermodynamically unfavoured protein conformations

have been selectively stabilized through silica gel encapsulation

[23,24,25], and functional properties of structurally distinct

conformations associated with CO-liganded, pentacoordinated,

and bis-histidyl hexacoordinated structures have been determined

[26]. Analyses of molecular dynamics simulations, together with

the crystal structure of the HisE7Gln mutant, have allowed us to

study the shape and connectivity of internal cavities. Our results

highlight structural and functional features capable of providing

versatility to this molecular machine.

Materials and Methods

Sample preparation
Wild type (wt) human Cygb and the His81(E7)Gln mutant were

heterologously expressed as previously described [27] (the

His81(E7)Gln mutant bears mutations Cys38(B2)Ser and Cy-

s83(E9)Ser for crystallization purposes and will be denoted

hereafter HE7Q Cygb*). Laser flash photolysis experiments on

the wt protein were performed on reduced samples (where the

Cys38-Cys83 disulfide bond is broken), prepared by reacting the

purified proteins with 10 mM dithiothreitol (DTT) overnight. The

mutant HE7Q Cygb* was not subject to DTT treatment, as

mutations Cys38Ser and Cys83Ser prevent formation of any

intramolecular disulfide bridge. Encapsulation of Cygb in silica

gels was carried out following a previously described protocol (see

Experimental Methods in Supporting Information S1) [28].

Kinetic experiments and data analysis
The CO rebinding curves were measured by monitoring

changes in absorbance at 436 nm or by measuring transient

spectra in the Soret band after nanosecond laser photolysis at

532 nm with a previously described setup [23]. Repetition rate of

laser pulses was kept at 0.1 Hz for the wt Cygb, and 2 Hz for the

HE7Q Cygb* mutant. Lifetime distributions associated with

ligand rebinding kinetics were determined with a maximum

entropy method (MEM; see Experimental Methods in Supporting

Information S1) [29]. Differential equations associated with the

kinetic ligand migration mechanism were solved and optimized

numerically [24] (see Supporting Information S1 for fitting

details). In order to improve the retrieval of microscopic rate

constants, data from flash photolysis at two different CO

concentrations and at the same temperature were simultaneously

fitted. This global analysis was repeated at several different

temperatures between 10uC and 45uC. The activation parameters

for the microscopic rate constants were determined from the

resulting linear Eyring plots (Tables S1, S2, S3, S4 in Supporting

Information).

X-ray structural analysis of HE7Q Cygb*
Crystals of HE7Q Cygb* mutant were grown using the hanging

drop vapour diffusion setup (see Experimental Methods in

Supporting Information S1; data processing statistics are reported

in Table S5). The crystals diffracted up to 2.8 Å resolution using

synchrotron radiation (beam line ID23-2, ESRF, Grenoble,

France), and were shown to belong to the orthorhombic space

group P212121, with unit cell parameters a = 48.8 Å, b = 70.1 Å,

c = 102.1 Å, a= b= c= 90.0u (two protein molecules in the

asymmetric unit). The HE7Q Cygb* structure was determined

by molecular replacement using the program Phaser [30] (see see

Experimental Methods in Supporting Information S1 for details).

In the end of the refinement stages, 20 water molecules, 2

ferricyanide molecules, 2 cyanide and 1 acetate ions were located.

For the two molecules in the asymmetric unit, no interpretable

electron density was present for the N-terminal (residues 1–17) and

C-terminal (residues 172–190) regions. The final R-factor and R-

free values were 20.7% and 27.7%, respectively.

MD simulations
MD simulations were run for human Cygb in bis-histidyl

hexacoordinated (Cygbh), pentacoordinated (Cygbp) and oxygenated

(O2Cygb) states using the parmm99SB force field [31] and the

Amber9 package [32]. Cygbh was modelled using as template the

X-ray structure 1UT0 (solved at 2.40 Å) [33]. Two templates were

used to build up the simulation systems for both Cygbp and

O2Cygb. The first template was the X-ray structure of the HE7Q

Cygb* mutant, which contains cyanide in the distal cavity above

the heme (see below for details). For our purposes here, the

mutated residues Gln(E7)81, Ser38 and Ser83 were restored to the

native amino acids (His81, Cys38 and Cys83). The second

template was the X-ray structure 3AG0 (solved at 2.60 Å), which

contains CO bound to the heme [34]. In the two cases the ligand

(cyanide, CO) was removed to simulate Cygbp, or replaced by O2 to

simulate O2Cygb. Thus, four distinct trajectories were sampled for

pentacoordinated and oxygenated states: Cygbp(HE7Q), Cy-

gbp(3AG0), O2Cygb(HE7Q) and O2Cygb(3AG0).

The overall fold of the three X-ray structures (1UT0, 3AG0 and

the HE7Q Cygb* mutant) is very similar, as noted in a root-mean

square deviation (rmsd) of the backbone Ca atoms in the range

0.5–0.7 Å. However, there are two main differences. As expected,

the presence of the ligand in the distal cavity changes the

conformation of HisE7, as the torsion N-Ca-Cb-C4 varies from

2175.2 degrees in 1UT0 to 253.9 degrees in 3AG0. A more

intriguing difference concerns the conformation of Trp151, which

is found in two conformations (see Figure S1 in Supporting

Information). In both 1UT0 and the HE7Q Cygb* mutant, the

torsional angles N-Ca-Cb-C3 and Ca-Cb-C3-C3a are about

2165 and 85 degrees. However, the alternative conformation

found in 3AG0 is characterized by torsion angles of 288 and 282

degrees, respectively. Therefore, the distinct simulation models
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allows us to explore the effect of the conformational variability of

Trp151. On the other hand, although Cygb is generally found as a

crystallographic dimer, the extension of the contact surface

(760 Å2) [33] appears insufficient to provide a stabilization of

the dimer in solution. In fact, recent experimental data demon-

strate that the protein is monomeric in dilute solutions, with

extended N- and C-terminal regions [35]. Therefore, in all cases,

MD simulations were run on monomeric proteins.

Each system was simulated for 100 ns trajectories, collecting

frames at 1 ps intervals. Details of the MD simulations, including

preparation of simulated systems, thermalization and simulation

protocol, are given in Supporting Information S1 (see Experi-

mental Methods).

Essential dynamics was used to analyze the dynamical behavior

of the protein backbone [36,37]. MDpocket [38] was used to

detect cavities in the protein matrix. Calculations were performed

on 103 snapshots taken regularly in the regions 20–60 ns and 60–

100 ns of the trajectory. High-density isocontours show stable

cavities found during the trajectory, while low-density values

reflect transient or nearly non-existent pockets. The similar

distribution of cavities found for the two time-windows support

the structural integrity of the trajectory. Finally, Implicit Ligand

Sampling (ILS) [39] was used as an alternative approach to

identify inner cavities favorable for ligand docking and migration.

ILS computations were performed using a 3D grid that

encompasses the whole protein with a 0.5 Å resolution. Moreover,

50 orientations of the probe oxygen molecule per grid point and a

total set of 104 snapshots taken every 4 ps using the same time-

windows considered for MDpocket analysis.

NO dioxygenase activity
The rate of NO dioxygenase activity was determined by rapid

mixing using a stopped-flow apparatus (SX.18MV, Applied

Photophysics). A solution containing 100 mM phosphate, 6 mM

O2Cygb at pH 7.0 was prepared by addition of sodium ascorbate

at a concentration of 10 mM in presence of 5 UI/ml catalase

under strictly anaerobic conditions. Upon completion of the

reduction, the protein solution was quickly exposed to a 100%

oxygen atmosphere and immediately loaded on the stopped-flow

apparatus. A stock solution containing ,1 mM NO was generated

by anaerobically dissolving MAHMA NONOate in a deoxygen-

ated 100 mM phosphate solution at pH 7.0. A ,20 mM solution

of NO was obtained by dilution under anaerobic conditions. The

exact concentration of NO was then measured by titration with

deoxygenated human haemoglobin A (HbA) and determined to be

18 mM. The 6 mM O2Cygb and 18 mM NO solutions were mixed

and the reaction was monitored at 419 nm. 5 traces were collected

and averaged. All measurements were carried out at 20uC. For

comparison, the same NO solution was reacted with a 6 mM

O2HbA solution. The instrument dead time is about 1 ms.

Results

CO rebinding kinetics to Cygb in solution and in silica
gels

The CO rebinding kinetics to Cygb solutions (Figure 1A) reveals

a complex kinetic pattern in which three phases can be

distinguished. After photolysis, substantial geminate rebinding is

observed on the nanosecond time scale, followed by a biphasic

bimolecular phase. The faster process in the bimolecular phase is

associated with rebinding to pentacoordinated Cygb molecules

(Cygbp), while the slower one is due to rebinding to Cygb molecules

that have switched to the bis-histidyl hexacoordinated species

(Cygbh). Decay of the latter reaction intermediate is much slower

since the apparent rate is determined by the distal HisE7

dissociation rate.

The above outlined kinetic features are shared with human Ngb

[21,40], although there are differences in the relative extent of the

different phases. In particular, the geminate phase is much larger

for Cygb than for Ngb, suggesting a higher reactivity and/or

hindered escape to the solvent for the former. Inspection of the

kinetic phases detected by the MEM analysis (Figure 1B) reveals

the existence of multiple kinetic steps, several of which are

essentially CO concentration-independent. A clear-cut thermal

activation is also recognizable in many of these steps (see Figure S7

in Supporting Information).

Proper identification of reaction intermediates is fundamental to

quantitatively describe the kinetics of ligand binding [24]. The

bimolecular rebinding to Cygbp is easily identified thanks to the CO

concentration dependence of this step. For example, in Figure 1B

the band peaked at 90 ms (at 40uC and 1 atm CO; black curve)

shifts to 350 ms when CO concentration is reduced tenfold (grey

curve). The identity of the long-lived reaction intermediate can be

demonstrated by mutating the distal His to a different amino acid,

unable to coordinate to the heme Fe. In fact, the CO rebinding

kinetics to the HE7Q Cygb* mutant completely lacks the slowest

phase (Figure 1A and 1B), thus confirming the bis-histidyl identity

of this reaction intermediate. The progress curves in Figure 1A

also highlight a much faster second order rebinding for HE7Q

Cygb* than for the wt protein.

In order to expose the different reactivities of penta- and bis-

histidyl hexacoordinated structures, we took advantage of the silica

gel encapsulation methodology to stabilize those two conforma-

tions, and determined the corresponding CO rebinding kinetics

[41]. Following a well established protocol [28,42,43], Cygb was

Figure 1. CO rebinding kinetics. (A) Comparison between the CO
rebinding kinetics to wt Cygb (circles) and HE7Q Cygb* (solid lines)
solutions at 40uC, equilibrated with 1 atm CO (black) and 0.1 atm CO
(red). (B) Lifetime distributions associated with the rebinding kinetics in
panel A. (C) Comparison between the CO rebinding kinetics to wt Cygb
solutions (blue circles), wt COCygb gels (black circles) and wt Cygb+CO
gels (red circles). T = 40uC, 1 atm CO. (D) Lifetime distributions
associated with the rebinding kinetics in panel C.
doi:10.1371/journal.pone.0049770.g001
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encapsulated either as the carbonmonoxy adduct (COCygb gels)

or as the deoxy form (Cygb gels) to trap the liganded and

unliganded structures, respectively. The latter were exposed to CO

immediately before performing the laser flash photolysis experi-

ments (Cygb+CO gels). Given the capability of silica gels to trap

the three dimensional features of liganded and unliganded

structures, the resulting rebinding kinetics after laser photolysis

expose the different functional properties of the two molecular

species [44]. As shown in Figure 1C, rebinding kinetics observed

for COCygb and Cygb+CO gels are dramatically different. Visual

inspection of the rebinding curves shows that when Cygb is

encapsulated as COCygb, the physical constraints imposed by the

gel highly inhibit bis-histidyl hexacoordination by the distal His.

The gel also inhibits escape of the photodissociated ligand to the

solvent phase, increases geminate recombination, and favours

migration to internal docking sites. On the other hand, the

rebinding kinetics to Cygb+CO gels is almost identical to the one

observed in solution, indicating that formation of Cygbh is not

hindered in the gel.

The simplest reaction path that proved consistent with the

observed kinetics under the tested conditions (at different CO

concentrations, temperatures, in solution and encapsulated in

silica gels) is outlined in Figure 2. Figure 3 shows the results of the

fits with the kinetic model reported in Figure 2 to selected

rebinding curves for wt Cygb and HE7Q Cygb* solutions (the

microscopic rate constants at 20uC and the corresponding

activation energies retrieved from Eyring plots are reported in

Tables S1, S2, S3, S4 in Supporting Information). The time course

can be perfectly reproduced under all investigated conditions,

including the cases of the HE7Q Cygb* mutant as well as

COCygb and Cygb+CO gels (see Figures S8, S9, S10, S11 for

representative analyses).

Formation and decay of Cygbh was found to occur with

microscopic rates kb = 149 s21 and k2b = 1.8 s21 at 20uC, which

are slightly lower than the values reported by Trent et al.

(kb = 430 s21 and k2b = 5 s21) [5], although obtained with a

different method. The resulting equilibrium binding constant is 83,

in agreement with the literature value of 86 [5]. In spite of the fact

that the rate kb is much lower than the value reported for human

Ngb (kb = 2000 s21) [5], bis-histidyl hexacoordination occurs to a

larger extent for Cygb than for Ngb after photolysis of their CO

complexes, due to the very different values of the CO rebinding

rates. CO rebinding to Cygbp from the solvent occurs with rate

k22 = 3.046107 M21 s21, in comparison with the value

k22 = 7.16108 M21 s21 observed for human Ngb [21]. Using

the determined microscopic rate constants, the on-rate kinetic

constant (kON) is estimated to be 6.36106 M21 s21, which is in

line with the literature value of 5.66106 M21 s21 [5] and is

smaller than the values observed for human [21,45,46] and

murine [46,47,48] Ngb. The slower reaction of CO with Cygbp

thus favors bis-histidyl hexacoordination by the distal His, which

occurs in higher yield than for Ngb. The gel has an appreciable

effect on the value of kON with a twofold increase for COCygb gels

when compared to Cygb solutions. As expected, no change at all is

observed for Cygb+CO gels. A remarkable enhancement in kON is

observed for the HE7Q Cygb* mutant, for which the estimated

value is 2.966107 M21 s21.

Interestingly, the innermost rebinding step occurs with the same

rate in Cygb and Ngb, k21 = 1.56107 M21 s21, while the exit

rates to the solvent and the migration rates to the first docking site

are different (for Cygb k2 = 4.26107 s21, kc = 1.56107 s21; for

Ngb k2 = 1.46108 s21, kc = 5.56107 s21). This has straightforward

consequences on the geminate rebinding, which is larger for Cygb,

mostly due to a lower escape probability from the primary docking

Figure 2. Minimal reaction scheme for the observed kinetics. After photodissociation of the CO complex of Cygb (CygbCO), the ligand can
migrate to a primary docking site (Cygbp:CO)1, from which it can sequentially access secondary sites (Cygbp:CO)i, i = 2,…,5, or exit to the solvent
(Cygbp). The deoxy, pentacoordinated species (Cygbp) is in equilibrium with the deoxy, bis-histidyl hexacoordinated species (Cygbh). Migration to the
last reaction intermediate (Cygbh:CO)6 is concurrent to formation of the bis-histidyl complex.
doi:10.1371/journal.pone.0049770.g002

Figure 3. Kinetic analysis of CO rebinding. Analysis of the CO
rebinding kinetics to wt Cygb (A) and HE7Q Cygb* mutant (B) solutions
equilibrated with 1 atm CO (black circles) and 0.1 atm CO (red circles).
T = 40uC. The fits (purple lines) are superimposed to the experimental
data (circles). In the figures we have also reported the time course of
the other relevant species in the scheme in Figure 2 at 1 atm CO (solid
lines) and 0.1 atm (dotted lines): (Cygbp:CO)1 (black), (Cygbp:CO)2 (blue),
(Cygbp:CO)3 (cyan), (Cygbp:CO)4 (magenta), (Cygbp:CO)5 (yellow), (Cy-
gbh:CO)6 (dark blue), Cygbh (green), Cygbp (red).
doi:10.1371/journal.pone.0049770.g003
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site. Finally, while the rate k21 undergoes only a minor increase

when Cygb is trapped in COCygb gels, the exit rate k2 drops to

2.16107 s21 (twofold decrease).

X-ray structure of the HE7Q Cygb* mutant
The two subunits (A, B) found in the X-ray structure are

assembled in a dimer identical to that found for native Cygb* [33].

Superimposition of the Ca atoms in the protein core of the two

subunits reveals a strong structural conservation (rmsd of 0.45 Å),

with limited differences in the G-H loop (residues 137–146). The

cyanide ligand in the distal site pocket is found almost parallel to

the heme plane (distance of 3.22 and 2.87 Å found in subunits A

and B of the X-ray structure; Figure S2), oriented roughly along

the line connecting the pyrrole NA and NC nitrogen atoms. This

arrangement indicates that the structure better fits a pentacoordi-

nated protein. The absence of ligand coordination likely arises

from X-ray-induced Fe(III)RFe(II) reduction, resulting essentially

in loss of heme affinity for the ligand [49], as has been noticed for

other heme proteins [50].

Since the HE7Q mutation disrupts the endogenous bis-histidyl

hexacoordination with HisE7, the comparison of wt Cygb* and its

HE7Q mutant provides clues on the transition from exogenous

hexacoordination to the endogenous one through the pentacoor-

dinated species. This information is relevant for understanding the

properties of the reactive species formed immediately after

photolysis of carbonylated Cygb. We recall that the B subunit in

the wt Cygb* 1UT0 structure shows an alternative pentacoordi-

nated conformation (estimated at 45% occupancy) [33]. Structural

overlays of the HE7Q mutant with bis-histidyl hexa- (subunit A)

and pentacoordinated (subunit B) Cygb* yield a rmsd of 0.66 Å

and 0.51 Å, respectively. Thus, the overall shape of these

structures is very similar. The largest deviations are found at

residues 60–66 and 70–83 (CD-D stretch and beginning of helix E;

see Figure 4), as the shift from endogenous bis-histidyl hexacoor-

dination to pentacoordination drives the E-helix 1.5 Å away from

the distal site pocket (measured on the Ca atom of the E7 residue),

increasing the distal site volume by about 73 Å3. In the

pentacoordinated state, HisE7 is still largely accommodated within

the distal cavity, oriented towards the heme, but with its Ne atom

falling at 4.2 Å from the Fe atom. In the HE7Q mutant the Gln

side-chain matches the position of His in the pentacoordinated

structure, as the side chain amide N atom is shifted only ,1 Å

relative to the His Ne atom (Figure S2). However, the Gln side

chain is pointing to the exterior of the distal site, while the His side

chain is oriented to the interior, thus suggesting that the

pentacoordinated native Cygb* highlights an intermediate position

of HisE7 in the mechanism controlling exogenous ligand binding

through competition with the endogenous ligand. Overall, it can

be concluded that the D–E region plays a central role in providing

the structural degrees of freedom required to switch between

endogenous and exogenous hexacoordinated states.

Molecular dynamics: Structural and dynamical analysis
Extended MD simulations were run to explore the structural

integrity and dynamical behavior of Cygbh, Cygbp and O2Cygb (as

noted above, let us remark that two simulation systems were

considered for both pentacoordinated and oxygenated states:

Cygbp(HE7Q), Cygbp(3AG0), O2Cygb(HE7Q) and O2Cygb(3AG0).

For all the simulations the rmsd profiles determined for both the

backbone atoms and the heavy atoms were stable along the whole

trajectories (see Figure S3).

The structural similarity between the different species can be

examined from the rmsd between the average structures derived

from 104 snapshots collected in the last 10 ns of the trajectories.

The results (Table 1) point out a significant difference in the

transition from Cygbh to Cygbp leading to a rmsd of 1.7 Å, which

can be primarily ascribed to the rearrangement of helix E (see

above). A slightly larger rmsd (about 2.1 Å) is found between Cygbh

and O2Cygb, indicating the occurrence of additional structural

rearrangements upon ligand binding. On the other hand, the rmsd

between pentacoordinated and O2-bound proteins built up using

the same template (1.28 and 0.75 Å for simulation systems built up

from X-ray structures HE7Q and 3AG0, respectively) is lower

than the value determined for the two pentacoordinated (1.55 Å)

or the two ligand-bound (1.14 Å) proteins. This finding is

surprising, as one would have expected a larger resemblance for

Cygb species having the same coordination state. Moreover, this

trend suggests that the conformational change associated with

Trp151 affects the backbone arrangement, at least in certain

structural elements. In fact, inspection of the corresponding

structures reveals differences in the arrangement of helices A, G

and H (see Figure 5).

The root-mean square fluctuation (rmsf) of residues exhibits a

similar overall pattern for all the simulated structures, although

differential trends can be observed for the distinct simulated

species (Figure 6). For Cygbh, the major fluctuations affect residues

in loops CD and helix F. As expected, transition from Cygbh to

Cygbp enhances the fluctuations, and the most apparent effect is

observed in helix E and loop GH, thus reflecting the increased

flexibility due to loss of the restraint imposed by the HisE7-heme

Figure 4. Superimposition of X-ray structures 1UT0 and HE7Q
mutant. Representation of the backbone of HE7Q Cygb* mutant (gray
ribbon) and Cygb* in the endogenous bis-histidyl hexacoordinated
state (subunit A, orange ribbon). The rigid body movement of helix E is
indicated by an arrow. The HE7Q Cygb* heme group is in red colour.
For clarity, the CN2 ion (not coordinated to the heme iron) is omitted
from the HE7Q Cygb* distal cavity (see Figure S2). Relevant residues are
labelled.
doi:10.1371/journal.pone.0049770.g004
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bond. Finally, coordination of the exogenous ligand reduces the

protein fluctuations, especially in loop CD and helix E, though

there are enhanced fluctuations in the loops that connect helices F

and G, as well as G and H.

Essential dynamics was used to examine the influence of the

coordination state on the protein dynamics. Diagonalization of the

positional covariance matrix determined for the backbone atoms

points out that few motions account for a significant fraction of the

structural variance. Thus, about 40% and 65% of the backbone

conformational flexibility is accounted for by the first 3 and 10

principal components (Table S6). In Cygbh the first eigenvector

primarily involves the motion of the first half of helix F, the loop

EF and the beginning of helix A (see Figure S4). In contrast, the

dynamical behavior of Cygbp is more global, involving the motion

of a larger number of structural elements, as expected from the

release of the constraint imposed by the HisE7-Fe bond. The most

remarkable effect concerns the motion of helix E, which is coupled

to deformations in loops CD and EF. Noteworthy, the conforma-

tional change of Trp151 introduces differential trends in the

flexibility of certain structural elements. Thus, compared to Cygbp

started from HE7Q mutant, the simulation started from 3AG0

shows that helix A is more flexible, while loops GH and EF are

more rigid. Finally, in the oxygenated Cygb (started from HE7Q),

the major deformation involves loops GH and FG as well as helix

G and the last segment of helix A, with minor contributions of the

CD and EF loops. Again the Trp151 conformational change

introduced in the simulation started from 3AG0 leads to distinct

trends, as noted in the enhanced motion of helix H and an

increased flexibility in loop EF and helices A and H.

The similarity between the structural fluctuations of the protein

backbone was measured by means of the similarity index jAB

(Table 2; see also Experimental Methods in Supporting Informa-

tion S1), which takes into account the nature of the essential

motions and their contribution to the structural variance of the

protein. Whereas self-similarities vary from 0.70 to 0.79, cross-

similarity indexes vary from 0.57–0.67. Thus, though there is a

notable overlap between the dynamical motions of the protein

skeleton in the different coordination states, there are distinctive

trends between bis-histidyl hexacoordinated, pentacoordinated

and ligand–bound states, which leads to the gradual transition of

protein dynamics from loop EF and segments of helices A and F in

Cygbh to loops CD and helices E and A in Cygbp, and finally to loop

GH and helices A, G and H in the ligand-bound species (see

above).

Analysis of ligand binding sites
Previous X-ray studies have shown that the bis-histidyl

hexacoordinated form of Cygb (PDB codes IUX9 and 1URY;

[16]) can accommodate up to four Xe atoms in the interior of the

protein. The location of the Xe binding sites was predicted by

GRID calculations, which identifies energetically favorable regions

for placing a Xe atom (Figure S5). The analysis of the Connolly

surfaces also revealed a complex and extended system of internal

cavities, lined by numerous hydrophobic residues, i.e. Trp31,

Leu34, Ile45, Leu46, Met86, Leu89, Val92, Val93, Leu106,

Val109, Phe124, Leu127, Ile131, Val134, Val135, Phe139,

Trp151, Leu154, Ile158.

These trends are reflected in the MDpocket analysis of Cygbh

(Figure 7a), which shows a network of interconnected pockets that

encompass the four Xe atoms. The results also permit to visualize

up to four potential pathways connecting the distal pocket and the

solvent, which might provide exchange routes for ligands.

Nevertheless, none of them provides a well defined access to the

bulk solvent, due to the compactness and reduced flexibility of

Cygbh. One corresponds to the egression by the distal cavity, likely

through a His gate mechanism. This pathway, however, is

impeded by the fixed orientation of the distal His due to the

HisE7-heme bond. Another pathway involves the migration from

Table 1. Structural comparison between different coordinated species of Cygb.

Cygbp(HE7Q) Cygbp(3AG0) O2Cygb(HE7Q) O2Cygb(3AG0)

Cygbh 1.67 1.83 2.14 2.07

Cygbp(HE7Q) 1.55 1.28 1.75

Cygbp(3AG0) 1.23 0.75

O2Cygb(HE7Q) 1.14

Rmsd (Å) between energy-minimized average structures derived from 104 snapshots taken along the last 10 ns of trajectories run for bis-histidyl hexacoordinated
(Cygbh), pentacoordinated (Cygbp(HE7Q), Cygbp(3AG0)), and oxygenated (O2Cygb(HE7Q) and O2Cygb(3AG0)) species.
doi:10.1371/journal.pone.0049770.t001

Figure 5. Structural differences in the two species of O2Cygb.
Superposition of the average structures derived for the two oxygenated
forms of Cygb (built up using as templates the X-ray structures of HE7Q
mutant and 3AG0, which are shown in violet and orange, respectively).
The helices that surround Trp151 are also labelled.
doi:10.1371/journal.pone.0049770.g005
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Xe binding site 4 and passing through a tunnel defined by residues

close to the loop AB (Leu34, Val41) and the final segment of helix

G (Phe139). A third route connects Xe binding site 2 and the

protein surface passing through helices G and H (below the plane

of Trp151, and close to Leu132). In fact, the putative role of this

pathway is supported by the presence of two water molecules in

this area upon inspection of the X-ray structure 1UMO [33].

Finally, the last pathway implies migration via helices E and F,

though access to bulk solvent is impeded by the side chains of

Val92 and Val105.

Compared to Cygbh, the analysis of Cygbp (started from HE7Q

mutant) is very different, as three ligand migration pathways can

be easily identified (Figure 7b): the His gate pathway from the

distal site, the passage through helices E and F, and a new pathway

starting from Xe binding site 1 and passing through helices B and

E (delimited by residues Val43, Cys83 and Met86). In contrast, at

the same isocontour the passage through helices G and H do not

permit access to the bulk solvent. When the same analysis is

carried out for the simulation started from 3AG0, however, there

is a significant reduction in the accessible volume in the interior of

the matrix, and only the routes passing through the distal His gate

and between helices E and F are clearly defined (Figure 7c).

Finally, the analysis of O2Cygb reveals the existence of a big

cavity in the interior of the protein. In the simulation started from

the HE7Q mutant there is no clear passage to the bulk solvent

(Figure 7d). However, in the trajectory started from 3AG0, a well

defined pathway that connects the primary docking site to bulk

solvent, passing through residues in loop AB and the final segment

of helix G, is observed (Figure 7e). The analysis also suggests the

potential involvement of another pathway that involves the

migration through distinct pocket sites and the exit via a passage

located between helix A and loop EF (limited by residues Leu96,

Leu154 and Leu157).

The preceding findings point out the plasticity of the internal

cavities and exit pathways in Cygb, which are largely influenced

not only by the coordination state, but also by the conformation

adopted by Trp151. This finding is further corroborated by

inspection of the energetically favorable regions for ligand

migration derived from ILS calculations (see Figure S6), which

show a similar localization of the internal cavities compared to

MDpocket analysis.

Figure 6. Positional fluctuations of residues. Representation of the root-mean square fluctuations (Å) of residues for the five simulated systems:
Cygbh (from 1UT0), Cygbp (from HE7Q mutant and 3AG0), and O2Cygb (from HE7Q mutant and 3AG0). The positional fluctuations determined for the
residue atoms of uniquely the backbone are represented in red and black, respectively.
doi:10.1371/journal.pone.0049770.g006
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NO dioxygenase activity
It is well known that O2-bound HbA and Mb react rapidly with

NO, yielding nitrate anion. More recently, it was also shown that

Ngb catalyzes the same reaction with a comparable efficiency [51].

The efficiency of O2-bound Mb to scavenge NO in the heart and

skeletal muscle was suggested to protect cytochrome c oxidase

from being inhibited by NO [52,53], a role confirmed by in vivo

experiments carried out with Mb knockout mice [54]. A

neuroprotective role, through an NO scavenging activity [51],

was put forward for Ngb [14]. Similar to Mb and Ngb, NO

detoxification through a NO dioxygenase activity has been

proposed as a possible function of Cygb. Central to this action

appears to be an efficient gated delivery of reactants, supported by

a specific and ligation dependent system of cavities and tunnels, as

supported by the analysis of ligand binding kinetics and MD

simulations, which highlight a dynamic system of cavities (see

above).

To verify the effectiveness of Cygb as an enzyme catalyzing the

NO-oxygenase activity, we have thus investigated the reaction of

O2Cygb with NO in vitro using rapid mixing methods. The

O2Cygb protein can be prepared by exposing an enzymatically

reduced protein solution with an air equilibrated buffered solution.

Rate constants for oxygen binding to and dissociation from Cygb

are 36107 M21 s21 and 0.3 s21, respectively, and result in an

equilibrium constant of 106 M21 [5]. The O2-bound Cygb

solution was then mixed with a NO solution and the reaction

was monitored by following the concomitant absorbance changes.

Upon addition of the NO-containing solution, Cygb(Fe3+) is

readily formed. The spectrum is consistent with that of the

ferricyanide-oxidized protein (data not shown). Similar to Ngb, a

peroxynitrite intermediate is assumed to be formed within the

dead time of the instrument [51], which then decays within a few

milliseconds, according to the kinetic scheme in Figure 8. While

formation of the peroxynitrite is too fast to be resolved, a lower

limit for the rate ka can be estimated on the order of 108 M21 s21,

in keeping with the previous estimate for Ngb [51]. Figure 9 shows

the time course of the decay of Cygb(Fe3+)-ONOO2, along with

the decays of the analogous intermediates for Ngb and HbA. The

reaction proceeds with a first order rate constant kb = 370610 s21,

a value slightly larger than the one observed for Ngb (300610 s21)

[51], and nearly twice as large as the one observed for HbA

(22062 s21).

Discussion

The preceding results have shown that the internal cavities of

Cygb exhibit a large degree of structural plasticity, which reflects

the changes associated with the coordination state of the heme and

the conformational flexibility of residues in the inner cavity, such

as Trp151. In turn, this trend provides a basis to realize two major

experimental findings observed in ligand binding kinetics: i) the

differences in the kinetic behavior found for Cygb in solution or

encapsulated in gels, and ii) the complexity of the dynamical

system of cavities and its impact on ligand rebinding.

Effect of gel encapsulation on CO rebinding kinetics
The results reveal fundamental differences in the kinetic

behaviour of COCygb and Cygb+CO gels, which suggests that

distinct structural or dynamical alterations take place in the

protein. Thus, the rebinding kinetics to Cygb+CO gels is almost

indistinguishable from the signal measured in solution, leading to

the formation of the bis-histidyl hexacoordinated species. In

contrast, this latter species is absent in the gel containing COCygb,

indicating that the pore likely exerts a steric hindrance that

prevents the conformational transition to endogenous bis-histidyl

hexacoordination. Accordingly, COCygb gels strongly favor the

pentacoordinated species, by reducing the equilibrium binding

constant for endogenous bis-histidyl hexacoordination (from 83 for

Cygb solutions to 0.9 for COCygb gels, as determined from the

rate constants in Table S1). Inhibition of the bis-histidyl

hexacoordinated species exerted by the gel occurs mostly through

enhancement of the dissociation rate constant. By contrast, it is

interesting to observe that Cygb+CO gels enhance bis-histidyl

hexacoordination, the equilibrium binding constant becoming 170

(Table S2).

The different CO rebinding kinetics to COCygb and Cygb+CO

gels can be understood on the basis of the dynamic adaptation of

the protein structure in response to different ligation states of the

heme (carbonylated, pentacoordinated, or bis-histidyl hexacoordi-

nate). The structure of HE7Q Cygb* shows that the shift from bis-

histidyl hexacoordination to pentacoordination is accompanied by

a significant displacement of helix E, which expands the volume of

the distal cavity. Moreover, the essential dynamics reveals that the

main motion involves the bending motion of helices E and F,

coupled to deformations in loop CD. Therefore, it is reasonable to

foresee that the shape of the pore wrapped by the silica gel around

the protein may not impede the structural transition between

penta- and bis-histidyl hexacoordinated structures, which implies

the displacement of helix E towards the heme. Thus, the structural

and dynamical properties of Cygbp allows us to realize the

enhanced bis-histidyl hexacoordination observed in CO rebinding

experiments for Cygb+CO gels. In contrast, the constraints

imposed by the pores in COCygb gels are much more effective

in inhibiting the transition to the bis-histidyl hexacoordinated

Table 2. Self- and cross-similarity indexes determined for the active space of essential motions derived for the different
coordinated species of Cygb.

Cygbh Cygbp(HE7Q) Cygbp(3AG0) O2Cygb(HE7Q) O2Cygb(3AG0)

Cygbh 0.79 0.61 0.57 0.60 0.59

Cygbp(HE7Q) 0.70 0.59 0.62 0.61

Cygbp(3AG0) 0.73 0.61 0.65

O2Cygb(HE7Q) 0.70 0.66

O2Cygb(3AG0) 0.78

Self- similarity indexes were determined by considering the essential motions derived from the snapshots sampled in time windows 20–60 and 60–100 ns in a single
trajectory. Cross-similarity indexes were determined by averaging the values obtained from the comparison of the different time windows in two trajectories. The active
space comprised 30 eigenvectors, which explain around 85% of the structural variance.
doi:10.1371/journal.pone.0049770.t002
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structure. This effect can be attributed to the specific structural

and dynamical properties determined for the ligand-bound

species. Thus, the results obtained for O2Cygb reveal not only

the structural alteration in helices A, G and H, which is

particularly relevant after conformational alteration of Trp151

(in the simulation started from 3AG0), but also distinct dynamical

motions, which mainly affect loop GH and helices A, G and H,

whereas helix E is much less flexible compared to Cygbp. Therefore,

the shape of the silica gel that encloses the protein can be expected

to trap the structure of helix E, thus preventing (or at least slowing

down) the deformation of helix E towards the heme required to

form the bond between HisE7 and the Fe atom.

Overall, the relevant difference found in the rebinding kinetics

studies performed for Cygb+CO and COCygb gels, and the larger

similarity of the former with the kinetic behaviour measured for

the protein in solution can be mainly ascribed to the differential

trends in protein dynamics observed for the different coordination

states.

Figure 7. Representation of the average cavities found by MDPOCKET calculations. a. Cygbh; b. Cygbp from HE7Q mutant; c. Cygbp from
X-ray 3AG0; d. O2Cygb from HE7Q mutant; e. O2Cygb from X-ray 3AG0. The cavities and tunnels detected for the distinct coordination states of the
protein are shown in pale yellow. The Xe binding sites found in the X-ray crystallographic structure are numbered and represented as spheres
(magenta).
doi:10.1371/journal.pone.0049770.g007
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Dynamics of inner cavities and ligand migration
The response of CO rebinding kinetics to environmental

parameters reveals a complex kinetic interplay between ligand

migration through internal cavities and structural rearrangements,

which raises questions about the implications for gating the

delivery of reactants to the heme.

Activation free energies, determined from the temperature

dependence of the forward and reverse rate constants (Tables S3

and S4 in Supporting Information), provide an estimate of the

energetic profile encountered by the ligand across its migration

path, which is also sensitive to the structural changes imposed by

bis-histidyl hexacoordination. Thus, Figure 10 shows that the free

energy of the ligand decreases systematically along the migration

pathway, with a rather sharp drop for the longer lived (Cygbp:CO)5
and (Cygbh:CO)6 intermediates (see kinetic scheme in Figure 2).

Conversely, activation barriers for forward and reverse rate

constants steadily increase along the migration path and undergo

a sharp increase concomitant with formation of the hexacoordi-

nated species. As can be easily seen in Figure 3A, the last cavity

(Cygbh:CO)6 is accessed (dark blue lines) only after binding of the

distal HisE7 (green lines) has occurred. Analysis of the rebinding

kinetics to the HE7Q mutant shows no evidence of the longer-

lived intermediate, as rebinding to pentacoordinated species is

complete on shorter time scales. The increase in activation

energies observed also for (Cygbp:CO)3>(Cygbp:CO)4 and for

(Cygbp:CO)4>(Cygbp:CO)5 suggests that as yet unidentified confor-

mational changes may play a substantial role.

MDpocket (Figure 7) and ILS (Figure S6) analysis reveals that

Cygb exhibits a large structural plasticity that affects both the

internal volume and the number and nature of the tunnels

depending on the coordination state of the protein, thus leading to

distinct migration pathways connecting the distal cavity and the

solvent. In the ligand-bound species, two feasible pathways can be

envisaged. One pathway connects the primary docking site with an

exit channel passing through loop AB and helix G, whereas the

other route would involve the ligand egression via helix A and loop

EF, though egression through this pathway would require to

surpass a larger barrier. In fact, previous computational studies

reported that the former pathway was found to be the most

feasible route for ligand migration [55]. These findings could

explain the observed kinetic results, as in addition to the major

escape pathway, which is accessed straight from the distal cavity,

exit to the solvent seem to occur from an additional exit point at

(Cygbp:CO)5 (<10%). However, this picture also depends on the

conformational change in Trp151, as the results derived for

O2Cygb starting from HE7Q mutant do not show effective exit

pathways (Figure 7). In contrast, Cygbp presents multiple pathways.

The most efficient pathway can be expected to be the His-gate

route, proceeding directly to the distal cavity, while the pathway

through helices E and F (present in the two simulated forms of

Cygbp) or helices B and E (only found in the structure started from

HE7Q) might offer alternative entry points to the protein. Finally,

the compact nature of Cygbh encompasses different pre-formed

channels, though not yet clearly accessible to the bulk solvent.

Overall, the results clearly indicate an enhanced permeation of the

protein upon transition from bis-histidyl hexacoordination to the

pentacoordinated state, which should facilitate loading of the

heme with a small diatomic ligand. In the ligand-bound state,

however, the accessibility seems to be reduced to a single pathway,

which could then permit the migration of another ligand to the

heme cavity. These features could then be interpreted as a

molecular mechanism to ensure a fast binding of O2 to Cygbp, thus

rendering the oxygenated protein suitable to capture NO in the

ligand-bound state and accomplish in an efficient way the NO

dioxygenase (NOD) activity.

Figure 8. Time course of NO conversion to nitrate anion. Time
course of decay of the Fe3+ peroxynitrite intermediates to metCygb
(3 mM, black solid line) and metHbA (3 mM, grey solid line) after mixing
with NO to a final concentration of 9 mM. The reaction progress,
displayed in the plot after normalization, was monitored through the
absorption changes at 419 nm. For comparison, we also plot the decay
of the Fe3+ peroxynitrite intermediates to metNgb (open circles) (data
from ref [51]). Time courses can be perfectly reproduced with
exponential relaxations (dotted lines). Fitted rate constants are
370610 s21 for Cygb, 300610 s21 for Ngb, and 22062 s21 for HbA.
T = 20uC.
doi:10.1371/journal.pone.0049770.g008

Figure 9. Reaction mechanism for the conversion of NO and O2

to nitrate anion [51].
doi:10.1371/journal.pone.0049770.g009

Figure 10. Schematic representation of the energetics of ligand
migration in Cygb. Free energy at 20uC for reaction intermediates,
estimated from the activation energies for forward and reverse rate
constants reported in Table S2, and by arbitrarily setting to 0 the free
energy of the state (Cygbp:CO)1. Cygb solution, black lines and symbols;
COCygb gels, red lines and symbols; Cygb + CO gels, green lines and
symbols.
doi:10.1371/journal.pone.0049770.g010
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This interpretation, however, should be considered with

caution, because a simple visual inspection of the time course of

the population of the reaction intermediates along the migration

pathway for the wt protein in solution (Figure 3A) allows to

appreciate the fact that the population of CO docked into internal

sites extends well beyond the time scale over which bis-histidyl

hexacoordination sets on. Thus, migration is potentially affected

by the reshaping of the structure which accompanies the transition

from the global fold in the ligand-bound species to the fully relaxed

pentacoordinated form, and the subsequent binding of the distal

His to the heme. It is worth noting that these events are associated

with relevant changes in the dynamical motions of the protein

skeleton, as revealed by essential dynamics. Moreover, the ligand

accessibility is also affected by the conformation relaxation of

Trp151 (see Figure S1). This residue is located in the inner cavity

opposite to the heme (the distance from the Ca carbon atom to the

heme Fe is around 20 Å) anchored to helix H (position H7) and

surrounded by helices A and G. The nitrogen atom of indole ring

does not participate in hydrogen bonds with other residues, which

justifies the conformational flexibility observed in the X-ray

structures. These features provide a basis to explain the impact of

the conformational arrangement of Trp151 on the structural

reorganization of the protein in the different coordination states,

and likely contribute to the different trends observed in the

rebinding kinetics in gel (see above). In particular, it might be

speculated that the balance between the two conformational states

of Trp151 is linked to the coordination state of the protein, so that

the transition from endogenous bis-histidyl hexacoordination to

the ligand-bound protein and the change in Trp151 act

synergistically to regulate ligand migration in Cygb.

In summary, the plasticity of inner cavities and channels may be

regarded as a determinant for one of the putative functions

suggested for Cygb. Different studies have pointed out that Cygb

might be involved in scavenging of NO reactive species

[4,17,18,51]. The in vitro experiments reported here suggest that

the NOD activity elicited by Cygb indeed occurs at high speed,

and thus reactants are provided to and products removed from the

active site with high efficiency. The existence of multiple exchange

pathways was been demonstrated for Mb, both on experimental

[56,57,58] and computational [39,59] grounds. MD simulations

also suggested the sequential binding of O2 and NO through

gating of specific entry tunnels in truncated Hbs [60,61]. A similar

system of cavities was hypothesized to play a relevant role for the

NOD activity of Ngb [51]. These cavities were found to be

relevant for ligand migration after laser photolysis [21,47,48]. The

dynamic system of cavities present in Cygb might therefore

provide the necessary support to assist the NOD activity. The

larger system of cavities of Cygb may be, at least in part,

responsible for the observed higher rate for NO dioxygenase

activity in comparison to human Hb A and Ngb. Our analysis of

Cygbp offers several pathways for binding of O2, though it is

reasonable to expect that access will primarily involve the His gate

pathway. Alternatively, if the protein skeleton relaxes upon O2

binding, NO might access the distal cavity though the channel

leading from the bulk solvent (close to loop AB and helix G) to the

distal cavity, as found in O2Cygb. These processes would lead to a

sequential gating of ligands that compares to the one supposed to

sustain the NOD activity in TrHb of Mycobacterium tuberculosis [60].

Conclusions

Dramatic changes in CO rebinding kinetics to Cygb are

associated to the structural transition from the CO-bound complex

(or the deoxy pentacoordinated species) to the bis-histidyl,

hexacoordinated species. The conformational transition leads to

reshaping of the internal hydrophobic cavities and exit points, and

an overall change in the protein dynamics. These findings reflect

the significant structural plasticity of Cygb and the strong

dependence of the nature and distribution of internal cavities

and channels on the coordination state of the proteins. They are

also related with conformational changes, such as the rearrange-

ment of Trp151 in the interior of the protein. In turn, these

features suggest the existence of a strong linkage between

conformational flexibility and biological function of Cygb. In

particular, binding of the ligand triggers a series of events, which

may be instrumental to sequential processing of diatomic ligands

(like e.g. in an NO dioxygenase activity), through gating the

exchange of reactants and products along the available exchange

pathways. The energetic gating along distinct ligand migration

pathways, imposed by the conformational transition between the

carbon monoxide complex (or the deoxy pentacoordinated

species) and the bis-histidyl, hexacoordinated species, may support

sequential substrate entry, characteristic for multisubstrate reac-

tions. Alternatively, the large conformational change induced by

ligation of exogenous ligands could be exploited to switch on a

signalling state, in keeping with the hypothesized multifunctional

role of Cygb.

Supporting Information

Supporting Information S1 Experimental methods. En-

capsulation of Cygb and He7Q Cygb*, Kinetic analysis,

Crystallization and structural analysis of HE7Q Cygb*, and MD

simulations.

(DOC)

Figure S1 Representation of the two conformations
found for the indole ring of Trp151 in different X-ray
structures. The endogenous bis-histidyl hexacoordinated pro-

tein (1UT0) is represented in blue and the CO-bound protein

(3AG0) in gray.

(TIF)

Figure S2 Close-up of the HE7Q Cygb* distal site.
Comparisons of the CD loop and the E-helix as observed in the

crystal structures of the HE7Q Cygb*-cyanide complex (gray

ribbon) and (left) the Cygb* in the endogenous bis-histidyl

hexacoordinated state (1UT0 subunit A, orange ribbon) or (right)

Cygb* in the pentacoordinated state (1UT0 subunit B, magenta

ribbon). Hydrogen bonds are indicated by dashed lines and

relevant residues are labelled. The C-N bond length in cyanide is

1.14 Å and the Fe-C distance is 3.22 Å, with an Fe-C-N angle of

89.1u for subunit A (the corresponding geometrical parameters for

subunit B are 1.17 Å, 2.87 Å and 117.1u, respectively). In the

absence of any heme-ligand coordination, the orientation of

cyanide is essentially dictated by van der Waals contacts to

residues Val(E11)85 (3.45 Å for both subunits) and Phe(CD1)60

(3.86 Å and 4.05 Å for chain A and B, respectively), and by a

hydrogen bond with the side chain N atom of Gln81(E7) (2.80 and

2.55 Å for subunits A and B). The Gln81(E7) side-chain is oriented

toward the solvent region, with the side chain O atom hydrogen

bonded to Arg(E10)84. This arrangement frees the heme

propionate D, which rotates around 90u relative to the orientation

assumed in the native Cygb* (not shown).

(TIF)

Figure S3 Time evolution of RMSD. Representation of the

time evolution of the RMSD (Å) determined for the backbone

(black) and heavy (red) atoms with regard to the corresponding
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energy minimized structures of the template models used to build

up the simulated systems.

(TIF)

Figure S4 Superimposition of the first (cyan) and last
(yellow) frames of the first eigenvector. a. Cygbh; b. Cygbp

from HE7Q mutant; c. Cygbp from X-ray 3AG0; d. O2Cygb from

HE7Q mutant; e. O2Cygb from X-ray 3AG0.

(TIF)

Figure S5 Closeup of internal cavities. Closeup view of the

internal cavities network identified in the crystal structure of chain

A (a) and chain B (b) of the hexacoordinated form of human

cytoglobin treated under Xe gas pressure (1UX9). Xe atoms are

represented by cyan spheres, while the red contours correspond to

energetically and sterically favourable Xe binding sites as

identified by GRID computations. The heme and a few residues

regulating the communication between the different docking sites

are shown in capped sticks.

(TIF)

Figure S6 Representation of the average cavities found
by ILS calculations. a. hCygb; b. pCygb from HE7Q mutant;

c. pCygb from X-ray 3AG0; d. O2Cygb from HE7Q mutant; e.
O2Cygb from X-ray 3AG0.

(TIF)

Figure S7 Representative CO rebinding to COCygb
solutions. Upper panel. CO rebinding kinetics to Cygb solutions

equilibrated at 1 atm CO (blue circles 20uC; black circles 40uC)

and 0.1 atm CO (cyan circles 20uC; red circles 40uC). Lower

panel. Lifetime distributions associated with the rebinding kinetics

in the top panel. CO rebinding kinetics shows a remarkable

temperature dependence. A clear-cut thermal activation is

recognizable in many of the kinetic steps identified in the MEM

distribution associated with the rebinding kinetics. For example, in

the lower panel the band peaked at 87 ms, at T = 40uC and 1 atm

CO (black curve), shifts to 350 ms when CO concentration is

reduced tenfold (red curve). Both bands shift to longer lifetimes

when temperature is decreased (at 20uC they are peaked at 160 ms,

blue curve, and 690 ms, cyan curve, at 1 and 0.1 atm CO,

respectively).

(TIF)

Figure S8 Representative analysis of CO rebinding to
COCygb solutions. Analysis of the CO rebinding kinetics to wt

Cygb solutions equilibrated with 1 atm CO (black circles) and 0.1

atm CO (red circles). Left, T = 30uC. Right, T = 40uC. The fits

(purple lines) are superimposed to the experimental data (circles).

In the figures we have also reported the time course of the other

relevant species in the scheme in Figure 2, at 1 atm CO (solid lines)

and 0.1 atm CO (dotted lines): (Cygbp:CO)1 (black), (Cygbp:CO)2
(blue), (Cygbp:CO)3 (cyan), (Cygbp:CO)4 (magenta), (Cygbp:CO)5
(yellow), (Cygbh:CO)6 (dark blue), Cygbh (green), Cygbp (red).

(TIF)

Figure S9 Representative analysis of CO rebinding to
COCygb gels. Global analysis of the CO rebinding kinetics to

COCygb gels (left 40uC, right 30uC) equilibrated with 1 atm CO

(black circles) and 0.1 atm CO (red circles). The fits (purple lines)

are superimposed to the experimental data (circles). In the figures

we have also reported the time course of the other relevant species

in the scheme in Figure 2, at 1 atm CO (solid lines) and 0.1 atm

CO (dotted lines): (Cygbp:CO)1 (black), (Cygbp:CO)2 (blue), (Cy-

gbp:CO)3 (cyan), (Cygbp:CO)4 (magenta), (Cygbp:CO)5 (yellow), (Cy-

gbh:CO)6 (dark blue), Cygbh (green), Cygbp (red).

(TIF)

Figure S10 Representative analysis of CO rebinding to
Cygb+CO gels. Global analysis of the CO rebinding kinetics to

Cygb+CO gels (T = 40uC) equilibrated with 1 atm CO (black

circles) and 0.1 atm CO (red circles). The fits (purple lines) are

superimposed to the experimental data (circles). In the figures we

have also reported the time course of the other relevant species in

the scheme in Figure 2, at 1 atm CO (solid lines) and 0.1 atm CO

(dotted lines): (Cygbp:CO)1 (black), (Cygbp:CO)2 (blue), (Cygbp:CO)3
(cyan), (Cygbp:CO)4 (magenta), (Cygbp:CO)5 (yellow), (Cygbh:CO)6
(dark blue), Cygbh (green), Cygbp (red).

(TIF)

Figure S11 Representative analysis of CO rebinding to
HE7Q Cygb* solutions. Global analysis of the CO rebinding

kinetics to HE7Q Cygb* solutions at T = 10uC (left) and T = 40uC
(right), equilibrated with 1 atm CO (black circles) and 0.1 atm CO

(red circles). The fits (purple lines) are superimposed to the

experimental data (circles). In the figures we have also reported the

time course of the other relevant species in the scheme in Figure 2,

at 1 atm CO (solid lines) and 0.1 atm CO (dotted lines): (Cygbp:CO)1
(black), (Cygbp:CO)2 (blue), (Cygbp:CO)3 (cyan), (Cygbp:CO)4 (magen-

ta), (Cygbp:CO)5 (yellow), (Cygbh:CO)6 (dark blue), Cygbh (green), Cygbp

(red). Analysis of the CO rebinding kinetics to HE7Q Cygb*

solutions (Figure S10) shows partly inhibited migration pattern

through internal hydrophobic cavities in comparison to the one

observed for Cygb solutions. The source for this can be found in

the higher reactivity of the this mutant (see Table S4). The kinetics

at 1 and 0.1 atm CO can be perfectly reproduced over the whole

investigated temperature range.

(TIF)

Table S1 Microscopic rate constants for Cygb from the
fit of the flash photolysis data, at 206C. Activation

enthalpies and entropies were estimated from the linear Eyring

plots for each rate constant ki in the temperature range 10–40uC.

(DOCX)

Table S2 Comparison between microscopic rate con-
stants for wt Cygb solutions, COCygb gels and Cygb+CO
gels from the fit of the flash photolysis data, at 206C.
Activation enthalpies and entropies were estimated from the linear

Eyring plots for each rate constant ki in the temperature range 10–

40uC.

(DOCX)

Table S3 Activation free energies at 206C for Cygb
solutions and gels.
(DOCX)

Table S4 Microscopic rate constants for HE7Q Cygb*
solutions from the fit of the flash photolysis data, at
206C. Activation enthalpies and entropies were estimated from

the linear Eyring plots for each rate constant ki in the temperature

range 10–40uC.

(DOCX)

Table S5 Data collection and refinement statistics for
HE7Q Cygb*.
(DOCX)

Table S6 Contribution (%) of the first 10 eigenvectors
derived from essential dynamics to the conformational
flexibility of the protein backbone.
(DOCX)
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