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ABSTRACT 

The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal 

brain activity fluctuations in human neonates has been demonstrated, although its potential to 

characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used 

intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal 

condition to show the suitability of brain networks to characterise functional brain organisation at 

neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 

controls, obtaining whole-brain functional networks based on correlations of BOLD signal in 90 grey 

matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph 

theoretical features showed increased network infrastructure and raw efficiencies but reduced 

efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR 

functional brain networks. Significant association of network features with neurobehavioral scores 

was also found. Further assessment of spatiotemporal dynamics displayed alterations into features 

associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional 

brain networks to characterise brain reorganisation from an early age, and their potential to develop 

biomarkers of altered neurodevelopment. 
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Abbreviations:  

ADHD: attention deficit hyperactive disorder; ASD: autism spectrum disorders; BOLD: blood oxygen 
level-dependent; CSF: cerebrospinal fluid; DFC: dynamic functional connectivity; FA: fractional 
anisotropy; FDR: false discovery rate; GA: gestational age; GM: grey matter; ICA: independent 
component analysis; IUGR: Intrauterine growth restriction; MRI: Magnetic resonance imaging; 
NBAS: Neonatal Behavioral Assessment Scale; PMA: post menstrual age; ROI: region of interest; 
rs-fMRI: resting-state functional MRI; RSN: resting state networks; WM: white matter. 
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1. INTRODUCTION  

Intrauterine growth restriction (IUGR) affects 5-10% of all pregnancies in developed countries 

and it is a major public health issue, being associated with short- and long-term 

neurodevelopmental and cognitive dysfunctions (Arcangeli, Thilaganathan, Hooper, Khan, & Bhide, 

2012; Baschat, 2013; Løhaugen et al., 2013). The characterisation of underlying brain alterations 

supporting these dysfunctions and the prediction of the subset of the population with a higher risk of 

altered neurodevelopmental outcomes are among the challenges of modern fetal medicine and 

paediatrics. Magnetic resonance imaging (MRI) has been used to characterise structural brain 

alterations underlying neurodevelopmental dysfunctions of subjects with IUGR at different stages of 

development, starting in-utero (Egaña-Ugrinovic, Sanz-Cortes, Figueras, Bargallo, & Gratacos, 

2013; Sanz-Cortes et al., 2013), persisting at neonatal and early infancy (De Bie et al., 2011; 

Dubois et al., 2008; Esteban et al., 2010; Lodygensky et al., 2008; Padilla et al., 2011; Tolsa et al., 

2004) and at adolescence (Martinussen et al., 2009; Skranes et al., 2005). In the recent years, the 

knowledge of structural brain organisation has significantly advanced with the assessment of the 

macroscopic circuitry of connections of the brain with structural brain networks obtained from MRI 

(Hagmann, 2005; Sporns, Tononi, & Kotter, 2005). Importantly, graph theoretical features have 

been used to characterise brain networks (Bullmore & Sporns, 2009), allowing to comprehensibly 

describe with a few network features the underlying brain connectivity organisation. This approach 

has been demonstrated to be useful to characterise a wide-range of pathologies and conditions that 

affect brain connectivity (Bassett & Bullmore, 2009). Based on anatomical and diffusion MRI, this 

technique has been promising in the study of IUGR, allowing to demonstrate alterations in the 

structural brain network organisation and its association with altered neurodevelopment in one-

year-old infants (Batalle et al., 2012; Batalle et al., 2013), school-age infants (Fischi-Gomez et al., 

2014), and in an animal model of long-term IUGR (Batalle et al., 2014). However, it remains 

unknown if there is brain reorganisation at a functional level in this population, and if it can be 

detected at neonatal age. 
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Since the seminal study of Biswal et al. (Biswal, Yetkin, Haughton, & Hyde, 1995), the potential 

of low-frequency components of resting-state functional MRI (rs-fMRI) to obtain whole-brain 

functional brain networks based on partial correlations of blood oxygen level-dependent (BOLD) 

signal (Salvador et al., 2005) has been demonstrated. Several studies have demonstrated the 

feasibility to use rs-fMRI to characterise the functional organisation of the healthy neonatal brain, 

opening the opportunity to characterise also the alterations in brain organisation due to prenatal 

conditions, such as IUGR. Using independent component analysis (ICA), the emergence of 

synchronised spontaneous low-frequency rs-fMRI BOLD signals exhibiting resting state networks 

(RSN) has been demonstrated in term and preterm infants during light sedation and natural sleep 

(Fransson et al., 2009; Fransson et al., 2007). Both ICA and seed-based correlation approaches 

have also been used in longitudinal studies showing the emergence of connections partially or 

completely matching several RSN during neonatal development (Doria et al., 2010; Gao et al., 

2009; Lin et al., 2008; Smyser et al., 2010). However, studies considering whole-brain functional 

brain networks of the neonatal brain are scarce in the literature. Neonatal networks composed of 

selected regions of interest (ROIs) were studied by Gao et al. (2009), while voxel-wise networks 

obtained in a normalised space were obtained by Fransson et al. (Fransson, Aden, Blennow, & 

Lagercrantz, 2011), showing the presence of cortical hubs and sub-networks associated with these 

hubs. Finally, Gao et al. (2011) studied the normal evolution of ROI-based functional brain networks 

from neonatal age to two years of age and its resilience to random attacks, and recently van den 

Heuvel et al. (2015) studied the evolution of both structural and functional connectivity during 

preterm brain development. 

In the present study we used partial correlations of rs-fMRI BOLD signals averaged into 90 

regions of an anatomical brain atlas (Tzourio-Mazoyer et al., 2002) in 13 controls and 20 subjects 

with IUGR scanned around 44 weeks equivalent post menstrual age (PMA). Using the whole-brain 

functional networks obtained we characterised alterations in the individual functional brain 

connectivity of neonates with IUGR using graph theory features. We further characterised functional 

spatiotemporal dynamics and assessed network nodes with altered temporal characteristics. 
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Finally, the association of individual network features with neonatal neurobehavioral outcomes was 

also assessed.  
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2. MATERIAL AND METHODS 

2.1 Participants, neurobehavioral assessment and MRI acquisition 

The infants of the study were part of a larger prospective research program in IUGR involving 

fetal assessment and short- and long-term postnatal follow-up at Hospital Clínic (Barcelona, Spain). 

The local Ethics Committee approved the study protocol, and written informed consent was 

obtained from the parents or legal guardians of all the participants (CEIC: 2012/7715). The original 

sample of the study included a sample of 45 pregnancies with 30 late-onset IUGR and 15 control 

fetuses. Late-onset IUGR was defined as those fetuses with estimated fetal weight below the 10th 

centile according to local reference standards (Figueras et al., 2008) confirmed at birth and 

delivered after 34 weeks of pregnancy. Control subjects were sampled from general pregnant 

population and defined as fetuses with fetal estimated weight between 10th and 90th centile 

confirmed at birth. Infants with chromosomal, genetic or structural defects and signs of intrauterine 

infection or neonatal onset sepsis were excluded from the study. Neonatal data was prospectively 

recorded including gestational age (GA), birth weight, gender, Apgar at 5 min, umbilical artery pH, 

neonatal complications and maternal smoking status during pregnancy.  

MRI was performed around one month corrected age during natural sleep after feeding the 

baby. An expert neuroradiologist analysed anatomical images and those infants without overt brain 

lesions were further analysed. In addition, all acquired images were visually inspected for apparent 

artefacts and subjects excluded accordingly. Thus, ten of 30 cases and two of the 15 controls were 

excluded from the study due to white matter (WM) lesions, awakening or excessive movement 

during acquisition, obtaining a final sample of 13 controls (5 males) and 20 subjects with IUGR (13 

males). Characteristics of the population are described in Table 1. Particular care was taken in 

order to ensure neonatal welfare during the MR acquisition. A pulseoximetry probe was placed 

around the baby’s wrist to monitor oxygen saturation levels throughout the scan, and acoustic noise 

was minimised with the use of neonatal ear muffs (MiniMuffs ® Neonatal Noise Attenuators, Natus 

Medical Incorporated, USA). The infant was swaddled with one or two infant sheets before being 

placed within a vacuum immobiliser, air was removed from the bag and the infant was contained 
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within a rigid cradle that is shaped to its body, effectively swaddling the infant. The lighting in the 

scanner room was reduced to aid the infant’s sleep but was kept at a level that allows safely 

monitoring. 

Neonatal neurobehavioral performance was assessed at neonatal age with the Neonatal 

Behavioral Assessment Scale (NBAS) (Nugent & Brazelton, 2000), which evaluates cortical and 

subcortical functions in 35 items grouped into 6 clusters: habituation, social-interactive, organisation 

of state, regulation of state, autonomous nervous system and attention (Sagiv et al., 2008). Cluster 

scores were transformed to z-scores according to a standard population (Costas Moragas, 

Fornieles Deu, Botet Mussons, Boatella Costa, & de Caceres Zurita, 2007; Sagiv et al., 2008) and 

defined as abnormal if they have a z-score below minus one. NBAS severity score was defined as 

the number of abnormal NBAS clusters for each subject. Due to the low successful rate of a valid 

habituation cluster (12 out of 33), it was excluded from the calculation of NBAS severity score. 

Therefore, severity score was only calculated on 29 out of 33 subjects that had valid estimation of 

social-interactive, organisation of the state, regulation of the state, autonomous nervous system and 

attention clusters, in a range from 0 to 5. 

2.2 MRI acquisition 

MRI acquisition was performed with a TIM TRIO 3.0 T whole body MR scanner (Siemens, 

Germany). Anatomical T2-weighted acquisition consisted in 45 axial slices with 2-mm slice 

thickness, in-plane acquisition matrix of 256 x 256, FOV = 160 x 160 mm2, resulting in a resolution 

of 0.625 x 0.625 x 2 mm3, TR = 5460 ms and TE = 91 ms. Functional MRI data were acquired using 

gradient EP) consisting in volumes of 42 axial slices with 2-mm slice thickness, in-plane acquisition 

matrix of 80 x 80, FoV = 160 x 160 mm2, yielding a spatial resolution of 2 x 2 x 2 mm3, TR = 2000 

ms, TE = 20 ms. Resting-state functional connectivity was assessed during 8 minutes of natural 

sleep (240 EPI volumes). The first ten volumes were discarded to allow accommodating T1-

equilibrium processes, and we only consider the remaining 230 volumes for further analysis. The 

acquisition protocol included other sequences not used in this study, having a total scanning time of 

~30-45 min. 
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2.3 Pre-processing and network extraction 

All anatomical T2-weighted volumes were first skull-striped using BET (Smith, 2002). Brain 

tissue was segmented into WM, grey matter (GM) and cerebrospinal fluid (CSF) with unified 

segmentation model (Ashburner & Friston, 2005) available with SPM8. The default adult templates 

were replaced with specific neonatal tissue probability maps (Shi et al., 2011). AAL atlas (Tzourio-

Mazoyer et al., 2002) recently adapted to neonatal population in a T2-weighted template (Shi et al., 

2011) was used to parcellate each subject into 90 cortical and sub-cortical regions (Supplementary 

Table 1). Particularly, a customised software implementing a consistent version (Tristan-Vega & 

Arribas, 2007) of a block matching algorithm (Warfield et al., 2002) was used to obtain an elastic 

transformation matching the template with each subject’s T2 volume. AAL labels were propagated 

to each subject using this elastic transformation with discrete labelling preserved by nearest 

neighbour interpolation.  

Image pre-processing of BOLD images was mainly performed with SPM8 package. First, intra-

volume time differences between slices were corrected. Inter-volume geometric displacements were 

corrected using a six-parameter rigid transformation for each acquired volume and spatially 

smoothed using a Gaussian kernel with 2 mm full width at half maximum. Correction of head motion 

effects in the signal was performed by regressing out the 6-parameter head motion profiles 

previously estimated in each voxel across all the acquisition time. Root mean square frame 

displacement (FD-RMS) between each volume was estimated using average of rotation and 

translation parameters differences (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) using 

matrix RMS formulation , as available in FSL5.0 Motion Outliers tool. Number of outliers in each 

subject (>75th percentile + 1.5 × InterQuartile Range) was also recorded.   GM/WM/CSF 

segmentation and AAL ROI parcellation obtained in T2 anatomical volume were registered to an 

averaged BOLD volume using an affine transformation. The representative averaged time series 

corresponding to each ROI were estimated for those voxels belonging to the GM mask and band 

pass filtered (0.01 – 0.15 Hz). This “broad band” has been suggested to be the more reliable for 

graph theory analysis (Braun et al., 2011). Network edges were calculated as the partial correlation 
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coefficients obtained between each pair of ROI averaged signal excluding the effects of the signal 

of the other 88 ROIs, obtaining a 90 x 90 partial correlation matrix for each subject. Pearson 

coefficients were transformed according to Fisher z-transformation and negative correlation 

coefficients were excluded, i.e., thresholding the networks with ρ>0. The correlation between each 

pair of ROIs excluding the effect of the signal common to the rest of ROIs was therefore inferred to 

be proportional to the connectivity of each given pair of ROIs, obtaining weighted matrices that 

represent the raw connectivity of RSN of each subject, as shown in Figure 1A. Note that only 

positive correlations were included  

2.4 Network normalisation 

In order to disentangle network infrastructure from network organisation, i.e., evaluate the 

organisation of networks independently of their average strength and density (cost), three different 

approaches were followed. First, different average strength among subjects was neutralised by 

means of normalisation of each subject’s brain network by its total energy (Batalle et al., 2014), that 

is, given a network C with weights ��,� for each pair of nodes i, j, we defined a normalised version of 

the network C���	 with normalised weights defined as  ��,����	 = ��,� ∑ ��,�∀�,�⁄ . Secondly, differences 

of network density (cost) were neutralised by means of a cost-corrected analysis of network 

features (Achard & Bullmore, 2007). Following this approach, a binary network was created at 

different network costs, selecting for each cost-value x the connections with a strongest weight that 

yield to a cost x. The cost range was limited by the minimum value of network density for any 

subject included into the analysis, which is the maximum network cost where is possible to fairly 

compare among all the subjects. Finally, the effect of differences in strength and density were 

neutralised at the same time by means of a combination of both methods: instead of obtaining a 

binary network at each network cost, as it was performed in the second approach, the weighted 

network obtained at each network cost was considered in this third approach. Given that weighted 

features are much related to the strength of a network (weighted cost), to obtain pure organisational 

descriptors, the weighted networks obtained at each network cost were normalised as described in 

the strength normalisation approach. Particularly, for a given network 	���, �� = ��,�  where ��,� 
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represents the weight of the connection between nodes i and j, we defined a cost-corrected network 

����, �, ��  for each value of cost 	� . Note that ����, �, �� = ��,����  where ��,����  =��,�  if the link 

between node i and j belongs to the subset of strongest connections that ensure a network density 

of �  and ��,���� = 0 otherwise. In this context, normalised cost-corrected network at cost �  was 

defined as	�����	��, �, �� = ��,���� ∑ ��,����∀�,�⁄ . 

2.5 Network analysis 

Graph theory features allow summarising infrastructure and organisation of a brain network 

represented as an adjacency matrix (binary or weighted). Global functioning of each network was 

assessed by its infrastructure (average strength), integration (global efficiency) and segregation 

(local efficiency). Regional characteristics were evaluated by means of nodal strength, assessing 

the total connectivity of a node in a given network, and nodal efficiency, measuring the efficiency of 

the sub-network associated to a given node. Nodes with a high nodal efficiency indicate a high 

tolerance of the network to the elimination of the given node, which is associated to a high 

clustering of the neighbourhood of this node (Achard & Bullmore, 2007). Formulation and 

calculation of the graph theory features used to assess each network was based on the definitions 

and code compiled by Rubinov and Sporns (Rubinov & Sporns, 2009). 

2.6 Dynamic functional connectivity 

Dynamic functional connectivity (DFC) has been defined as the functional connectivity over a 

sliding time window (Sakoglu et al., 2010). Recently, phase synchronisation has been used to solve 

the resolution/reliability trade-off of windowing the signal in functional MRI time-series by means of 

conversion of the real signal into a complex analytic version, with techniques such as Hilbert 

transform. In the present study, we used similar techniques to study the temporal dynamics of the 

ROI signals in a narrowband (0.04-0.07 Hz) comparing phase differences pair-wise and obtaining a 

measure of phase similarity between each pair of ROIs at each instant of time. Narrowband filtering 

of the signal allows the application of the Hilbert transform to extract the phases obtaining an 

analytic signal (Glerean, Salmi, Lahnakoski, Jaaskelainen, & Sams, 2012). This analytic signal 
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represent the narrowband signal s(t) as a rotating vector with an instant phase φ(t) and an instant 

amplitude A(t), i.e.,  ���� = ����cos	������. Phase of the signal was obtained from the complex 

signal  ��� = ���� + �.H$����% , where i is the imaginary unit and H[s(t)] is the Hilbert transform of s(t). 

Global level of phase synchrony among all brain areas was quantified with Kuramoto order 

parameter R(t), defined as &��� = '()∑ *�+,�-�)�.( ', where N is the number of ROIs. Kuramoto order 

parameter quantifies the level of global synchronisation of a collection of phase oscillators, being 

constrained between 0 and 1 increasing monotonically as a function of the level of global 

synchronisation between all pairs of ROIs in the system, 0 representing total asynchrony and 1 

representing total asynchrony. As Kuramoto order parameter is defined at each time point, 

describing the evolution of spatial coherence as a function of time, it was averaged across all time 

points in order to obtain a global feature characterising the average level of synchronisation of each 

subject. 

Further analysis involved the calculation of a measure of phase similarity between each pair of 

regions for each instant of time. Hence, the level of synchronisation between a pair of brain areas 

was considered inversely proportional to their phase difference, giving them a weight ���/��� at each 

instant of time as	���/��� = 0∆������−3
4 0. Note that as ∆������ is constrained between 0 and	3, ���/��� will 

be constrained between 0 and 1, being ���/��� = 1 when the phase of the two regions is identical. 

Using this approach, a weighted connectivity matrix based on the phase similarity was constructed 

at each instant of time, allowing the extraction of temporal-dependent global and regional network 

features that assess dynamic functional connectivity organisation. 

However, given that the subjects are not receiving a specific stimulus that would allow direct 

correspondence with temporal points and specific brain state, features obtained at each time point 

are not easily comparable among subjects. Hence, we used Kuramoto order parameter to reorder 

temporal axis according to the relative level of global synchronisation of each subject, from its 

lowest to its highest level. Therefore, although after reording we still cannot give interpretation to 

each time point, overall they can now be interpreted as a percentage of time points showing the 
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same percentage of synchronisation relative to each subject, this way it is possible to reorder the 

temporal features obtained for each subject and can be compared as they are obtained based on 

the same relative level of synchronisation. 

2.7 Statistical analysis 

Comparisons among groups were performed by general linear models (GLM) with gender and 

smoking status of the mother as a co-factor and GA and PMA at MRI as co-variables. Significance 

was declared at p<0.05 (uncorrected). Regional alterations were shown using BrainNet viewer (Xia, 

Wang, & He, 2013). Association of network features obtained with NBAS in IUGR group was 

performed by means of partial correlations using gender, GA and smoking status as confounder 

factors. The software package SPSS 21.0 (SPSS, Chicago, IL) was used for the statistical 

analyses. Computational algorithms were implemented using MATLAB (2009b, The MathWorks 

Inc., Natick, MA). 

3. RESULTS 

3.1 Resting-state networks in IUGR neonates 

Infrastructure of the raw weighted partial correlation functional brain networks obtained (Figure 

1B-D) was assessed by comparing weighted graph theoretical features among groups by means of 

GLM. Importantly, this analysis showed significantly increased values of IUGR average strength 

(p=0.013), suggesting an increased pattern of weighted connectivity in IUGR networks. As expected 

of more strongly connected networks, weighted measures of global (p=0.015) and local efficiency 

(p=0.028) were also increased in IUGR. Network density, however, did not significantly differ 

between cases and controls.  

Analysis of the pure organisational components of brain networks is strongly influenced by 

differences in the network infrastructure among subjects (Ginestet, Nichols, Bullmore, & Simmons, 

2011). In order to assess the effectiveness of the organisation between groups independently of 

average strength, the effect of different values of average strength among subjects was neutralised 
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by means of normalisation of each subject’s brain network, as previously described in section 2.4. 

As a result, significantly reduced normalised local efficiency was observed in IUGR group (p=0.003, 

Figure 1E). Although non significantly different between IUGR and control group, differences among 

subjects in network density (cost) could also be influencing the analysis of network organisation 

when using global network features. In this case, this effect was neutralised by means of a cost-

corrected analysis (Achard & Bullmore, 2007), obtaining binary global and local efficiency features 

at each network cost from 0 to 0.51 at 0.01 steps. The maximum value of the range was fixed at 

0.51 as it is the lower network density for any subject included. Using this approach, IUGR showed 

significantly reduced values for several costs (Figure 1F-G), and importantly, when integrated 

among the whole valid cost-range (Ginestet et al., 2011), significantly reduced global efficiency 

(p=0.008) and local efficiency (p=0.013) were also observed. Finally, differences in strength and 

network density were neutralised simultaneously by means of a combination of both methods (see 

Material and Methods). This way, the optimal distribution of weights in the network, i.e., the 

importance of having strong connections in key regions from a network topology point of view can 

be assessed independently of the influence of differences in average strength and network density 

at the same time. Using this approach, reduced values for cost-corrected weighted global and local 

efficiency were observed at several network costs (Figure 1H-I), being their cost-integrated values 

also significantly reduced for global and local efficiencies (p=0.013 and p=0.016 respectively). All 

three different approaches of normalisation yielded the same conclusion: although IUGR had an 

increased RSN infrastructure characterised by increased average strength yielding to increased raw 

efficiencies, its organisation was sub-optimal when compared with controls. 

In addition to the analysis of global network features, in order to find the regional components 

that have a higher influence in the network reorganisation observed in IUGR group, differences 

among groups were assessed using a GLM for each nodal feature using a similar approach as 

previously used for global network features. Particularly, nodal strength and nodal efficiency were 

further assessed in its raw and normalised versions (Figure 2). We observed that nodal features of 

raw networks showed a pattern of alterations in IUGR for both nodal efficiency and strength in 

frontal areas, but also on occipital, parietal and sub-cortical regions. Nodal strength and efficiency 
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of normalised networks showed a reduced number of alterations in IUGR, although there were still 

present some significant differences in subnetworks belonging to frontal, temporal and occipital 

cortices and sub-cortical regions such as amygdala and hippocampus. Note, however, that the 

nodal alterations reported must be considered exploratory, given that the differences observed did 

not withstand a false discovery rate (FDR) correction (Benjamini, Krieger, & Yekutieli, 2006). 

3.2 Dynamic functional connectivity 

In order to assess if there were any notable differences in the DFC of IUGR, we first used 

Kuramoto order parameter R to analyse the global level of synchronisation of each subject’s brain 

at each instant of time (Figure 3A), being zero for complete asynchrony and 1 for full 

synchronisation. As the subject’ acquisition was not under specific stimuli, rather than analysing the 

results in a temporal basis, the average value over time was compared. A tendency towards 

significance of having an increased Kuramoto order parameter was observed in IUGR group 

(p=0.055), showing that, overall, subjects with IUGR tend to present a more synchronised brain 

than their control counterparts. The Kuramoto order parameter was further used to sort the 

acquisition time-points of each individual subject, from the lowest to the highest level of 

synchronisation of each subject’s whole-brain DFC. This allowed comparing the temporal dynamics 

among subjects at a similar level of synchronisation given a temporal instant. Particularly, we 

observed significantly increased values of Kuramoto order parameter for several time points in 

IUGR (Figure 3B), and as expected, increased global and local efficiency for several time points 

(Figure 3C-D). Differences of nodal efficiency among groups at each instant of time were also 

assessed, finding a set of nodes with statistically significant differences in IUGR across time (Figure 

3E). Observing the percentage of time that each nodal efficiency is significantly different in IUGR 

allowed highlighting four regional features altered in IUGR more than two standard deviations 

above the mean: left superior frontal gyrus dorsolateral part (F1-L), right middle frontal gyrus, orbital 

part (F2O-R), right median cingulate and paracingulate gyri (MCIN-R), and left lingual gyrus (LIN-L). 

Analogous analysis of nodal strength yielded similar results, in this case being only left superior 
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frontal gyrus, dorsolateral part (F1-L) and right middle frontal gyrus, orbital part (F2O-R) the regions 

found to be different during a significant amount of time. 

3.3 Association with neonatal neurobehavior 

Neonatal behavioral assessment scale (NBAS) (Nugent & Brazelton, 2000) was used to 

characterise neurobehavioral outcomes in neonatal period. Association of neurobehavioral scores 

(NBAS) with global network features (average strength, network density, weighted global and local 

efficiency, normalized global and local efficiency, binary cost-integrated global and local efficiency 

and weighted normalised cost-integrated global and local efficiency) was assessed by means of 

partial correlations controlling for weight centile, gender, GA and smoking status. Hence, network 

density (i.e., the amount of connections over the total amount possible) was found to be significantly 

correlated with social-interactive cluster (rho=0.409, p=0.042) and attention cluster (rho=0.523, 

p=0.006). Normalised weighted global efficiency was correlated with organisation of the state 

(rho=0.434, p=0.027). 

An ordinal regression of NBAS severity score (dependent variable) with main clinical data (GA, 

weight centile, gender and smoking status during pregnancy) was performed, yielding to a non-

significant model (p=0.334, Chi2=4.570, Nagelkerke R2=0.149, df=4). However, the addition of 

global network features (average strength, network density, weighted global and local efficiency, 

normalized global and local efficiency, binary cost-integrated strength, binary cost-integrated global 

and local efficiency and cost-integrated weighted normalised global and local efficiency) 

significantly changed the model (p=0.003, Chi2=28.692, df=11), allowing to obtain a statistically 

significant model (p=0.004, Chi2=33.262, Nagelkerke R2=0.706, df=15), showing significant 

association of graph theory features based on RSN with the severity of abnormal neurobehavioral 

outcomes and the addition of significant information to main clinical features. 
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4. DISCUSSION 

Characterisation of the brain changes underlying neurodevelopmental problems in IUGR is a 

current challenge in modern fetal and paediatric medicine (Ment, Hirtz, & Huppi, 2009). A better 

understanding of the pathophysiology of this condition is essential to start developing early 

biomarkers to detect the infants at high risk of having altered neurodevelopmental problems. 

Importantly, it has been shown that early individualised interventions significantly improves IUGR 

neurobehavioral performance at short- and mid-term (Als et al., 2012; McAnulty et al., 2013). 

However, given the high prevalence of IUGR and the economic cost of individualised care units, 

selecting those IUGR infants with a higher risk is essential to appropriately advise parents and 

optimally use clinical resources. With this long-term goal in mind, in the present study we 

investigated functional brain networks in IUGR.  

The results obtained showed a very specific pattern of alterations in IUGR whole-brain RSN, 

characterised by a hyper-connectivity of their raw networks. However, when assessing the pure 

organisational features by means of three different normalisation procedures, we observe a sub-

optimal organisation in IUGR characterised by decreased global and local efficiency. Further 

analysis of nodal features showed a spread pattern of regional alterations in IUGR, however, not 

strong enough to withstand a FDR correction. Spatio-temporal analysis of the signal supported 

previous results, revealing a tendency of increased overall synchronisation in IUGR, and a set of 

nodal features that might have an important role in the reorganisation of functional brain networks 

obtained. These results, together with previously reported alterations in IUGR structural brain 

networks (Batalle et al., 2012) support the hypothesis that IUGR is a condition strongly associated 

with brain organisation, as has been suggested to happen with mood and psychiatric disorders. 

Albeit it is important to note that establishing a causality with the evidence available is still 

premature, association of network features with neurobehavioral performance is reported in this and 

other studies (Batalle et al., 2012; Batalle et al., 2013), postulating IUGR as a candidate to be a 

brain-network disorder (Rubinov & Bullmore, 2013). 
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Interestingly, in a previous study of structural brain networks in one-year-old population, reduced 

fractional anisotropy (FA) weighted global and local efficiency was found in IUGR (Batalle et al., 

2012). Intuitively one would expect to obtain reduced efficiencies in functional brain networks due to 

a weaker structural connectivity, but in contrary, significantly increased raw efficiencies were found 

in IUGR neonates. A possible explanation for this discord could be the difference of age in the 

population under study, as it is a critical period in terms of brain connectivity changes (Yap et al., 

2011). Although the constraining of functional connectivity to the structural substrate has been 

demonstrated (Deco et al., 2013; Honey et al., 2009; van den Heuvel et al., 2015), functional and 

structural brain networks might also be capturing different aspects of brain organisation, and they 

do not necessarily need to behave in the same manner (Cabral, Hugues, Kringelbach, & Deco, 

2012; Cabral, Kringelbach, & Deco, 2012). Note also that in a previous study on healthy infants, 

Gao et al. (2011) showed that, from neonatal age to one year of age, more connections presented a 

reduction of connectivity than those presenting an increase. Thus we cannot discard a possible 

retard in maturation as an explanation of the general increase in IUGR average strength. 

IUGR has been suggested to be a risk factor of developing disorders such as attention deficit 

hyperactive disorder (ADHD) (Heinonen et al., 2010; Linnet et al., 2006), autism spectrum disorders 

(ASD) (Gardener, Spiegelman, & Buka, 2011; Moore, Kneitel, Walker, Gilbert, & Xing, 2012) and 

schizophrenia (Nielsen et al., 2013). Although there are some contradictory reports, generally ASD 

has been characterised by having functional hyper-connectivity of salience and default mode 

network (Menon, 2013). However, whole-brain RSN have been reported to show reduced raw local 

efficiency but increased global efficiency after cost-correction (Rudie et al., 2012). In adult 

schizophrenia patients, reduced global and local efficiency after cost-correction of RSN has been 

reported (Liu et al., 2008), but also decreased average functional connectivity (Lynall et al., 2010). 

RSN of children with ADHD have been reported to have increased local efficiency for several costs, 

although raw weighted measures have not been described (Wang et al., 2009). Overall, after 

comparison with the body of literature we note a unique pattern of alterations in neonatal IUGR 

brain networks. This pattern of alterations must be confirmed at a later age, being the follow-up of 

IUGR population a crucial aspect for the characterisation of the evolution of the alterations and 
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long-term effects of this condition. The specific connectivity fingerprint trajectories that could 

underlie the increased prevalence of IUGR subjects developing disorders of neural development 

are not clear, and will be the likely focus of future prospective studies. We hypothesise that some of 

the links of IUGR with neurodevelopmental disorders could be partially associated with dysfunctions 

in some specific regional sub-networks produced by brain reorganisation. It is worthwhile to note 

that although partial correlation networks and temporal dynamics yield to same global functioning 

conclusions (IUGR has a hyper-connected, hyper-synchronised brain but with a sub-optimal 

organisation), the regional results obtained by each of these techniques showed different altered 

regions, suggesting that they assess complementary features of brain organisation, although both 

highlighted the role of frontal areas. Particularly, analysis of temporal dynamics allowed to obtain a 

reduced set of regions altered, comprised by frontal, cingulate and lingual cortices. In agreement 

with the results obtained, several frontal regions with altered structural brain network features have 

been previously reported in IUGR (Batalle et al., 2012), while evidence of alterations in frontal-

posterior networks in ASD has been reported in several studies (Maximo, Cadena, & Kana, 2014). 

Interestingly, altered nodal efficiency of left lingual gyrus has been specifically reported in structural 

brain networks of IUGR (Batalle et al., 2012; Batalle et al., 2013) and has also been shown to be 

decreased in RSN of ADHD patients (Wang et al., 2009). Concerning cingulate cortical areas, FA 

measures of this area have been strongly associated with altered neurobehavioral performance in a 

long-term rabbit model of IUGR (Illa et al., 2013). In addition, functional alterations of cingulate 

areas have been reported in different studies of ASD (Maximo et al., 2014), schizophrenia (Lynall et 

al., 2010) and ADHD (De La Fuente, Xia, Branch, & Li, 2013).  

Finding alterations in the brain network features associated with pathology is by itself relevant for 

the characterisation of its pathophysiology. In the case of IUGR, the results suggest that brain 

reorganisation previously demonstrated in the structural substrate is also present at a functional 

level since neonatal age. This significantly improves the knowledge of this condition, serving as a 

potential physiological basis for the neurobehavioral alterations reported in these infants (Figueras 

et al., 2009). Note that given the heterogeneity of the aetiology and progression of this condition, 

big samples are needed to find differences in neonatal neurobehavior, being even more crucial to 
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find individualised biomarkers of the long-term prognosis of infants with IUGR in order to be able to 

clinically intervene. Although multiple comparisons problems could preclude interpretations of direct 

partial correlations of network features with NBAS, the ordinal regression of functional network 

features and NBAS severity score is especially relevant as it is robust to this problem. These results 

are in line with previous findings reporting an association of network features of structural brain 

networks with neurodevelopment in IUGR (Batalle et al., 2012; Batalle et al., 2013). In addition, 

recent reports showing the feasibility to assess functional MRI in fetal period reinforce the potential 

to use functional brain networks as an early biomarker (Thomason et al., 2013). We are confident 

that combination of multi-modal features of brain networks will significantly improve the assessment 

of the risk of neurodevelopmental problems of prenatal origin since an early age, being its 

translation to the clinical practice in the mid-term horizon. 

Finally, there are several issues of the study that must be noted. First, we would like to note that 

the MRI acquisition was performed during natural sleep. Previous reports have associated 

deepness of sleep with functional connectivity (Horovitz et al., 2009; Larson-Prior et al., 2009); 

however, although the effects of sedation and sleep in functional connectivity are not fully 

understood, significant differences have not been found  between sedated and non-sedated infants 

using ICA and seed-based correlation approaches (Doria et al., 2010; Fransson et al., 2011; 

Fransson et al., 2009). Importantly, neonatal sleep has been suggested to be mainly in active sleep 

(Biagioni et al., 2005), minimising the possibility that different sleep deepness could be partially 

explaining some of the results obtained. Regarding the comparability of the results obtained, two 

previous studies use ROI-parcellation to study whole brain functional brain networks in neonates 

(Gao et al., 2011; van den Heuvel et al., 2015). Franson et al. (2011) also assessed whole-brain 

networks in a neonatal population, however, it was performed voxel-wise in a normalised space, 

obtaining very large networks (4966-by-4966 elements). Albeit the use of voxel-wise networks has 

some advantages, constraining the networks obtained to an anatomical brain atlas allows a more 

comprehensible and manageable comparison among studies, especially given the broad use of 

AAL atlas in the literature. However, regional parcellation of the neonatal brain is also a critical 

issue and could be a source of bias. This was alleviated by the use of T2-weighted anatomical 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Batalle et al.  21 

volumes which improve WM contrast in neonates (Williams et al., 2005), and by the use of a 

specific neonatal atlas (Shi et al., 2011). Note that although we correct for gender in the statistical 

model, in our population the percentage of males is much higher in IUGR group. Previous studies 

have described gender-related differences in brain connectivity (Ingalhalikar et al., 2014; Tian, 

Wang, Yan, & He, 2011), although the specific effects of gender differences on functional brain 

connectivity at such an early age are still largely unknown. We acknowledge the relatively small 

sample size available for this study. In order to assess the reliability of the results obtained, we 

applied a resampling approach allowing us to reassess the differences between cases and controls 

for global network features. After applying bootstrap with 10000 samples we observed that most of 

the differences reported are still statistically significant after resampling (Supplementary Table 2). 

Although the effects associated with IUGR appeared to be consistent when using different 

approaches, statistical power is limited by this reduced sample size. Further effort to study this very 

challenging population is needed to confirm the results here presented.  With respect of motion 

during scan, the estimation of motion for both groups was comparable with previously reported for 

infants and adolescents (Pruim, Mennes, Buitelaar, & Beckmann, 2015), and importantly, we didn’t 

find any significant differences in motion between cases and controls (Table 1), minimising the risk 

that any of the results reported could be related to different levels of motion in the two groups under 

study. We acknowledge that the robustness to motion of the approach used to analyse the data, 

i.e., constructing networks by means of partial correlations within the averaged signal among ROIs, 

needs to be further assessed (Power, Schlaggar, & Petersen, 2015). However, it should inherently 

remove signals present throughout the brain, therefore be robust to jerk motion typical in neonatal 

acquisitions. As the signal of the 88 remaining ROIs is used as a confounder in each of the partial 

correlations, any signal global to all the brain will be neglected as a possible source of pair-wise 

correlation. From a specific graph theoretical point of view, partial correlations have been shown to 

be an effective way to remove head motion effects (Yan, Craddock, He, & Milham, 2013). In 

addition, the effect of low motion, will also be further compensated by voxel-wise regressing out of 

the signal the 6 rigid-body features previously used to correct inter-volume motion. We further 

assessed the effect of motion by adding average FD-RMS and number of frames with high motion 
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(outliers) as a covariate in the GLM assessing group effects in main network features, without 

finding any relevant difference with reported results (Supplementary Table 3). Furthermore, we also 

tested censoring of frames with high motion and regressing them out from correlations when 

computing connectivity matrices (Supplementary Material), also confirming the main findings 

reported, suggesting that the motion during acquisition did not have a relevant effect in the graph 

theory characteristics here reported. Finally, since haemodynamic adaptation in IUGR occurs with 

blood flow redistribution preferentially to the brain, i.e. the brain sparing effect, we could not discard 

that part of the changes observed could be related with changes in brain vasculature. Since most of 

IUGR babies included in our study did not have brain vasodilation, as assessed by Middle Cerebral 

Artery pulsatility index, we could expect that differences would not be related with changes in 

neurovasculature. However, early changes in brain blood redistribution could also affect pulsatility 

index (Garcia-Canadilla et al., 2014), not allowing us to discard this effect in our population. 

5. CONCLUSIONS 

In conclusion, the results presented show the feasibility of using functional brain networks at 

neonatal age to characterise alterations of prenatal origin. Using IUGR as a model of prenatal 

condition allowed finding a unique pattern of alterations in the functional brain network organisation, 

associated with neurobehavioral scores. Overall, the observed functional reorganisation in IUGR 

neonates could be a potential substrate of altered neurodevelopment in infants with IUGR, and 

together with previous findings, postulate IUGR condition as a possible brain-network disorder. 

Association of network features with neurobehavior since neonatal age opens the opportunity to 

develop early image biomarkers of altered neurodevelopment, a clinical chance to improve the 

management of a condition that affects up to 10% of the population. 
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FIGURE CAPTIONS 

Figure 1. Representation of control and IUGR raw and normalised average functional brain 

networks (A). Comparison of average strength (B), network density (C), raw global and local 

efficiency (D) and normalised global and local efficiency (E) between controls and IUGR. Cost-

corrected values and its integration in the valid cost range (0.51-0) of binary global efficiency (F), 

binary local efficiency (G), normalised global efficiency (H) and normalised local efficiency (I). * 

p<0.05. 

 

Figure 2. Pattern of alterations in IUGR nodal weighted efficiency and nodal strength of raw and 

normalised networks. Raw features increased (A) and decreased (B) in IUGR group. Normalised 

features increased (C) and decreased (D) in IUGR group. L and R indicate left and right side of the 

brain respectively. See correspondence of abbreviations with anatomical regions in Supplementary 

Table 1. 

 

Figure 3. Kuramoto order parameter at each time point compared between cases and controls (A). 

Kuramoto order parameter reordered according to relative value for each subject, from its lowest to 

its highest value (B). Global (C) and local efficiency (D) at each time point reordered according 

relative Kuramoto order parameter. Time points where nodal efficiency is significantly different in 

IUGR when compared with controls and its frequency among time points (E). Red dotted line in 

panel E is set at 25.1%, corresponding to two standard deviations above average percentage of 

significant alterations. Regions significantly different during more than 25.1 % are left superior 

frontal gyrus dorsolateral part (3), right middle frontal gyrus, orbital part (10), right median cingulate 

and paracingulate gyri (34), and left lingual gyrus (47). See abbreviations of altered regions in 

Supplementary Table 1. 
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Table 1. Neonatal data, demographic characteristics, NBAS results, SAR and motion estimation 

during scan. 

 
Controls 

n=13 
IUGR 
n=20 

p a 

Neonatal data 

GA at delivery [weeks] 39.4 (1.7) 38.2 (2.1) 0.089 

Birth weight [g] 3304 (332) 2148 (623) <0.001 

Birth weight centile 54.7 (28.4) 2.1 (2.7) <0.001 

Gender distribution  (male/female) 5/8 13/7 0.135 

Apgar 5 minutes 10 (0) 9.8 (0.5) 0.255 

Umbilical artery pH 7.25 (0.05) 7.23 (0.07) 0.388 

Neonatal complications  - - - 

Demographic characteristics 

Maternal age [years] 35.7 (2.4) 31.9 (4.6) 0.009 

Maternal education high school or less  38.5% 40.0% 0.930 

Caucasian 61.5% 55.0% 0.710 

Smoking during pregnancy  0 % 10 % 0.508 

Age at MR (post-menstrual age) [weeks] 44.0 (1.9) 43.0 (2.2) 0.201 

NBAS z-scores b 

         Social interactive b 0.37 (2.16) 0.30 (1.53) 0.979 

         Organization of state c -1.26 (1.61) 0.07 (1.59) 0.087 

Regulation of state c -0.55 (1.42) -0.97 (0.86) 0.198 

Autonomous nervous system c 1.01 (0.33) 0.22 (0.77) 0.008 

         Attention c -0.34 (1.30) -0.53 (1.19) 0.837 

    

NBAS severity score b, c 1.69 (1.38) 1.41 (1.37) 0.597 

Acquisition parameters and motion estimation 

         SAR [W/kg] 0.44 (0.05) 0.42 (0.07) 0.347 

         Average FD-RMS motion estimation  0.17 (0.09) 0.22 (0.16) 0.328 

         Number of frame outliers 9.8 (10.4) 14.0 (12.7) 0.320 

    
a Student’s t-test for independent samples or Pearson’s Chi2 test  
b GLM with GA as co-variable  c 13 controls vs. 16 IUGR d 13 controls vs. 17 IUGR 
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