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Abstract  

A general understanding of interactions between DNA and oppositely charged 

compounds forms the basis for developing novel DNA-based materials, including gel 

particles. The association strength, which is altered by varying the chemical structure of 

the cationic cosolute, determines the spatial homogeneity of the gelation process, 

creating DNA reservoir devices and DNA matrix devices that can be designed to release 

either single- (ssDNA) or double-stranded (dsDNA). This review covers recent 

developments on the topic of DNA gel particles formed in water–water emulsion-type 

interfaces. The degree of DNA entrapment, particle morphology, swelling/dissolution 

behaviour and DNA release responses are discussed as a function of the nature of the 

cationic agent used. On the basis of designing DNA gel particles for therapeutic 

purposes, recent studies on the determination of the surface hydrophobicity, the 

haemolytic and the cytotoxic assessments of the obtained DNA gel particles have been 

also reported. 
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1. Introduction 

The main aim of the gene therapy is to transfer genetic material into the cells to 

cure diseases through the expression of certain proteins. Despite significant advances in 

the past couple of decades, gene therapy is still in the clinical trial stage, mainly due to 

the lack of safe and efficient delivery vehicles for therapeutic nucleic acids. 

Deoxyribonucleic acid (DNA) is a negatively charged biomacromolecule that is subject 

to degradation in the bloodstream by endogenous nucleases [1]. Moreover, it is too large 

to cross the cellular membranes. The most common strategy employed for the 

“packaging” of DNA is based on electrostatic interaction between the anionic nucleic 

acid and the positive charges of the synthetic vector which will complex and condense 

the nucleic acid [2]. 

The rapidly rising demand for therapeutic grade DNA molecules requires associated 

improvements in encapsulation and delivery technologies. This includes the formulation 

of DNA molecules into synthetic delivery systems for enhanced cellular transformation 

efficiencies. Research works on colloidal delivery systems in genetic therapeutics are 

based on the molecular level focusing on the interdisciplinary development of 

pharmaceutical DNA delivery approaches. Colloidal delivery systems modify many 

physicochemical properties, aiming to protect the DNA from degradation, minimize 

DNA loss, prevent harmful side effects, enhance DNA targeting, increase drug 

bioavailability, and stimulate the immune systems [3-5].   

Various colloidal systems have been studied for decades improving the delivery of 

problematic DNA candidates. The most promising systems comprises of ionic 

complexes formed between DNA and polycationic liposomes [6-9]. Factors hindering 

the success of the liposomal approach appear to be instability of the complex, toxicity of 

the cationic lipid, and short half-life of the complexed DNA. Held together by 

electrostatic interaction, these complexes may dissociate because of the charge 

screening effect of the polyelectrolytes in the biological fluid. A strongly basic lipid 

composition can stabilize the complex, but such lipids may be cytotoxic. The fact that 

the DNA is coated on the outside of the liposome renders the DNA vulnerable to 

nuclease degradation in transit from site of administration to the nucleus of the target 

cell. 
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Biocompatible polymers are widely used in drug delivery and tissue engineering, 

where they form a variety structures, through either chemical cross-linking or physical 

association, that range from nanoparticles to macroscopic scaffolds [10-15]. In many 

applications, it is important to control their degradation rates, which is usually achieved 

by incorporating hydrolytically or enzymatically cleavable groups into the polymer 

structure [16-23]. Biodegradable polymer constructs can also be prepared via reversible 

physical cross-linking, where the degradation rates depend on the strength of 

electrostatic, hydrophobic, or hydrogen bonding interactions [24-27]. Both of these 

approaches to tuning the degradation rates, however, have the disadvantages of usually 

requiring the polymer to be synthetically modified. An alternative approach is to control 

the degradation rates by using a modular physical cross-linker, the association strength 

of which will govern the degradation rate of the gel. This can be achieved by exploiting 

the association between surfactants and polyelectrolytes [28].  

Oppositely charged surfactants and polyelectrolytes have a strong tendency to bind to 

one another. When the surfactant/polyelectrolyte attraction overcomes their solubility in 

the solvent, associative phase separation occurs [29-34]. This results in the formation of 

concentrated liquid, gel, or precipitate phases in equilibrium with a dilute liquid [29-37]. 

The polyelectrolyte chains can assume two types of conformations, either expanded, as 

in a solution or a hydrogel, or collapsed, such as around a surfactant aggregate as 

precipitate. Control over the transitions between these states allows exploitation of 

surfactant and polyelectrolyte mixtures in a wide array of commercial applications, such 

as drug delivery, cosmetic formulations, and rheological modification. There have 

initially been two separate reports of associative phase separation in surfactant and 

polyelectrolyte mixtures (where the polyelectrolyte undergoes a transition from an 

expanded to a collapsed state) that yields hollow surfactant/polyelectrolyte gel particles, 

with numerous potential applications in controlled encapsulation and release and 

separation processes [38-39]. This effect is achieved with a dropwise addition method 

[40-42] where drops of chitosan solutions are added to an oppositely charged surfactant 

solution [38-39]. Observations suggest that the gel formation process is diffusion 

limited, that the gel layer thickness is proportional to the amount of polyelectrolyte in 

solution, and that the gelled surfactant and polyelectrolyte complex is electroneutral 

[39].  
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This behaviour has been exploited to form gel particles by dropwise addition of 

solutions of different cellulose-based polycations (chitosan, N,N,N-trimethylammonium 

derivatized hydroxyethyl cellulose (Amerchol JR-400)) [38-39, 43-44] to anionic 

(sodium dodecyl sulfate (SDS), sodium perfluorooctanoate (FC7)) and catanionic 

(cetyltrimethylammonium bromide (C16TAB)/sodium perfluorooctanoate (FC7)) 

surfactant solutions [45].  This approach has been extended to encapsulate an aromatic 

oil in surfactant–polyelectrolyte gel particles. Its release into either aqueous or organic 

phases has been studied [46].  

A general understanding of the interactions between DNA and oppositely charged 

agents, and in particular the phase behaviour, has given us a basis for developing novel 

DNA-based materials, including gels, membranes and gel particles [47]. Concerning 

DNA gel particles, we have recently prepared novel DNA gel particles based on 

associative phase separation and interfacial diffusion. By mixing solutions of DNA 

(either single- (ssDNA) or double-stranded (dsDNA)) with solutions of different 

cationic agents, such as surfactants, proteins and polysacharides, the possibility of 

formation of DNA gel particles without adding any kind of cross-linker or organic 

solvent has been confirmed [48-51]. The association strength, which is tuned by varying 

the chemical structure of the cationic agent, allows a control of the spatial homogeneity 

of the gelation process, producing either a homogeneous DNA matrix or different DNA 

reservoir devices. 

Cationic surfactants have offered a particularly efficient control of the properties of 

these DNA-based particles [47-57]. We have initially exploited to form DNA gel 

particles at water–water emulsion-type interfaces by mixing DNA (either single- 

(ssDNA) or double-stranded (dsDNA)) with quaternary ammonium surfactants. The 

formation of a physical network in which surfactant micelles form 

polyanionic−multicationic electrostatic complexes as cross-link points seems to play an 

important role in the stabilization of DNA particles. Changes in the hydrophobic moiety 

of the surfactants affect their interaction with DNA [53-54]. The interactions of 

surfactants with DNA can also be tuned efficiently by controlling the head-group 

structure. These include surfactants with the cationic functionality based on an amino 

acid [57]. Surfactant molecules from renewable raw materials that mimic natural 

lipoamino acids are one of the preferred choices for food, pharmaceutical and cosmetic 

applications. Given their natural and simple structure, they show low toxicity and quick 

biodegradation [58]. Novel DNA gel particles, in which surfactants with the cationic 
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functionality is based on the amino acid arginine, can interact with nucleic acids to form 

biocompatible devices for the controlled encapsulation and release of DNA [55]. 

Little is known about the influence of the respective counter-ions on surfactant-DNA 

interaction. In general, oppositely charged macro-ions in solution attract each other, 

tending to form a bound complex. When separated, each macro-ion is surrounded by a 

diffuse layer of spatially confined counter-ions. Upon approach, the fixed macro-ion 

charges partially (sometimes fully) neutralize each other, allowing the release of mobile 

counter-ions into the bulk solution, thereby increasing their translational entropy. This 

scenario suggests that macro-ion association in solution is to a large extent an 

entropically driven process [59].
 
The actual contribution of counter-ion entropy to free 

energy association depends on the detailed geometries and charge distributions of the 

separated and bound macro-ions [59-61].
 
In this context, the effect of different counter-

ions on the formation and properties of DNA gel particles, by mixing DNA with the 

single-chain surfactant dodecyltrimethylammonium (DTA) has been recently 

investigated [54]. In particular, we employed, as counter-ions of this surfactant, anions 

of the two extremes in the Hofmeister series (hydrogen sulfate and trifluoromethane 

sulfonate) and two halides (chloride and bromide). The obtained results indicate that the 

degree of counter-ion dissociation from the surfactant micelles and the 

polar/hydrophobic character of the counter-ion are important parameters in the final 

properties of the particles. 

Most of the studies about the interaction between polyelectrolyte gels and oppositely 

charged surfactant systems have been carried out using single chain surfactants. 

However, most transfection lipids are not micellar [62]. Consequently, the extension of 

micelle to vesicle-forming double tail surfactants seems to be crucial. The formation of 

DNA gel particles, mixing DNA with the double chain surfactant 

didodecyldimethylammonium bromide (DDAB) has been studied [56]. DDAB–DNA 

gel particles have been shown to form ordered multi-vesicular assemblies which 

resemble the architecture of biological tissues. The characteristic sizes and shapes of the 

resulting structures strongly depend on the secondary structure of the DNA. Some 

features about the DNA–vesicle interaction involved in these particles have been 

deduced. 

The development of biodegradable, biocompatible DNA gel particles has been 

achieved using natural proteins or mixtures of proteins [52, 63-64] Lysozyme is one of 
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the main proteins in hen egg white and it has an ability to cause lysis of bacterial cells 

[65]. Lysozyme is a globular protein that has a net charge of +9 at neutral pH, and was 

initially used for the formation of DNA gel particles [52]. Protamines are positively 

charged (overall charge +21), arginine rich proteins that bind to DNA in a non-specific 

manner via electrostatic interactions. In addition, protamine sulfate has been shown to 

condense DNA [66-68] and to deliver plasmid DNA into eukaryotic cells [69]. This 

property, in addition to its longtime use in pharmaceutical formulations, makes 

protamine a promising candidate for gene delivery. Using mixtures of both proteins as 

DNA carriers, we have obtained systems totally based on biocompatible components, 

with a large degree of control over the release profile [63. 

Chitosan is a natural, biodegradable polysaccharide derived from chitin and its low 

toxicity has been well established. Chitosan has been proposed as an attractive gene 

carrier because of its high density of positive charges and its low toxicity to cells [70]. 

A number of in vitro studies showed that chitosan is a suitable material for efficient, 

non-viral gene and DNA vaccine delivery [71-73]. Novel chitosan-DNA gel particles 

have been prepared based on associative phase separation and interfacial diffusion using 

mixtures of DNA and chitosan of different molecular weight [74-75]. In particular it 

was found that the chitosan molecular weight is a good controlling parameter in the 

final properties of these DNA gel particles [74]. More recently, mixtures of chitosan 

with proteins were used as intrinsic biocompatible carriers to form DNA gel particles. 

Controlling the magnitude of the DNA release and achieving controlled release systems 

were accomplished using these ternary systems [75].  

 Table 1 summarizes the characteristics of the different DNA gel particle systems. These 

systems can represent a ‘‘bridge’’ for potential applications in the controlled encapsulation 

and release of ssDNA and dsDNA. The goal of this Review is to explore current research 

in DNA gel particles prepared by associative phase separation and interfacial diffusion. In 

the following sections, we describe the influence of the nature of the cationic agent, i.e. 

surfactant, protein or polysaccharide, on the degree of DNA entrapment, particle 

morphology, swelling/dissolution behaviour, and DNA release responses. Recent studies 

on the determination of the surface hydrophobicity, the haemolytic and the cytotoxic 

characterization of the obtained DNA gel particles have been also discussed. 

[Table 1 here] 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

2. Particle preparation 

As described above, interactions between oppositely charged surfactants and 

polyelectrolytes in aqueous solutions can lead to associative phase separation, where the 

concentrated phase assumes the form of a viscous liquid, gel, liquid crystal or 

precipitate. This behavior has been initially exploited to form DNA gel particles at 

water–water emulsion-type interfaces by mixing DNA (either single- (ssDNA) or 

double-stranded (dsDNA)) with the cationic surfactant cetyltrimetrylammonium 

bromide (CTAB) [52] .At high polyelectrolyte concentrations, droplets from DNA 

solutions instantaneously gelled into discrete particles upon contact with the 

corresponding surfactant solutions, as is depicted in Fig. 1a. The size of the resulting 

particle reflects the size of the parent drop and varies between 1 and 2 mm (Fig. 1b). 

Similar results were obtained when the cationic surfactant was substituted for a protein 

or polysaccharide molecule. All DNA gel particles were formulated using the method of 

simple complexation between molar concentrations of negative charge of the phosphate 

groups of DNA, and the positive charge of the cationic compound. Particles were 

prepared at a ratio between DNA and the different cationic compounds equal to 1, R= 

[DNA]/[C
+
]. In all cases, the DNA concentration was set to 60 mM. The choice of DNA 

concentration reflects the fact that it produces high viscosity solutions, which makes it a 

convenient system for the preparation of stable DNA gel particles [52]. 

[Fig. 1 here] 

Although the molecular details of the mechanism by which cationic carriers mediate 

DNA delivery are still poorly understood, current evidence supports the hypothesis that 

theDNA complexes enter cells by means of endocytosis. Often, the particle size ranges 

from 100 nm to higher than 1 mm, and, evidently, the efficiency of cellular uptake and 

subsequent intracellular processing, a prerequisite for effective cellular transfection, 

may well depend on particle size [76]. To address the problem of the size of the 

obtained DNA gel particles, a simple and novel method was used for the preparation of 

nano-/micro-sized DNA gel particles by nebulisation of a solution of DNA (single- or 

double-stranded) into an oppositely charged surfactant or protein solution [77]. Particles 

were prepared at a ratio between DNA and cationic agent equal to 1. In all cases, [DNA] 

was equal to 5 mM. Higher concentrations of DNA produce high viscosity solutions, 

which make them inconvenient systems for the nebulisation process. It was found that 
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the size of the initial DNAdroplets and the cationic agent are the main controlling 

parameters for the particle size (Table 2).  

 

3. Physicochemical characterization 

3.1. Degree of DNA entrapment  

 It is of major interest to characterize the degree of DNA entrapment on the DNA 

gel particles. The degree of DNA entrapment can be expressed as a function of the 

loading efficiency (LE) and loading capacity (LC) values. LE measures the amount of 

DNA that is included in the particles with respect to the total DNA, during particle 

formation. LC measures the amount of DNA entrapped inside the particles as a function 

of their weight. Characteristics of these DNA gel particles, which are formed using 

surfactants, proteins, and polysaccharides as cationic compounds, are summarized in 

Fig. 2. All values were measured in triplicate and are given as average and standard 

deviation. 

 Except in the case of the double-tail surfactant DDAB, the LE values were always 

higher than 99%, which confirms the effectiveness of DNA entrapment in cationic 

solutions derived from the assayed surfactants, proteins and polysaccharides (Fig. 2a). 

However, the entrapped DNA, as a function of the weight of the particles (LC values), 

depends on the cationic compound used (Fig 2b). The LC values obtained for 

surfactant-DNA gel particles depends on the hydrophilic and hydrophobic 

contributions. For the same type of polar head, trimethylammonium bromide type 

(CTAB and DTAB structures), the hydrophobic contribution did not have a strong 

influence on the observed LC value [53-54]. Identical LC values were obtained when 

DNA gel particles were prepared with surfactants that only differ in counter-ion 

structure (DTAB, DTAC, DTATf) [54]. However, for the same hydrophobic chain 

length, 12 carbon atoms in the hydrophobic chain (DTAB, ALA and LAM structures), 

there is a clear effect of the number of charges on the polar head. Whereas DTAB and 

LAM showed one positive charge on the polar head, the ALA structure showed two 

positive charges. Accordingly, higher the number of charges, higher the LC values [10]. 

When single and double-tail surfactants were compared (DTAB and DDAB structures), 

we can conclude that higher number of hydrophobic chains on the surfactant structure 

contributes negatively to the LC values [56].  
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 In the case of protein-DNA gel particles, the lowest LC value (0.7%) was obtained 

in particles formed with pure lysozyme LS. Interestingly, highest LC value were 

obtained for particles containing the pure protein PS or mixed systems containing the 

smallest amount of protamine sulfate PS in the mixed protein systems [63]. These 

differences could be attributed to differences in the binding characteristics of these two 

proteins, with different total charge and linear charge density: LS is a globular protein 

that has a net charge of + 9 at neutral pH, whereas PS is a highly positively charged 

linear protein with an overall charge of +21. The formation of the chitosan- DNA gel 

particles was studied using mixtures of DNA and chitosan of different molecular weight 

((Low MW chitosans of ca. 50 kDa and 150 kDa, and medium MW chitosan (400 kDa) 

[74] .The molecular weight of the polysaccharide structure did not have a clear effect on 

the LC values.   

 An indication of the structural characteristics of these DNA gel particles can be 

deduced from the amount of DNA released, when particles’ breakup is mechanically 

promoted. The percentages of DNA complexed were calculated and are summarized in 

Fig. 2c. Complexed DNA is related to the amounts of DNA in the supernatant solutions 

and the skins derived from the particles, after particles were magnetically stirred 

overnight. In the case of surfactant-DNA gel particles, the percentages of complexed 

DNA suggest that, with surfactant structures with twelve carbon atoms in the 

hydrophobic chain (DTAB, DTAC, DTATf, ALA, LAM), most of the DNA is 

complexed during the particle formation process [54-55]. More limited complexation 

has been obtained by increasing, either the alkyl chain length at to sixteen carbon atoms 

(CTAB), or the number of alkyl chains in the molecule from one to two (DDAB) [53, 

56]. In the case of the protein-DNA gel particles, the amount of complexed DNA 

increases progressively in the presence of the protein PS [63] as a consequence of the 

binding characteristics of this protein. The amount of complexed DNA in the case of 

chitosan-DNA gel particles seems to decrease when the molecular weight of the 

polysaccharide is increased [74]. A low molecular weight of chitosan promotes the 

formation of particles in which a higher percentage of DNA is complexed. The 

continuous diffusion of chitosan throughout the particles promotes the increase of the 

shell portion with time. 

 This distribution could be correlated with differences in the gelation process during 

particle formation. Homogeneous gelation can lead to homogeneous structures (solid 
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particles), whereas a more inhomogeneous gelation process forms core-shell structures 

[43]. In the present study, the model distribution of DNA in the particles was supported 

by visual inspection, since translucent core-shell particles and opaque condensed 

particles were found (Fig. 2d).  

[Fig. 2 here] 

3.2. Morphological characterization of the DNA gel particles  

 The secondary structure of the DNA molecules in the gels was studied by 

fluorescence microscopy (FM) using acridine orange staining. Acridine orange (AO) 

has been used to label nucleic acids in solution and in intact cells [78-81]. In the case of 

AO-dsDNA, the fluorescence emission shows a maximum around 530 nm, in the green 

spectra. The association with ssDNA shows a maximum around 640 nm, in the red 

spectra.  

 Based on the observation of green or red emission, AO was used to differentiate 

between native, double-stranded (dsDNA), and denatured, single-stranded (ssDNA), in 

DNA gel particles. Fig. 3a shows fluorescence micrographs of individual particles of 

the surfactant-dsDNA systems.  FM studies have revealed that the formation of 

particles with double-stranded DNA is carried out with conservation of the secondary 

structure of the DNA. However, in the case of particles formed with denatured DNA, 

green emission is also observed, except in the case of CTAB-ssDNA gel particles. The 

absence of red emission in the particles containing denatured DNA suggests that the 

accessibility of free DNA to the dye is hindered. This observation is consistent with our 

data on DNA distribution (Fig. 3b). The percentage of DNA released was less than 

0.1%, which confirms the total complexation of the DNA. However, when CTAB was 

used, the amount of ssDNA released reached 20%, making its detection possible in 

fluorescence microscopy studies.  

 Scanning electron microscopy imaging was carried out to establish possible 

differences in the morphologies between the different particles. Fig. 4 shows 

representative images of CTAB and DTAB surfactants. Clear similarities were found in 

the outer surface morphology between these four formulations. However, the surface of 

the inner structure revealed a different structure. Large pores and channel-like structures 

were found in the inner surface of particles formed with CTAB. However, the structure 
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of the particles formed with DTAB revealed a more compact structure. The structures 

obtained seem to confirm the degree of complexation between these two surfactants and 

DNA (see Fig. 3b), which increases the shell section of the obtained particles.  

[Fig. 3 here] 

[Fig. 4 here] 

 Similar experiments were carried out on particles formed with the double-tail 

surfactant DDAB [54]. The examination of the DDAB-DNA gel particles with the 

DNA-selective dye AO revealed the formation of spherical domains on the surface of 

these DDAB-DNA gel particles (Fig. 5a). The nature of these domains was studied 

using the hydrophobic dye Nile Red (NR) (Fig. 5b) [82]. The fluorescence emission of 

NR, in the presence of DDAB-DNA gel particles, was nearly identical to that recorded 

for DDAB vesicles (results not shown). This indicates that the observed spherical 

domains on the surface of the DDAB-DNA gel particles are composed of hydrophobic 

layers of the surfactant. SEM experiments also confirm the presence of these spherical 

domains (Fig. 5c).  

 Differences in the reorganization of DNA were found as a function of the secondary 

structure using both FM and SEM.  In the case of particles formed with native DNA, 

the observed vesicular domains seem to have grown by fusion of several vesicles, 

adopting a near-spherical shape. However, the greater thickness of the vesicular 

domains found in the DDAB–ssDNA particles suggests that the reorganization of 

DDAB vesicles in the presence of denatured DNA takes place with the subsequent 

formation of multilamellar complexes. Although these DDAB–DNA particles were 

prepared at the same DNA/DDAB ratio, the results indicate that differences in local 

DNA concentration or some kind of inaccessibility of one of the components can be 

significant. FM images at higher magnification also support these differences.  

[Fig. 5 here] 

 

3.3. Swelling/dissolution behaviour and kinetics of DNA release 

 Gels are considered to have great potential as drug reservoirs. Loaded drugs can be 

released by diffusion from the gels or by gel erosion. When the DNA gel particles are 
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inserted into a certain medium, different responses occur: swelling or deswelling, 

dissolution, and release of DNA. 

The swelling protocol begins when the initial weight (Wi) of the particles prepared 

under each condition was measured immediately after were prepared, separated by 

filtration and washed with pH 7.4 PBS to remove excess of salt. Particles (around 100 

mg) were exposed to the initial PBS buffer at an agitation rate of 30 rpm and at room 

temperature, using a shaking platform. Additionally, the wet particles were measured at 

each time point (Wt) immediately upon removal of the release solution. Then, fresh 

solution was added in order to maintain a clean environment. The swelling ratio of the 

particles at each time point was calculated accordingly from the following equation: 

Relative weight (RW) = Wt / Wi        

This value reflects the change in weight of the particles at each time point with respect 

to the initial weight of the gel. Complete degradation of a particle sample was noted 

when the presence of the particles or fragments of them were no longer visually 

apparent. 

Simultaneously to the studies of swelling/dissolution behaviour, DNA release studies 

were carried out. The release solution was completely removed from the samples and 

completely replaced with fresh solution at periodic time points. The amount of DNA in 

the release solutions was quantified by measuring the absorbance at 260 nm. The 

cumulative DNA release was normalized with respect to the initial weight particle and 

expressed as percentage.   

 In the case of surfactant-DNA gel particles, the extension of the swelling process 

depends on the surfactant structure (Fig 6a). For the same hydrophilic contribution 

(CTAB and DTAB), the decrease in the number of carbon atoms from sixteen to twelve 

in the hydrophobic chain contributes negatively to the swelling extent. So, when CTAB-

DNA gel particles were placed in pH 7.6 10 mM Tris HCl buffer, water was taken up 

from the medium and swelling could be observed. The swelling continued during the 

entire time interval studied (1,200 h) [53]. However, DTAB–DNA particles showed an 

initial swelling and then dissolved completely after 48 h [54]. 

 Generally, the DNA release pattern resembles that observed in the 

swelling/dissolution profiles. Thus, CTAB-DNA particles placed in pH 7.6 10 mM Tris 
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HCl buffer showed no initial burst release (Fig.7a). After 1,200 h, 69 % of DNA was 

released from the particles [8]. Nevertheless, DTAB–DNA particles exhibited fast 

release behaviour by a dissolution mechanism. The corresponding half-life of DTAB–

dsDNA is 4. After 24 h, more than 97% of the bound DNA was released [54]. 

 For the same hydrophobic contribution (ALA and LAM derivatives), the 

swelling/dissolution behaviour can be modulated by modification of the type and 

number of positive charges on the polar head [55]. Particles containing ALA exhibited 

the largest (relative weight ratio, RW 2.5) and the longest (more than 1,300 h) swelling 

process. Particles containing LAM swelled (RW 2.0 using the maximum points as 

estimate) for up to 200 h, and then started to shrink. More stable particles were obtained 

for ALA than for LAM, probably due to its double charge. Thus, LAM-DNA particles 

exhibited faster release than ALA-DNA particles (Fig. 7a). Complete release from 

LAM-dsDNA particles occurred after 400 h. When the formulation contained ALA, the 

DNA release was slower. Complete DNA release was only achieved after 1800 h. The 

results suggest that, for the same hydrophobic contribution, the stability of the gel 

particles is additionally given by the electrostatic interaction between DNA and the 

oppositely charged surfactant. 

 Furthermore, the increase in the number of alkyl chains from one to two (DDAB) 

contributes positively to the stabilization of the particles [56]. DDAB-DNA particles 

absorbed an amount of water that was twice the initial mass (relative weight, RW, of 2, 

using the maximum points as an estimate). These particles had returned to the original 

particle weight by the end of the experiment (1,500 h). In the case of DNA gel particles 

formed using the double-tail surfactant DDAB, an initial burst release was observed 

(Fig 7a). The amount of DNA released in the first 24 h was 44% for DDAB–dsDNA 

particles. The presence of this burst suggests that some DNA is not encapsulated, or 

DNA is bound weakly on the surface of the particles. From 24 to 600 h, a plateau was 

observed in the cumulative DNA release. After that, particles placed in the buffer 

solution showed a change in release kinetics. A linear cumulative release was observed 

until the end of the experiment (1,500 h). The amount of DNA released from DDAB–

dsDNA was 63%. 

 Concerning protein-DNA gel particles, LS-dsDNA gel particles lost weight rapidly 

and extensively (Fig. 6b) [63]. In the case of PS-dsDNA particles, the largest relative 
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weight ratio was observed (RW>5). For the high LS/PS ratio, particles absorbed a water 

amount of 2-3 times the initial mass (relative weight ratio, RW, of 2-3) during the 

swelling process. With a decrease in the LS/PS ratio, more moderate absorption of 

water was observed (RW=1-2). When the particles contained PS, there was a common 

trend in the swelling profiles, in which initial swelling was visible before the particle 

started to dissolve. The initial period in the swollen state, before dissolution takes place, 

was independent of the PS content and lasted approximately 100 h (using the maximum 

of the first peak as an estimate). Then, a short period of stabilization was observed after 

a new, more limited, maximum appeared (located around 400 h). Thereafter, the RW 

value became approximately constant, with two exceptions. For PS-dsDNA particles, 

RW increased with time, while for the LS-PS15 system, nonmonotonic behaviour was 

observed. 

 LS-dsDNA particles exhibited fast burst release behaviour by a dissolution 

mechanism (Fig. 7b). After 24 h, 84% of the bound DNA was released. When the 

formulation contained PS, the initial burst release was absent. The percentage of DNA 

released in the dissolution media, after 24 h, varied from 0.4 to 1.0% for protein mixed 

systems. The absence of a burst effect suggests that minimal amounts of unencapsulated 

DNA are present on the surface of the particles after their formation. For particles 

containing both proteins, the profiles showed slower DNA release than in the pure 

systems. The release rates remained almost constant in the case of particles formed at a 

high LS/PS ratio (LS-PS15 and LS-PS30). However, with a decrease in the LS/PS ratio, 

a sudden acceleration of the release was observed after ≈400 h. We can assume that 

complete hydration of the core in our particles could occur after 400 h, taking into 

account the presence of the maximum RW values in the swelling-dissolution 

experiments (Fig. 6b). This matrix swelling behaviour could determine the change in 

the rate of DNA release, which became dependent on the LS/PS ratio. In addition, the 

final release percentage was largely dependent on the LS/PS ratio. As indicated by the 

arrow in Fig. 6, the formulations with the lowest PS content released only a small 

percentage of the DNA present in the particles (<20%), but this percentage increased 

with PS content to attain ca. 80% for the LS-PS85 formulation. 

 The determination of the kinetics of swelling and dissolution behaviour 

demonstrated that chitosan-DNA gel particles lost weight rapidly and extensively (Fig. 

6c). The molecular weight of chitosan has a significant effect on the encapsulation of 
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DNA and on the in vitro release properties. The release of DNA from the different 

particles is illustrated in Fig. 7c. Generally, DNA release rates in the initial period were 

high in all cases. In the first 24 hours, 57%, 71%, and 74% of DNA were released from 

the particles containing low MW chitosans of ca. 50 kDa and 150 kDa, and medium 

MW chitosan (400 kDa), respectively [74]. 

[Fig. 6 here] 

[Fig. 7 here] 

 

3.4. Surface hydrophobicity evaluation of DNA gel particles 

Surface properties of carriers determine their physicochemical characteristics and 

fate in blood circulation [83]. Information about surface properties is of high relevance 

for carriers, especially for those intended for parenteral delivery. Hydrophobicity of the 

particle surface governs the adsorption of plasma proteins [84] and subsequently the rate 

of clearance from systemic circulation. These parameters also influence the overall 

bioavailability of the drug/ gene delivered by the tested nanocarrier. 

The hydrophobicity of a particle surface has been shown to influence not only the 

amounts of protein bound to the particle, but also the identities of the bound proteins 

[85]. The number of proteins bound to the particles increased with increasing 

hydrophobicity of the particle surface, as well as with increasing size. Generally, 

hydrophobic particles are opsonized more quickly than hydrophilic particles, due to the 

enhanced absorbability of plasma proteins onto the surface of hydrophobic particles 

[86-89]. The roles of particle size, surface curvature, and particle surface area in protein 

binding have also been investigated. Investigators have shown that, the amount of 

bound protein varied with size and surface curvature. However, the protein pattern was 

the same for all sizes considered [90]. Though particle composition (base material type, 

shape, and size) clearly influences protein binding, the surface properties (charge and 

hydrophobicity) are likely to be more important. 

There are only a few ways to measure or compare the hydrophobicity of surfaces in 

disperse systems. Contact-angle measurements cannot be applied to the hydrated 

colloidal particle in its original dispersion medium. Polymer particles need to be 

dissolved in an organic liquid to cast the polymer film for the contact-angle 
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measurements. The properties of the dry polymer film certainly differ from the 

properties of a strongly curved surface; therefore, it is insufficient to determine only the 

contact angle on macroscopic surface with conventional measurements. In the last few 

years, the determination of the so-called surface hydrophobicity of colloidal particles 

and biopolymers has been improved [91]. In this set of experiments, the adsorption of 

hydrophobic yet soluble organic dyes onto different polymer lattices has been 

investigated. The measurements have been conducted using a UV-VIS spectrophometer. 

The advantage in measuring in the visible spectrum is that impurities (surfactants, 

monomers) released by the colloidal particles over time do not disturb the spectrum of 

the dyes. Rose Bengal (RB) partitioning method was developed as an easy and quick 

method to estimate the surface properties of uncoated polymer nanoparticles [92]. Rose 

Bengal is a xanthenes dye used as photosensitizer, fluorescent label and as adsorption 

marker [91, 93].  

The first approach on the determination of the superficial hydrophobicity of DNA 

gel particles have been carried out on DNA gel particles formed by mixing DNA with 

chitosan lactate (CL) (binary systems) or CL in combination with the protein protamine 

sulfate (PS) (ternary systems) [75]. For this purpose, the RB adsorption on the CL-DNA 

gel particles prepared at different ratio R values was studied. The quantity of free RB in 

the solution was determined by interpolation from a calibration curve. The 

concentration of RB bound to the particle surface was calculated as the difference 

between the total concentrations of RB used in the assay and free RB. The obtained data 

were transformed to the adsorption isotherms (Γ), which is correspond to the RB bound 

as a function of the particle weight , in respect to the RB at the equilibrium (free RB). 

Fig. 8a shows the evolution of the adsorption isotherms as a function of the ratio R 

values. All DNA gel particles were formulated using the method of simple 

complexation between molar concentrations of negative charge of the phosphate groups 

of DNA, and the positive charge of the cationic compound. Particles were formed at 

specific R ratio, where R=[DNA]/[C
+
]. In the case of binary systems, R values varied 

between and 39.6 and 1, where [DNA] and [C
+] 

are expressed in % (w/v). In the case of 

ternary systems, particles were prepared at a ratio R equal to 1, where [C
+
] is the 

concentration of the corresponding cationic system, expressed in % (w/v). The 

composition of the mixed systems was varied between 15 and 85% PS. In all cases 

[DNA] was equal to 2 % (w/v).  
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Due to the relative fragility of the CL-DNA particles prepared at R=7.92, there were 

not enough individual particles to carry out these experiments. In general, it can be 

deduced that the maxima of RB adsorption increases when the R value is decreased. 

The shape of the isotherms is not sophisticated at all, showing the decay of the 

adsorption at higher equilibrium concentrations. This decay is mainly observed for the 

systems prepared at lower R values, for which higher concentration of CL on the 

particles is expected. The observed decay on the adsorption isotherms can be correlated 

with the aggregate formation of the dye as have been observed in the case of RB with 

cationic surfactant molecules [94]. Similar experiments were carried out with the 

CL/PS-DNA gel particles prepared at different composition (Fig. 8b). Due that the 

particles formed with pure PS exhibit a strong tendency to aggregate; no RB adsorption 

experiments were carried out with this pure protein system. In general, it can be 

deduced that the RB adsorption increases when the percentage of PS in the composition 

are increased. The decay of the RB adsorption at higher equilibrium concentrations 

becomes less important when the percentage of PS in the composition is increased.  

Taking into account the Γmax value, the relative hydrophobicity of these DNA gel 

particles has been established (Fig. 8c)  It is expected that the higher the Γmax value, the 

higher is the relative hydrophobicity. The obtained results suggest that the surface 

hydrophobicity of the particles using binary systems is a function of the R values, 

increasing when the concentration of CL is increased. On the ternary systems, the 

surface hydrophobicity of the particles is a function of the composition, increasing when 

the concentration of PS on the mixtures is increased.   

Due that the obtained results suppose the first approach on the determination of the 

superficial hydrophobicity of DNA gel particles, in order to grade their relative 

hydrophobicity, these values have been compared with other described in the literature, 

in which the Γmax values of several polymer lattices have been shown [91]. Particles 

derived from polystyrene, which presents a strong hydrophobic character showed Γmax 

values close to 0.072 mmol g
-1

. On the other hand, Γmax values for poly(methyl 

methacrylate) particles, that present a hydrophilic character, were found to be 0.017 and 

0.037 mmol g
-1

, depending on the ionic character. Considering those values, it can be 

deduced that particles obtained using both ternary and binary systems showed a strong 

hydrophilic character with Γmax values ranged between 5x 10
-4

 - 2.84x 10
-3

 mmol g
-1

,
 

and 9.1x 10
-5 

- 5x 10
-4

 mmol g
-1

, respectively. The acute hydrophilic character of these 
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DNA gel particles may govern the posterior adsorption of plasma proteins and influence 

the overall bioavailability of the system.  

[Fig. 8 here] 

4. Determination of in vitro biocompatibility 

At a consensus conference of the European Society for Biomaterials in 1986, the 

word “biocompatibility” was defined as “the ability of a material to perform with an 

appropriate host response in a specific application”. With the rapid development of 

biomaterials, the scope of “biocompatibility” has been widely broadened. Herein, we 

use biocompatibility to include the deleterious effects caused by the DNA gel particles, 

covering the in vitro haemolytic and cytotoxic assessments. 

4.1. Haemolysis 

 

An important feature in the development of particulate systems for parenteral 

administration is to determine their ability to cause haemolysis by interaction with the 

cell membrane.
 
The potential uses of colloidal self-assemblies as drug delivery systems 

make haemolysis evaluation very important. To this end, we examined this interaction 

by using erythrocytes as a model biological membrane system, since erythrocytes have 

been used as a suitable model for studying the interaction of amphiphiles with 

biological membranes [95-97]. Most in vitro studies of surfactant-induced haemolysis 

evaluate the percentage of haemolysis by spectrophotometry, to detect plasma-free 

haemoglobin derivatives after incubating surfactant solutions with blood and then 

separating undamaged cells by centrifugation. However, in the case of particles, the 

interpretation of the results of these studies is complicated, due to the variability of 

experimental approaches and a lack of universally accepted criteria for determining test-

result validity. 

The first approach on the determination of the haemolytic response of DNA gel 

particles have been carried out on DNA gel particles formed by mixing DNA (either 

single- (ssDNA) or double-stranded (dsDNA)) with different single-chain surfactants 

whose structure differs only in the corresponding counter-ion [54]. First of all, the 

haemolytic potency of the different components was determined separately. The 

dependence of haemolysis on the concentration of the surfactant is shown in Fig. 9a. In 

this experiment, haemolysis was determined at a fixed time, after 10 min incubation in 
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the presence of various surfactant concentrations. Haemolysis varied with the surfactant 

concentration in a sigmoidal manner. At concentrations below 300 µg mL
-1

, for DTAB 

and DTATf surfactants, the percentage of haemolysis was not significant (below <5 %), 

which can be regarded as a non-toxic effect level. However, it increased sharply 

between 400 and 600 (or 700 µg mL
-1

, depending on the surfactant structure) to reach 

essentially 100% haemolysis at that concentration. The concentrations assayed were 

well below 4,000-4,500 µgmL
-1

, which corresponds to the CMC (Critical Micelle 

Concentration) value of the surfactants, as previously determined (5. 0 mM DTATf 

[98],
 
15.0 mM DTAB [99], 20.0 mM DTAC [100]). The sigmoidal pattern of this DTA–

induced haemolysis is indicative of a complex process in which sufficient surfactant 

needs to accumulate in the target membrane to induce the osmotic lysis of erythrocytes. 

The HC50 values for the different surfactant structures are 443, 468 and 510 µg mL
-1

 for 

DTAC, DTATf and DTAB, respectively. The haemolytic potency of the DNA was also 

determined. As expected, DNA showed no haemolytic activity.  

[Fig. 9 here] 

One drawback of these surfactant-DNA gel particles, in toxicological terms, is the 

need for a cationic surfactant, which may cause some cellular damage. Our results 

indicate, however, that the effect of the surfactant can be modulated when administered 

in the DNA gel particles, unlike what happens in aqueous solution. This modulation is 

due to the strong interaction between the surfactant and the biopolymer, which leads to 

a very slow release of the surfactant from the vehicle. Accordingly, although the HC50 

values for these three surfactants are very close in aqueous solution, strong differences 

were found when the haemolysis kinetics of the corresponding surfactant-DNA gel 

particles was determined, as represented in Fig. 9b and Fig. 9c. As the haemolytic 

character of these surfactants in solution is almost identical, the differences found in the 

haemolysis responses induced by the different surfactants in the DNA particles can only 

be related with the capacity to form weaker or stronger surfactant-DNA complexes. It is 

then expected that for a higher degree of complexation, less surfactant, which could 

interact with the erythrocytes membrane, would be released in solution.  

This trend in surfactant-DNA interaction reflects both the release of haemoglobin 

(degree of haemolysis) and the release of DNA into the media, as a consequence of 

different dissolution kinetics of the polyelectrolyte-surfactant complexes. Under the 

experimental conditions in which the haemolysis studies were carried out, dsDNA-
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surfactant particles were fully dissolved by the end of the experiments. However, 

ssDNA-surfactant particles remained visible in the dispersion. Here, for the first time, 

both parameters were determined simultaneously, giving us information about the 

effectiveness of the two release processes. Fig. 10 shows the relative kinetics of DNA 

and haemoglobin release. 

[Fig. 10 here] 

The amount of DNA that is released and the haemolytic response are strongly 

dependent on both the structure of the counter-ion in the surfactant and the secondary 

structure of the DNA. In the case of particles prepared with native DNA, the amount of 

dsDNA that is released at the end of the experiment (180 min) reaches 100 µg mL
-1

 

(Fig. 10a). However, with particles prepared with denatured DNA, only 10% of this 

amount is released into the media (Fig. 10b). This behaviour, which can be correlated 

with the degree of complexation, is higher in the case of ssDNA, thus decreasing the 

amount of non-complexed DNA that could be detected in solution. These differences 

are also supported by visual inspection: surfactant-dsDNA particles are completely 

dissolved at the end of the experiment, whereas surfactant-ssDNA particles are still 

present after 180 min.    

At this point, it is possible to establish which of these systems is the most 

haemocompatible. For this, the haemolysis values for a defined amount of released 

DNA are compared. In the case of the surfactant-dsDNA particles, for a concentration 

of dsDNA equal to 100 µg mL
-1

, the degree of haemolysis is 30%, 60% and 80%, when 

DTATf, DTAC and DTAB are used as cationic agents, respectively. In the case of 

surfactant-ssDNA particles, and for a concentration of ssDNA equal to 5 µg mL
-1

, the 

degree of haemolysis is 20%, 50% and 70%, when DTATf, DTAC and DTAB are used 

as surfactants, respectively. The haemolysis response found in these DNA gel particles 

can be correlated with differences in the apparent degree of counter ion dissociation in 

these surfactants from the corresponding micelles [98-100].  

 

4.2. Cytotoxicity 

 

Cytotoxicity plays a critical role in the efficiency of the delivery vectors. In order to 

deliver the DNA into the cells, the cationic particles bind to the cell surface by 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

22 
 

electrostatic interaction, promote endocytosis and release the genetic material inside the 

cell. Unfortunately, while high concentrations of the delivery agents imply an increased 

chance of the DNA penetrating the cell nucleus, they can also interfere with 

physiological processes within the cell, inducing cell death. Thus, present research is 

aimed at designing gene delivery agents that are able to deliver DNA into the cells with 

minimal toxicity [101].   

Despite the significant scientific interest and promising potential of the particulate 

materials, the safety of these systems remains a growing concern, considering that 

biological applications of particles could lead to unpredictable effects.  Currently, there 

are no specific testing requirements for nanotechnology products, and therefore, 

researchers took liberal approaches to studying toxicity [102-103]. Moreover, it is worth 

noting that, because of the expense of animal testing in toxicology and pressure from 

both the general public and government to develop alternatives to in vivo testing, in 

vitro cell-based models may be more attractive for preliminary testing of nanomaterials 

[104]. The prediction of toxicity is difficult, but cytotoxicity screening, which is 

routinely used in drug screening, gives a good indication of potential adverse effects in 

cells. Rapid, sensitive and reliable bioassays are required to examine the toxicity. 

Established cell lines are useful alternative test systems for this kind of toxicological 

studies [105]. However, they must be chosen with care with regard to their origin [106].
 

Cytotoxicity assays are among the most common in vitro endpoints used to predict the 

potential toxicity of a substance in a cell culture [107]. Cell damage is manifested in 

several ways, including mitochondrion and plasma membrane dysfunction and 

fluctuating intracellular reduction capacity [108.Current standard approaches to gauge 

the degree of cell damage include assays that measure various aspects of cell viability, 

such as metabolic activity and plasma membrane integrity. The MTT reduction assay 

which is based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide by cellular dehydrogenases, is among the most commonly 

used endpoints. This method measures the reduction of MTT salt to a coloured 

insoluble formazan in active mitochondria in viable cells and also, in certain cases, 

outside the mitochondria [109-110].  

The first approach on the determination of the cytotoxic response of DNA gel 

particles have been carried out on protein-DNA gel particles formed using two different 

approaches by mixing double-stranded DNA (dsDNA) with lysozyme (LS) and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 
 

protamine sulfate (PS) mixtures. The interaction of these protein-DNA gel particles and 

their components with non-tumour (3T3 fibroblast) and tumour (HeLa) cell lines has 

been determined, using the imposed variations in protein composition and the size of 

the final particles, as a consequence of the different preparation method, as controlling 

parameters [64].  

Assessing the capacity of live cells to metabolise a tetrazolium colourless salt to a 

blue formazan (MTT assay) were used to perform indirect measurements of cell 

viability. Dose–response curves for each protein, determined by MTT assays using 

tumour cell line HeLa and non-tumour cell line 3T3 fibroblasts, are given in Fig. 10. 

The cytotoxicity assays were performed in the concentration range 50 and 2000 μg   

mL
-1

. Although it is thought that proteins are biocompatible and nontoxic compounds, 

our results have revealed that, as with other cationic derivatives, LS and PS displayed 

concentration-dependent toxicity towards cells in vitro. LS showed low cytotoxicity 

towards 3T3 cells, which displayed viability in the range 81% to 100% as determined 

by the MTT assay (Fig. 11a) at the tested protein concentration range. In the case of PS, 

viability changed from 7% to 100% depending on the concentration. These experiments 

enabled us to define the protein concentration required to inhibit cell growth by 50% 

compared with an untreated control (IC50). In the case of LS, its IC50 was found to be 

higher than 2000 µg mL
-1

 in both cell lines. For PS, it was found to be 140 and 250 µg 

mL
-1

 for 3T3 and HeLa cell lines, respectively (Fig. 11b). These differences could be 

attributed to differences in the binding characteristics of these two proteins, with 

different total charge and linear charge density: LS is a globular protein that has a net 

charge of + 9 at neutral pH, whereas PS is a highly positively charged linear protein 

with an overall charge of +21. 

 [Fig. 11 here] 

  Cell culture studies have greatly increased the understanding of cellular functions and 

complex signalling pathways and have been routinely used for toxicity screening of new 

compounds. Based on the assumption that a decrease in cellular vitality reduces physiological 

function, cellular products and cell number, cytotoxicity screening assays that measure 

enzymatic activities or cell products have been carried out. These assays perform reliably with 

chemical compounds but can produce false results by interference with particulate systems. 

Most examples have been published for the MTT assay. Nanomaterials interfere with the assay 

by light absorbance, reduction of the tetrazolium salt, and binding of the formazan salt [111]. 
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Interactions of nanomaterials assays include interference by adsorption of dyes [112], 

absorbance [113], fluorescence [114], binding of proteins [115], dye degradation [116] and dye 

formation [112], among others. 

In each of these cases the underlying phenomena involve some interaction between 

nanomaterials and organic small-molecule solutes in multicomponent biological phases. 

Less attention has been paid to the fundamental interactions of nanomaterials with small 

biomolecules in complex physiological fluid phases. Inspired on the observation that 

small quantities of nanotubes removed the colour associated with the pH indicator dye, 

phenol red, in cell culture medium [117], it has been described that nanotube adsorption 

causes profound changes in the composition of the medium, and thus has the potential 

to influence in vitro cell behaviour through an indirect mechanism that does not involve 

physical interaction between nanotubes and target cells [118].  

Previous studies in our laboratory have verified the absorption of the culture media 

by the particles when 3T3 and HeLa cell lines were incubated in the presence of some 

surfactant-DNA gel particles prepared by the dropwise addition method. In this case, the 

obtained cell viabilities were close to 5% (results not published). Although the IC50 

values of the corresponding surfactants in solution were not very high (with values 

around 10 µg mL
-1

), this low cell viability may be correlated with the physicochemical 

properties of these DNA gel particles. Even though no systematic studies on the 

composition of the medium have been carried out, the observed swelling behaviour of 

some of these DNA gel particles point out the effect of adsorption of essential 

micronutrients from cell culture medium. Therefore, toxicity data must be interpreted in 

the context of the physicochemical characteristics of the particulate systems.  

Concerning the protein-DNA gel particles prepared by the dropwise addition method, 

visual inspection of the corresponding plates exhibited no evident changes on the 

volume and characteristics of the culture media when 3T3 and HeLa were incubated in 

the presence of individual protein-DNA gel particles during 24h. Although these 

particles are several magnitudes larger than cells and cannot be internalized as a whole, 

this study demonstrates that the physicochemical properties of these protein-DNA gel 

particles may not affect their cytotoxic characterization under standard protocols. As has 

been already pointed, an important implication of the changes in the composition of the 

medium, as assessed by commonly used endpoints, such as cell viability, DNA damage, 
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and apoptosis, may be mistakenly attributed to direct toxicity when in fact it is a 

secondary effect of adsorption of essential micronutrients from cell culture medium. 

Cell viabilities of up to 80% were observed in almost all compositions when the 

cytotoxicity of the corresponding protein-DNA gel particles was determined in both cell 

lines (Fig. 12a). However, cell viabilities were always lower than 10-20% when cells 

were incubated in the presence of pure and mixed protein solutions (Fig. 12b).  

[Fig. 12 here] 

In previous studies in our lab, we have prepared nano-/micro-sized DNA gel particles 

by nebulisation of DNA solutions (either single- (ssDNA) or double-stranded (dsDNA)) 

into an oppositely charged surfactant or protein solution [77].
 
FM studies suggest that 

the formation of the particles was carried out with conservation of the secondary 

structure of the nucleic acid molecules. SEM on freeze-dried and Au-shadowed samples 

showed a distribution of virtually spherical particles. It was found that, in addition to the 

size of the initial DNA droplets, the cationic agent is a controlling parameter of the 

particle size. In the case of protein-DNA gel particles, LS-DNA gel particles showed 

diameters around 10 µm whereas the size of PS-DNA was around 400 nm (see Table 2).  

In a recent study, small-sized mixed protein-DNA gel particles were prepared for the 

first time, and their cytotoxicity was evaluated. Although the particle dispersions were 

studied without further purification, and both free protein and protein-DNA gel particles 

were present in the obtained dispersions, the cytotoxic responses shown in Fig. 13a 

were observed to be significantly different to that observed with proteins in solution 

(Fig. 13b). As expected, the cytotoxicity of the obtained DNA particles resulted lower 

than that observed with the corresponding protein in solution. Only the LS system 

showed an irregular behaviour. 

 

[Fig. 13 here] 

The observed differences in cytotoxicity may be correlated with differences in 

protein-DNA complexation in these systems. Consequently, we determined the initial 

amount of protein in the media, as well as the amount of protein remaining in the 

dispersion containing the protein-DNA gel particles formed by the nebulisation method. 

From these values, the degree of complexation in the different systems was determined. 
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Fig. 13c shows the evolution of the degree of complexation according to the LS/PS 

ratio. In the case of the protein-DNA gel particles, it was expected that the higher the 

degree of complexation, the smaller the amount of protein that would be released in 

solution, an amount which would be able to interact with the cells and reduce their 

viability. Independently of the cell line response, the differences in the degree of 

complexation were in agreement with the observed trend in cell viabilities (Fig. 13d). 

Differences in cytotoxicity between protein-DNA particles prepared by the dropwise 

addition method and the nebulisation method could be related to differences in the 

kinetics of dissolution/release profiles. Studies of DNA release from protein-DNA 

particles formed by the dropwise addition method have demonstrated that these particles 

can present DNA release profiles of up to 1,000 h, confirming the stability of these 

protein-DNA gel particles [63]. In the present study, the stability of these particles in 

the culture medium was also confirmed. Supported by visual observation, the particles 

remained present in the well plate after 24h of incubation. This behaviour and the fact 

that the observed cytotoxicity was almost independent of the protein composition (Fig. 

12a) corroborate this argument. Although the profiles of dissolution/release of the 

protein-DNA gel particles prepared by the nebulisation method have not yet been 

determined, it is expected that smaller particles will show faster dissolution profiles. As 

a consequence of the protein release, a more composition-dependent cytotoxic response 

compared with that observed at large-sized particles could be awaited. In the case of 

these small-sized protein-DNA particles the cytotoxic responses were strongly 

dependent on the protein composition (Fig.13a).   

The preparation of the protein-DNA gel particles by the nebulisation method enabled 

us to obtain particle dispersions in order to evaluate the effect of the concentration (in 

this study, expressed as protein concentration). Observation of IC50-values showed that 

the two cells lines were markedly different in sensitivity to the cytotoxic effects of these 

protein-DNA particles (Fig. 14 and Table 3). Except in the case of the pure systems, 

which displayed identical cytotoxicity in both cell lines, the tumour cell line HeLa was 

more sensitive to the deleterious effects of the mixed protein-based particles than 3T3 

fibroblasts (significant differences between 3T3 and HeLa for the same conditions are 

indicated in Table 3 with an asterisk). Consequently, the mixing of proteins had a clear 

modulating effect on the relative cytotoxicity of these systems towards tumour and non-

tumour cell lines.  
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[Fig. 14 here] 

 

5. Summary 

A general understanding of interactions between DNA and oppositely charged 

agents provides a basis for developing novel DNA gel particles. The adsorption 

strength, which is tuned by varying the structure of the cationic agent, allows the control 

of the spatial homogeneity of the gelation process, producing either a homogeneous 

DNA matrix or different DNA reservoir devices. It was shown that DNA was 

effectively entrapped in the assayed cationic surfactant, protein and polysaccharide 

solutions, protecting its secondary structure. When the DNA gel particles are inserted in 

a medium, different responses occur: swelling or deswelling, dissolution, and DNA 

release. Controlling the magnitude of the DNA release and achieving controlled release 

systems was accomplished by changing the composition in the cationic solutions where 

particles were formed. Modulation of the superficial hydrophobicity of the DNA gel 

particles, as a consequence of the imposed compositions, may govern the posterior 

adsorption of plasma proteins and influence the overall bioavailability of the systems.  

One drawback of the DNA gel particles, in toxicological terms, is the need for a 

cationic compound, which may cause some cell damage. However, our results indicate 

that the effect of the cationic agent can be modulated when administered in a DNA gel 

system, rather than in an aqueous solution. Unlike delivery in an aqueous solution, the 

cytotoxicity of the cationic system can be reduced when the opposite charges between 

the cationic compounds and DNA spontaneously result in complexation due to 

electrostatic interactions. The magnitude of DNA entrapment can be controlled and 

controlled release systems achieved through the formation of a DNA-oppositely charged 

complex network giving rise to these DNA gel particles. The decrease in toxicity as 

well as the formation of a releasable high DNA content reservoir renders these DNA gel 

particles promising DNA vehicles for use as a nonviral gene delivery system.  
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6. Prospects  

Over the last two decades, gene therapy has brought human medical prospect into a 

new phase, whereby genetic defects on cells can be regulated and also a range of 

diseases can be prevented. DNA-based molecules are being employed to prevent, treat, 

and cure diseases by changing the expression of genes that are responsible for the 

pathology. Since its inception, plasmid-DNA-mediated gene therapy has seen 

significant growth and brings fruitful clinical trials. However, the major underlying 

challenge is the development of a carrier system that must have the capacity to enter the 

cells of interest, to protect nucleic acids from nuclease degradation, to escape the 

endocytic pathway and reach the cytosol, to dissociate and release the DNA, and to 

facilitate the integration and activity of the transferred DNA inside the nucleus. In the 

absence of cell division, and additional limiting step is the translocation of DNA 

through the nuclear envelope. Some recent works have turned to investigate the nucleus 

entry problem [119]. Evidently nuclear pore complexes (NPC) act as gateway for 

macromolecular traffic between the cytoplasm and the nucleus. Short nucleic acids such 

as oligonucleotides can diffuse freely through the pore. Larger molecules need to be 

actively transported by a cargo protein that carries a nuclear nuclear localization signal 

(NLS). Endogenous nuclear proteins, whose natural functions are to condense DNA and 

which possess one or more NLS sequences, are interesting candidates to mediate 

nuclear translocation. Among these are proteins from the high mobility group (HMG), 

histones (especially H1), and protamines that were shown to enhance in vitro 

transfection efficiency properties [120-122]. We are engaged in current work focusing 

on the use of nuclear protein on the formation of DNA gel particles based on associative 

phase separation and interfacial diffusion [123]. 

 An alternative promising approach comes from the observation that 

glycoproteins lacking NLS are able to enter the nucleus. Oligosaccharides are 

presumably recognized by lectins (a component of the nuclear pore complex). If bound 

to DNA, these oligosaccharides can facilitate its transport through the nuclear envelope. 

Recent research has been focused on the application of the pure chitosan 

oligosaccharide lactate or in combination with protamine sulfate as promising DNA 

carriers [75].  

Colloidal carriers have offered the opportunity to design surface properties to enable 

them traverse biological barriers such as skin, mucous barriers, and leaky vasculature. 
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The smart design of the colloidal carrier can protect DNA-based molecules from 

deleterious degradation, and may provide sustained release of payload in a 

therapeutically advantageous fashion. Although these carriers may offer various 

advantages over conventional drug-delivery systems, their safety should not be ignored. 

The toxicity of these nanomaterials may be due to their large surface area. A continuous 

effort focused on improving safety, feasibility, and efficacy of colloidal carriers for 

DNA gene therapy is required. 

Abbreviations  
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TABLES 

 

Table 1 

Characteristics of the obtained DNA gel particles (see abbreviation list). 

 

Cationic agent Nucleic acid type 

 

Reference 

 
dsDNA ssDNA 

 

 

SINGLE-TAIL SURFACTANT  

CTAB x x [52, 53] 

DTAX x x [54] 

ALA, LAM x x [55] 

DOUBLE-TAIL SURFACTANT  

DDAB x x [56] 

PROTEIN  

LS, PS x  [52,63] 

POLYSACCHARIDE  

CHIT x  [74] 

CL x  [75] 

MIXED SYSTEMS  

LS/PS x  [63, 64] 

CL/PS x  [75] 
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Table 2 

Mean size of DNA particles systems determined by photon correlation spectroscopy 

(including polydispersity index, P. I.). 

 

System Mean size  

(nm) 

P. I. 

CTAB-dsDNA 139 ± 8 0.46 ± 0.09 

CTAB-ssDNA 126 ± 1 0.40 ± 0.01 

PS-dsDNA 387 ± 81 0.78 ± 0.03 

PS-ssDNA 343 ± 10 0.14 ± 0.03 

LS-dsDNA 9200 ± 2800 0.31 ± 0.40 

LS-ssDNA* 9450 ± 2000 0.78 ± 0.50 
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Table 3 

Cytotoxic properties of the protein-based DNA carrier systems prepared by the 

nebuliser method. Note that the IC50 values are given in terms of protein concentration 

(mM). *Significantly different at p<0.05  

 
 

System 3T3 

IC50 (mM) 

HeLa 

IC50 (mM) 

LS-DNA < 0.16 < 0.16 

LSPS15-DNA > 1.25 0.92 

LSPS30-DNA* > 1.25 0.32 

LSPS50-DNA > 1.25 0.92 

LSPS70-DNA 0.80 0.60 

LSPS85-DNA* 0.75 0.68 

PS-DNA > 1.25 > 1.25 
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FIGURE CAPTIONS 

 

Fig. 1. The formation of DNA gel particles: (a) phase map of the CTAB/dsDNA/water mixture 

a t 25 ºC, where 1Φ and 2Φ indicate the one and two phase regions, respectively and the solid 

line is the boundary between these regions. (x) Gives studied compositions and (○) the area 

where gel particles were observed and (b) the representative morphology of CTAB-dsDNA 

particles. Adapted from reference [52]. 

Fig.2. Characterization of the DNA gel particles with respect to DNA loading efficiency (a), 

loading capacity (b) and DNA complexed (c), as a function of the cationic compound 

(surfactants: light grey bars; proteins: dark grey bars; polysaccharides: black bars). 

Representative images of the obtained DNA gel particles showing translucent or opaque 

particles as a consequence of the characteristics of the gelation process (d). Adapted from 

references [53-56, 63, 74]. 

Fig. 3. Fluorescence microscopy micrographs of individual surfactant-DNA gel particles in the 

presence of the DNA selective dye AO (a). Complexed DNA is related to the amounts of DNA 

in the supernatant solutions and the skins derived from the particles, after particles were 

magnetically stirred overnight (b) Adapted from references [53-55]. 

Fig.4. Scanning electron micrographs of individual CTAB–DNA and DTAB-DNA gel particles: 

outer surface (a) and cross-sections showing both the outer and inner surfaces (b). Adapted from 

references [52, 56]. 

Fig. 5. Scanning electron micrographs (a) and fluorescence microscopy using Nile Red (b) and 

Acridine orange (c) dyes of individual DDAB-dsDNA and DDAB-ssDNA gel particles. 

Adapted from reference [56]. 

Fig. 6. Time-dependent changes in relative weight RW measurements performed on surfactant-

DNA (a), protein-DNA (b) and polysaccharide-DNA (c) gel particles after exposure to pH 7.6 

10 mM Tris HCl buffer solutions. Where Wi stands for the initial weight of the particles and Wt 

for the weight of the particles at time t. Adapted from references [53-56, 63, 74]. 

Fig. 7. Time-dependent changes in DNA release measurements performed on surfactant-DNA 

(a), protein-DNA (b) and polysaccharide-DNA (c) gel particles, after exposure to pH 7.6 10 mM 

Tris HCl buffer solutions. Adapted from references [53-56, 63, 74]. 

Fig. 8. Adsorption isotherms of Rose Bengal onto CL-DNA gel particles as a function of the R 

values. (a), onto CL/PS-DNA gel particles as a function of the protein composition (b) and Γmax  

values of Rose Bengal for these DNA gel particles as a function of the imposed compositions 

(c). Adapted from reference [75].  

Fig. 9. Dependence of rat erythrocyte haemolysis on DTA-based surfactant concentration. 

Erythrocytes were incubated for 10 min at room temperature at different surfactant 

concentrations, and the amount of haemoglobin released was determined (a). DTA-dsDNA (b) 

and DTA-ssDNA particle-induced haemoglobin release from rat erythrocytes as a function of 

time(c). Erythrocytes were incubated at room temperature in the presence of individual DTA-

DNA particles.  The data correspond to the average of three independent experiments ± standard 

deviation. Adapted from reference [54]. 
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Fig. 10. Relative kinetics of DTA-dsDNA (a) and DTA-ssDNA (b) particle-induced 

haemoglobin release from rat erythrocytes and DNA release. Adapted from reference [54]. 

Fig. 11. Concentration-dependent relative viabilities of 3T3 cells (A) and HeLa cells (B) treated 

with LS and PS for 24 h determined by MTT assay. The data correspond to the average of three 

independent experiments ± standard deviation. Adapted from reference [64]. 

Fig. 12. Relative viabilities of 3T3 and HeLa cells treated with individual protein-DNA gel 

particles (a) and the corresponding protein solutions derived from the dropwise addition method 

(b) for 24 h, determined by MTT assay. The data correspond to the average of three independent 

experiments ± standard deviation. *Significantly different (p<0.05) from the corresponding 

protein solution. Adapted from reference [64]. 

Fig. 13. Relative viabilities of 3T3 and HeLa cell lines treated with the protein-DNA gel 

particles dispersion (a) and the corresponding protein solutions derived from the nebulisation 

method (b) for 24 h, determined by MTT assay. In both cases, the assayed concentration was 

1.25 mM, expressed in terms of protein concentration. The data correspond to the average of 

three independent experiments ± standard deviation. * Significantly different (p<0.05) from the 

corresponding protein solution. Complexation stoichiometries of the protein-DNA gel particles 

according to the protein composition(c). Comparison between the complexation stoichiometries 

of the protein-DNA gel particles and the relarive viabilities of 3T3 and HeLa cell lines 

according to protein composition. Adapted from reference [64]. 

Fig. 14. Concentration-dependent relative viabilities of 3T3 (A) and HeLa cells (B) treated with 

the protein-DNA gel particles prepared by the nebulisation method for 24 h, determined by 

MTT assay. The data correspond to the average of three independent experiments ± standard 

deviation. Adapted from reference [64]. 
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Highlights 

►Comprehensive review of DNA gel particles as controlled DNA delivery systems. ► DNA 

gel particles derived from surfactants, proteins and polysaccharides derivatives ► Kinetics of 

swelling or deswelling, dissolution, and DNA release. ► In vitro haemolytic and cytotoxic 

characterization ► Current status and prospects on DNA gel particles are discussed. 

 


