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We show that the symmetries of effective D-string actions in constant dilaton backgrounds are
directly related to homothetic motions of the background metric. In the presence of such motions, there
are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near
horizon (anti—deSitter) D3 andID+ D5 backgrounds are discussed in detail and shown to provide 2D
interacting field theories with infinite conformal symmetry. [S0031-9007(98)06979-8]

PACS numbers: 11.25.Hf, 11.30.Na

The recent past has seen an increasing interest in theln the case of a D-string on a near horizd@l + D5)
conjecture of a correspondence between laMgdéimits  background we get an interacting theory with infinite
of certain d-dimensional conformal field theories and conformal S@2,2) X SO4) X ISO(4) loop symmetry.
supergravity on the product ofd + 1)-dimensional The zero modes of the loop algebra reproduce the
anti—de Sitter (AdS) space with a compact manifold [1,2].corresponding results of [5].

This suggested consideration of world-volume brane We remark that these structures are not restricted to
actions on near horizon backgrounds. M2-, M5-, andDirac-Born-Infeld actions. Rather, they are present in
D3-branes have been studied [1,3,4] and interacting more general set of models studied here. Hence, in
(p + 1)-dimensional theories in Minkowski space-time appropriate backgrounds one gets a set of conformal
with conformal S@2,p + 1) X SOd — p — 1) sym- field theories. This does not exclude that kappa-invariant
metry were found [5]. The conformal symmetries of extensions of our formulation and/@r duality properties
these branes reflect the isometriesAafS, 1, X S97772.  may select the Dirac-Born-Infeld action.

The case of a D-string in the near horizon geometry of a It is natural to wonder how these results extend to
(D1 + D5)-brane was also considered in [5]. Dp-branes withp > 1. This is not known; a complete

In this work we study the rigid symmetries of effec- classification of the symmetries fgr > 1 has not been
tive D-string actions of the Born-Infeld type on curved carried out so far. Of course, the presence of infinitely
backgrounds with constant dilaton. We find that themany symmetries may well be restricted to the case
symmetries are related with homothetic motions of thep = 1, as the two-dimensional case is often special. On
background metric. Each of these motions gives rise tdéhe other hand, the presence of a Kac-Moody version of
infinitely many nonlinearly realized rigid symmetries, with the conformal group SO(2,4) for D3-branes in the near
the Born-Infeld gauge field transforming in a nontrivial horizon geometry has been conjectured recently in [6] and
way. The algebra of these symmetries is a loop generalwvould be reminiscent of our result for = 1. Work in
ization of the algebra associated with the homothetic mothis direction is in progress.
tions. We spell out the symmetry transformations before Symmetries and homothetic motieasThe effective
gauge fixing and in the static gauge for the world-sheeBorn-Infeld actions for D-strings considered here can
diffefomorphisms. The gauged fixed transformations genbe cast in a form similar to the familiar sigma model
erate infinitely many symmetries of interactifig + 1)-  formulation of the Nambu-Goto action. In this form they
dimensional field theories in a flat space-time. are contained in a more general class of models with an

We then specify these general results for particularlyaction of the form
interesting D3- andD1 + D5)-brane backgrounds and |
show that the gauge fixed field theories in the respectiveS = — ] o Ly Y (@) gmn(x)d Xm0, X" + €
near horizon (AdS) backgrounds have infinite conformal 2
symmetry. In the case of the D3 background the symme- X [byn(x)0,x" 0, x" + D(@) Fuyl},
try group is a loop generalization of 1$0Q3) X SQ(6). @)

In the near horizon limit there is an enhancement of

the symmetry to the loop generalization of conformalwhere y,, is an auxiliary world-sheet metrigp is an
SQ(2,4) X SQ6) due to the AdS geometry. The symme- auxiliary scalar fielde*” is the usual Levi-Civita tensor
try group contains as a subgroup a loop version of confordensity, andF,, = d,A, — d,A, is an Abelian field
mal SQ2,2) with nonlinearly realized special conformal strength. g,,, and b,, are to be thought of as target
transformations. space metric and 2-form, respectively. We do not impose
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restrictions onf and D apart fromf, D # const, but we for the example treated in [7], shows that the rigid
note that one of them may be chosen conveniently (onlgymmetries of models (1) are generated by

the relative choice of° and D characterizes a particular mo_ gm i _
model). Born-Infeld actions arise for Ax & (Jf) A(e), Ay, =0,
A = Kl‘ Al ! .
f2(€0) _ D2(¢) =1. (2) ® fgp)f(@)/f (¢)g I (4)

Indeed, eliminating the auxiliary fielgs, and ¢ using AA, = (1/D )[f\/?e,“.,y gmn(Ax") 9o x
the equations of motion, the Lagrangian turns for (2) into + (bumAx" + A'qpi) 9y x™ — A (D'A@)'].
Lg =+ —detG,, + F,,) + 1 eurg . 3 Here, prime denotes differentiation with respecitpthe

Bl \/ (G wr) T2 € By @) Ai(p) are arbitrary functions of ¢, and {£/"(x), gmi(x)}
Gur = gma(x)0,x™" 9, x", Buy = bun(x)0,x"3,x".  denotes a complete set of inequivalent solutions of
This represents Born-Infeld models with a “Wess-Zumino Ligmm(x) = —K;gmn(x), K; = const,  (5)

term” determined byb,,, and a constant dilaton which B
may be made explicit by rescaling,, andA,. More Libnn() = 9nqmi(x) = dngui(x), 6)
general Born-Infeld models, in particular, models withwhere £; is the Lie derivative alongé;. Using (5)
nonconstant dilaton, can also be cast in a sigma modelnd (6), it is not difficult to verify that the above
form [7,8], but are not considered here. transformationsA generate indeed symmetries of an
In [8] we have shown among others that all of the rigidaction (1).
symmetries of actions (1) (and generalizations thereof) are The symmetries of Born-Infeld actions (3) are obtained
determined by generalized Killing vector equations. Anfrom the above formulas by eliminating the auxiliary
analysis of these equations, similar to the one perforrrpeﬁelds Yur @and e, resulting in

Ax™ = EMA(F),

dX’ _ od ()
My =Vl = F + W = P g k5 oo - F S ),
dF dF
where | by ¢ (or a function thereof). This is seen by expanding
o ve gm Py the functionsA’ in a suitable basis for functions of. A
Vi G €wrG™ &7 (gmn(x)9 ", particularly nice form of the algebra emerges in a basis
Wyi = [bmn(x)€]'(x) = qmi(x)]9,x", (8)  consisting of powers of the functiofi(¢) occurring in
— e 12pmvgp - —d (1). We denote the corresponding basis of symmetries by
F=26 7" G elGpr). {A%}, wherea indicates the power of (¢),
Let us now comment on the nature of the above sym- wil
metries. The occurrence of arbitrary functioh’€¢) in AZx™ = —£m(x) (), A%p = _5pf (¢)
(4) implies that each nontrivial solution to (5) and () ' ' ' tfe)
gives rise toinfinitely many rigid symmetries Equation (10)

(5) defines so-called homothetic motions ©f, and the |t js now straightforward to verify that in this basis the
K; are called homothetic constants [9]. Homothetic mo-symmetry algebra reads, aff and ¢,

tions with nonvanishing homothetic constants are called w B i atB o
proper because the others are just isometries of the met- [AF, A5 ] = Cij Ay (i,j,k=1), (11)

ric. One can always choose a basis of homothetic motions @ BT INCTY: .

such that at most one of them is proper. Without loss of [A5. A7 ] = (" = BoIA,; @.j=1, (12
generality, we can thus use= 1, 2, ... for isometries of A AP = (o — BIAYTE 13

the metric, reserve = 0 for a proper homothetic motion (A0, 80 ] = (a = B)Ao (13)

(if any), and normalize, such thatk; = 5. Note that (11) is a loop algebra associated with the

The commutator of a proper homothetic motion and arisometries of the metric. Hence, if there is no proper
isometry of the metric is always again an isometry, afiomothetic motion, the symmetry algebra is a true loop

(5) implies[ Lo, L;]gmn = 0. The algebra of homothetic algebra. In the presence of a proper homothetic motion,
motions is thus of the form it turns into the semidirect sum of the loop algebra (11)

— .k _ . and the Witt algebra (13). We note that, in general,
(L L) =" L Lo Lid= e Ly (jk=1), o algebra has oA, the above form only up to gauge
(9) transformations and on-shell trivial symmetries.
wherec;;* andc;/ are structure constants. D3 and D1 + D5 backgrounds—We treat now two
The presence of arbitrary functions efin (4) (which  particularly interesting curved backgrounds and give the
turn into functions of F upon elimination ofp) implies  symmetry transformations before gauge fixing.
that the algebra of the corresponding symmetries is a loop First we consider a D3-brane supergravity background
version of (9), the role of the loop variable being playedwith target space metric and 2-form given by
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ds®> = H ' nu,dx®dx” + H'Y?84pdx"dx®, has more isometries than the original one,
bun =0,  H=1+ (R/r), (14)  Axt = )‘a(g")b+ A (@) mpex” + )‘D(g")xz .
= 2X5(@)Mpexx® + A5(@) (mpex”x + R7r ),
where r? = 84px4x%, @ =0,...,3, andA =4,...,9. =TT T .
The rigid symmetries are obtained from (4) by solving (S)Ax = [245(@)napx” — Ap(@)]x" + A% (@)Spex™,
and (6). Becausé,,, = 0, the solution of (6) is trivial; Ay = 0. (17)
l.e., we can choosg,,; = 0 without loss of generality. - The additional isometries, corresponding A and As,
An analysis of (5) shows that in this case we h&ve= 0; gare indeed reminiscent of dilatations and special confor-
i.e., there is no proper homothetic motion. Hence, theng| transformations in(1 + 3)-dimensional flat space.
solutions of (5) are exhausted by the Killing vector fieldsThe symmetry group is now a loop version of @3t X
of the metric in (14). The latter correspond to Poincarésos). This symmetry enhancement originates from the

transformations in the 4-space parallel to the D3-braneanti—de Sitter geometry and corresponds to the supersym-
and rotations in the transverse directions. The symmetnfetry enhancement discussed in [10].

transformations of andx™ read thus in this case: Finally, we consider the near horizon geometry of a
Ax® = A%(p) + A (@) ppex® N2 — _ \ba (D1 + D5) supergravity background. The target space
- bc s - s

metric anc% 2-form are given by
Ax* = AP(¢)8pcxC, MB = — )B4, (15)

R
ds* = NuvdxPdx” + =1 S pdx®dx?
Ap = 0. RiRs Rs
RiRs A B
The transformations oft,, are then obtained from (4). T2 Sapdx”dx”, (18)
Equations (15) imply that the symmetry group is in this 5
case a loop version of IS@, 3) X SO6). b = V_zdxo A dx! + 2R2Si? 0, Sin6»63d6, A db>,
Next we discuss the near horizon geometry of (14) due Ri

to its importance for the conjectures in [1]. Close towhere r? = §4px*x8,  ©=0,1, a=2,....5,
the horizon { — 0) one can neglect the constant in theA = 6,...,9 and thed; are spherical coordinates for the
harmonic functiond and end up with x4 as in [5]. Again there are no proper homothetic mo-
’ R? tion; i.e., the solutions of (5) are exhausted by the Killing

(ds®)hor. = Lz Napdx®dx’ + =5 8,pdxdx®. (16)  vector fields of the metric in (18). The 2-forinis not
r invariant under all of these isometries but it is still invari-

Again one finds that the solutions of (5) are exhausted bnt UP to exact forms, as required by (6). The symmetries

the Killing vector fields. However, the asymptotic metr‘c tﬁrm ﬁ loop version of SQ@,2) X SO4) X ISO(4)
roug

Axt = M (@) + A (@)n,ox? + Ap(@)x* + A5(@)[8F(ngex®x” + RIR5r™%) — 2m,oxHx?],
Axt = 205 (@)nuwx” — Ap(@)x* + A*B(9)8pcxC, Ax® = A(p) + A (@)8pex”, Ap =0, (19)

whereA™" = —A"". The corresponding transformatioasi, are obtained from (4), with,;, = ¢, = 0 and
)\iin = 2)\§EVMX“5ABXBR52I'72 + /\BCXD(bAB(SCD - %EABCDR§V72)- (20)

2D conformal field theories—We now discuss the in : -
teracting conformal field theories obtained in the staticStetic gauge. These combinations are
gaugex* = o* (u = 0,1) for world-sheet diffeomor- 8 =Lep — [Apline—cn, e = [Ax*]pnegn ,
phisms. Before eliminating the auxiliary fields,, and (1)

¢, the action in the static gauge is thus a functional of where £, is the world-sheet Lie derivative along*.

{p} = {Au Yur» @, X557, ). The algebra of thé’s coincides with the algebra af’s.
This action is, of course, not invariant anymore undefi€nce, only the realization of these symmetries changes,
the transformationd given above. Rather it is invariant PUt not the corresponding symmetry group.

under particular combinations of these transformations and L€t us _now illustrate this procedure for the near

compensating world-sheet diffeomorphisms preserving |thEg:ics)goEozlgihbgraar::?ioiu(%r?er:;gyinbﬁzkg:ggg(;aﬁl;e)- The

1 o
S=3 fdz(f{\/? Y F(@)FP R [y + 8450,x%9,x" + RYr*8450,x%9,x°] + €*"D(@)F ), (22)

wherea, b = 2,3 correspond to the parallel D3-brane directions which have not been gauge fixed. The symmetries of
(22) are now obtained from (21) using (4) and (17). For instance, a dilatation symmetry correspontinopvolves
a compensating diffeomorphism with parametgr= Ap(¢)o* and is now realized by
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Spx? = egaﬂxﬁ — Ap(p)x?, which has again the form (24) and yields
Ay _ — —
5D.XA — elDLa,u-xA + )\D(QD)XA, 6D§D — E:‘D”a’ugo, W(.X ) = W(A,u) =1, W(x“) = W(QD) =0,
OpYur = fgaQYMV + YQvaﬂeg + YMQavfg’ (23) w(yﬂu)f=2. . .
0 0 _ Comments—The symmetries of D-string actions de-
SpA, = €pdpA, + Apduep — An(0)f(@)[D' ()]} - : o
DAu = €pTofp e%u€D p\PIJAPILEAP)] scribed above may be viewed as generalizations of the fa-
X ﬁewaQR’zrz[nQ(,a” + 5&,;x“agxb miliar target space symmetries of the string. There are two
_ —4pd A, B important differences to the string case which are both di-
r TR Sapx"09ox"].

i i rect consequences of the presence of the Born-Infeld gauge
These transformations generate symmetries of (22) fofie|q. First, each target space symmetry gives rise to a fam-
any choice ofAp(¢). This includes dilatations of the jy of infinitely many symmetries of the D-string action,
standard form for the special choiag = 1, whereas it yields only one rigid symmetry of the (Nambu-
Ap = I: Spp = ata,d + wid)d, (24)  Goto or Polyakov) string action. Second, there is an addi-
tional infinite family of symmetries of the D-string action
) if the target space metric admits a proper homothetic mo-
wx) = —1, wx?) = w(A,) =1, tion. The latter are dilatational symmetries without any
w(g) =0 W(yu) =2 counterpart in the string case (see [7] for an example).
’ mr ' We stress that all of these infinitely many symmetries
Analogously one determines the other symmetries in th@re presenin additionto the world-sheet symmetries and
static gauge. Altogether they form, as before, a loopmust not be confused with the latter. Indeed, the action
generalization of SQ@,4) X SO6) with a loop version (1) is, of course, also gauge invariant both under world-
of conformal S@2,2) as a subgroup. This subgroup sheet diffeomorphisms and under Weyl-transformations of
corresponds tol*, A“”, Ap, and X5, and the parameters y,,, as its string counterpart, the Polyakov action. In
of the compensating world-sheet diffeomorphisms for thisparticular, one may consider the action (1) in a conformal

where the Weyl weights (¢) are given by

subgroup are thus gauge for these world-sheet symmetries (rather than in the
€l = M () + Ap(@)ah + [A*" (@) — 20%X%(e)] static gauge considered above). That action has infinitely
0 M many conformal world-sheet symmetries on top of the

X M00° + As (@) symmetries discussed above. In particular, it may thus

X (0”0, + xixb 8.5 + R4 2. (25) serve as a starting point for quantization, along the lines

h gi ‘ | ‘ . e A of string quantization based on the Polyakov action in a
e corresponding conformal transformationsxéf x*. conformal gauge.

and¢ can be written compactly as We thank Paul Townsend, Antoine van Proeyen, and
Scxt = E’C‘a#x& - %(afj‘p'eg)x&, J. M. Marfn Senovilla for discussions. This work was
sext = o . @ A N e
Scp = G’C’“aﬂgp, GRQ93-1047 (CIRIT), and by the Commission of Eu-

ropean Communities CHRX93-0362(04). F.B. was sup-

exp. . . . .
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