Mediterranean diet and risk of heart failure: results from the PREDIMED randomised controlled trial

Angeliki Papadaki, MSc, PhD¹; Miguel Ángel Martínez-González, MD, PhD^{2,3}; Angel Alonso-Gómez, MD, PhD^{3,14}; Javier Rekondo, MD^{3,14}; Jordi Salas-Salvadó, MD, PhD^{3,4}; Dolores Corella, DPharm, PhD^{3,5}; Emilio Ros, MD, PhD^{3,6}; Montse Fitó, MD, PhD^{3,7}; Ramon Estruch, MD, PhD^{3,8}; José Lapetra, MD, PhD^{3,9}; Antonio García-Rodriguez, MD, PhD¹⁰; Miquel Fiol, MD, PhD^{3,11}; Lluís Serra-Majem, MD, PhD^{3,12}; Xavier Pintó, MD, PhD^{3,13}; Miguel Ruiz-Canela, PhD^{2,3}; Monica Bulló, PhD^{2,3}; Mercè Serra-Mir, RD^{3,6}; Jose V. Sorlí, MD, PhD^{3,5}; Fernando Arós, MD, PhD^{3,14}

¹ Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK

² Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Navarra, IdiSNA, Pamplona, Spain

³ CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain

⁴ Human Nutrition Unit, Faculty of Medicine and Health Sciences, IISPV, Rovira i Virgili University, Reus, Spain.

⁵ Department of Preventive Medicine, University of Valencia, Valencia, Spain.

⁶ Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions

Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona,

Barcelona, Spain.

⁷ Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Medical Research Institute (IMIM), Barcelona Spain.

⁸ Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain.

⁹ Department of Family Medicine, Primary Care Division of Sevilla, San Pablo Health Centre, Sevilla, Spain.

¹⁰ Department of Preventive Medicine, University of Malaga, Malaga, Spain.

¹¹ Palma Institut of Health Research (IdISPa), Hospital Son Espases, Palma de Mallorca, Spain.

¹² Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain.

¹³ Internal Medicine Department, Hospital Universitari de Bellvitge-IDIBELL.

Universidad de Barcelona, Barcelona, Spain

¹⁴ Department of Cardiology, University Hospital Araba, Vitoria, Spain.

Contact details of corresponding author:

Dr Fernando Arós, Department of Cardiology, University Hospital Araba, c/ José Achotegui s/n. 01009 Vitoria-Gasteiz, Spain. Tel: +34 945007304; Fax: +34 945007359; email: aborau@secardiologia.es

Manuscript type: Full length article

Running title: Mediterranean diet and heart failure risk

Abbreviations: AF, atrial fibrillation; BMI, body mass index; CHD, coronary heart disease; CVD, cardiovascular disease; EVOO, extra virgin olive oil; FFQ,

food frequency questionnaire; HDL, high-density lipoprotein; HF, heart failure; LDL, low-density lipoprotein; MedDiet, Mediterranean diet; MI, myocardial infarction; PAD, peripheral arterial disease; PREDIMED, Prevención con Dieta Mediterránea; T2D, type 2 diabetes; WtHR, waist-to-height ratio

The study has been registered at <u>http://www.controlled-trials.com</u> (ISRCTN 35739639).

1 Abstract

2 Aims: To evaluate the effect of the Mediterranean diet (MedDiet) on the incidence of

3 heart failure (HF), a pre-specified secondary outcome in the PREDIMED

4 (PREvención con DIeta MEDiterránea) primary nutrition-intervention prevention
5 trial.

6 Methods and Results: Participants at high risk of cardiovascular disease (CVD) were 7 randomly assigned to one of three diets: MedDiet supplemented with extra-virgin 8 olive oil (EVOO), MedDiet supplemented with nuts, or low-fat control diet. Incident 9 HF was ascertained by a Committee for Adjudication of events blinded to group 10 allocation. Among 7403 participants without prevalent HF followed for a median of 11 4.8 years, we observed 29 new HF cases in the MedDiet with EVOO group, 33 in the 12 MedDiet with nuts group and 32 in the control group. No significant association with 13 HF incidence was found for the MedDiet with EVOO and MedDiet with nuts, 14 compared with the control group [hazard ratio (HR) 0.68; 95% CI, 0.41-1.13 and HR 15 0.92; 95% CI, 0.56-1.49, respectively]. 16 Conclusion: In this sample of adults at high CVD risk, the MedDiet did not result in 17 lower HF incidence. However, this pre-specified secondary analysis may have been 18 underpowered to provide valid conclusions. Further randomised controlled trials with 19 HF as a primary outcome are needed to better assess the effect of the MedDiet on HF 20 risk.

21

Keywords: Mediterranean diet; heart failure; cardiovascular disease; PREDIMED
study

1 Introduction

2 The prevalence of heart failure (HF) is increasing during the last decades.¹ HF is also 3 the leading cause of hospitalisation in older adults and it is associated with an enormous burden of disability and healthcare costs.² This emerging epidemic 4 represents an insurmountable public health challenge that can compromise the 5 sustainability of national health systems.^{1,2} 6 7 Primary prevention of HF should be a priority.³ Hypertension, obesity and type 2 diabetes $(T2D)^4$ are strong risk factors not only for HF, but also stroke, 8 myocardial infarction (MI), atrial fibrillation (AF)⁵ and peripheral arterial disease 9 10 (PAD).⁶ Multi-morbidity is common in HF and higher cardiovascular (CVD) 11 mortality is observed when several of these CVD manifestations coexist.⁷ Therefore, 12 effective preventive interventions against MI or stroke seem also likely to reduce HF. 13 In this context, there is increasing evidence that changes in overall dietary 14 patterns, and, specifically, interventions using the traditional Mediterranean diet (MedDiet) are a useful tool in CVD prevention.^{8,9} Two cohort studies reported a lower 15 HF risk associated with better adherence to MedDiet.^{10,11} However, no randomised 16 controlled trial to date has examined the effect of the MedDiet on the primary 17 18 prevention of HF. One-year results from the PREvención con DIeta MEDiterránea 19 (PREDIMED) randomised controlled trial showed that the MedDiet favourably affected HF biomarkers compared to a low-fat diet.¹² In PREDIMED, the MedDiet 20 also favourably influenced major HF risk factors, such as T2D,¹³ obesity¹⁴ and 21 hypertension.¹⁵ The aim of this study was to investigate with a randomised design the 22 effect of the MedDiet on HF incidence, a protocol-specified secondary outcome of the 23 PREDIMED trial.¹⁶ We hypothesised that the MedDiet would result in lower HF 24 25 incidence, compared to a control, low-fat, diet.

26

27 Methods

28 Study design

The detailed methods of this trial (www.predimed.es) have been described.^{9,16} In 29 30 brief, PREDIMED was a large, parallel-group, randomised controlled trial conducted 31 in 11 centres in Spain, designed to examine the effect of the MedDiet on primary 32 CVD prevention. The trial was registered (ISRCTN35739639) and conformed with 33 the principles outlined in the Declaration of Helsinki. The protocol was approved by 34 the Institutional Review Boards of participating centres and all participants provided 35 written informed consent to take part in the study. Participants were recruited between 36 10/2003 and 03/2009 from Spanish primary care centres. The study was planned for 6 37 years, but was stopped at 4.8 years of median follow-up (12/2010), because of 38 evidence of early benefit.⁹ Yearly follow-up measurements continued until 10/2012.

39

40 **Participants and randomisation**

41 Participants were men (55-80 years) and women (60-80 years) who were free of CVD 42 at enrollment but who were at high-CVD-risk, as defined by the presence of T2D 43 and/or \geq 3 CVD risk factors, namely smoking, hypertension, elevated low-density 44 lipoprotein (LDL) cholesterol, low high-density lipoprotein (HDL) cholesterol, 45 overweight/obesity (body mass index, BMI \geq 25kg/m²), or family history of premature 46 coronary heart disease (CHD). Detailed inclusion and exclusion criteria are provided 47 elsewhere.^{9,16}

Participants were randomly assigned to one of three dietary intervention
groups (1:1:1 ratio): (i) MedDiet supplemented with extra-virgin olive oil (EVOO),
(ii) MedDiet supplemented with mixed nuts or (iii) low-fat control diet.

51	Randomisation was conducted centrally using a computer-generated random-number
52	sequence. All clinical investigators, laboratory technicians and members of
53	Committees assessing clinical events were blinded to intervention allocation.
54	
55	Intervention description
56	The PREDIMED dietary intervention has been detailed elsewhere. ^{9,16} Briefly, all
57	participants received repeated and continuous advice from trained dietitians to follow
58	their allocated diets (during both individual and group sessions, separately for each
59	group) on a quarterly basis. ^{9,16} The diets were <i>ad libitum</i> regarding total energy intake.
60	Physical activity was assessed but not promoted.
61	Participants assigned to the MedDiet+EVOO group were provided with 1 litre
62	of EVOO/week (including family needs), whereas those in the MedDiet+nuts group
63	received 30 grams/day of mixed nuts. These supplementary foods were given for free
64	in order to facilitate adherence. Participants in the control group received small non-
65	food gifts.
66	
67	Measurements
68	All measurements were carried out at baseline and yearly and comprised a 47-item
69	questionnaire assessing sociodemographic characteristics, medical conditions,
70	medication use and lifestyle habits, a 14-item questionnaire assessing MedDiet
71	adherence, ¹⁷ an 137-item FFQ, used to assess nutrient and energy intake, ¹⁸ and the
72	Spanish version of the Minnesota Leisure-Time Physical Activity questionnaire.9,16
73	Trained nurses collected fasting blood samples and measured blood pressure, body
74	weight, height and waist circumference to calculate waist-to-height ratio (WtHR).
75	

76 Clinical endpoints

77 The primary outcome for the present study was HF incidence, a protocol-specified secondary outcome of the PREDIMED trial.¹⁶ All HF events were evaluated 78 79 according to the 2005 (time of study design) guidelines on the diagnosis and treatment of acute and chronic HF of the European Society of Cardiology.^{19,20} The diagnostic 80 81 criteria for ascertaining HF events are presented in Supplementary Appendix 1. 82 All endpoints of the PREDIMED trial, including HF, were identified 83 prospectively through contacts with participants and family physicians, annual 84 reviews of all participants' outpatient and inpatient medical records and linkage to the 85 National Death Index and were analysed by events. If an HF diagnosis was an explicit 86 medical diagnosis, all relevant documentation, including clinical records of hospital 87 discharge, outpatient clinics and family physicians' records, was sent to the Clinical 88 Adjudication Committee. This documentation was independently reviewed and 89 blindly evaluated by two cardiologists. If there was disagreement regarding the 90 acceptance or rejection of an event, a third cardiologist (the Committee's Chair) 91 intervened until agreement was reached (in some cases, more information was 92 requested to complete the ascertainment). All members of the Clinical Adjudication 93 Committee and the adjudication process were blinded to group allocation. This paper 94 reports on HF events that occurred during the trial's active intervention (10/2003-95 07/2010).

96

97 Statistical analyses

98 Cox regression models with robust variance estimators were fitted to estimate Hazard
99 Ratios (HR) and 95% confidence intervals (CIs) for the incidence of HF by group
100 assignment (using the control group as reference).

101	The assumption of proportional hazards was tested using time-dependent
102	covariates. We stratified all models by centre and baseline T2D. A crude model was
103	followed by an age- and sex-adjusted model. We further adjusted for pre-
104	randomisation values of education, smoking, WtHR, physical activity, dyspnea and
105	non-AF arrhythmias (model 1), and, additionally for history of hypertension, history
106	of dyslipidaemia, family history of premature CHD and baseline prevalence of AF
107	(model 2), and additionally for total energy intake (model 3). We evaluated potential
108	effect modification by sex, age, CVD risk factors, WtHR, and baseline MedDiet
109	adherence.
110	Follow-up time was the interval between randomisation and diagnosis, death
111	or the last visit, whichever occurred first. We defined event rates as the number of
112	participants diagnosed with an event over the follow-up time in each group. All
113	analyses were performed on an intention-to-treat basis.
114	
115	Results
116	After excluding 44 participants with prevalent HF at baseline, 7403 were included in
117	the present analyses (Supplementary Appendix 2). The three groups were well
118	balanced regarding baseline characteristics (Table 1).
119	Ninety-four participants developed HF during the trial period with active
120	intervention (Table 2). Of these, 19 (20.2%) had preceding ischemic heart disease and
121	58 (61.7%) were hospitalised. Data on receipt of treatment following HF diagnosis
122	were available for 79 participants, who received ACE inhibitors/ARA II (74.7%),
123	diuretics (65.8%), beta-blockers (26.6%), calcium channel blockers (20%),
124	antiplatelet therapy (29.1%) and oral anticoagulants (25%). Ventricular function
125	information after HF diagnosis (assessed via echocardiography) was available for 80

126 participants, who presented with preserved ejection fraction (>45-50%) (60%) and

reduced ejection fraction (40%). Twenty-one (out of 94) participants (22.3%) died by
2012 (end of extended follow-up).

129 The baseline characteristics of participants who developed HF during the 130 active intervention period and those who did not are shown in Supplementary 131 Appendix 3. Those who developed HF were generally older and had higher WtHR 132 and B-type natriuretic peptide levels. The unadjusted HR did not indicate significant 133 associations for the MedDiet+EVOO (HR=0.68; 95% CI, 0.41-1.13) and 134 MedDiet+nuts (HR=0.92; 95% CI, 0.56-1.49), compared with the control group. 135 Multivariate analyses did not alter these results (Table 2, Figure 1). There was no 136 evidence of a significant association for the two MedDiets combined, compared with 137 the control group, in the unadjusted (HR=0.79; 95% CI, 0.51-1.22) and multivariable-138 adjusted models (Supplementary Appendix 4). 139 In subgroup analyses (Supplementary Appendix 5), the effect of the MedDiet 140 on reducing HF, though statistically not significant, was stronger among participants 141 without T2D (P for interaction=0.010). A higher baseline WtHR was associated with 142 a risk reduction related to the MedDiet+nuts and higher baseline MedDiet adherence 143 was associated with an inverse association of MedDiet+EVOO with HF. In both cases 144 the P for interaction was significant, but the effect within subgroups was not. 145 Overall, 141 HF events occurred during the trial period with active 146 intervention and extended follow-up (Supplementary Appendix 6). The unadjusted 147 HRs were 0.71 (95% CI, 0.47-1.07) for the MedDiet+EVOO and 0.99 (95% CI, 0.67-148 1.48) for the MedDiet+nuts, compared with the control diet. Adjusting for different 149 covariates (Supplementary Appendix 6) and examining the combined effect of the two

MedDiet groups, compared with the control group (Supplementary Appendix 4), didnot alter these findings.

152

153 Discussion 154 This secondary analysis of a pre-specified outcome of the PREDIMED trial showed 155 no evidence of a significant effect on HF incidence for the intervention using a MedDiet+EVOO or a MedDiet with nuts, compared to the control diet. Our 156 157 hypothesis of a beneficial effect of the MedDiet on HF incidence in this sample of 158 high-CVD-risk individuals was therefore not confirmed for this secondary endpoint of 159 the trial. However, the explanation for the not significant results for HF might stem 160 from the relatively small number of observed HF events (n=94) and it should be given 161 the interpretation that our findings are inconclusive. 162 To our knowledge, PREDIMED is the first randomised controlled trial in 163 which the potential effect of an intervention with the traditional MedDiet on primary 164 HF prevention could be explored (as HF was a secondary, and not a primary outcome 165 of PREDIMED). An earlier report of the PREDIMED trial showed that the intervention with the MedDiet reduced the levels of HF biomarkers, including N-166 167 terminal pro-brain natriuretic peptide, oxidised LDL-cholesterol and lipoprotein(a).¹² Despite this beneficial effect on HF biomarkers,¹² as well as on HF risk factors such 168 as hypertension,¹⁵ T2D¹³ and obesity,¹⁴ we may have had here limited statistical 169 170 power to demonstrate an effect on the incidence of newly-onset clinical cases of HF 171 considered alone. Nevertheless, the finding that HF incidence was consistently lower 172 in the point estimates during the trial for the MedDiet+EVOO, regardless of the 173 factors we adjusted for (risk reduction range, 22-32%), generates a hypothesis for

future randomised controlled trials to examine the potential effect of the traditionalMedDiet on HF as a primary outcome, in a sufficiently powered study.

176 Two recent prospective cohorts with up to 10 years of follow-up reported 177 inverse associations of the MedDiet with HF incidence and mortality (1648 events) in men¹¹ and HF incidence (1269 events) in women.¹⁰ An exploratory meta-analysis of 178 prospective cohort studies^{21,22} conducted for the purposes of the current paper 179 180 suggested that, according to previous evidence, for each 2 additional points of 181 MedDiet adherence (0 to 9 score), the relative risk of HF decreased by 8% (95% CI, 0.90-0.95, without evidence of heterogeneity, $I^2=0\%$) (Supplementary Appendix 7). 182 183 The difference in the number of observed events and the length of follow-up between 184 these studies and the PREDIMED randomised trial might explain why our study was 185 probably not sufficiently powered as to confirm these previous observational findings. 186 Although the findings of the current study are inconclusive, when they are considered 187 together with the results from other prospective studies, they may suggest a potential 188 beneficial role of the MedDiet in HF prevention. The advantage and novelty of 189 PREDIMED is that our results come from a randomised intervention. Additionally, 190 the PREDIMED trial started on the basis of a relatively high baseline adherence to the 191 MedDiet in the three arms of the trial, which might have attenuated the findings. In an 192 exploratory secondary analysis of the association between participant baseline 193 characteristics and HF, we found that older age at baseline and T2D history were 194 significantly associated with higher HF rates, whereas higher baseline MedDiet 195 adherence (assessed in an observational approach) might have been associated with a 196 37% (HR=0.63; 95% CI, 0.40-0.98) lower HF rate (Supplementary Appendix 8). It 197 might be, however, that this high baseline adherence reflected better compliance with

other lifestyle factors that may have an influence on HF, and residual confoundingcannot be excluded in this observational approach.

200 Several mechanisms might explain a potential beneficial role of the MedDiet 201 for HF prevention, as suggested by our exploratory meta-analysis, including the MedDiet's anti-inflammatory²³ and antioxidant²⁴ properties. Oxidative stress²⁵ and 202 inflammation²⁶ accompany HF and olive oil, in particular, has been associated with 203 reduced HF risk.²⁷ Earlier PREDIMED reports showed that biomarkers of 204 inflammation²⁸ and oxidation¹² were reduced with the MedDiet+EVOO compared to 205 206 the other two groups. In the current analyses, the difference in the size of the 207 association with HF incidence between the MedDiet+EVOO and MedDiet+nuts 208 groups (although both not significant) might have resulted from the fact that 209 participants in the MedDiet+EVOO group were provided (at no cost) with EVOO 210 with highly constant content of polyphenols. In contrast, that was not the case for 211 participants in the MedDiet+nuts group who bought their own oils, with potentially varied polyphenol content. The anti-inflammatory and antioxidant properties of 212 EVOO, attributed to its polyphenol content, have been well documented²⁹ and add 213 214 biological plausibility to the hypothesis of a protection against HF by a MedDiet high 215 in EVOO. As results from the current study were inconclusive, this hypothesis should 216 be studied further by future randomised controlled trials with longer follow-up periods 217 and sufficient statistical power to examine whether this protective effect exists. 218 HF shares common risk factors with other cardiovascular conditions and 219 earlier studies have included HF as part of a composite CVD endpoint. For example, the Lyon Heart Study showed that a MedDiet reduced the risk of a composite 220 endpoint that included HF by 67% (RR 0.33; 95% CI, 0.21-0.52).⁸ A recent 221 randomised controlled trial, Look AHEAD,³⁰ also included HF in its composite CVD 222

223 endpoint. An exploratory secondary analysis of our data that examined the effect of 224 the MedDiet on a composite outcome of 634 observed total CVD events (i.e. MI, 225 stroke, CVD death, HF, AF or PAD) showed that the unadjusted HRs were 0.62 (95% 226 CI, 0.51-0.75) for the MedDiet+EVOO and 0.77 (95% CI, 0.63-0.93) for the 227 MedDiet+nuts, compared to the control diet (Supplementary Appendix 9; 228 Supplementary Appendix 10). Although this specific exploratory analysis might be 229 prone to bias, as it was not a pre-specified outcome of the PREDIMED trial, it might 230 allow useful comparisons with existing or future studies examining the effect of the 231 MedDiet on composite CVD outcomes that include HF. 232 Our study also has limitations. HF was a pre-specified secondary endpoint of 233 the PREDIMED trial, and the trial was probably underpowered, taking into account 234 the small number of observed HF events. Further, HF is a syndrome with various clinical etiologies and symptoms, as well as definitions,^{19,20,31} and the effect of dietary 235 236 patterns might differ according to the type, severity and pathogenesis of the condition.^{1,2} We could not determine HF etiology or severity in PREDIMED and the 237 possibility of some degree of HF misclassification may exist. In addition, we used the 238 239 2005 HF guidelines to adjudicate HF events, concomitant with the time of the PREDIMED trial's design.¹⁶ Nevertheless, our HF diagnostic criteria are in agreement 240 241 with the recently published American College of Cardiology/American Heart 242 Association clinical data standards, where 'HF can be diagnosed when a patient 243 demonstrates or there is objective evidence of new or worsening HF symptoms and 244 receives HF-specific treatment, with objective evidence results from at least two physical examination findings'.³¹ In any case, the use of specific criteria to adjudicate 245 246 events and the adjudication by an independent Committee in the context of a large and 247 well-known randomised trial reduce the potential for misclassification. Finally, our

results are not generalisable to other populations (e.g. non-Mediterranean countries,

In conclusion, we were not able to show that an intervention with MedDiet reduced the risk of clinical cases of HF. However, this pre-specified secondary analysis of the PREDIMED trial may have been underpowered to provide valid conclusions. Further randomised controlled studies with HF as a primary endpoint are needed to better assess the specific effect of the traditional MedDiet on HF risk.

younger adults or adults without CVD risk).

255

249

256 Acknowledgements

- 257 The supplemental foods used in the study were generously donated by Patrimonio
- 258 Comunal Olivarero and Hojiblanca from Spain (EVOO); the California Walnut
- 259 Commission from Sacramento, CA (walnuts); and Borges S.A. (almonds) and La
- 260 Morella Nuts (hazelnuts), both from Reus, Spain. CIBEROBN and RTIC RD 06/0045
- are initiatives of ISCIII, Spain. The funding sources had no role in the design,
- 262 collection, analysis, or interpretation of the data or in the decision to submit the
- 263 manuscript for publication.

264

265 Supplementary Information

- 266 Additional Supporting Information may be found in the online version of this article:
- 267 Supplementary Appendix S1: Diagnostic criteria for trial endpoint.
- 268 Supplementary Appendix S2: Flow chart of participants.
- 269 Supplementary Appendix S3: Baseline characteristics of participants who developed
- 270 heart failure during the trial period with active intervention (2003-2010) and those
- who did not.

272	Supplementary Appendix S4: Incidence of heart failure during the trial period with
273	active intervention (2003-2010) and trial period with active intervention and extended
274	follow-up (2003-2012): combined Mediterranean diets compared with control diet
275	Supplementary Appendix S5: Subgroup analyses of the incidence of heart failure
276	during the trial period with active intervention (2003-2010) by intervention group
277	Supplementary Appendix S6: Incidence of heart failure during the trial period
278	including both the active intervention period and the extended follow-up (2003-2012)
279	by intervention group
280	Supplementary Appendix S7: Exploratory meta-analysis of observational cohort
281	studies examining the association between Mediterranean diet adherence and heart
282	failure incidence
283	Supplementary Appendix S8: Factors independently associated with heart failure
284	Supplementary Appendix S9: Incidence of total cardiovascular events (stroke,
285	myocardial infarction, cardiovascular death, heart failure, atrial fibrillation or
286	peripheral arterial disease) during the trial period with active intervention (2003-2010)
287	by intervention group
288	Supplementary Appendix S10: Kaplan-Meier estimates of total cardiovascular events
289	(stroke, myocardial infarction, cardiovascular death, heart failure, atrial fibrillation or
290	peripheral arterial disease) in the total study population (trial intervention period,
291	2003-2010)
292	
293	Funding
294	This work was supported by the Official Funding Agency for Biomedical Research of
295	the Spanish government (ISCIII) through grants provided to research networks

specifically developed for the trial: [RTIC G03/140 to R.E., RTIC RD 06/0045 to

297	M.A.M.].	All investigators	of the PREDIMED t	trial belong to	CIBEROBN, an
					,

298 initiative of ISCIII. We also acknowledge grants from the National Institute of Health

299 [1R01HL118264-01]; Fondo de Investigación Sanitaria–Fondo Europeo de Desarrollo

300 Regional [PI04/0233, PI05/0976, PI07/0240, PI10/01407, PI10/02658, PI11/00049,

- 301 PI11/02505 and AGL2010-22319-C03-03]; Consejería de Salud de la Junta de
- 302 Andalucía [PI0105/2007], and the Generalitat Valenciana, Spain [ACOMP/2013/165
- 303 and ACOMP/2013/159].
- 304

305 **Conflict of interest**

- 306 Dr Ros is a consultant for the California Walnut Commission and Dr Salas-Salvadó is
- 307 a consultant for the International Nut Council. Dr Papadaki reports travel

308 reimbursement from the California Walnut Commission. Dr Ros reports grants from

- 309 the California Walnut Commission and Dr Salas-Salvadó reports grants from the
- 310 International Nut Council. The other authors report no conflicts of interest.

312 **References**

313	1.	Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC,
314		Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M,
315		Piña IL, Trogdon JG. Forecasting the Impact of Heart Failure in the United
316		States: A Policy Statement From the American Heart Association. Circ Heart
317		Fail 2013; 6 :606-619.
318	2.	Hall MJ, Levant S, DeFrances CJ. Hospitalization for congestive heart failure:
319		United States, 2000-2010. NCHS Data Brief 2012; 108:1-8.
320	3.	Benjamin EJ, Chen PS, Bild DE, Mascette AM, Albert CM, Alonso A,
321		Calkins H, Connolly SJ, Curtis AB, Darbar D, Ellinor PT, Go AS,
322		Goldschlager NF, Heckbert SR, Jalife J, Kerr CR, Levy D, Lloyd-Jones DM,
323		Massie BM, Nattel S, Olgin JE, Packer DL, Po SS, Tsang TS, Van Wagoner
324		DR, Waldo AL, Wyse DG. Prevention of atrial fibrillation: report from a
325		national heart, lung, and blood institute workshop. Circulation 2009; 119:606-
326		618.
327	4.	Avery CL, Loehr LR, Baggett C, Chang PP, Kucharska-Newton AM,
328		Matsushita K, Rosamond WD, Heiss G. The population burden of heart failure
329		attributable to modifiable risk factors: the ARIC (Atherosclerosis Risk in
330		Communities) study. J Am Coll Cardiol 2012; 60:1640-1646.
331	5.	Larsson SC, Drca N, Jensen-Urstad M, Wolk A. Combined impact of healthy
332		lifestyle factors on risk of atrial fibrillation: Prospective study in men and
333		women. Int J Cardiol 2016; 203:46-49.
334	6.	Ruiz-Canela M, Martínez-González MA. Lifestyle and dietary risk factors for
335		peripheral artery disease. Circ J 2014; 78:553-559.

336	7.	Chamberlain AM, St Sauver JL, Gerber Y, Manemann SM, Boyd CM, Dunlay
337		SM, Rocca WA, Finney Rutten LJ, Jiang R, Weston SA, Roger VL.
338		Multimorbidity in heart failure: a community perspective. Am J Med 2015;
339		128 :38-45.
340	8.	de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N.
341		Mediterranean diet, traditional risk factors and the rate of cardiovascular
342		complications after myocardial infarction: Final report of the Lyon Diet Heart
343		Study. Circulation 1999; 99:779-785.
344	9.	Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-
345		Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-
346		Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-
347		González MA. Primary prevention of cardiovascular disease with a
348		Mediterranean diet. New Engl J Med 2013; 368:1279-1290.
349	10.	Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. A Mediterranean
350		diet and risk of myocardial infarction, heart failure and stroke: A population-
351		based cohort study. Atherosclerosis 2015; 243:93-98.
352	11.	Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. Adherence to a
353		Mediterranean diet is associated with reduced risk of heart failure in men. Eur
354		J Heart Fail 2016; 18:253-259.
355	12.	Fitó M, Estruch R, Salas-Salvadó J, Martínez-Gonzalez MA, Arós F, Vila J,
356		Corella D, Díaz O, Sáez G, de la Torre R, Mitjavila MT, Muñoz MA,
357		Lamuela-Raventós RM, Ruiz-Gutierrez V, Fiol M, Gómez-Gracia E, Lapetra
358		J, Ros E, Serra-Majem L, Covas MI. Effect of the Mediterranean diet on heart
359		failure biomarkers: a randomized sample from the PREDIMED trial. Eur J
360		<i>Heart Fail</i> 2014; 16 :543-550.

361	13.	Salas-Salvadó J, Bulló M, Babio N, Martínez-González MA, Ibarrola-Jurado
362		N, Basora J, Estruch R, Covas MI, Corella D, Arós F, Ruiz-Gutiérrez V, Ros
363		E. Reduction in the incidence of type 2 diabetes with the Mediterranean diet.
364		<i>Diabetes Care</i> 2011; 34 :14-19.
365	14.	Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Fitó M,
366		Chiva-Blanch G, Fiol M, Gómez-Gracia E, Arós F, Lapetra J, Serra-Majem L,
367		Pintó X, Buil-Cosiales P, Sorlí JV, Muñoz MA, Basora-Gallisá J, Lamuela-
368		Raventós RM, Serra-Mir M, Ros E. Effect of a high-fat Mediterranean diet on
369		bodyweight and waist circumference: a prespecified secondary outcomes
370		analysis of the PREDIMED randomised controlled trial. Lancet Diab
371		Endocrinol 2016; DOI: http://dx.doi.org/10.1016/S2213-8587(16)30085-7.
372	15.	Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvadó J,
373		Covas MI, Arós F, Gómez-Gracia E, Fiol M, Lapetra J, Serra-Majem L, Pinto
374		X, Lamuela-Raventós RM, Saez G, Bulló M, Ruiz-Gutiérrez V, Ros E, Sorli
375		JV, Martinez-Gonzalez MA. Effect of the Mediterranean diet on blood
376		pressure in the PREDIMED trial: results from a randomized controlled trial.
377		<i>BMC Med</i> 2013; 11 :207.
378	16.	Martínez-González MA, Corella D, Salas-Salvadó J, Ros E, Covas MI, Fiol
379		M, Wärnberg J, Arós F, Ruiz-Gutiérrez V, Lamuela-Raventos RM, Lapetra J,
380		Muñoz MA, Martínez JA, Sáez G, Serra-Majem L, Pintó X, Mitjavila MT, Tur
381		JA, del Puy Portillo M, Estruch R. Cohort profile: Design and methods of the
382		PREDIMED study. Int J Epidemiol 2012; 41:377-385.
383	17.	Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-
384		Salvadó J, Lamuela-Raventós R, Ros E, Salaverría I, Fiol M, Lapetra J,
385		Vinyoles E, Gómez-Gracia E, Lahoz C, Serra-Majem L, Pintó X, Ruiz-

386	Gutierrez V, Covas MI. A short screener is valid for assessing Mediterranean
387	diet adherence among older Spanish men and women. J Nutr 2011; 141:1140-
388	1145.

389	18.	Fernández-Ballart JD, Piñol JL, Zazpe I, Corella D, Carrasco P, Toledo E,
390		Perez-Bauer M, Martínez-González MA, Salas-Salvadó J, Martín-Moreno JM.
391		Relative validity of a semi-quantitative food-frequency questionnaire in an
392		elderly Mediterranean population of Spain. Br J Nutr 2010; 103:1808-1816.
393	19.	Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G,
394		Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, Rhodes A, Swedberg K,
395		Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie MR, Dean V, Deckers J,
396		Burgos EF, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA,
397		Garcia MA, Dickstein K, Albuquerque A, Conthe P, Crespo-Leiro M, Ferrari
398		R, Follath F, Gavazzi A, Janssens U, Komajda M, Morais J, Moreno R, Singer
399		M, Singh S, Tendera M, Thygesen K. Executive summary of the guidelines on
400		the diagnosis and treatment of acute heart failure: the Task Force on Acute
401		Heart Failure of the European Society of Cardiology. Eur Heart J 2005;
402		26 :384-416.
403	20.	Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, Tavazzi
404		L, Smiseth OA, Gavazzi A, Haverich A, Hoes A, Jaarsma T, Korewicki J,
405		Lévy S, Linde C, Lopez-Sendon JL, Nieminen MS, Piérard L, Remme WJ.

- 406 Guidelines for the diagnosis and treatment of chronic heart failure: executive
- 407 summary (update 2005): The Task Force for the Diagnosis and Treatment of
- 408 Chronic Heart Failure of the European Society of Cardiology. *Eur Heart J*

409 2005; **26**:1115-1140.

410	21.	Larsson SC, Tektonidis TG, Gigante B, Åkesson A, Wolk A. Healthy
411		Lifestyle and Risk of Heart Failure: Results From 2 Prospective Cohort
412		Studies. Circ Heart Fail 2016; 9:e002855.
413	22.	Wirth J, di Giuseppe R, Boeing H, Weikert C. A Mediterranean-style diet, its
414		components and the risk of heart failure: a prospective population-based study
415		in a non-Mediterranean country. Eur J Clin Nutr 2016; 70:1015-1021.
416	23.	Estruch R. Anti-inflammatory effects of the Mediterranean diet: the
417		experience of the PREDIMED study. Proc Nutr Soc 2010; 69:333-340.
418	24.	Dai J, Jones DP, Goldberg J, Ziegler TR, Bostick RM, Wilson PW,
419		Manatunga AK, Shallenberger L, Jones L, Vaccarino V. Association between
420		adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 2008;
421		88 :1364-1370.
422	25.	Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am
423		J Physiol Heart Circ Physiol 2011; 301:H2181-H2190.
424	26.	Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K,
425		Papadimitriou L, Stefanadis C. Chronic systemic inflammation accompanies
426		impaired ventricular diastolic function, detected by Doppler imaging, in
427		patients with newly diagnosed systolic heart failure (Hellenic Heart Failure
428		Study). Heart Vessels 2009; 24:22-26.
429	27.	Chrysohoou C, Kastorini CM, Panagiotakos D, Aggelopoulos P, Tsiachris D,
430		Pitsavos C, Stefanadis C. Exclusive Olive Oil Consumption Is Associated with
431		Lower Likelihood of Developing Left Ventricular Systolic Dysfunction in
432		Acute Coronary Syndrome Patients: The Hellenic Heart Failure Study. Ann
433		<i>Nutr Metab</i> 2010; 56 :9-15.

434	28.	Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-
435		Gutiérrez V, Covas MI, Fiol M, Gómez-Gracia E, López-Sabater MC,
436		Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E. Effects of a
437		Mediterranean-style diet on cardiovascular risk factors: a randomized trial.
438		Ann Intern Med 2006; 145 :1-11.
439	29.	Cicerale S, Lucas LJ, Keast RS. Antimicrobial, antioxidant and
440		antiinflammatory phenolic activities in extra virgin olive oil. Curr Opin
441		Biotechnol 2012; 23:129-135.
442	30.	The Look AHEAD Research Group. Cardiovascular effects of intensive
443		lifestyle intervention in type 2 diabetes. New Engl J Med 2013; 369:145-154.
444	31.	Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A, Fonarow
445		GC, Jacobs JP, Jaff MR, Lichtman JH, Limacher MC, Mahaffey KW, Mehran
446		R, Nissen SE, Smith EE, Targum SL. 2014 ACC/AHA Key Data Elements
447		and Definitions for Cardiovascular Endpoint Events in Clinical Trials. J Am
448		<i>Coll Cardiol</i> 2015; 66 :403-469.
449		
450		

	Mediterranean	Mediterranean	Control diet
	diet+EVOO (n=2527)	diet+nuts (n=2444)	(n=2432)
Age, years	67.0 (6.2)	66.7 (6.1)	67.3 (6.3)
Sex, female, n (%)	1484 (58.7)	1319 (54.0)	1455 (59.8)
Smoking, n (%)			
Current	346 (13.7)	354 (14.5)	338 (13.9)
Education, n (%)			
University or higher	186 (7.4)	201 (8.2)	144 (5.9)
Secondary school	370 (14.6)	412 (16.9)	334 (13.7)
Primary school	1851 (73.2)	1733 (70.9)	1853 (76.2)
No education	120 (4.8)	98 (4.0)	101 (4.2)
Waist-to-height ratio	0.63 (0.06)	0.63 (0.06)	0.63 (0.07)
History of diabetes, n (%)	ry of diabetes, n (%) 1281 (50.7)		1184 (48.7)
History of hypertension, n (%)	ry of hypertension, n (%) 2075 (82.1)		2036 (83.7)
History of dyslipidaemia, n (%)	1811 (71.7)	1792 (73.3)	1751 (72.0)
Family history of premature coronary			
heart disease, n (%)	571 (22.6)	531 (21.7)	557 (22.9)
Leisure-time physical activity, METs-			
min/day	231 (231)	247 (247)	214 (241)
Total energy intake, kcal/day	2281 (591)	2315 (599)	2216 (590)
Baseline Mediterranean diet adherence			
score ^a	8.7 (2.0)	8.7 (2.0)	8.4 (2.1)

452 **Table 1** Baseline characteristics of participants by intervention group

453 EVOO, extra virgin olive oil; MET, metabolic equivalent tasks

454 Values indicate means (standard deviations), unless otherwise stated

- 455 ^a Based on a 14-item dietary screener (a score of 0 indicates minimum adherence and a
- 456 score of 14 indicates maximum adherence).

457

Table 2 Incidence of heart failure during the trial period with active intervention (2003-2010)

460 by intervention group

		Mediterranean	Mediterranean		P va	alue
		diet+EVOO	diet+nuts	Control diet		
		(n=2527)	(n=2444)	(n=2432)		
During the	trial intervention				Mediterranean	Mediterranean
period (200	3-2010)				diet+EVOO	diet+nuts vs.
					vs. Control	Control
Cases (n=94)	29	33	32		
Person-years	s of follow-up	11737	10279	9664		
Crude rate/1	000 person-years	2.5 (1.7-3.5)	3.2 (2.2-4.5)	3.3 (2.3-4.7)		
(95% CI)						
Hazard ratio	s (95% CI)					
Crude mode	1*	0.68 (0.41-1.13)	0.92 (0.56-1.49)	1(ref.)	0.139	0.725
Age- and sex	x-adjusted model*	0.71 (0.43-1.19)	0.98 (0.60-1.61)	1(ref.)	0.193	0.943
Multivariate	adjusted model 1*(a)	0.77 (0.46-1.28)	1.04 (0.64-1.71)	1(ref.)	0.312	0.864
Multivariate	adjusted model 2*(b)	0.78 (0.46-1.30)	1.07 (0.65-1.76)	1(ref.)	0.336	0.792
Multivariate	adjusted model 3*(c)	0.74 (0.44-1.24)	1.01 (0.61-1.66)	1(ref.)	0.248	0.981
461 CI, c	confidence interval; EV	OO, Extra-virgin	olive oil; HF, Hear	t Failure		
462 *All	models were stratified	l according to centr	e and history of di	abetes and use	d robust	
463 varia	ance estimators.					
464 (a) A	Adjusted for age, sex, e	ducation (four cate	gories), smoking (three categorie	es), waist-to-	
465 heig	ht ratio (continuous), p	hysical activity (M	IETS-min/d), dysp	nea symptoms	at baseline	
466 (three	ee categories) and non-	AF arrhythmias at	baseline.			
467 (b) A	Adjusted for (a), histor	y of hypertension, l	nistory of dyslipida	aemia, family h	nistory of	
468 pren	nature coronary heart d	lisease and baseline	e prevalence of atri	al fibrillation.		
469 (c) A	Adjusted for (a), (b) and	d baseline energy in	ntake (kcal/day).			
470						

472 Legends

Figure 1 Kaplan–Meier estimates of the incidence of heart failure in the total study

475 population (trial intervention period, 2003-2010)

Footnote to Figure 1:

- 477 Hazard ratios were stratified by centre and history of diabetes (Cox model with robust
- 478 variance estimators).

486 Diagnostic criteria for trial endpoint

- 487 (Version July, 2005 Modified December, 2006)
- 488

489 Heart failure (HF)

- 490 Based on the 2005 guidelines of the European Society of Cardiology, an event was
- 491 classified as HF if patients had symptoms and/ or signs of HF (frequent breathlessness
- 492 or fatigue at rest or during exertion, or ankle swelling) attributable to objective
- 493 evidence of cardiac dysfunction at rest (preferably by echocardiography). The clinical
- 494 picture may appear suddenly or in a progressive way.
- 495
- 496 For a definition of the other cardiovascular endpoints of the PREDIMED trial, we
- 497 would like to refer the readers to the following citations:

498 Myocardial infarction (MI), stroke, cardiovascular (CVD) death:

- 499 Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E,
- 500 Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó
- 501 X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA. Primary
- 502 prevention of cardiovascular disease with a Mediterranean diet. New Engl J Med
- 503 2013; **368**:1279-1290.
- 504

505 Atrial fibrillation (AF):

- 506 Martínez-González MA, Toledo E, Arós F, Fiol M, Corella D, Salas-Salvadó J, Ros
- 507 E, Covas MI, Fernández-Crehuet J, Lapetra J, Muñoz MA, Fitó M, Serra-Majem L,
- 508 Pintó X, Lamuela-Raventós RM, Sorlí JV, Babio N, Buil-Cosiales P, Ruiz-Gutierrez
- 509 V, Estruch R, Alonso A. Extra-virgin olive oil consumption reduces risk of atrial

510 fibrillation: The PREDIMED (Prevención con Dieta Mediterránea) trial. Circulation

511 2014; **130**:18-26.

512

513 Peripheral arterial disease (PAD)

- 514 Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA.
- 515 Association of Mediterranean diet with peripheral artery disease: The PREDIMED
- 516 randomized trial. *JAMA* 2014; **311**:415-417.

517

518

- 525 **Table S3** Baseline characteristics of participants who developed heart failure during
- 526 the trial period with active intervention (2003-2010) and those who did not

		Participants who	P value
	Participants who	did not develop	
	developed heart	heart failure	
	failure (n=94)	(n=7309)	
Age, years	71.0 (5.9)	66.9 (6.2)	<0.001
Sex, female, n (%)	50 (53.2)	4208 (57.6)	0.390
Smoking, n (%)			0.506
Current	11 (11.7)	1027 (14.1)	
Education, n (%)			0.124
University or higher	5 (5.3)	526 (7.2)	
Secondary school	9 (9.6)	1107 (15.2)	
Primary school	75 (79.8)	5362 (73.4)	
No education	5 (5.3)	314 (4.3)	
Waist-to-height ratio	0.65 (0.06)	0.63 (0.07)	0.006
BT-pro-BNP, pg/mL	635.9 (314.7)	589.4 (170.6)	0.009
History of diabetes, n (%)	61 (64.9)	3549 (48.6)	0.002
History of hypertension, n (%)	81 (86.2)	6044 (82.7)	0.372
History of dyslipidaemia, n (%)	57 (60.6)	5297 (72.5)	0.010
Family history of premature coronary			0.446
heart disease, n (%)	18 (19.2)	1641 (22.5)	
Leisure-time physical activity, METs-			0.076
min/day	187 (184)	231 (240)	

То	tal energy intake, kcal/day	2344 (716)	2270 (592)	0.230			
Ba	Baseline Mediterranean diet adherence						
sco	bre ^a	8.2 (2.5)	8.6 (2.0)				
527	BT-pro-BNP, B-type natriuretic pepti	de; EVOO, extra virgir	n olive oil; MET, metab	oolic			
528	equivalent tasks						
529	Values indicate means (standard deviations), unless otherwise stated						
530	^a Based on a 14-item dietary screener (a score of 0 indicates minimum adherence and a						
531	score of 14 indicates maximum adhered	nce).					

- 535 **Table S4** Incidence of heart failure during the trial period with active intervention (2003-
- 536 2010) and trial period including both the active intervention period and the extended follow-
- 537 up (2003-2012): both Mediterranean diets combined versus the control diet

(n=4971) (n=2432) During the trial intervention period (2003-2010)	
During the trial intervention period (2003-2010)	
period (2003-2010)	
$C_{abac}(n=04)$ 52 22	
Cases (II-74) 02 32	
Person-years of follow-up 22016 9664	
Crude rate/1000 person-years2.8 (2.2-3.6)3.3 (2.3-4.7)	
(95% CI)	
Hazard ratios (95% CI)	
Crude model* 0.79 (0.51-1.22) 1 (ref.) 0.283	
Age- and sex-adjusted model* 0.84 (0.54-1.29) 1 (ref.) 0.415	
Multivariate adjusted model 1* (a) 0.89 (0.58-1.38) 1 (ref.) 0.616	
Multivariate adjusted model 2* (b) 0.91 (0.59-1.41) 1 (ref.) 0.673	
Multivariate adjusted model 3* (c) 0.86 (0.55-1.34) 1 (ref.) 0.504	
Trial intervention period plus	
extended follow-up (2003-2012)	
Cases (n=141) 92 49	
Person-years of follow-up 29326 13940	
Crude rate/1000 person-years3.1 (2.5-3.8)3.5 (2.6-4.6)	
(95% CI)	
Hazard ratios (95% CI)	
Crude model* 0.84 (0.59-1.19) 1 (ref.) 0.316	i
Age- and sex-adjusted model* 0.88 (0.62-1.25) 1 (ref.) 0.476	ì
Multivariate adjusted model 1* (a) 0.94 (0.66-1.34) 1 (ref.) 0.723	1
Multivariate adjusted model 2* (b) 0.96 (0.67-1.36) 1 (ref.) 0.801	

Multivariate adjusted model 3* (c)	0.94 (0.66-1.34)	1 (ref.)	0.725
------------------------------------	------------------	----------	-------

- 538 CI, confidence interval; HF, Heart Failure
- *All models were stratified according to recruiting centre and history of diabetes and used
- 540 robust variance estimators. All P values were calculated using Cox proportional-hazards
- 541 models with robust variance estimators.
- 542 (a) Adjusted for age, sex, education (University or higher, secondary school, primary school
- 543 or no education), smoking (never, current or former smoker), waist-to-height ratio
- 544 (continuous), physical activity (METS-min/d), dyspnea symptoms at baseline (no symptoms,
- 545 symptoms after high effort and symptoms after moderate/minimal effort or symptoms, not
- 546 specified) and non-AF arrhythmias at baseline.
- 547 (b) Adjusted for the above, in addition to history of hypertension, history of dyslipidaemia,
- 548 family history of premature coronary heart disease and baseline prevalence of atrial
- 549 fibrillation.
- 550 (c) Adjusted for (a) and (b), in addition to baseline energy intake (kcal/day).
- 551
- 552

554 **Table S5** Subgroup analyses of the incidence of heart failure during the trial period with

active intervention (2003-2010) by intervention group

	HF events/Total		Hazard Rat	P value for		
						interaction*
	MedDiet,	MedDiet,	Control	MedDiet,	MedDiet, nuts	Combined
	EVOO	nuts		EVOO		Mediterranean
						diets
Sex						
Male	12/1043	20/1125	12/977	0.86 (0.38-1.96)	1.40 (0.67-2.92)	0.490
Female	17/1484	13/1319	20/1455	0.68 (0.34-1.34)	0.80 (0.39-1.67)	
Age, years						
<67	10/1256	7/1235	8/1117	0.86 (0.33-2.24)	0.62 (0.21-1.79)	0.130
≥67	19/1271	26/1209	24/1315	0.71 (0.38-1.33)	1.18 (0.66-2.09)	
Smoking						
Never	19/1565	16/1458	21/1517	0.75 (0.39-1.42)	0.81 (0.41-1.60)	0.480
Ever	10/962	17/986	11/915	0.74 (0.31-1.78)	1.34 (0.61-2.94)	
History of diabetes						
No	9/1246	11/1299	13/1248	0.48 (0.20-1.17)	0.66 (0.29-1.51)	0.010
Yes	20/1281	22/1145	19/1184	0.82 (0.43-1.56)	1.21 (0.64-2.27)	
History of hypertension						
No	3/452	5/430	5/396	0.63 (0.13-3.05)	1.29 (0.29-5.67)	0.650
Yes	26/2075	28/2014	27/2036	0.75 (0.43-1.32)	1.02 (0.60-1.76)	
History of dyslipidaemia						
No	11/716	13/652	13/681	0.71 (0.31-1.63)	1.02 (0.46-2.27)	0.990
Yes	18/1811	20/1792	19/1751	0.69 (0.36-1.36)	0.92 (0.48-1.77)	

Family history of

premature CHD

No		26/1956	26/1913	24/1875	0.91 (0.51-1.61)	1.06 (0.60-1.89)	0.330		
Yes		3/571	7/531	8/557	0.37 (0.09-1.52)	1.09 (0.36-3.30)			
History	of AF								
No		28/2510	32/2423	32/2409	0.71 (0.42-1.19)	0.99 (0.60-1.64)	0.190		
Yes		1/17	1/21	0/23	-	-			
Body n	nass index, kg/m ²								
<30		13/1335	18/1353	16/1233	0.67 (0.32-1.41)	1.04 (0.52-2.09)	0.610		
≥30		16/1192	15/1091	16/1199	0.85 (0.41-1.77)	1.04 (0.50-2.18)			
Waist-t	o-height ratio								
<0.63		9/1366	20/1369	12/1272	0.62 (0.25-1.52)	1.75 (0.83-3.69)	0.040		
≥ 0.63	5	20/1161	13/1075	20/1160	0.70 (0.36-1.34)	0.57 (0.27-1.19)			
Baselin	e score for								
MedDi	et adherence								
<9 (lo	w)	19/1113	13/1055	20/1250	1.00 (0.52-1.93)	0.75 (0.36-1.54)	0.040		
\ge 9 (h	igh)	10/1414	20/1389	12/1182	0.59 (0.25-1.39)	1.38 (0.66-2.89)			
556	AF, atrial fibrillati	on; CHD, co	ronary heart	disease; C	l, confidence interv	al; EVOO, Extra-			
557	virgin olive oil; Hl	F, Heart Fail	ure; MedDie	et, Mediterra	anean diet				
558	All models were stratified according to recruiting centre and history of diabetes (apart from								
559	when history of diabetes was examined as a subgroup) and used robust variance estimators.								
560	0 All models were adjusted for age, sex, education (University or higher, secondary school,								
561	primary school or no education), smoking (never, current or former smoker), waist-to-height								
562	ratio (continuous),	physical act	ivity (METS	S-min/d), dy	spnea symptoms at	baseline (no			
563	symptoms, sympto	oms after hig	h effort and	symptoms a	after moderate/mini	mal effort or			
564	symptoms, not spe	ecified), non-	AF arrhythn	nias at base	line, history of hype	ertension, history of			
565	dyslipidaemia, family history of premature coronary heart disease, baseline prevalence of								

- 566 atrial fibrillation and baseline energy intake (kcal/day).
- 567 * P values were calculated using Cox proportional-hazards models with robust variance estimators.
- 568 Interactions for both MedDiet groups were assessed by a likelihood ratio test with 2 degrees of
- 569 freedom: grouping variable x (MedDiet with EVOO) and grouping variable x (MedDiet with nuts).
- 570
- 571

573 **Table S6** Incidence of heart failure during the trial period including both the active

574	intervention	period and	the extended	follow-up (2	2003-2012)	by intervention	group
		+		. .		•	~ 1

	Mediterranean	Mediterranean		P va	alue
	diet+EVOO	diet+nuts	Control diet		
	(n=2527)	(n=2444)	(n=2432)		
Trial intervention period plus					
extended follow-up (2003-2012)					
Cases (n=141)	43	49	49		
Person-years of follow-up	15261	14064	13940		
Crude rate/1000 person-years	2.8 (2.0-3.8)	3.5 (2.6-4.6)	3.5 (2.6-4.6)		
(95% CI)					
Hazard ratios (95% CI)					
Crude model*	0.71 (0.47-1.07)	0.99 (0.67-1.48)	1(ref.)	0.100	0.970
Age- and sex-adjusted model*	0.73 (0.49-1.11)	1.06 (0.71-1.58)	1(ref.)	0.146	0.771
Multivariate adjusted model 1*(a)	0.79 (0.52-1.19)	1.13 (0.75-1.69)	1(ref.)	0.260	0.562
Multivariate adjusted model 2*(b)	0.80 (0.53-1.21)	1.16 (0.77-1.73)	1(ref.)	0.290	0.485
Multivariate adjusted model 3*(c)	0.78 (0.52-1.19)	1.14 (0.76-1.70)	1(ref.)	0.252	0.540

*All models were stratified according to centre and history of diabetes and used robust

577 variance estimators.

578 (a) Adjusted for age, sex, education (four categories), smoking (three categories), waist-to-

579 height ratio (continuous), physical activity (METS-min/d), dyspnea symptoms at baseline

580 (three categories) and non-AF arrhythmias at baseline.

581 (b) Adjusted for (a), history of hypertension, history of dyslipidaemia, family history of

582 premature coronary heart disease and baseline prevalence of atrial fibrillation.

583 (c) Adjusted for (a), (b) and baseline energy intake (kcal/day).

- 586 Figure S7 Exploratory meta-analysis of observational cohort studies examining the
- 587 association between Mediterranean diet adherence and heart failure incidence

588 589

590 A random effects model was used. The estimates of each study included in the meta-analysis were

transformed to capture the effect on the risk of HF (or mortality in patients with HF) for an additional

592 +2 point increment in a 0 to 9 score of adherence to the MedDiet.

593 The two studies by Tektonidis et al [Tektonidis et al (2015) A Mediterranean diet and risk of

594 myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis

595 243:93-98 and Tektonidis et al (2016) Adherence to a Mediterranean diet is associated with reduced

risk of heart failure in men. Eur J Heart Fail 18:253-259] were excluded because Larsson [Larsson et

al (2016) Healthy lifestyle and risk of heart failure: results from 2 prospective cohort studies. Circ

- Heart Fail 9:e002855] analysed the same cohorts, but using a slightly larger sample size in updated
- 599 databases.

602 Figure S8 Factors independently associated with heart failure

			Hazard
Factors associated with Heart Failure			Ratio (95% CI)
Baseline MedDiet adherence (for each +2 points)	_ 		0.76 (0.62, 0.93)
Baseline MedDiet adherence>=9 (vs. <9)			0.63 (0.40, 0.98)
Female sex	+	<u> </u>	0.69 (0.38, 1.25)
Leisure-time Phys. Act.>=175 METs-min/d (vs. <175)	+	-	0.70 (0.44, 1.10)
Primary/secondary education (vs. no education)			0.76 (0.29, 1.99)
University education (vs. no education)	•		0.77 (0.21, 2.85)
History of dyslipidaemia			0.84 (0.54, 1.31)
Ever smoking (vs. never)		•	1.09 (0.61, 1.95)
History of atrial fibrillation -		•	→ 1.13 (0.25, 5.08)
Family history of premature CHD		•	1.19 (0.68, 2.08)
History of hypertension		•	1.34 (0.72, 2.49)
Total energy intake>=2205 kcal/d (vs.<2205)	_	•	1.35 (0.86, 2.11)
Waist-to-Height Ratio>=0.63 (vs. <0.63)	-	•	1.44 (0.93, 2.22)
History of diabetes		·	2.01 (1.25, 3.22)
Age >66 years (vs. <=66)		·	2.30 (1.43, 3.71)
1	1 1		

603 604

605 Cut-off values indicate medians, unless otherwise stated.

*All models were stratified by centre, intervention group and history of diabetes (apart from when

607 history of diabetes was examined as a predictor) and used robust variance estimators. All models were

608 adjusted for age, sex, education (four categories), smoking (three categories), waist-to-height ratio

609 (continuous), physical activity (METS-min/d), dyspnea symptoms at baseline (no symptoms,

610 symptoms after high effort and symptoms after moderate/minimal effort or symptoms, not specified),

611 non-AF arrhythmias at baseline, history of hypertension, history of dyslipidaemia, family history of

612 premature coronary heart disease, baseline prevalence of atrial fibrillation and baseline energy intake

613 (kcal/day). Confidence intervals were estimated using Cox proportional-hazards models with robust

614 variance estimators.

- 617 **Table S9** Incidence of total cardiovascular events (stroke, myocardial infarction,
- 618 cardiovascular death, heart failure, atrial fibrillation or peripheral arterial disease) during the
- 619 trial period with active intervention (2003-2010) by intervention group

	Mediterranean Mediterranean			P value		
	diet+EVOO	diet+nuts	Control diet			
	(n=2510)	(n=2423)	(n=2409)			
				Mediterranean	Mediterranean	
				diet+EVOO vs.	diet+nuts vs.	
				Control	Control	
Cases (n=634)	196	202	236			
Person-years of follow-up	11479	10038	9397			
Crude rate/1000 person-years (95% CI)	1.7 (1.5-2.0)	2.0 (1.7-2.3)	2.5 (2.2-2.8)			
Hazard ratios (95% CI)						
Crude model [†]	0.62 (0.51-0.75)	0.77 (0.63-0.93)	1(ref.)	< 0.001	0.006	
Age- and sex-adjusted model ^{\dagger}	0.63 (0.52-0.76)	0.76 (0.63-0.92)	1(ref.)	< 0.001	0.005	
Multivariate adjusted model $1^{\dagger}(a)$	0.64 (0.53-0.78)	0.78 (0.64-0.94)	1(ref.)	< 0.001	0.011	
Multivariate adjusted model $2^{\dagger}(b)$	0.65 (0.53-0.78)	0.79 (0.66-0.96)	1(ref.)	< 0.001	0.019	
Multivariate adjusted model $3^{\dagger}(c)$	0.65 (0.53-0.78)	0.79 (0.65-0.96)	1(ref.)	<0.001	0.018	
620 CI, confidence interval;	CVD, cardiovascu	lar disease; EVOO	, Extra-virgin ol	ive oil		
621 † All models were strati	fied according to c	entre and history of	f diabetes.			
622 (a) Adjusted for age, set	x, education (four c	ategories), smokin	g (three categor	ies), waist-to-		
623 height ratio (continuous), physical activity	(METS-min/d), dy	spnea symptom	s at baseline		
624 (three categories) and n	on-AF arrhythmias	at baseline.				
625 (b) Adjusted for (a), fam	nily history of prem	nature coronary hea	urt disease, histo	ry of		
626 dyslipidaemia and histo	ry of hypertension.					
627 (c) Adjusted for (b) and	baseline energy in	take (kcal/day).				
628						

- 630 Figure S10 Kaplan–Meier estimates of total cardiovascular events (stroke, myocardial
- 631 infarction, cardiovascular death, heart failure, atrial fibrillation or peripheral arterial disease)
- 632 in the total study population (trial intervention period, 2003-2010)

633 634

635 Hazard ratios were stratified by centre and sex (Cox model with robust variance estimators).

636

637

638