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ABSTRACT

Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so
in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by
a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity.
To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that
the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we
computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find
evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and
rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that
these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to
determine how the stars are affected by the applied precession, this way confirming the theoretical results.
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1. Introduction

In this study we focus on the warps observed in some galax-
ies when seen edge-on. Thanks to the images of the Hubble
Space Telescope and taking the probability of non-detection of
warps into account when the line of nodes lies in the plane
of the sky, it has been observed that nearly all galaxies are
warped, confirming the suggestion made by Bosma (1981) for
HI warps (Sánchez-Saavedra et al. 2003). Although there is
abundant literature about this subject, the reason for these warps
is not known yet. They have been observed in the distribution
of stars (e.g. Sánchez-Saavedra et al. 1990) and in the study of
neutral hydrogen (Bosma 1981), confirming that they are a very
common phenomenon. In general, warps are commonly viewed
as an integral sign as seen edge-on, manifesting themselves in
the shape of the outer disc and bending away from the plane de-
fined by the inner disc (like the galaxy shown in Fig. 1). This
suggests some misalignment between the angular momenta of
some material in warps and some material in the inner disc. In
this direction, Debattista & Sellwood (1999) made simulations
where the warp was formed when a misalignment between the
angular momenta of the disc and the halo occurs.

Several assumptions have been made in the literature about
the formation of warps. Briggs (1990) established some rules
based on observational studies of external galaxies to determine
the behaviour of galactic warps and claimed that warps appear
from isophotal radius R26.5. After some time, Cox et al. (1996)
studied the observations of the galaxy UGC 7170 concluding
that due to the similarities between the stellar and gaseous warps,
these could be produced by means of a gravitational origin. And

more recently, Sellwood (2013) determined that since warps are
really common, they should be either repeatedly regenerated or
long-lived.

From a theoretical point of view, numerous approaches have
been made to understand the mechanisms responsible for warp
generation. One of these mechanisms, explained in Lynden-Bell
(1965), established that warps could be produced by internal
bending modes in the disc as a long-lived phenomenon, but this
proposal held only for a disc with an unrealistic mass truncation
(Hunter & Toomre 1969). In this context, Sparke & Casertano
(1988) found warp modes inside rigid halos by means of discrete
modes of bending. In Revaz & Pfenniger (2004), this discussion
was revived and identified short-lived bending instabilities as a
possible cause of the formation of warps, but obtaining warp
angles of less than 5◦. Nevertheless, Binney et al. (1998) argued
that the inner halo would realign with the disc so the warp would
dissipate.

Another possible explanation for the existence of warps is a
tidal interaction between galaxies, a theory that has been studied
to explain the Milky Way’s warp, mainly because of the prox-
imity of the Large Magellanic Clouds (see e.g. Avner & King
1967; Hunter & Toomre 1969; Levine et al. 2006). Nevertheless,
López-Corredoira et al. (2002) developed a method of calculat-
ing the amplitude of the galactic warp generated by a torque due
to external forces. The method was applied to discard the tidal
theory since it would lead to the formation of warps of very low
amplitude. In fact, the authors proposed that warps are formed
by the accretion of material over the disc (i.e. the accretion of
angular momentum). Read et al. (2008) agree that the warp is an
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Fig. 1. Galaxy ESO 510-G13 photographed by the Hubble telescope.

indicator of the merger activity and state that if the impact angle
were larger than 20◦, then the stellar disc could be warped.

As we can see, the explanation of the existence of warped
galaxies represents a challenge. Our approach is based on the
fact that warps are long-lived. By means of dynamical system
tools, we take a simple, but widely used model composed of a
bar and a disc to show that by introducing a natural misalignment
between the angular momentum and the angular velocity, the
model is consistent and is able to reproduce warped shapes. To
check its consistency, we apply the fact that the periodic orbits
are the backbone of galactic bars since these orbits are mainly
stable, and therefore they mostly determine the structure of the
bar (Contopoulos & Papayannopoulos 1980; Athanassoula et al.
1983; Contopoulos & Grosbøl 1989).

Then we study the set of orbits that depart from the Lyapunov
orbits, proving that they acquire the warped shape with varying
angles. The line of our study follows the analysis of the invariant
objects that, in a similar dynamic way, cause the formation of
rings and spiral arms in barred galaxies (Voglis & Stavropoulos
2005; Voglis et al. 2006; Patsis 2006; Romero-Gómez et al.
2006, 2007; Athanassoula et al. 2009). Again the purpose is to
study the invariant manifolds associated with these objects. How
these manifolds are affected by a precessing model and how this
explains the appearance of galactic warps. Since invariant mani-
folds are determined by the potential of the galaxy, they exist for
as long as this potential does not change significantly, thereby
making them long-lived objects.

In Sect. 2 we justify the consistency of the misalignment be-
tween the angular momentum and angular velocity vectors and
derive the equations of motion of the precessing model. We also
describe the galactic potential considered and the characteristics
of this potential in the precessing model. In Sect. 3 we describe
the types of orbits inside the bar, observe how they are modi-
fied with the tilt angle, and check that they are the skeleton of
the model. The formation of warps in our model is described
in Sect. 4 where we study the invariant manifolds of the system
that, as it is well known, provide the backbone of dynamics. In
Sect. 5 we perform test-particle simulations of the model that,
although they are collisionless simulations, serve to demonstrate
that the orbits in the model behave as predicted. Finally, conclu-
sions and expectations for future work are given in Sect. 6.

2. The precessing model

There are some theories that seek to explain the formation of
warps through a misalignment between the angular momenta of
the components of the models. Usually they assume that this is
produced by the contribution of a third element, for instance, as
an accretion of material due to the cosmic infall (see e.g. Ostriker
& Binney 1989; Jiang & Binney 1999; López-Corredoira et al.
2002). It may also be aided by dynamical friction between the

components (see e.g. Debattista & Sellwood 1999). Although
this could be one of the reasons, the dynamics in the formation
of the bar and other blocks of the galaxy could lead to a small
misalignment between the angular velocity, ω, and the angular
momentum, L, without any additional perturbation.

If we understand the galaxy and the formation of the bar as
an accretion of material from a spinning mass distribution, the
total angular momentum will be preserved during the process.
However, for the angular velocity of its building blocks, even
though the main component is in the direction of the angular
momentum, a small component can appear in the orthogonal di-
rection causing the misalignment. Probabilistically speaking, it
is natural that it occurs in this way; moreover, it is reinforced by
the existence of any other external perturbations or internal fric-
tions. This is the result of having angular momentum, and angu-
lar velocity slightly misaligned in the motion of the bar should
be a common phenomenon even when considering torque free
motions of rigid bodies. In fact, the probability that L and ω are
aligned is very low, if not zero. The result of this misalignment
is a small precession of the bar.

Combes (1994) hypothesised about the relation between the
precession of the angular momentum of a galactic disc and the
formation of a warp as a vibration of the disc, but she did not
pursue this idea any further. Although we reached the idea of
studying the misalignment of the angular momentum and the
angular velocity independently of Combes (1994), the work car-
ried out in this paper may be considered, to some extent, to be
a detailed study of the original question. Considering a galactic
model formed by a bar and a disc, the main purpose of this pa-
per is to study the effect of a small misalignment between the
angular momentum of the system and its angular velocity.

The fundamentals of the motion of rigid bodies can be found
in many books of classical mechanics (a classical reference e.g.
Goldstein 1980). In what follows we summarize just a few main
concepts that we need in order to introduce a precessing bar in a
usual galactic model.

The main equation in rigid body dynamics relating angular
momentum and angular velocity when they are expressed in a
reference frame attached to the body is L = I · ω, where I is
known as the inertia tensor. For the considered body frame, the
tensor I is a symmetric constant matrix whose values only de-
pend on the mass distribution. Since it is symmetric, this inertia
tensor can be written in diagonal form, Ib = diag{I1, I2, I3}, in
an orthogonal basis. Its eigenvectors point to what are known as
the principal axes of rotation, while the components I1, I2, and
I3 are called principal moments of inertia. In the case of bodies
with symmetric mass distributions, the principal axes are related
to the symmetries. For instance, for a Ferrers bar (Ferrers 1877),
independently of its degree of homogeneity, our first principal
axis is aligned with the major axis of the bar in the x direction,
while the remaining two ones are aligned with the major and
minor axes of the ellipse obtained when cutting the Ferrers el-
lipsoid with the plane x = 0. Moreover, even though we will
not be restricted to this case, for a constant density ellipsoid, the
principal moments of inertia are given by I1 =

1
5 Mb(b2 + c2),

I2 =
1
5 Mb(a2 + c2), and I3 =

1
5 Mb(a2 + b2), where Mb denotes

the mass of the bar, and the parameters a (semi-major axis) and
b, c (intermediate and semi-minor axes, respectively) define the
shape of the bar.

Another main ingredient for modelling the motion of our
precessing bar are the Euler equations. When assuming a torque-
free motion, the angular velocity of the bar with respect to the
static inertial axes, but expressed in the body frame (whose axes
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Fig. 2. Reference systems. Top: bar in the body reference frame, where
the angular momentum Lb and the ybzb plane keep an angle ε. Bottom:
bar in the inertial reference frame, where the angular momentum is
aligned with the Z axis and the major axis of the bar keeps an angle
ε with the XY plane.

are aligned with the principal axes of the bar, see top panel of
Fig. 2), ωb = (ω1, ω2, ω3) is a solution to Euler’s equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I1
dω1
dt = ω2ω3(I2 − I3),

I2
dω2
dt = ω1ω3(I3 − I1),

I3
dω3
dt = ω1ω2(I1 − I2).

(1)

We are going to study Eq. (1) in the case of an axially symmetric
bar along the x axis, with parameters a > b = c. Since the major
axis of the bar is along the x axis in body coordinates, we have
I1 � I2 = I3, and it immediately follows thatω1 and A2 = ω2

2+ω
2
3

are constants of the motion. Then the angular velocity of the bar
expressed in the body frame is

ωb =

⎛⎜⎜⎜⎜⎜⎜⎝
ω1
A sin(λt)
A cos(λt)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where we have defined

λ :=
IT − I1

IT
ω1, (IT := I2 = I3). (3)

We note that λ is the precession rate of ωb in a cone around the
main axis of the bar.

The angular momentum expressed in the body frame, Lb =

Ib · ωb, has constant modulus L = ||Lb|| =
√

I2
1ω

2
1 + I2

TA2, and

it describes a cone about the x axis. Let ε be the angle from
Lb to the yz plane in the body reference (the angle between the
generatrix of the cone, Lb, and the negative x semi-axis is π2 − ε,
as is represented in the top panel of Fig. 2). We notice that in
our study, ε will always be a small parameter. In terms of L and
ε, the angular momentum of the bar in the body frame can be
written as

Lb =

⎛⎜⎜⎜⎜⎜⎜⎝
−L sin(ε)
L cos(ε) sin(λt)
L cos(ε) cos(λt)

⎞⎟⎟⎟⎟⎟⎟⎠ . (4)

Again we note that Lb has a small constant component,
−L sin(ε), in the x direction of the body frame and a big one of
modulus L cos(ε) describing a circle in the yz plane of the body
frame. The angular velocity in the body frame is given by

ωb = I−1
b · Lb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− L

I1
sin(ε)

L
IT

cos(ε) sin(λt)
L
IT

cos(ε) cos(λt)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5)

It follows from Eqs. (3) and (5) that λ = − IT−I1
IT

L
I1

sin(ε). Since
the main axis, a, of the ellipsoid is much greater than the other
axes, b and c, we find that I1 < IT. Moreover, for low values of
ε, sin(ε) ≈ ε, and therefore λ is also small. Finally let us note
that when ε = 0, then λ = 0 and both, angular momentum and
the angular velocity are aligned on the z axis.

Since the angular momentum, L, is preserved in an inertial
reference frame, we take the inertial system so that the Z axis
is aligned with L. The major axis of the bar has to keep an an-
gle π2 − ε with respect to L, and then ε also measures the angle
between the main axis of the bar and the XY plane of the iner-
tial reference system. For this reason, from now on, it will be
referred to as the tilt angle of the motion of the bar (see bottom
panel of Fig. 2). In the inertial frame the major axis of the bar
describes a cone about the Z axis, while L andω are slightly mis-
aligned since the bar is also rotating about its major axis. When
ε = 0, the major axis of the bar rotates inside the XY plane, there
is no rotation of the bar about its major axis, and L and ω are
again aligned.

We define now a new non-inertial reference frame henceforth
called the precessing reference system. In this reference frame,
the x axis is aligned with the major axis of the bar, but the bar is
not fixed as in the body frame but rotating around the x axis.

In the body reference system, the angular momentum and
angular velocity vectors rotate around the main axis of the bar
(x axis in the body frame) with angular speed λ. The precessing
reference frame rotates with respect to the body frame about the
x axis they share. This is, these frames are related by means of
a time-dependent rotation of x axis and angular velocity λ, in
such a way that ω and L are constant in the precessing reference
system, with values of

ωp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
− L

I1
sin(ε)
0

L
IT

cos(ε)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Lp =

⎛⎜⎜⎜⎜⎜⎜⎝
−L sin(ε)

0
L cos(ε)

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

We are interested in the equations of motion of our galactic
model in the precessing reference frame. To compute them, we
need the angular velocity of the precessing frame with respect to
the inertial one. This angular velocity,Ωp, is the sum of the angu-
lar velocity of the body,ωp, and the angular velocity of the body
axes in the precessing frame. Therefore, and taking the value of
λ into account, we obtain

Ωp = ωp +

⎛⎜⎜⎜⎜⎜⎜⎝
−λ

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
−Ω sin(ε)

0
Ω cos(ε)

⎞⎟⎟⎟⎟⎟⎟⎠ , (7)
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where Ω = ||Ωp|| = L
IT

(see Chapter 2 of Sánchez-Martín 2015
for more details about the rotations).

Finally, as a complement, we briefly discuss the motion of
the bar in the inertial frame. According to Poinsot’s theorem (see
Arnold 1989), the bar, which is described by an ellipsoid, rolls
without slipping on a fixed plane normal to the angular momen-
tum L. If the ellipsoid has axial symmetry, as in our case, this
motion is the superposition of a rotation of the ellipsoid along
its symmetry axis with constant angular velocity, λ, and a pre-
cession with constant pattern speed Ω around the axis of the an-
gular momentum. The tilt angle, ε, formed by the symmetry axis
of the ellipsoid and the fixed plane remains constant.

It is also interesting to point out that when in our model we
take ε = 0, the misalignment between the angular velocity and
the angular momentum disappears, and we recover the classical
model with pattern speed (0, 0,Ω).

We have to emphasise here that this solution is valid for an
axially symmetric rigid body, which in the case of the bar im-
plies that the components b and c are equal, so that the moments
of inertia I2 and I3 take the same value. If we want to treat the
problem for the triaxial bar (b � c), the equations of motion (10)
that we present in the next section would not be autonomous,
and this would introduce a complexity into the model that is not
essential for our research. We see in the following sections, how-
ever, that the behaviour for a bar with b � c is qualitatively the
same and that the results for the axially symmetric and triaxial
bar are essentially equivalent.

As for the location of the disc, we have to consider that we
do not consider that the disc behaves as a rigid body, but it has to
follow the main motion of the bar around the z-axis since the
bar has been formed from the disc. We therefore include the
disc in the equatorial xy plane of the model as a building block.
Thus, the new model essentially provides a gravitational poten-
tial once the bar is formed, like many other traditional barred
models (e.g. Contopoulos & Papayannopoulos 1980; Pfenniger
1984; Contopoulos & Grosbøl 1989) and generalises the fact that
when the particles rearrange to form the bar, this is not just like
a “parallel” arrangement with the main axes, but it may have
small misalignments that make the bar precess inside the disc.
Therefore, we can consider that the new model is a perturba-
tion of order ε of the traditional bar plus axisymmetric com-
ponent model. For clear reasons, this forces the value of ε to
be low.

Of course, in a more realistic situation, the disc would be
somewhat warped, but we have not included this possibility in
the model because the small warped amplitude would not play
an essential role in the gravitational potential that is already con-
sidered in the order of the thickness of the disc. On the contrary,
a main point of the precessing model is that, owing to symme-
tries and by construction, the resulting system is autonomous,
making it simpler.

2.1. Equations of motion associated with the precessing
model

As is well known, the equation of motion of a particle in a rotat-
ing system is

r̈ = −∇φ − 2(Ωp × ṙ) −Ωp × (Ωp × r), (8)

where r = (x, y, z) is the position vector of a star or a particle;
φ = φd+φb is the potential of the system, which in our case is the
sum of the potentials φd and φb of the disc and bar, respectively;
andΩp is the angular velocity given in Eq. (7). The second term

X

Y

Z

Fig. 3. Reference systems. The major axis of the bar is aligned with the
precessing x axis, and the precessing z axis describes a cone about the
inertial Z axis. Here (xp, yp, zp) denotes the precessing reference frame
and (X,Y,Z) the inertial one.

on the right-hand side corresponds to Coriolis acceleration, and
the last term to centrifugal acceleration.

To study the trajectories of stars under this potential, we con-
sider the precessing reference frame as shown in Fig. 3. The
equations of motion for our precessing reference system, here-
after referred to as the precessing model, are obtained by substi-
tuting the pattern speed (7) in Eq. (8),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẍ = 2Ω cos(ε)ẏ + Ω2 cos2(ε)x + Ω2 sin(ε) cos(ε)z − φx

ÿ = −2Ω cos(ε)ẋ − 2Ω sin(ε)ż + Ω2y − φy
z̈ = 2Ω sin(ε)ẏ + Ω2 sin(ε) cos(ε)x + Ω2 sin2(ε)z − φz

(9)

where ε is the tilt angle,Ω the modulus of the pattern speed, and
φ the potential (φ = φb + φd).

By setting (x1, x2, x3, x4, x5, x6) = (x, y, z, ẋ, ẏ, ż), the sys-
tem (9) can be written as a system of first-order differential
equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x4
ẋ2 = x5
ẋ3 = x6

ẋ4 = 2Ω cos(ε)x5 + Ω
2 cos2(ε)x1 + Ω

2 sin(ε) cos(ε)x3 − φx1

ẋ5 = −2Ω cos(ε)x4 − 2Ω sin(ε)x6 + Ω
2x2 − φx2

ẋ6 = 2Ω sin(ε)x5 + Ω
2 sin(ε) cos(ε)x1 + Ω

2 sin2(ε)x3 − φx3

(10)

where we recover the classical model when ε = 0. It is also
worth mentioning that the precessing model has a Jacobi first
integral given by

CJ(x1, x2, x3, x4, x5, x6) = −
(
x2

4 + x2
5 + x2

6

)
+ 2Ω2 sin(ε) cos(ε)x1x3 + (Ω2 cos2(ε)x2

1

+ Ω2x2
2 + Ω

2 sin2(ε)x2
3) − 2φ, (11)

and the effective potential is defined by

φeff = φ −
1
2
Ω2

(
cos2(ε)x2

1 + x2
2 + sin2(ε)x2

3

)
−Ω2 sin(ε) cos(ε)x1x3. (12)
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The Jacobi integral is related to the Hamiltonian character of
the system. In fact, and as in the non-precessing case, CJ = −2H,
where the Hamiltonian in the precessing reference system is

H(q1, q2, q3, p1, p2, p3) =
1
2

(
p2

1 + p2
2 + p2

3

)
+ 2Ω (cos(ε)p1q2 − cos(ε)p2q1 − sin(ε)p2q3 + sin(ε)p3q2)

+
3
2
Ω2

(
q2

2 + cos2(ε)q2
1 + sin2(ε)q2

3 + 2 sin(ε) cos(ε)q1q3

)
+ φ(q1, q2, q3),

(13)

where (pi, qi) is the momenta and positions, respectively, in
Hamiltonian coordinates defined as

q1 = x1, p1 = q̇1 − 2Ω cos(ε)q2,
q2 = x2, p2 = q̇2 + 2Ω cos(ε)q1 + 2Ω sin(ε)q3,
q3 = x3, p3 = q̇3 − 2Ω sin(ε)q2.

2.2. The galactic bar potential

As mentioned above, our galactic model consists of the superpo-
sition of an axisymmetric disc plus an ellipsoidal bar. In this pa-
per and in Romero-Gómez et al. (2006), we essentially consider
the same potential as in Pfenniger (1984). The disc component
is modelled by a Miyamoto-Nagai potential (Miyamoto & Nagai
1975),

φd = − GMd√
R2 + (A +

√
B2 + z2)2

, (14)

where R2 = x2 + y2, and z denotes the distance in the out-of-
plane component. The parameter G is the gravitational constant,
and Md is the mass of the disc. The parameters A and B char-
acterise the shape of the disc. Parameter A measures the radial
scale length of the disc, while B is a measure of the disc thick-
ness in the z direction. Since galactic discs are larger in the radial
direction than in the vertical one, A is greater than B.

The barlike part is modelled by a Ferrers ellipsoid (Ferrers
1877) with a density function,

ρ =

{
ρ0(1 − m2)nh , m ≤ 1
0, m > 1, (15)

where m2 = x2/a2+y2/b2+z2/c2. The parameters a (semi-major
axis) and b, c (intermediate and semi-minor axes) determine the
shape of the bar, parameter nh determines the homogeneity de-
gree for the mass distribution, ρ0 =

105
32π

GMb

abc is the central density
if nh = 2, and Mb the mass of the bar. This model concentrates
matter in the central region and decreases smoothly towards zero
at a finite distance.

The density of the bar potential is related with its potential,
φb, by means of the Poisson equation (∇2φ = 4πGρ):

φb = −πG abc
ρ0

nh + 1

∫ ∞

λ̄

du√
Δ(u)

(1 − m2(u))(nh+1), (16)

where G is the gravitational constant, Δ(u) = (a2+u)(b2+u)(c2+
u), and λ̄ the unique positive solution of m2(λ̄) = 1 if m ≥ 1 (that
is, if the particle lies outside the bar), and zero otherwise.

The length unit used throughout this work is the kpc, the
time unit is ut = 2 × 106 yr, and the gravitational constant
G = 6.674 × 10−11 m3 kg−1 s−2. In this paper we take values

0 2 4 6 8 10
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Fig. 4. Rotation curve of the potential φ = φb + φd.

A = 3, B = 1 for the disc, and for the bar we are going to con-
sider two different Ferrers bars, one symmetric and another one
with the values taken by Pfenniger (1984). For both bars, the
homogeneity index is set to nh = 2 and the semi-major axis of
the bar to a = 6. Whereas the first bar has revolution symmetry
with semi-minor axes b = c = 0.95, the second bar only has
axial symmetry with b = 1.5 � c = 0.6. Some other param-
eters are considered to vary within a range: GMd ∈ [0.6, 0.9],
GMb ∈ [0.1, 0.4] (but keeping in mind that G(Md + Mb) = 1).
Finally we also consider the pattern speedΩ ∈ [0.05, 0.06] [ut]−1

(∼[24.46, 29.36] km s−1/kpc) and the tilt angle ε ∈ [0, 0.2] rad =
[0, 11.46]◦.

A useful property for studying the matter distribution in
galactic models is the rotation curve or circular speed Vrot(r),
defined as the speed of a particle of negligible mass in a circular
orbit at radius r. For a potential φ, we define Vrot as

V2
rot = r

dφ
dr
· (17)

Although we have not imposed a halo potential, the rotation
curve of the total potential, composed by the Ferrers bar and the
Miyamoto-Nagai disc, is rather flat in the outer parts (see Fig. 4).

2.3. Characteristics of the precessing model

We define zero velocity surfaces of the precessing model as the
manifold (x1, x2, x3) ∈ R3 defined by Eq. (11) with x4 = x5 =
x6 = 0 for a given value of the Jacobi integral CJ. Their cut
with the z = 0 plane defines zero velocity curves and the regions
where φeff > CJ are forbidden regions for a star of the given
energy (see Fig. 5).

As in the case ε = 0, our precessing model in rotating coor-
dinates has five Lagrangian equilibrium points (Li, i = 1 . . .5),
solutions of ∇φeff = 0. These are represented in Figs. 5 and 6. As
for the properties of these libration points when ε = 0, L1, and
L2 lie on the x-axis and are symmetric with respect to the ori-
gin. Here, L3 lies on the origin of coordinates, L4 and L5 lie on
the y-axis, and they are also symmetric with respect to the ori-
gin (see the upper panel of Fig. 5). The two equilibrium points,
L1 and L2, are unstable, while L3 is linearly stable, and it is sur-
rounded by the x1 family of periodic orbits, which is respon-
sible for maintaining the bar structure, while the stable points
L4 and L5 when ε = 0 have been thoroughly examined and are
surrounded by families of periodic banana orbits (Athanassoula
et al. 1983; Contopoulos 1981; Skokos et al. 2002a).
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Fig. 5. Equilibrium points of the precessing model with GMb = 0.1.
Top: xy plane with zero velocity curves for a Jacobi constant CJ =
−0.1876. Bottom: xz plane, “+” for ε = 0, “×” for ε = 0.1, “•” for
ε = 0.2, while the “∗” shows the position of the central L3 point. The
blue curve in both panels outlines the triaxial Ferrers bar.

In our precessing model, we notice that whereas L3, L4, L5
maintain their coordinates fixed independently of ε, L1 and L2
vary as ε changes. Of relevant importance is the out-of-plane
z-component for L1 and L2 (see bottom panel of Fig. 5). In Fig. 6
we detail the evolution of the coordinates of the equilibrium
point L1 when the parameter ε varies from ε = 0 to ε = 0.2.

3. The structure of periodic orbits inside the bar

To understand the formation, evolution and properties of any
given structure, it is essential to first understand its building
blocks. In the case of galactic dynamics and, particularly, for
barred galaxies, it has been clearly demonstrated that some
building blocks are periodic orbits elongated along the bar. The
study of these building blocks has provided answers to a num-
ber of crucial questions, such as why bars are bisymmetric, why
they rotate as rigid bodies, and why they cannot extend beyond
corotation (see Contopoulos 1981; Athanassoula et al. 1983;
Pfenniger 1984; Skokos et al. 2002a, among others).

In this section we start from the infinitesimal periodic orbits
about the central equilibrium point L3 and, considering either

 0
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Fig. 6. Variation of the xz coordinates of L1 as ε varies within the range
ε ∈ [0, 0.2] for the precessing model with GMb = 0.1. The marked dots
show the L1 coordinates for three specific values of ε: ε = 0 (bottom
part of the plot), ε = 0.1 (middle), and ε = 0.2 (top).

the period or the energy, continue the families of periodic orbits
inside the bar at the same time as we study their stability proper-
ties. We therefore obtain evidence that the stable orbits we find
give structure to the bar, since stars or particles can be trapped
in their neighbourhood. All the integrations in this work were
carried out numerically using a Runge-Kutta-Fehlberg method
of orders 7–8. This method not only assures the conservation of
the Jacobi constant, but it also provides the required accuracy for
the detection of periodic orbits in the dynamical system.

With this aim, we first analyse the stability of the equilibrium
point L3 in the precessing model. Let us consider the differential
matrix around any Lagrangian point of the system (10):

DF(Li) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a φx1 x2 b 0 c 0
φx1 x2 d φx2 x3 −c 0 −e

b φx2 x3 f 0 e 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Li

(18)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = Ω2 cos(ε)2 + φx1 x2 ,
b = Ω2 sin(ε) cos(ε) + φx1 x3 ,
c = 2Ω cos(ε),
d = Ω2 + φx2 x2 ,
e = 2Ω sin(ε),
f = Ω2 sin(ε)2 + φx3 x3 .

(19)

For the particular case of L3, the eigenvalues of (18) are of the
form {λi, −λi, μi, −μi, ωi, −ωi} (λ, μ, ω ∈ R+) for any selected
value of ε. Since the purely imaginary eigenvalues are associated
with infinitesimal librations, the linearised flow around L3 in the
rotating frame of coordinates is characterised by a superposition
of three oscillations. This means that the L3 Lagrangian point
is a linearly stable elliptic point, and in dynamical systems, this
behaviour is usually denoted by the form centre×centre×centre.
In our case it has two central components inside the xy plane and
another one in the z direction.

Next, following the work of Pfenniger (1984), which is a
particular case of the precessing model with ε = 0, and following
Broucke (1969), Hadjidemetriou (1975), we define the stability
indexes of the periodic orbits, b1, b2:

b1 = −(λ + 1/λ), b2 = −(μ + 1/μ). (20)
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Fig. 7. Family of periodic orbits of the precessing model with b � c and
GMb = 0.1 (first row: 3D view; second, third, and fourth rows: (x, y),
(x, z), and (y, z) projections, respectively) and stability indexes (bottom
row) for ε = 0, 0.1, 0.2 (left, middle and right columns, respectively). In
the first four rows, the red dashed lines outline the position of the triaxial
Ferrers bar, while the blue lines are periodic orbits of the precessing
model. In the bottom row: dark magenta (brown) lines indicate the b1

(b2) stability index.

With these definitions, a periodic orbit is stable only when b1
and b2 are real and |b1|, |b2| <= 2, otherwise it is unstable. If |b1|
or |b2| = 2, the Jacobian matrix of the continuation process is
degenerate, and bifurcations of the family are allowed. If bi =
+2, the bifurcation occurs through period doubling, while if bi =
−2, the bifurcation keeps the same period.

In the left-hand panel of Fig. 7, we show the results obtained
for GMb = 0.1,Ω = 0.05, and ε = 0, which appears in Fig. 4
of Pfenniger (1984) for reference. In this figure, red dashed lines
show the contour of the bar with semi-axis a = 6, b = 1.5, c =
0.6 in each plane, whereas blue lines indicate the x1 family of
periodic orbits of the model and its bifurcations.

In a two-dimensional model, the x1 family of planar peri-
odic orbits about L3 is mainly stable and has been regarded as

Fig. 8. Family of periodic orbits of the precessing model with b � c for
ε = 0 (blue) and ε = 0.2 (purple) and GMb = 0.1. From top to bottom:
3D view, xz-plane (left), yz-plane (right). Red (green) lines show the
position of the bar for ε = 0 (ε = 0.2). Blue (purple) lines indicate the
periodic orbits of the model for ε = 0 (ε = 0.2).

responsible for the skeleton of the bar’s structure. But, in three-
dimensional models, the backbone of the bars is the x1 family,
together with its 3D bifurcating families (Skokos et al. 2002a,b).
A continuation process in ε is then used to obtain parallel results
for the tilt angle ε � 0.

The results obtained in continuing the x1 family and its bi-
furcations for ε = 0.1 and ε = 0.2 are shown in the middle and
right-hand panels of Fig. 7. Owing to the nature of the tilting,
the most significant change is in the z component. The xy pro-
jections essentially remain the same, and the families of periodic
orbits continue giving structure to the bar, as displayed in Fig. 8
where the families for ε = 0 and ε = 0.2 are compared. In this
figure, red (green) lines show the position of the bar for ε = 0
(ε = 0.2). Blue (purple) lines indicate the periodic orbits of the
model for ε = 0 (ε = 0.2).

In the last row of Fig. 7, we compare the stability indexes.
For a given value of ε, b1 and b2 cross the limits (±2) an equal
number of times and approximately at the same value of the
Jacobi constant, CJ. All these facts again reinforce the evidence
that the families of periodic orbits about L3 for any ε are quali-
tatively the same.

At this moment, we can prove that although the equations
given in Sect. 2 are for the case in which b = c in the bar, the
results given in this section for the axially symmetric model re-
main the same. To prove this statement, we show in Fig. 9 how
the periodic orbits and the stability indexes remain unchanged
for b = c (following the same colour convention as in Fig. 7).
To compare the symmetric case (b = c) with the non-symmetric
one (model given in Pfenniger 1984 with b = 1.5 � c = 0.6),
we impose in both models equal bar mass (GMb = 0.1), equal
homogeneity (nh = 2), and therefore equal particle distribu-
tion. Thus, we take a symmetric bar where the parameters b̃
and c̃ are the geometric mean of the previous parameters, i.e.
b̃ = c̃ =

√
b · c = 0.95. This results, somehow, in a gravitational

field that is the average along time of the previous one.
Comparing Figs. 7 and 9, we can confirm that the family

of periodic orbits around the central equilibrium point L3 es-
sentially remains the same, independently of whether we use
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Fig. 9. Family of periodic orbits of the precessing model with b = c =
0.95 and GMb = 0.1 (first row: 3D view; second, third, and fourth rows:
(x, y), (x, z), and (y, z) projections, respectively) and stability indexes
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tively). In the first four rows, the red dashed lines outline the position
of the triaxial Ferrers bar, while the blue lines are periodic orbits of
the precessing model. In the bottom row: dark magenta (brown) lines
indicate the b1 (b2) stability index.

a symmetric bar. Moreover, observing the stability indexes for
both models (bottom panels), periodic orbits are in a compara-
ble range of values of the Jacobi constant, where the cuts of the
indexes within the limits | ± 2| are qualitatively equal.

Therefore, we can conclude this comparison by saying that in
both models, namely the one with revolution symmetry and the
one that is axially symmetric, the periodic orbits are responsible
for maintaining the structure of the bar and giving consistency
to the model. In this way, we could use any of both models, but
since a bar with parameters b � c is more commonly used and
we want to compare with the model given in Pfenniger (1984) to
prove that our model is consistent although we apply a tilt, we
prefer to show the rest of results for b � c.

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

−8.0 −6.0 −4.0

xy
 p

la
ne

ε=0.0

−1.0

−0.5

0.0

0.5

1.0

−8.0 −6.0 −4.0

xz
 p

la
ne

−1.0

−0.5

0.0

0.5

1.0

−2.0 0.0 2.0

yz
 p

la
ne

Ω=0.05

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

−8.0 −6.0 −4.0

ε=0.1

−1.0

−0.5

0.0

0.5

1.0

−8.0 −6.0 −4.0

−1.0

−0.5

0.0

0.5

1.0

−2.0 0.0 2.0

Ω=0.05

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

−8.0 −6.0 −4.0

ε=0.2

−1.0

−0.5

0.0

0.5

1.0

−8.0 −6.0 −4.0

−1.0

−0.5

0.0

0.5

1.0

−2.0 0.0 2.0

Ω=0.05

Fig. 10. Lyapunov family of periodic orbits around L2 for the model
with GMb = 0.1 and for a range of values of the Jacobi constant in
(CJ,L2 ,CJ,L2 + 2× 10−3), where CJ,L2 (ε = 0) = −0.1879, CJ,L2 (ε = 0.1) =
−0.1876 and CJ,L2 (ε = 0.2) = −0.1865. The tilt angle ε ∈ [0, 0.2]. Note
the varying scale of the vertical axis.

4. The invariant manifolds in the precessing model

Once we have analysed the behaviour of periodic orbits inside
the bar, we continue the study by considering trajectories outside
the bar that are responsible for the main visible building blocks
in the barred galaxies, such as spirals and rings, i.e. the normally
hyperbolic invariant manifolds associated to the libration point
orbits about L1 and L2. The set of these orbits is responsible for
the transport of matter between the neighbourhood of the bar
and the exterior part of the galaxy. The stars trapped in these
manifolds make their structure visible in the form of rings and
arms. The rings and spirals obtained are response rings and spi-
rals from the bar potential, and they are not imposed in the galac-
tic potential, which means that they are not self-gravitating.

We study now the stability character of the libration points L1
and L2. The eigenvalues of the differential matrix (18) around L1
and L2 are of the form {λ, −λ, μi, −μi, ωi, −ωi} (λ, μ, ω ∈ R+) for
any value of ε. This means that the two real eigenvalues are re-
lated to a hyperbolic behaviour like a saddle, whereas the purely
imaginary are associated to libration motions. This implies that
the linearised flow around L1 and L2 in the rotating frame of
coordinates is characterised by a superposition of a saddle and
two harmonic oscillations, and in dynamical systems, this is usu-
ally described as a saddle×centre×centre behaviour. Then L1 and
L2 are unstable and are called hyperbolic points. The dynamics
around the unstable equilibrium points in our context are de-
scribed in detail in Romero-Gómez et al. (2006) and Canalias &
Masdemont (2006). Here just a brief summary follows.

As is well known, around each unstable equilibrium point,
L1 and L2, there must exist a family of periodic orbits associated
with the eigenvalues of the elliptical part. They are the planar
and vertical families of Lyapunov periodic orbits. These orbits
are unstable in the vicinity of the equilibrium point. The vertical
family of Lyapunov orbits has been computed in galactic poten-
tials (e.g. Ollé & Pfenniger 1998; Romero-Gómez et al. 2009)
and its structure is different from the planar family shown in
Fig. 10. The vertical family extends to both sides of the galactic
plane, while the planar family in the precessing model when the
parameter ε � 0 remains on one side of the galactic plane with-
out crossing it. Furthermore, in Romero-Gómez et al. (2009), it
is shown that the family relevant to the transfer of matter within
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Fig. 11. Stable and unstable invariant manifold associated to the peri-
odic orbit around L1 with ε = 0.2 and GMb = 0.3.

the galaxy is the planar family. Therefore, in the following we
restrict our study to the planar family. In the second and third
rows of Fig. 10, we show the xz and yz projections of Lyapunov
orbits. It can be clearly seen from the yz projection that the or-
bit acquires some out-of-plane curvature when the parameter
ε increases. Moreover, the z components of the orbit decrease
with ε. (Keeping in mind that we are showing the Lyapunov or-
bits about L2, the opposite happens for the ones about L1.) This
means that the libration point and the orbit are not strictly con-
tained in the plane z = 0 when ε � 0, and the periodic orbits are
moreover not strictly planar.

For a given Jacobi constant, two sets of asymptotic orbits
emanate from the periodic orbit. They are known as the sta-
ble and the unstable invariant manifold, and each set has two
branches (see Fig. 11).

We denote by W s
γi

the stable invariant manifold associated to
the periodic orbit γi around the equilibrium point Li, i = 1, 2.
This stable invariant manifold is the set of orbits that tend to the
periodic orbit asymptotically forward in time. On the other hand,
we denote by Wu

γi
the unstable invariant manifold associated to

the periodic orbit γi around the equilibrium point Li, i = 1, 2.
The unstable invariant manifold is the set of orbits that departs
asymptotically from the periodic orbit (i.e. orbits that tend to
Lyapunov orbits backwards in time). Since the invariant mani-
folds extend well beyond the neighbourhood of the equilibrium
points, they are responsible for the large-scale structures and the
transport of matter.

In Figs. 12 (Ω = 0.05) and 13 (Ω = 0.06), we show the
(x, y) projection of the invariant manifolds of Lyapunov orbits
around the equilibrium points, L1 and L2, varying with the tilt
angle, the angular velocity or the bar mass, for the precessing
model. In both figures we have chosen the values GMb = 0.1
and GMd = 0.9 for the first row, GMb = 0.2 and GMd = 0.8
for the second row, GMb = 0.3 and GMd = 0.7 for the third row
and, GMb = 0.4 and GMd = 0.6 for the last row. Moreover, we
have set the tilt angle ε = 0 in the first column, ε = 0.1 in the
second column, and ε = 0.2 in the last column for each figure.

WhenΩ = 0.05 (Fig. 12), we observe that the structure of in-
variant manifolds is preserved for different values of ε, but with
small particularities. For example, the position of the invariant
manifolds is not exactly the same in the three columns for a
given value of GMb. In this way, we can see that the structure
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Fig. 12. (x, y) projection of the unstable invariant manifolds for the pre-
cessing model with Ω = 0.5, GMb ∈ [0.1, 0.4] (from top to bottom) and
tilt angle ε ∈ [0., 0.2] (from left to right). The position of the equilibrium
points is marked with red crosses.

remains, but the spiral arms slowly open up. Moreover, when
the bar mass increases, the structure moves from a morphology
of a rR1 ringed galaxy to the one of a spiral galaxy as expected
(Romero-Gómez et al. 2007).

When we increase the pattern speed to Ω = 0.06, we appre-
ciate (in Fig. 13) that, although the basic structure is preserved,
the arms are more open even for low bar masses. And again,
the behaviour of the manifolds are the same with respect to the
variation in ε.

Figures 14 and 15 show the previous panels in three dimen-
sions to better appreciate the variation with respect to the tilt
angle of the model. Here, we clearly see the structures that have
been discussed before, and we see how the invariant manifolds
change in the z component.

In Figs. 16 and 17, we show a possible approach to the evi-
dence of detected warps in galaxies. In a side-on view, and when
the tilt angle ε > 0, we observe that the outer branches of the
unstable manifold are clearly warped, emulating the shape of
some observed galaxies. For example, when we take a bar mass
GMb = 0.2, all plots present a warped shape, and differences
among them are obtained when one varies the inclination and
pattern speed.

For Ω = 0.05 (Fig. 16), we can see that no warped shape
appears with ε = 0 as expected. But, when ε is increased, as well
as GMb, different warp shapes are present. With GMb = 0.2,
invariant manifolds are just hinting at the shape of warps, and
when GMb = 0.3, the warps are clearly shown.

The same phenomenon occurs for the pattern speedΩ = 0.06
(Fig. 17). But in this case the warped structure is present for a
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Fig. 13. As in Fig. 12 for Ω = 0.06.
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Fig. 14. As in Fig. 12 in a 3D view.

wider variety of parameter combinations. With ε > 0, a warp
is present already with a bar mass of GMb = 0.2. As GMb in-
creases, the S shape of the warp becomes more evident, increas-
ing its inclination with respect to the galactic plane, where the
most tilted case is the one with ε = 0.2 and GMb = 0.4. Also,
the contribution of the inner branches of the invariant manifolds
are more evident with a pattern speed faster than Ω = 0.05.

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

G
M

b=
0.

1

ε=0.0

G
M

b=
0.

1

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

G
M

b=
0.

2
G

M
b=

0.
2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

G
M

b=
0.

3
G

M
b=

0.
3

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

G
M

b=
0.

4
Ω=0.06

G
M

b=
0.

4

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

ε=0.1

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

Ω=0.06

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

ε=0.2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

−8 −4 0 4 8 −8
−4

0
4

8

−2

0

2

Ω=0.06

Fig. 15. As in Fig. 13 in a 3D view.
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Fig. 16. As in Fig. 12 but in the side-on view.

To get an overall vision, in Fig. 18 we show the invariant
manifolds for GMb = 0.3, Ω = 0.05, and ε = 0.2 (hereafter
Model S), together with the Ferrers bar and the zero velocity
surface of the energy level considered. With this model, we are
able to appreciate the strong resemblance with the warp of the
Integral Sign Galaxy (Fig. 19).

In summary, we conclude that the warp formation is closely
related to the pattern speed of the bar, the bar mass and, espe-
cially, to the tilt angle of the model, as we expected. We also
note that if we consider a symmetric bar instead of a bar with
b � c, the results are essentially identical.

4.1. Warp angles

We measure the maximum amplitude of the warp as the angle be-
tween the outermost detected point and the mean position of the
plane of symmetry, as defined by the internal unwarped region,
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Fig. 17. As in Fig. 13 but in the side-on view.

Fig. 18. 3D view of the unstable invariant manifolds (blue), zero veloc-
ity surface (green), and triaxial Ferrers bar (yellow) for Model S. The
red crosses indicate the position of the equilibrium points.

as in Sánchez-Saavedra et al. (2003). The warp angle obtained
in our theoretical analysis varies considerably depending on the
pattern speed, bar and disc masses, and above all, the tilt an-
gle ε. As we can observe in Table 1, when the pattern speed
increases, the warp angle increases, too. The same phenomenon
occurs when we fix a pattern speed and increase the bar mass, but
the biggest increment takes place when the tilt angle ε grows. In
this context, there are no warps when ε = 0, as expected, but
the highest warp angle, θ = 9.3◦, is reached when we use the
maximum values considered for all the variables. For example,
for a pattern speed of Ω = 0.05, the maximum angle obtained
is θ = 7.7◦, by setting the parameters ε = 0.2, GMb = 0.4,
GMd = 0.6. Whereas, if we take a pattern speed of Ω = 0.06
and keep the previous values for the remaining parameters, we
obtain a warp angle of θ = 9.3◦.

The catalogue of warps in the southern hemisphere
(Sánchez-Saavedra et al. 2003) shows that most warps have an-
gles less than 11◦, which is very close to the maximum warp
angle of θ = 9.3◦ we obtained with our theoretical model. We
notice that the tilt angle ε has to be small, since otherwise the
system would lose its consistency, in the sense that if the tilt

Fig. 19. Warp obtained for Model S (blue) superimposed on the Integral
Sign Galaxy, UGC 3697.

Table 1. Warp angles (in degrees) obtained in the precessing model.

ε Ω GMb θ (◦)
0.1 0.05 0.1–0.4 1.8–3.9
0.1 0.06 0.1–0.4 1.8–4.8
0.2 0.05 0.1–0.4 3.8–7.7
0.2 0.06 0.1–0.4 3.7–9.3

angle were bigger, the model would be unstable, and it would
lead to chaotic dynamics. The model is stable up to tilt angles
slightly above ε = 0.25 rad, which could produce warp angles
close to 11◦.

5. Test particle simulation

The advantage of test particle simulations is that the stars are
evolved using a known galactic potential, and they have inherited
the information on both density and kinematics, that is, the stars
are in statistical equilibrium with the potential imposed after a
certain integration time. They are used as generators of mock
catalogues (Romero-Gómez et al. 2015) or to obtain informa-
tion of the potential imposed by studying certain aspects of the
simulation, for example the moving groups in the solar neigh-
bourhood (e.g. Dehnen 2000; Fux 2001; Gardner & Flynn 2010;
Minchev et al. 2010; Antoja et al. 2011).

The purpose of using test particle simulations here is
twofold: to show that the particles are trapped in the manifolds
when integrating in the precessing model and present a warped
shape, and to show that not only do the manifolds warp, but
the orbits in the disc also present a warped shape. The man-
ifolds, which are the backbone of the spiral arms, contribute
to it. Therefore, we generate a set of 106 particles using the
Hernquist method (Hernquist 1993). The density follows the
same Miyamoto-Nagai disc (see Appendix of Romero-Gómez
et al. 2015) as in the analytical computations. We give the parti-
cles the initial velocity for a circular orbit with zero dispersion.
The bar pattern speed is set to Ω = 0.05 [ut]−1; i.e., one bar rota-
tion takes 125 Myr. The bar is introduced adiabatically in t1 = 16
bar rotations, using the same time function as in Dehnen (2000)
in the precessing model:

Ab = A f

(
3
16
ξ5 − 5

8
ξ3 +

15
16
ξ +

1
2

)
, ξ ≡ 2

t
t1
− 1, t ∈ (0, t1), (21)

and Ab = 0 if t ≤ 0. Here, Ab grows with time in the interval
t ∈ (0, t1) and assumes its maximal amplitude when t ≥ t1, in
which Ab = A f ; that is, it assumes the total bar amplitude. Since
Eq. (21) is continuous and derivable, a smooth transition from
umbarred to a barred galaxy is guaranteed.
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Fig. 20. Top: surface density of the xy projection of the test particle
simulation for Model S. Bottom: overlap of the invariant manifolds for
the same parameters (in blue) with Jacobi constant CJ = −0.19366.

To keep the total mass of the system constant when we intro-
duce the bar adiabatically, we transfer mass from the disc to the
bar progressively, so that

φT = (1 − f (t) f0)φd + f (t)φb, (22)

where φT is the total potential of the system, φd, φb the potentials
of the disc and bar, respectively, and the time function f (t) is the
same polynomial of time t as in Eq. (21). The parameter f0 takes
the value of the final bar mass, f0 = GMb = 0.3, so that when
the integration time reaches the maximum amplitude of the bar,
t = t1, the bar mass is GMb = 0.3 and the mass disc GMd =
0.7. Thus, we consider Model S once the final configuration is
reached.

The particles in the xy plane adopt the shape seen in Sect. 4.
The top panel of Fig. 20 presents the configuration of the par-
ticles, which acquire characteristic features. We observe how
some particles are concentrated in the L4 (L5) region, whose sta-
ble family of periodic orbits prevents these particles from ex-
iting the region. Even though the L4 and L5 Lagrangian points
always remain in the galactic plane, the orbits around them are
non-planar, and they contribute slightly to the warped shape.
Also, the particles in the outer parts of the zero velocity curves
adopt the shape of the invariant manifolds as we expected. This
is shown in the bottom panel of Fig. 20, where for the selected
model, we overlap the invariant manifolds of the unstable orbits
around L1 and L2 with a Jacobi integral CJ close to that of the
equilibrium point L1 (CJ = −0.19366 and CJ,L1 = −0.19368).
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2

Fig. 21. Top: surface density and contours of the xz projection of the
test particle simulation for Model S. Bottom: overlap of the invari-
ant manifolds for the same parameters (in blue) with Jacobi constant
CJ = −0.19366.

However, the particles trapped in the manifolds are not all
that contribute to warping the disc. In Fig. 21 we show the sur-
face density and its contour levels in the xz projection of the
test particle simulation (top panel), and we overlap the invari-
ant manifolds of the unstable orbits around L1 and L2 (bottom
panel). We note, first, how the precessing model tilts the bar and
disc, and it shows a warped shape towards the outer parts. We
also point out the overdensity due to the superposition of the bar
and the particles trapped by the outer branches of the invariant
manifolds. This overdensity is not only due to the invariant man-
ifolds, since in other models it can be due to other families of
periodic orbits that are trapped in the vertical resonances form-
ing a thick spiral (see e.g. Kalnajs 1973; Patsis & Grosbol 1996).

If we compare the density contour with others found in
the literature, such as the one shown in Fig. 3 of Debattista &
Sellwood (1999) obtained from an N-body simulation, we ob-
serve that the tilting of our model is evidently acquiring a similar
shape to the one in the mentioned figure. We can also compare
our results to those of observations. As previously mentioned,
the invariant manifolds of this model match the profile shown
by the Integral Sign Galaxy (Fig. 19). In this case, the max-
imum angle of the warp is θ = 6.7◦. This value agrees with
warp angles observed in external galaxies (Sánchez-Saavedra
et al. 2003), as discussed in Sect. 4.1. Using the test particle
simulation, we can see that indeed the particles integrated in the
precessing model do indeed get warped in a similar way to the
Integral Sign Galaxy.

6. Discussion

Although warps are a common feature in galaxies, there is still
no agreement on how the warp is formed. In this paper we con-
tinue an idea that started in Romero-Gómez et al. (2006). It is
based on the possibility that spirals and rings in barred galaxies
are driven by the invariant manifolds associated to the unstable
Lyapunov periodic orbits around the unstable equilibrium points
in the rotating bar potential. Here we investigate the effect of tilt-
ing the model with respect to the XY plane, which is equivalent
to a small misalignment between the angular momentum and
the angular velocity of the system. Since invariant manifolds be-
have like tubes transporting matter, we have been able to observe
that owing to the small misalignment, these manifolds reproduce
warped shapes as observed in warped galaxies. When we study
the motion of test particles under the precessing model, we see
that even though the main contribution comes from the invariant
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manifolds, all orbits warp. In addition, we have shown the con-
sistency of the model despite its tilting thanks to the periodic or-
bits inside the bar (around the central equilibrium point), which
continue to be responsible for the bar structure and to constitute
its backbone.

To make certain that our principal results do not depend on
the model, we prove our theory with a model composed of a
bar with revolution symmetry and another one with just axial
symmetry. In both models, the periodic orbits around the central
point L3 contribute to the backbone of the bar, where the family
of periodic orbits are qualitatively the same in both cases, and
although the shape of the stability indexes varies, the range of
energies in which the orbits are stable is the same. But the main
point is that the invariant manifolds in both models are very sim-
ilar and acquire the same warped form, in the sense that if we
take equal values for the free parameters (bar mass, bar disc, tilt
angle, and pattern speed), we obtain equivalent warped shapes.

The addition of a spherical dark matter halo to the galac-
tic model has been studied in detail in Sánchez-Martín (2015),
where it leads to the same results as in this work. The position
of the equilibrium points varies with the presence or absence of
the halo and with its mass. But the behaviour of these points does
not change: the two equilibrium points at the ends of the bar con-
tinue to be unstable, whereas the rest remain stable. As for the
invariant manifolds, the halo affects the inner to a greater extent
than the outer branches of the invariant manifolds. An increase in
the mass of the halo makes the inner branches join and the outer
ones to become more open, while if its mass decreases, the inner
branches open up, forming a ring, and the outer branches slowly
close. The halo also influences the formation of warps, favouring
larger warp amplitudes, but within observational ranges.

Compared with observations, we can confirm that the warp
angles obtained with this precessing model closely approximate
observed warps. We observe that the tilt angle ε, which is the
angle between the angular momentum and the angular veloc-
ity, is also responsible for the warp shape, though the warped
shape also depends on the pattern speed and bar mass, albeit to
a second order. We show that if the bar mass grows or the pat-
tern speed is faster, the warp angle increases. In the precessing
model, the warp begins close to the corotation radius, where the
Lagrangian points are located, and it is related to the warped
invariant manifolds. In external galaxies, it is believed that the
galaxies are flat within R25, and warps become detectable within
the Holmberg radius, RHo = R26.5 (Briggs 1990), which are the
radii of the isophote of an elliptical galaxy corresponding to a
surface brightness of 25 and 26.5, respectively, blue magnitudes
per square arcsecond. It is difficult to test whether the Holmberg
radius is close to the corotation radius because there are few
edge-on warped galaxies classified as spiral barred galaxies. In
some galaxies we can obtain the ratio Rbar/R25, which is 0.1
for NGC 3344 (Verdes-Montenegro et al. 2000), 0.19 for M 33
(Elmegreen et al. 1992; Hernández-López et al. 2009), and 0.37
for NGC 5560 (Baillard et al. 2011). These values indicate that
the warp begins far from the end of the bar, but the relation be-
tween Rbar and the corotation radius depends on the bar pattern
speed. If it is a slow rotator, the corotation radius moves farther
out and can be close to R25, or at least within the area the spiral
arms cover.

The warps generated in N-body simulations have a differ-
ent origin from the one proposed here. They include a reorien-
tation of the outer halo caused by cosmic infall (e.g. Jiang &
Binney 1999; Shen & Sellwood 2006), a flyby scenario that is
caused by an impulsive encounter between two galaxies (Kim
et al. 2014), bending instabilities (Revaz & Pfenniger 2004), an

external tidal torque causing a tumbling misaligned halo with the
disk (Dubinski & Chakrabarty 2009). Such misalignments can
also be between the inner disc and the hot gaseous halo (Roškar
et al. 2010), between the angular momenta of the disk and halo
(Debattista & Sellwood 1999), or between the principal axes of
the triaxial halo (Hu & Sijacki 2015). The warps obtained in the
works mentioned above have very similar characteristics, and
the warp angles obtained are comparable to the ones from obser-
vations, although in some cases, the warp angle remains in the
lower ranges (e.g. Revaz & Pfenniger 2004; Kim et al. 2014).
Not all simulations are cold enough to form non-axisymmetric
structures like bar and spiral arms, such as in the cosmological
simulation by Roškar et al. (2010); however, in other cases, a spi-
ral structure is present in the outer parts of the disc as well as in
the warp (Debattista & Sellwood 1999; Dubinski & Chakrabarty
2009; Kim et al. 2014; Hu & Sijacki 2015). In the recent work of
Hu & Sijacki (2015), the authors claim that the warp interferes
very little with the spiral structures. This also occurs in our pre-
cessing model, where we showed that the XY projection remains
the same as if no misalignment between the angular momen-
tum and angular velocity exists. Dubinski & Chakrabarty (2009)
show that the disk behaves as a rigid body and that stars in the
outer parts of the disc, with weaker self-gravity, are the ones that
precess differentially and form the warp.

Finally, let us point out that this work is a first approximation
to establish which parameters in our model are related to the
formation of warps. A more detailed classification of the warps
obtained will be the subject of future investigation.

Acknowledgements. This work has been partially supported by the MINECO
(Spanish Ministry of Economy) – FEDER grants AYA2012-39551-C02-
01 and ESP2013-48318-C2-1-R, MTM2012-31714 and the Catalan Grant
2014SGR504. P.S.M. has been supported by the Catalan Ph.D. grants FI-
AGAUR and FPU-UPC. The test particle simulations were run in the clusters
EIXAM (at MA1-UPC) and Sol (at DAM-UB). We thank the anonymous ref-
eree for constructive comments that helped improve the manuscript.

References
Antoja, T., Figueras, F., Romero-Gómez, M., et al. 2011, MNRAS, 418, 1423
Arnold, V. I. 1989, Mathematical methods of classical mechanics, Graduate

Texts in Mathematics (New York: Springer), 60
Athanassoula, E., Bienaymé, O., Martinet, L., & Pfenniger, D. 1983, A&A, 127,

349
Athanassoula, E., Romero-Gómez, M., & Masdemont, J. J. 2009, MNRAS, 394,

67
Avner, E. S., & King, I. R. 1967, AJ, 72, 650
Baillard, A., Bertin, E., de Lapparent, V., et al. 2011, A&A, 532, A74
Binney, J., Jiang, I.-G., & Dutta, S. 1998, MNRAS, 297, 1237
Bosma, A. 1981, AJ, 86, 1791
Briggs, F. H. 1990, ApJ, 352, 15
Broucke, R. 1969, AIAA J., 7, 1003
Canalias, E., & Masdemont, J. J. 2006, Discret. Contin. Dyn. S, 14, 261
Combes, F. 1994, How Galaxies Accrete Mass and Evolve: Spiral Waves and

Bars, Warps and Polar Rings, in The Formation and Evolution of Galaxies,
eds. C. Muñoz-Tuñón, & F. Sánchez (Cambridge: Cambridge University
Press), 317

Contopoulos, G. 1981, A&A, 102, 265
Contopoulos, G., & Grosbøl, P. 1989, A&ARv, 1, 261
Contopoulos, G., & Papayannopoulos, T. 1980, A&A, 92, 33
Cox, A. L., Sparke, L. S., Van Moorsel, G., & Shaw, M. 1996, AJ, 111, 1505
Debattista, V. P., & Sellwood, J. A. 1999, ApJ, 513, 107
Dehnen, W. 2000, AJ, 119, 800
Dubinski, J., & Chakrabarty, D. 2009, ApJ, 703, 2068
Elmegreen, B. G., Elmegreen, D. M., & Montenegro, L. 1992, ApJS, 79, 37
Ferrers, N. M. 1877, Q. J. Pure Appl. Math., 14, 1
Fux, R. 2001, A&A, 373, 511
Gardner, E., & Flynn, C. 2010, MNRAS, 405, 545
Goldstein, H. 1980, Classical Mechanics, 2nd edn. (Addison-Wesley Publishing

Company)
Hadjidemetriou, J. D. 1975, Cel. Mech., 12, 255

A76, page 13 of 14

http://linker.aanda.org/10.1051/0004-6361/201527302/1
http://linker.aanda.org/10.1051/0004-6361/201527302/3
http://linker.aanda.org/10.1051/0004-6361/201527302/3
http://linker.aanda.org/10.1051/0004-6361/201527302/4
http://linker.aanda.org/10.1051/0004-6361/201527302/4
http://linker.aanda.org/10.1051/0004-6361/201527302/5
http://linker.aanda.org/10.1051/0004-6361/201527302/6
http://linker.aanda.org/10.1051/0004-6361/201527302/7
http://linker.aanda.org/10.1051/0004-6361/201527302/8
http://linker.aanda.org/10.1051/0004-6361/201527302/9
http://linker.aanda.org/10.1051/0004-6361/201527302/10
http://linker.aanda.org/10.1051/0004-6361/201527302/11
http://linker.aanda.org/10.1051/0004-6361/201527302/13
http://linker.aanda.org/10.1051/0004-6361/201527302/14
http://linker.aanda.org/10.1051/0004-6361/201527302/15
http://linker.aanda.org/10.1051/0004-6361/201527302/16
http://linker.aanda.org/10.1051/0004-6361/201527302/17
http://linker.aanda.org/10.1051/0004-6361/201527302/18
http://linker.aanda.org/10.1051/0004-6361/201527302/19
http://linker.aanda.org/10.1051/0004-6361/201527302/20
http://linker.aanda.org/10.1051/0004-6361/201527302/21
http://linker.aanda.org/10.1051/0004-6361/201527302/22
http://linker.aanda.org/10.1051/0004-6361/201527302/23
http://linker.aanda.org/10.1051/0004-6361/201527302/25


A&A 588, A76 (2016)

Hernández-López, I., Athanassoula, E., Mújica, R., & Bosma, A. 2009, Rev.
Mex. Astron. Astrofis., 37, 160

Hernquist, L. 1993, ApJS, 86, 389
Hu, S., & Sijacki, D. 2015, MNRAS, submitted [arXiv:1507.01643]
Hunter, C., & Toomre, A. 1969, ApJ, 155, 747
Jiang, I. G., & Binney, J. 1999, MNRAS, 303, L7
Kalnajs, A. J. 1973, PASA, 2, 174
Kim, J. H., Peirani, S., Kim, S., Ann, H. B., An, S.-H., & Yoonm, S.-J. 2014,

ApJ, 789, 90
Levine, E. S., Blitz, L., & Heiles, C. 2006, ApJ, 643, 881
López-Corredoira, M., Betancort-Rijo, J., & Beckman, J. E. 2002, A&A, 386,

169
Lynden-Bell, D. 1965, MNRAS, 129, 299
Minchev, I., Boily, C., Siebert, A., & Bienaymé, O. 2010, MNRAS, 407, 2122
Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533
Ollé, M., & Pfenniger, D. 1998, A&A, 334, 829
Ostriker, E. C., & Binney, J. 1989, MNRAS, 237, 785
Patsis, P. A. 2006, MNRAS, 369, L56
Patsis, P. A., & Grosbol, P. 1996, A&A, 315, 371
Pfenniger, D. 1984, A&A, 134, 373
Read, J. I., Lake, G., Agertz, O., & Debattista, V. P. 2008, MNRAS, 389, 1041
Revaz, Y., & Pfenniger, D. 2004, A&A, 425, 67
Romero-Gómez, M., Masdemont, J. J., Athanassoula, E., & García-Gómez, C.

2006, A&A, 453, 39

Romero-Gómez, M., Athanassoula, E., Masdemont, J. J., & García-Gómez, C.
2007, A&A, 472, 63

Romero-Gómez, M., Masdemont, J. J., García-Gómez, C., & Athanassoula, E.
2009, Comm. Nonlinear Science Numerical Simulation, 14, 4123

Romero-Gómez, M., Figueras, F., Antoja, T., Abedi, H., & Aguilar, L. 2015,
MNRAS, 447, 218

Roškar, R., Debattista, V. P., Brooks, A. M., et al. 2010, MNRAS, 408, 783
Sánchez-Martín, P. 2015, Doctoral Dissertation, http://hdl.handle.net/
10803/299366 (Barcelona: Universitat Politècnica de Catalunya)

Sánchez-Saavedra, M. L., Battaner, E., & Florido, E. 1990, MNRAS, 246,
458

Sánchez-Saavedra, M. L., Battaner, E., Guijarro, A., López-Corredoira, M., &
Castro-Rodríguez, N. 2003, A&A, 399, 457

Sellwood, J. A. 2013, Dynamics of Disks and Warps, in Planets, Stars and Stellar
Systems, eds. T. D. Oswalt, & G. Gilmore (Dordrecht: Springer), 5, 923

Shen, J., & Sellwood, J. A. 2006, MNRAS, 370, 2
Skokos, Ch., Patsis, P. A., & Athanassoula, E. 2002a, MNRAS, 333, 847
Skokos, Ch., Patsis, P. A., & Athanassoula, E. 2002b, MNRAS, 333, 861
Sparke, L. S., & Casertano, S. 1988, MNRAS, 234, 873
Verdes-Montenegro, L., Bosma, A., & Athanassoula, E. 2000, A&A, 356,

827
Voglis, N., & Stavropoulos, I. 2005, in Recent advances in astronomy and astro-

physics, ed. N. Solomos, AIP Conf. Proc., 848, 647
Voglis, N., Stavropoulos, I., & Kalapotharakos, C. 2006, MNRAS, 372, 901

A76, page 14 of 14

http://linker.aanda.org/10.1051/0004-6361/201527302/26
http://linker.aanda.org/10.1051/0004-6361/201527302/26
http://linker.aanda.org/10.1051/0004-6361/201527302/27
http://arxiv.org/abs/1507.01643
http://linker.aanda.org/10.1051/0004-6361/201527302/29
http://linker.aanda.org/10.1051/0004-6361/201527302/30
http://linker.aanda.org/10.1051/0004-6361/201527302/31
http://linker.aanda.org/10.1051/0004-6361/201527302/32
http://linker.aanda.org/10.1051/0004-6361/201527302/33
http://linker.aanda.org/10.1051/0004-6361/201527302/34
http://linker.aanda.org/10.1051/0004-6361/201527302/34
http://linker.aanda.org/10.1051/0004-6361/201527302/35
http://linker.aanda.org/10.1051/0004-6361/201527302/36
http://linker.aanda.org/10.1051/0004-6361/201527302/37
http://linker.aanda.org/10.1051/0004-6361/201527302/38
http://linker.aanda.org/10.1051/0004-6361/201527302/39
http://linker.aanda.org/10.1051/0004-6361/201527302/40
http://linker.aanda.org/10.1051/0004-6361/201527302/41
http://linker.aanda.org/10.1051/0004-6361/201527302/42
http://linker.aanda.org/10.1051/0004-6361/201527302/43
http://linker.aanda.org/10.1051/0004-6361/201527302/44
http://linker.aanda.org/10.1051/0004-6361/201527302/45
http://linker.aanda.org/10.1051/0004-6361/201527302/46
http://linker.aanda.org/10.1051/0004-6361/201527302/47
http://linker.aanda.org/10.1051/0004-6361/201527302/48
http://linker.aanda.org/10.1051/0004-6361/201527302/49
http://hdl.handle.net/10803/299366
http://hdl.handle.net/10803/299366
http://linker.aanda.org/10.1051/0004-6361/201527302/51
http://linker.aanda.org/10.1051/0004-6361/201527302/51
http://linker.aanda.org/10.1051/0004-6361/201527302/52
http://linker.aanda.org/10.1051/0004-6361/201527302/54
http://linker.aanda.org/10.1051/0004-6361/201527302/55
http://linker.aanda.org/10.1051/0004-6361/201527302/56
http://linker.aanda.org/10.1051/0004-6361/201527302/57
http://linker.aanda.org/10.1051/0004-6361/201527302/58
http://linker.aanda.org/10.1051/0004-6361/201527302/58
http://linker.aanda.org/10.1051/0004-6361/201527302/59
http://linker.aanda.org/10.1051/0004-6361/201527302/60

	Introduction
	The precessing model
	Equations of motion associated with the precessing model
	The galactic bar potential
	Characteristics of the precessing model

	The structure of periodic orbits inside the bar
	The invariant manifolds in the precessing model
	Warp angles

	Test particle simulation
	Discussion
	References

