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D-String on Near Horizon Geometries and Infinite Conformal Symmetry
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We show that the symmetries of effective D-string actions in constant dilaton backgrounds
directly related to homothetic motions of the background metric. In the presence of such motions, t
are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Ne
horizon (anti–deSitter) D3 and D1 1 D5 backgrounds are discussed in detail and shown to provide 2
interacting field theories with infinite conformal symmetry. [S0031-9007(98)06979-8]
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The recent past has seen an increasing interest in
conjecture of a correspondence between largeN limits
of certain d-dimensional conformal field theories and
supergravity on the product ofsd 1 1d-dimensional
anti–de Sitter (AdS) space with a compact manifold [1,2
This suggested consideration of world-volume bran
actions on near horizon backgrounds. M2-, M5-, an
D3-branes have been studied [1,3,4] and interacti
sp 1 1d-dimensional theories in Minkowski space-tim
with conformal SOs2, p 1 1d 3 SOsd 2 p 2 1d sym-
metry were found [5]. The conformal symmetries o
these branes reflect the isometries ofAdSp12 3 Sd2p22.
The case of a D-string in the near horizon geometry of
sD1 1 D5d-brane was also considered in [5].

In this work we study the rigid symmetries of effec
tive D-string actions of the Born-Infeld type on curve
backgrounds with constant dilaton. We find that th
symmetries are related with homothetic motions of th
background metric. Each of these motions gives rise
infinitely many nonlinearly realized rigid symmetries, with
the Born-Infeld gauge field transforming in a nontrivia
way. The algebra of these symmetries is a loop gener
ization of the algebra associated with the homothetic m
tions. We spell out the symmetry transformations befo
gauge fixing and in the static gauge for the world-she
diffeomorphisms. The gauged fixed transformations ge
erate infinitely many symmetries of interactings1 1 1d-
dimensional field theories in a flat space-time.

We then specify these general results for particular
interesting D3- andsD1 1 D5d-brane backgrounds and
show that the gauge fixed field theories in the respect
near horizon (AdS) backgrounds have infinite conform
symmetry. In the case of the D3 background the symm
try group is a loop generalization of ISOs1, 3d 3 SOs6d.
In the near horizon limit there is an enhancement
the symmetry to the loop generalization of conform
SOs2, 4d 3 SOs6d due to the AdS geometry. The symme
try group contains as a subgroup a loop version of confo
mal SOs2, 2d with nonlinearly realized special conforma
transformations.
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In the case of a D-string on a near horizonsD1 1 D5d
background we get an interacting theory with infinite
conformal SOs2, 2d 3 SOs4d 3 ISOs4d loop symmetry.
The zero modes of the loop algebra reproduce th
corresponding results of [5].

We remark that these structures are not restricted
Dirac-Born-Infeld actions. Rather, they are present i
a more general set of models studied here. Hence,
appropriate backgrounds one gets a set of conform
field theories. This does not exclude that kappa-invaria
extensions of our formulation and/orT duality properties
may select the Dirac-Born-Infeld action.

It is natural to wonder how these results extend t
Dp-branes withp . 1. This is not known; a complete
classification of the symmetries forp . 1 has not been
carried out so far. Of course, the presence of infinitel
many symmetries may well be restricted to the cas
p  1, as the two-dimensional case is often special. O
the other hand, the presence of a Kac-Moody version
the conformal group SO(2,4) for D3-branes in the nea
horizon geometry has been conjectured recently in [6] an
would be reminiscent of our result forp  1. Work in
this direction is in progress.

Symmetries and homothetic motions.—The effective
Born-Infeld actions for D-strings considered here ca
be cast in a form similar to the familiar sigma mode
formulation of the Nambu-Goto action. In this form they
are contained in a more general class of models with a
action of the form

S 
1
2

Z
d2s h

p
g gmnfswdgmnsxd≠mxm≠nxn 1 emn

3 fbmnsxd≠mxm≠nxn 1 Dswd Fmngj ,

(1)

where gmn is an auxiliary world-sheet metric,w is an
auxiliary scalar field,emn is the usual Levi-Civita tensor
density, andFmn  ≠mAn 2 ≠nAm is an Abelian field
strength. gmn and bmn are to be thought of as target
space metric and 2-form, respectively. We do not impos
© 1998 The American Physical Society
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restrictions onf andD apart fromf, D fi const, but we
note that one of them may be chosen conveniently (on
the relative choice off and D characterizes a particular
model). Born-Infeld actions arise for

f2swd 2 D2swd  1 . (2)

Indeed, eliminating the auxiliary fieldsgmn and w using
the equations of motion, the Lagrangian turns for (2) int

LBI 
q

2 detsGmn 1 Fmnd 1
1
2 emnBmn , (3)

Gmn  gmnsxd≠mxm≠nxn, Bmn  bmnsxd≠mxm≠nxn.

This represents Born-Infeld models with a “Wess-Zumin
term” determined bybmn and a constant dilaton which
may be made explicit by rescalinggmn and Am. More
general Born-Infeld models, in particular, models wit
nonconstant dilaton, can also be cast in a sigma mo
form [7,8], but are not considered here.

In [8] we have shown among others that all of the rigi
symmetries of actions (1) (and generalizations thereof) a
determined by generalized Killing vector equations. A
analysis of these equations, similar to the one perform
o
e

a

ly

o

o

h
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d
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n
ed

for the example treated in [7], shows that the rigid
symmetries of models (1) are generated by

Dxm  jm
i sxd liswd, Dgmn  0 ,

Dw  Ki liswd fswdyf 0swd ,
(4)

DAm  s1yD0d f f
p

g emngn% gmnsDxnd0≠%xm

1 sbnmDxn 1 liqmid0≠mxm 2 AmsD0Dwd0g .

Here, prime denotes differentiation with respect tow, the
liswd are arbitrary functions of w, and hjm

i sxd, qmisxdj
denotes a complete set of inequivalent solutions of

Ligmnsxd  2Kigmnsxd, Ki  const, (5)

Libmnsxd  ≠nqmisxd 2 ≠mqnisxd , (6)

where Li is the Lie derivative alongji. Using (5)
and (6), it is not difficult to verify that the above
transformationsD generate indeed symmetries of an
action (1).

The symmetries of Born-Infeld actions (3) are obtaine
from the above formulas by eliminating the auxiliary
fieldsgmn andw, resulting in
Dxm  jm
i sxdlisF d ,

DAm  fVmis1 2 F 2d 1 Wmis1 2 F 2d3y2g
dlisF d

dF
1 AmKi

∑
F 22 2 2 1 sF 2 F 21d

d
dF

∏
lisF d ,

(7)
g

sis

by

e

he
er
op
on,
1)
l,

he

nd
where

Vmi  2

q
G emnGn% jm

i sxdgmnsxd≠% xn,

Wmi  fbmnsxdjn
i sxd 2 qmisxdg≠mxm, (8)

F 
1
2 G21y2emnFmn , G  2 detsGmnd .

Let us now comment on the nature of the above sym
metries. The occurrence of arbitrary functionsliswd in
(4) implies that each nontrivial solution to (5) and (6
gives rise toinfinitely many rigid symmetries. Equation
(5) defines so-called homothetic motions ofgmn and the
Ki are called homothetic constants [9]. Homothetic m
tions with nonvanishing homothetic constants are call
proper because the others are just isometries of the m
ric. One can always choose a basis of homothetic motio
such that at most one of them is proper. Without loss
generality, we can thus usei  1, 2, . . . for isometries of
the metric, reservei  0 for a proper homothetic motion
(if any), and normalizej0 such thatKi  d

0
i .

The commutator of a proper homothetic motion and a
isometry of the metric is always again an isometry,
(5) impliesfL0, Liggmn  0. The algebra of homothetic
motions is thus of the form

fLi , Ljg  c k
ij Lk , fL0, Lig  c

j
i Lj si, j, k $ 1d ,

(9)
wherecij

k andci
j are structure constants.

The presence of arbitrary functions ofw in (4) (which
turn into functions ofF upon elimination ofw) implies
that the algebra of the corresponding symmetries is a lo
version of (9), the role of the loop variable being playe
-

)

-
d
et-
ns
of

n
s

op
d

by w (or a function thereof). This is seen by expandin
the functionsli in a suitable basis for functions ofw. A
particularly nice form of the algebra emerges in a ba
consisting of powers of the functionfswd occurring in
(1). We denote the corresponding basis of symmetries
hDa

i j, wherea indicates the power offswd,

Da
i xm  2jm

i sxdfaswd, Da
i w  2d0

i
fa11swd

f 0swd
.

(10)
It is now straightforward to verify that in this basis th
symmetry algebra reads, onxm andw,

fDa
i , D

b
j g  c k

ij D
a1b

k si, j, k $ 1d , (11)

fDa
0 , D

b
i g  sc j

i 2 bd
j
i dDa1b

j si, j $ 1d , (12)

fDa
0 , D

b
0 g  sa 2 bdDa1b

0 . (13)

Note that (11) is a loop algebra associated with t
isometries of the metric. Hence, if there is no prop
homothetic motion, the symmetry algebra is a true lo
algebra. In the presence of a proper homothetic moti
it turns into the semidirect sum of the loop algebra (1
and the Witt algebra (13). We note that, in genera
the algebra has onAm the above form only up to gauge
transformations and on-shell trivial symmetries.

D3 and D1 1 D5 backgrounds.—We treat now two
particularly interesting curved backgrounds and give t
symmetry transformations before gauge fixing.

First we consider a D3-brane supergravity backgrou
with target space metric and 2-form given by
1771
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ds2  H21y2habdxadxb 1 H1y2dABdxAdxB,

bmn  0, H  1 1 sRyrd4,
(14)

where r2  dABxAxB, a  0, . . . , 3, and A  4, . . . , 9.
The rigid symmetries are obtained from (4) by solving (5
and (6). Becausebmn  0, the solution of (6) is trivial;
i.e., we can chooseqmi  0 without loss of generality.
An analysis of (5) shows that in this case we haveKi  0;
i.e., there is no proper homothetic motion. Hence, th
solutions of (5) are exhausted by the Killing vector field
of the metric in (14). The latter correspond to Poinca
transformations in the 4-space parallel to the D3-bran
and rotations in the transverse directions. The symme
transformations ofw andxm read thus in this case:

Dxa  laswd 1 labswdhbcxc, lab  2lba,

DxA  lABswddBCxC , lAB  2lBA, (15)

Dw  0 .

The transformations ofAm are then obtained from (4).
Equations (15) imply that the symmetry group is in thi
case a loop version of ISOs1, 3d 3 SOs6d.

Next we discuss the near horizon geometry of (14) du
to its importance for the conjectures in [1]. Close t
the horizon (r ! 0) one can neglect the constant in th
harmonic functionH and end up with

sds2dhor. 
r2

R2 habdxadxb 1
R2

r2 dABdxAdxB. (16)

Again one finds that the solutions of (5) are exhausted
the Killing vector fields. However, the asymptotic metric
e

1772
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has more isometries than the original one,
Dxa  laswd 1 labswdhbcxc 1 lDswdxa

2 2lb
Sswdhbcxaxc 1 la

Sswd shbcxbxc 1 R4r22d ,

DxA  f2la
Sswdhabxb 2 lDswdg xA 1 lABswddBCxC ,

Dw  0 . (17)
The additional isometries, corresponding tolD and lS ,
are indeed reminiscent of dilatations and special confo
mal transformations ins1 1 3d-dimensional flat space.
The symmetry group is now a loop version of SOs2, 4d 3

SOs6d. This symmetry enhancement originates from th
anti–de Sitter geometry and corresponds to the supersy
metry enhancement discussed in [10].

Finally, we consider the near horizon geometry of
sD1 1 D5d supergravity background. The target spac
metric and 2-form are given by

ds2 
r2

R1R5
hmndxmdxn 1

R1

R5
dabdxadxb

1
R1R5

r2 dABdxAdxB, (18)

b 
r2

R2
1

dx0 ^ dx1 1 2R2
5 sin2 u1 sinu2u3du1 ^ du2 ,

where r2  dABxAxB, m  0, 1, a  2, . . . , 5,
A  6, . . . , 9 and theui are spherical coordinates for the
xA as in [5]. Again there are no proper homothetic mo
tion; i.e., the solutions of (5) are exhausted by the Killing
vector fields of the metric in (18). The 2-formb is not
invariant under all of these isometries but it is still invari-
ant up to exact forms, as required by (6). The symmetrie
form a loop version of SOs2, 2d 3 SOs4d 3 ISOs4d
through
Dxm  lmswd 1 lmnswdhn% x% 1 lDswdxm 1 ln
S swd fdm

n sh%sx% xs 1 R2
1R2

5r22d 2 2hn% xmx% g ,

DxA  f2l
m
S swdhmnxn 2 lDswdgxA 1 lABswddBCxC , Dxa  laswd 1 labswddbcxc, Dw  0 , (19)

wherelmn  2lnm. The corresponding transformationsDAm are obtained from (4), withqmi  qai  0 and

liqAi  2ln
SenmxmdABxBR2

5r22 1 lBCxDsbABdCD 2
1
2 eABCDR2

5r22d . (20)
es,

r
e

2D conformal field theories.—We now discuss the in-
teracting conformal field theories obtained in the stat
gaugexm  sm (m  0, 1) for world-sheet diffeomor-
phisms. Before eliminating the auxiliary fieldsgmn and
w, the action in the static gauge is thus a functional of

hfj  hAm, gmn , w, x2, x3, . . .j .

This action is, of course, not invariant anymore und
the transformationsD given above. Rather it is invariant
under particular combinations of these transformations a
compensating world-sheet diffeomorphisms preserving t
ic

r

nd
he

static gauge. These combinations are

df  Lef 2 fDfgxmsm , em  fDxmgxmsm ,

(21)
where Le is the world-sheet Lie derivative alongem.
The algebra of thed’s coincides with the algebra ofD’s.
Hence, only the realization of these symmetries chang
but not the corresponding symmetry group.

Let us now illustrate this procedure for the nea
horizon D3-brane supergravity background (16). Th
corresponding action (1) reads, in the static gauge,
ies of
S 
1
2

Z
d2s h

p
g gmnfswdr2R22fhmn 1 dâb̂≠mxâ≠nxb̂ 1 R4r24dAB≠mxA≠nxBg 1 emnDswdFmnj , (22)

whereâ, b̂  2, 3 correspond to the parallel D3-brane directions which have not been gauge fixed. The symmetr
(22) are now obtained from (21) using (4) and (17). For instance, a dilatation symmetry corresponding tolD involves
a compensating diffeomorphism with parametere

m
D  lDswdsm and is now realized by
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dDxâ  e
m
D≠mxâ 2 lDswdxâ,

dDxA  e
m
D≠mxA 1 lDswdxA, dDw  e

m
D≠mw,

dDgmn  e
%
D≠% gmn 1 g%n≠me

%
D 1 gm% ≠ne

%
D , (23)

dDAm  e
%
D≠% Am 1 A% ≠me

%
D 2 l0

Dswdfswd fD0swdg21

3
p

g emngn% R22r2fh%sss 1 dâb̂xâ≠% xb̂

2 r24R4dABxA≠%xBg .

These transformations generate symmetries of (22) f
any choice oflDswd. This includes dilatations of the
standard form for the special choicelD  1,

lD  1: dDf  sm≠mf 1 wsfdf , (24)

where the Weyl weightswsfd are given by

wsxâd  21, wsxAd  wsAmd  1,

wswd  0, wsgmnd  2 .

Analogously one determines the other symmetries in t
static gauge. Altogether they form, as before, a loo
generalization of SOs2, 4d 3 SOs6d with a loop version
of conformal SOs2, 2d as a subgroup. This subgroup
corresponds tolm, lmn , lD , andl

m
S , and the parameters

of the compensating world-sheet diffeomorphisms for th
subgroup are thus

e
m
C  lmswd 1 lDswdsm 1 flmnswd 2 2smln

S swdg

3 hn% s% 1 l
m
S swd

3 ssns% hn% 1 xâxb̂dâb̂ 1 R4r22d . (25)

The corresponding conformal transformations ofxâ, xA.
andw can be written compactly as

dCxâ  e
m
C ≠mxâ 2

1
2 s≠exp.

m e
m
C dxâ,

dCxA  e
m
C ≠mxA 1

1
2 s≠exp.

m e
m
C dxA, (26)

dCw  e
m
C ≠mw ,

where ≠
exp.
m denotes differentiation only with respect to

explicit sm. Note that even the zero modes of the speci
conformal transformations (l

m
S  const) are nonlinearly

realized.
If we consider (22) in the Born-Infeld action case an

expand in low velocities we get

LBI 
r2

R2 1
r2

2R2 dâb̂≠mxâ≠mxb̂

1
R2

2r2 dAB≠mxA≠mxB

1
R2

4r2 FmnFmn 1 . . . , (27)

wherem, n are raised withhmn .
The case of a D-string in the near horizonsD1 1 D5d

supergravity background (18) is treated analogously. T
resulting symmetry transformations establish a loop ge
eralization of the conformal SOs2, 2d 3 SOs4d 3 ISOs4d
symmetry found in [5]. The Weyl weights are again
easily obtained from the special dilatation withlD  1
or

he
p

is

al

d

he
n-

which has again the form (24) and yields

wsxAd  wsAmd  1, wsxad  wswd  0,

wsgmnd  2 .

Comments.—The symmetries of D-string actions de-
scribed above may be viewed as generalizations of the
miliar target space symmetries of the string. There are tw
important differences to the string case which are both d
rect consequences of the presence of the Born-Infeld gau
field. First, each target space symmetry gives rise to a fa
ily of infinitely many symmetries of the D-string action,
whereas it yields only one rigid symmetry of the (Nambu
Goto or Polyakov) string action. Second, there is an add
tional infinite family of symmetries of the D-string action
if the target space metric admits a proper homothetic m
tion. The latter are dilatational symmetries without an
counterpart in the string case (see [7] for an example).

We stress that all of these infinitely many symmetrie
are presentin addition to the world-sheet symmetries and
must not be confused with the latter. Indeed, the actio
(1) is, of course, also gauge invariant both under world
sheet diffeomorphisms and under Weyl-transformations
gmn, as its string counterpart, the Polyakov action. I
particular, one may consider the action (1) in a conform
gauge for these world-sheet symmetries (rather than in t
static gauge considered above). That action has infinite
many conformal world-sheet symmetries on top of th
symmetries discussed above. In particular, it may th
serve as a starting point for quantization, along the line
of string quantization based on the Polyakov action in
conformal gauge.
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