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Abstract: Nitrogen balance studies have shown that a portion of the N ingested but not excreted is 

not accounted for. We compared several diets (standard, high-fat, high-protein, and self-selected 

cafeteria) to determine how diet-dependent energy sources affect nitrogen handling, i.e., the liver 

urea cycle. Diet components and rat homogenates were used for nitrogen, lipid, and energy 

analyses. Plasma urea and individual amino acids, as well as liver urea cycle enzyme activities, were 

determined. Despite ample differences in N intake, circulating amino acids remained practically 

unchanged in contrast to marked changes in plasma urea. The finding of significant correlations 

between circulating urea and arginine-succinate synthase and lyase activities supported their 

regulatory role of urea synthesis, the main N excretion pathway. The cycle operation also correlated 

with the food protein/energy ratio, in contraposition to total nitrogen losses and estimated balance 

essentially independent of dietary energy load. The different regulation mechanisms observed have 

potentially important nutritional consequences, hinting at nitrogen disposal mechanisms able to 

eliminate excess nitrogen under conditions of high availability of both energy and proteins. Their 

operation reduces urea synthesis to allow for a safe (albeit unknown) mechanism of N/energy excess 

accommodation. 
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1. Introduction 

Dietary excess of amino acid N, an obvious consequence of high-protein diets, necessarily 

induces its oxidation for energy, thus increasing urea synthesis [1]. This function is mainly carried 

out by the liver, which plays an active role in the adaptation of whole-body nitrogen homoeostasis to 

dietary protein, possibly via glucagon [2]. The control role of liver on the disposal of ammonium-N 

and excess amino-N is a critical process for the maintenance of body–N homeostasis. Liver urea 

production is both a tight control system to prevent the loss of valuable amino acid N but also the 

best-controlled outlet for excretion of excess N. This way, daily dietary variations in amino acid 

availability are counteracted in significant part through adjustments in liver metabolic function. This 

mechanism, used to maintain N homeostasis, is complemented by other tissues and pathways, which 

are in part practically unknown. 

A quantitative analysis of nitrogen balances has shown that a significant portion of the N 

ingested but not excreted as urea (or other N-containing catabolites) is not accounted for [3]. It has 

been postulated that the differences may be justified (at least in part) by respiratory loss of nitric oxide 

[4], or even by the direct release of nitrogen gas [5], but so far no definitive explanation has been 

found for this “nitrogen gap”. Although this deficit has been observed with different diet types, its 



Nutrients 2019, 11, 316 2 of 14 

 

extent is higher when using high-energy cafeteria diets [6]. Cafeteria diets are made up of palatable 

foods in which the range and variety of offered food taste, energy content, and texture induces a 

marked hedonic-driven increase in food consumption [7,8]. Contrary to high-protein diets, cafeteria 

diets decrease the operation of the liver urea cycle. The consequence is a lower overall urinary 

excretion of N [9], not paralleled by a compensatory increase in protein accrual [10], in spite of 

maintained or increased protein intake. 

In this study, we compared several diets with well-established differences in their content of 

protein, lipids, and overall energy. In addition to a standard diet (the usual rat chow), we used a 

cafeteria diet and a high-fat diet matched in composition to the standard rat chow but supplemented 

with oil rich in saturated fat, which has a moderate obesogenic capacity [11,12]. The fat content of the 

high-fat diet (ca. 40%) was selected to coincide with the percentage of fat self-selected by rats using 

our simplified cafeteria diet model [13,14]. Finally, we used an isoenergetic, high-protein diet model 

also matched in composition (except for protein) to the standard rat chow. 

The match in nutrients, except lipids or protein, allowed us to establish comparisons based only 

on these aspects of diet, limiting possible interference by other dietary components [15]. By using this 

array of partially superimposable diet comparisons, we intended to analyze the paradox of decreased 

urea synthesis of rats fed a cafeteria diet and also determine how diet energy may affect nitrogen 

partition, including hepatic operation and overall efficiency of the urea cycle. 

2. Materials and Methods 

2.1. Diets 

Table 1 presents the composition of the diets used. The standard diet (Teklad 2014, Teklad diets, 

Madison, WI, USA) contained 20% of digestible energy derived from proteins, 13% from lipids, and 

67% from carbohydrates (including 0.10% from oligosaccharides). This diet contained essentially 

plant-derived aliments. 

The high-fat diet was prepared by the addition of coconut oil (Escuder, Rubí, Spain) to the 

standard chow coarsely ground. The initial mixture contained 33 parts (by weight) of standard chow, 

4 of coconut oil, and 16 of water (added to favor the mixture and kneading of the paste). The high-

protein diet was prepared in a similar way, although in this case the mix contained 16.5 parts (by 

weight) of standard chow, 2.35 of casein, 2.05 of fish gelatin, 0.20 of sunflower oil, and 17 parts of 

water. In both cases, the “dough” was thoroughly kneaded to form a rough paste that was extruded 

using cut-end syringes to form 1 × 6 cm cylindrical pellets, which were dried at 40 °C until achieving 

the required consistency [15]. Aversion tests to these diets gave negative results, i.e., they were not 

different from the standard diet. 

The simplified cafeteria diet was formed by excess offering of the standard chow pellets, plain 

cookies spread with liver pâté, bacon, water, and milk supplemented with 300 g/L sucrose and 30 g/L 

of a mineral and vitamin supplement (Meritene©, Nestlé, Esplugues de Llobregat, Spain) [13,14]. All 

components were kept fresh (i.e., renewed daily). From the analysis of the ingested items and diet 

composition, we calculated that approximately 40% of ingested energy was derived from lipids, 12% 

from protein, and 47% from carbohydrates (23% from oligosaccharides and 24% starch). 

Table 1. Diet energy and macronutrients content. 

 
Standard 

Diet 

Cafeteria 

Diet * 

High-Fat 

Diet 

High-Protein 

Diet 

Crude energy (kJ/g) 16.5 12.4 ± 0.2 18.8 17.4 

Digestible energy (kJ/g) 12.1 12.0 ± 0.1 14.6 12.4 

Theoretical energy derived from (%): 

Carbohydrates 

Protein 

Lipids 

67.0 

20.1 

13.0 

47.3 ± 1.2 

11.9 ± 0.3 

40.3 ± 0.6 

48.7 

14.5 

36.8 

47.7 

40.4 

11.6 

* The data for the rats fed the cafeteria diet were the mean ± SEM of six pairs of rats; no significant 

differences between sexes were observed. 
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2.2. Animals and Experimental Setup 

All animal handling procedures and the experimental setup were devised and carried out in 

accordance with the animal handling guidelines of the European, Spanish, and Catalan authorities. 

The Committee on Animal Experimentation of the University of Barcelona authorized the specific 

procedures used (# DAAM 6911). The assumedly excessive suffering of the animals when placed in 

metabolic cages, due to their necessary isolation, formally prevented the direct measurement of the 

loss of nitrogen in urine and feces along the period studied. Since previous published data from our 

group [3,16,17] using animals fed a standard, cafeteria, or high-protein diet, when combined, showed 

the existence of a close linear correlation between circulating urea levels and global nitrogen 

elimination (r = 0.9621), plasma urea concentration was used as an indirect indicator of overall 

nitrogen loss in urine and feces. 

Ten-week-old male and female Wistar rats (Janvier, Le Genest Saint-Isle, France) were used (n = 

52). The animals were randomly divided into four groups (n = 6–8 for each sex) and were fed ad 

libitum either the standard, high-fat, high-protein, or cafeteria diets for 30 days. All animals had free 

access to water. The rats were housed (in same-sex pairs) in solid-bottom cages with wood shards as 

bedding material and were kept in a controlled environment (lights on from 08:00 to 20:00, 

temperature 21.5–22.5 °C, and 50%–60% humidity). Body weight and food consumption were 

recorded daily. The calculation of ingested food in cafeteria diet-fed rats was done as previously 

described by weighing the differences in food offered and debris left (corrected for desiccation) [8].  

On day 30, at the beginning of the light cycle, the rats were anesthetized with isoflurane and 

then killed by exsanguination through the exposed aorta using a dry-heparinized syringe. Plasma 

was obtained by centrifugation and kept at −20 °C until processed. The liver was dissected, weighed, 

and a liver sample was frozen with liquid nitrogen and maintained at −80 °C until processed. The 

content of the gastrointestinal tract was cleaned, and the carcass (and remaining blood, liver, and 

debris) was sealed in polyethylene bags, which were subsequently autoclaved at 120 °C for 2 h [6]: 

The bag contents were weighed and then minced to a smooth paste with a blender, thus obtaining a 

“total rat” homogenate. The constituents of the diets given to the animals were also ground and 

homogenized, and then subjected to the same analytical procedures. 

2.3. Analytical Procedures 

Nitrogen content was measured with a semiautomatic Kjeldahl procedure using a ProNitro S 

system (JP Selecta, Abrera, Spain). Initial rat nitrogen content was estimated from the percentage of 

N previously published (at day 0) of control animals from the same stock (and provider), age, and 

sex [18,19], and was adjusted using the initial body weight of each animal used in this experiment. 

Total accrued N was calculated from the values of body nitrogen obtained at the end of the 

experiment and discounting the estimated initial nitrogen content. The conversion of rat N content 

to rat protein content was done using the specific 5.5 conversion factor for whole rat protein content 

previously measured experimentally by us [20]. 

Carcass and food lipid content were measured by weight using a classical solvent 

homogenization-extraction method with trichloromethane/methanol 2:1 (v/v) [21]. Water body 

content was measured from carcass samples by differential weighing, before and after 24 h at 110 °C. 

The energy content of diet components was determined using a bomb calorimeter (C7000, Ika, 

Staufen, Germany). Energy intake was calculated from daily food consumption converted with the 

energy equivalence of the different foods and components measured with the bomb calorimeter. 

Plasma urea was measured with kit #11537 (Biosystems, Barcelona, Spain). Individual amino 

acids were analyzed with a Biochrom 30 (Biochrom Ltd., Cambridge, UK) amino acid analyzer, using 

plasma samples deproteinized with 100 g/L of trifluoroacetic acid. 

2.4. Enzyme Activity Analyses 

Frozen liver samples were homogenized in buffer using a tissue disruptor (Ultraturrax IKA-T10, 

Ika, Russia) at 2–4°C. Homogenates for carbamoyl-P synthase and ornithine carbamoyl-transferase 
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activity measurement were prepared using 10 volumes of chilled 70-mM hepes buffer pH 7.4 

containing 1 mM dithiothreitol, 50 mM KCl, 1 g/L Triton X-100, and 1 g/L lipid-free bovine serum 

albumin (all from Sigma-Aldrich, St Louis, MO, USA). Homogenates for the analyses of the other 

enzymes were prepared with 10 volumes of chilled Krebs-Ringer bicarbonate buffer pH 7.4 

containing 1 g/L Triton X-100, 1 mM dithiothreitol, and 1 g/L lipid-free bovine serum albumin. The 

homogenates were coarsely filtered through a nylon hose to eliminate large debris. They were kept 

on ice and used for enzyme activity analyses within 2 h. Tissue protein content was estimated with 

the Lowry method [22], using the corresponding homogenization buffer (i.e., containing albumin) as 

a blank. Enzyme activities were expressed per unit of protein weight and total liver content.  

Carbamoyl-P synthase activity was estimated from the incorporation of 14C-bicarbonate into 

carbamoyl-P, and was converted to hydroxyurea [23]. Diluted (1:4 v/v) homogenates (50 µL) were 

mixed with a reaction buffer containing ATP-Na2, N-acetyl glutamate, and magnesium acetate (all 

from Sigma-Aldrich): The final concentrations were 20 mM, 5 mM, and 20 mM, respectively. The 

reaction was started with 50 µL of ammonium bicarbonate and a sodium-14C-bicarbonate 

(PerkinElmer, Bad Neuheim, Germany) mixture (final concentration: 50 mM, 5 kBq/tube), and was 

carried out at 37 °C for 0, 8, or 16 min. The reaction was stopped by introducing 200 µL of the reaction 

mixture into tubes kept on ice containing 30 µL of 2-M hydroxylamine-HCl and was rapidly put at 

95 °C until total evaporation. All labeled carbamoyl-P formed was converted to labeled hydroxyurea 

and remained in the tube. The whole-tube contents were counted. 

Ornithine carbamoyl transferase activity was measured from the reaction of condensation of 

carbamoyl-P and ornithine to yield citrulline (adapted from [24]). Aliquots (40 µL) of diluted 

homogenates (1:49 v/v) were mixed with urease S (Boehringer Mannheim, Mannheim, Germany) and 

a reaction buffer containing hepes, KCl, MgCl2, and ornithine (all from Sigma-Aldrich): The final 

concentrations were, respectively, 100 µkat/L, 50 mM, 33 mM, 4.5 mM, and 10 mM. The reaction was 

started by adding 15 µL of lithium carbamoyl-P (Sigma-Aldrich) (final concentration 6.7 mM) and 

was carried out at 37 °C for 0, 5, or 10 min. The reaction was stopped by introducing 200 µL of the 

reaction mixture into chilled tubes containing 600 µL of reaction buffer: Diacetyl monoxime (59.3 

mM), antipyrine (7.2 mM), and FeCl3 (0.3 mM) diluted with 3.75% acetic acid (v/v) and 30% H2SO4, 

prepared as previously described [24] (all products were from Sigma-Aldrich). The color reaction was 

developed at 100 °C for 30 min in a boiling water bath. Absorbances (including standards and blanks) 

were measured at 450 nm using a plate reader spectrophotometer (ELx808 Ultra Microplate Reader, 

Biotek, Winooski, VT, USA). 

The methods used for arginino-succinate synthase and lyase and arginase enzyme activities 

have been previously described in detail [25]. 

2.5. Statistical Procedures 

Statistical comparisons were done using two-way ANOVA analyses (factors: Sex and diet) and 

the post hoc Bonferroni test, using the Prism 5.0 program (GraphPad Software Inc, La Jolla, CA, USA). 

Differences were considered significant when the p-value was <0.05. 

3. Results 

3.1. Body Balance and Nutrients Intake 

Table 2 shows body weight, body composition, and energy, as well as macronutrients intake, in 

all groups during the 30-day study. As expected, males showed a higher food intake, which also 

induced higher energy and macronutrient intake than in females. When diets were compared, rats 

fed the cafeteria diet had higher values for both weight gain and energy, carbohydrates, and lipid 

consumption. Cafeteria diet-fed rats showed a higher percentage of body fat. The rise in lipid content 

was compensated by lower percentages (but not in absolute values) of water and protein compared 

to the other diet groups. Again, as expected, the high-fat diet group showed the second-highest lipid 

intake, while the high-protein diet group had the highest protein intake. The freedom to select food 

items according to the individual whims of the rats fed the cafeteria diet resulted in only slight 
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variations in the protein/energy consumption ratios between different cafeteria-fed animals (showing 

no significant differences between sexes: 11.3% ± 0.4% for females and 12.3% ± 0.5% for males), as 

depicted in Table 1. In all the other groups, there could not be such variation because the diet 

composition was fixed. 

3.2. Nitrogen Balance 

Table 3 shows the nitrogen balance of the different groups of animals. The N content at the end 

of the experiment among the rats fed with different diets did not show significant differences in spite 

of wide differences for ingested nitrogen. Nevertheless, the males showed higher N content than 

females due to their larger size. Since the amount of accrued N was only a small proportion of the 

total N ingested, both ingested N and N losses presented similar profiles: Higher values in males, but 

showing marked differences between groups. The highest intakes and losses of nitrogen 

corresponded to the high-protein diet, followed by the cafeteria diet, with the high-fat diet showing 

the lowest values. The groups fed the standard and cafeteria diets had the highest values for protein 

accrual. 

3.3. Plasma Metabolites 

Table 4 shows the plasma amino acid levels in the four diet groups studied at the end of the 

experiment. Several amino acids did not show significant concentration changes (Asp, Thr, Arg, 

citrulline, Met, Trp, Tyr), although in others there were differences related to sex, with higher values 

in males (Asn, Glu, Ala, His, Phe, Gly, ornithine): The only amino acid with higher plasma levels in 

females was Lys. When comparing the effects of diets, the high-protein group showed higher plasma 

levels (Gly, Pro, Val, Leu, Ile, Lys, ornithine, and Tyr). In the high-fat diet group, only higher Gln and 

Tyr levels were observed. 

The concentrations of total amino acids and plasma urea are shown in Figure 1. Changes 

between groups for total amino acid levels were minimal, with the differences reflecting the data 

presented for individual amino acids, i.e., slightly higher overall concentrations in the high-protein 

diet group. However, plasma urea levels changed much more widely, with higher values for the 

high-protein diet and the lowest for cafeteria-fed animals. 

 

Figure 1. Plasma total amino acids and urea levels of female and male rats fed a standard, cafeteria, 

high-fat, or high-protein diet for 30 days. The data correspond to the mean ± SEM of 6–8 different 

animals. Females are represented by white bars, and males by black. Abbreviations: S is standard diet, 

CAF is cafeteria diet, HF is high-fat diet, and HP is high-protein diet. Statistical analysis was done 

using a two-way ANOVA program for diet (D) and sex (S). Only significant values are represented. 

 

S CAF HF HP S CAF HF HP
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8 TOTAL AMINO ACIDS UREA
D: p=0.0200 D: p<0.0001
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Table 2. Body weight increase and composition, energy, and macronutrients intake. 

 
Standard Diet Cafeteria Diet High-Fat Diet High-Protein Diet 

Female Male Female Male Female Male Female Male 

Weight increase (g) 39.5 ± 4.3 A 79.2 ± 8.2 a 73.6 ± 6.9 B 126 ± 3 b 27.5 ± 1.7 A 82.8 ± 6.3 a 27.7 ± 3.8 A 68.7 ± 1.5 a 

Body composition (%) 

Water 

Lipids 

Proteins 

59.6 ± 1.1 A 

17.3 ± 0.1 A 

18.6 ± 0.1 A 

61.2 ± 0.6 a 

15.7 ± 1.0 a 

19.6 ± 0.7 a 

54.1 ± 1.5 B 

22.1 ± 1.7 B 

16.2 ± 0.2 B 

59.0 ± 0.5 a 

17.5 ± 0.9 a 

17.1 ± 0.5 b 

61.2 ± 0.37 A 

14.9 ± 0.7 AC 

18.2 ± 0.2 A 

61.3 ± 0.4 a 

15.9 ± 0.5 a 

16.8 ± 0.1 b 

61.2 ± 0.6 A 

13.1 ± 0.6 C 

18.3 ± 0.1 A 

61.4 ± 0.7 a 

12.7 ± 0.5 b 

18.7 ± 0.3 a 

Intake (MJ) 

Energy 

Carbohydrates 

Lipids 

Proteins 

6.33 ± 0.35 A 

4.24 ± 0.17 A 

0.79 ± 0.03 A 

1.26 ± 0.05 A 

8.76 ± 0.25 a 

5.91 ± 0.17 a 

1.10 ± 0.03 a 

1.76 ± 0.05 a 

16.8 ± 0.3 B 

8.40 ± 0.18 B 

6.42 ± 0.20 B 

1.90 ± 0.03 B 

19.2 ± 0.6 b 

9.28 ± 0.13 b 

8.02 ± 0.25 b 

2.36 ± 0.02 b 

5.95 ± 0.10 A 

2.90 ± 0.04 C 

2.13 ± 0.03 C 

0.86 ± 0.01 C 

8.43 ± 0.22 a 

4.11 ± 0.10 c 

3.02 ± 0.07 c 

1.22 ± 0.03 c 

5.40 ± 0.30 A 

2.54 ± 0.11 C 

0.63 ± 0.03 A 

2.18 ± 0.03 D 

7.91 ± 0.01 a 

3.72 ± 0.00 c 

0.92 ± 0.01 a 

3.19 ± 0.01 d 

Note: Data expressed during the whole 30-day period studied as mean ± SEM. Statistical analysis was two-way ANOVA: In all cases, p-values both for diet and for 

sex were p < 0.0001, except for protein accumulation (p = 0.0003 for diet comparison), water content (p = 0.0049 for sex), lipid content (p = 0.0283 for sex), and protein 

content (not significant for sex). Bonferroni’s post hoc test of statistical significance, established at p < 0.05, is represented by different superscript letters. 

Table 3. Nitrogen balance of rats fed a control, cafeteria, high-fat, or high-protein diet for 30 days. 

 
Standard Diet Cafeteria Diet High-Fat Diet High-Protein Diet ANOVA 

Female Male Female Male Female Male Female Male  

Initial body N (g) 8.40 ± 0.17 12.7 ± 0.8 7.72 ± 0.13 12.7 ± 0.5 8.31 ± 0.11 12.3 ± 0.2 8.13 ± 0.41 13.0 ± 0.1 S 

Final body N (g) 9.30 ± 0.25 15.6 ± 0.9 8.53 ± 0.20 15.1 ± 0.5 8.67 ± 0.19 13.3 ± 0.9 8.46 ± 0.30 15.1 ± 0.2 S 

Ingested N (g) 13.5 ± 0.5 18.8 ± 1.0 20.3 ± 0.3 25.2 ± 0.2 9.22 ± 0.14 13.1 ± 0.3 23.3 ± 0.9 34.1 ± 0.1 D,S,I 

Accrued N (g) 0.90 ± 0.14 2.84 ± 0.35 0.82 ± 0.18 2.37 ± 0.58 0.36 ± 0.11 1.03 ± 0.18 0.33 ± 0.13 2.15 ± 0.23 D,S 

Accrued N (% of ingested) 6.58 ± 0.94 15.4 ± 1.8 4.08 ± 0.92 9.46 ± 2.0 3.89 ± 1.11 7.85 ± 1.10  1.37 ± 0.64 6.29 ± 0.58 D,S 

Excreted N * (g) 12.6 ± 0.5 16.0 ± 1.0 19.5 ± 0.5 22.8 ± 0.7 8.86 ± 0.14 12.1 ± 0.3 23.0 ± 0.9 32.0 ± 0.2 D,S,I 

Note: Data are expressed as mean ± SEM, and are represented as g of N in 30 days. * Excreted N was calculated as the difference between the ingested N and the 

accumulated N. Statistical analysis was two-way ANOVA. Only significant p-values are shown: Diet (D), sex (S), or their interaction (I). 

Table 4. Plasma amino acid levels in rats fed a standard, cafeteria, high-fat, or high-protein diet for 30 days. 

 
Standard Diet Cafeteria Diet High-Fat Diet High-Protein Diet 

ANOVA 
Female Male Female Male Female Male Female Male 

Ala 535 ± 53 517 ± 35 462 ± 28 575 ± 23 496 ± 37 560 ± 17 543 ± 37 589 ± 23 S 

Ser 302 ± 33 248 ± 22 353 ± 39 403 ± 44 327 ± 15 340 ± 20 348 ± 18 351 ± 13 D 

Thr 286 ± 42 242 ± 27 280 ± 42 296 ± 30 366 ± 31 255 ± 9 253 ± 23 291 ± 20  

Gly 210 ± 26 262 ± 25 271 ± 33 460 ± 55 262 ± 8 346 ± 25 408 ± 23 511 ± 19 D,S 

Pro 279 ± 46 299 ± 6 240 ± 24 286 ± 8 247 ± 34 265 ± 16 410 ± 26 480 ± 46 D 
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Asp 21.0 ± 3.9 13.5 ± 1.2 13.2 ± 1.4 15.2 ± 0.8 17.0 ± 1.6 21.2 ± 1.6 15.1 ± 1.6 18.2 ± 1.3 I 

Asn 63.3 ± 11.1 76.0 ± 6.3 59.2 ± 8.0 86.1 ± 11.0 58.3 ± 13.2 73.9 ± 6.6 79.6 ± 8.6 101 ± 7.7 S 

Glu 82.1 ± 9.4 104 ± 10.8 89.7 ± 7.5 121 ± 7.4 98.7 ± 14.0 134 ± 7.5 90.6 ± 6.9 128 ± 10.2 S 

Gln 682 ± 69 735 ± 79 535 ± 36 718 ± 38 792 ± 41 890 ± 30 632 ± 29 656 ± 23 D,I 

Val 177 ± 25 164 ± 9 142 ± 19 166 ± 14 107 ± 21 116 ± 10 211 ± 11 258 ± 19 D 

Leu 207 ± 24 189 ± 10 155 ± 14 186 ± 7 151 ± 17 156 ± 11 197 ± 10 242 ± 11 D 

Ile 110 ± 10 102 ± 4 100 ± 11 113 ± 8 76.4 ± 9.3 84.0 ± 4.7 116 ± 6 144 ± 7 D 

Arg 155 ± 21 162 ± 16 174 ± 17 202 ± 12 136 ± 23 152 ± 10 138 ± 11 158 ± 23  

Ornithin

e 
49.5 ± 10.8 60.9 ± 5.7 38.9 ± 4.4 68.5 ± 6.5 74.6 ± 9.9 78.8 ± 8.8 87.6 ± 8.1 143 ± 24 D,S 

Citrullin

e 
104 ± 11 91.0 ± 9.3 87.3 ± 6.0 93.7 ± 3.7 92.1 ± 3.7 104 ± 4 94.6 ± 4.0 102 ± 10  

Met 73.9 ± 10.7 67.7 ± 5.6 57.9 ± 3.6 71.2 ± 4.5 61.4 ± 6.6 70.9 ± 2.9 66.0 ± 2.4 80.9 ± 6.6  

Phe 71.8 ± 6.2 68.9 ± 4.1 56.8 ± 3.4 70.4 ± 2.6 66.4 ± 7.3 79.8 ± 3.6 67.8 ± 3.7 81.6 ± 4.3 S 

Tyr 55.9 ± 11.9 66.5 ± 6.6 42.5 ± 7.2 79.5 ± 3.2 60.7 ± 8.7 111 ± 5 60.7 ± 4.9 76.7 ± 5.9 D,S,I 

His 69.5 ± 8.9 65.4 ± 5.3 55.8 ± 2.2 71.9 ± 5.4 53.3 ± 6.0 63.6 ± 2.9 55.7 ± 1.8 67.4 ± 1.4 S 

Lys 382 ± 44 284 ± 19 346 ± 41 344 ± 36 293 ± 22 190 ± 10 461 ± 22 405 ± 17 D,S 

Trp 127 ± 15 106 ± 16 98.8 ± 10.5 123 ± 7 126 ± 6 130 ± 10 139 ± 4 131 ± 8  

Note: The data (µM) correspond to the mean ± SEM of 6–8 different animals. Statistical analysis was two-way ANOVA: p-values are for diet (D), sex (S), or 

interaction (I).
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3.4. Enzyme Activities 
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Figure 2. Enzyme activities related to the urea cycle in the liver of male and female rats fed a standard, 

cafeteria, high-fat, or high-protein diet for 30 days. The data correspond to the mean ± SEM of 6–8 

different animals, and are all expressed per gram of tissue protein. Females are represented in white 

bars, and males in black. Abbreviations: S is standard diet, CAF is cafeteria diet, HF is high-fat diet, 

and HP is high-protein diet. Statistical analysis was done using a two-way ANOVA program for diet 

(D) and sex (S). Only significant values are represented. 

Figure 2 shows liver urea cycle-related enzyme activities. All enzyme activities (except 

arginase) were affected by diet. However, while the lowest values, in the case of carbamoyl-P 

synthase, were observed in the high-fat diet group, in the case of arginine-succinate synthase 

(especially in males) and lyase, the lowest activities were those of the cafeteria diet-fed rats. In 

general, high protein intakes were paralleled also by higher urea cycle enzymatic activities. The 

only enzymatic activity significantly affected by sex was arginase activity, with lower values in 

females in both the cafeteria and high-fat diet groups. 

3.5. Correlations 

Total liver activities (calculated as a measure of global catalytic liver capacity) of arginino-

succinate synthase and lyase were significantly correlated with plasma urea levels: Correlation values 

were r = 0.322 for arginino-succinate synthase (p = 0.0200) and r = 0.762 for arginino-succinate lyase 

(p < 0.0001). Arginino-succinate lyase activity and plasma urea levels were correlated with the diet 

protein/energy ratio (Figure 3). 
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Figure 3. Relationship between the diet protein/energy ratio with total liver arginine-succinate lyase 

activity and plasma urea levels. The protein/energy ratio refers to the energy ingested derived from 

proteins versus total energy ingested. Lines of regression, correlations, and p-values were calculated 

using all individual data (n = 52). Abbreviations: S is standard diet, CAF is cafeteria diet, HF is high-

fat diet, HP is high-protein diet, F means female rats, and M means male rats. 

4. Discussion 

We studied the effects of diets with different contents of energy, lipids, and protein, but which 

were essentially uniform in most of their other components. Using this approach, we were able to 

show the importance of the food protein/energy ratio in the control of urea cycle operation, in 

contraposition to total nitrogen losses and nitrogen balance, which were essentially independent of 

the diet energy content. The main limitation of the study was the impossibility of obtaining direct 

measures of nitrogen losses in urine and feces along the period studied: To overcome this limitation, 

we used an indirect measure of total N excretion, plasma urea levels. 

The markedly different regulation observed between nitrogen losses and urea cycle operation 

was apparent by the lack of direct relationship between urea synthesis and obvious excess N, with 

energy playing a key role in the mode of disposal of excess dietary N. These differences have 

potentially important consequences, since they support the existence of an additional nitrogen 

disposal pathway able to eliminate excess nitrogen under situations of high availability of both 

energy and proteins. The urea cycle—in fact, all of the N disposal mechanisms for noncarnivore 

mammals—is centered in a tight control of N losses, which becomes a problem in the “rare” cases 

when both energy and N are in excess. The existence of an alternative pathway overcomes this 

question, with the apparent contradictory decrease in the operation of the urea cycle, which can be 

assumed to be a direct correlate of body–N homeostasis. 

The quantitative importance of such an additional mechanism is considerable and grants the 

need for further study of its consequences in the maintenance of body–nitrogen balance under normal 

conditions and under pathological situations such as metabolic syndrome. 

Homoeostatic maintenance of glycaemia and the preservation of body protein via the supply of 

amino acids (both general amino-N and essential ones) are critical for survival [26]. In our 

experimental model, the animals had no problems with amino acid availability in any of the diets 

tested. In fact, final body N was maintained and was unaffected regardless of diet: The only plausible 

question related to amino acids was the need to dispose of their possible excess. Neither was there 



Nutrients 2019, 11, 316 10 of 14 

 

any deficit in dietary energy availability, since the digestible food energy density of the cafeteria and 

high-protein diets was similar to that of the standard diet, and that of the high-fat diet was even 

higher: The main differences between diets rested in the proportion of nutrients and the relationships 

between them and with total energy intake. 

The fact that there was no energy deficit in these animals was confirmed by the weight gain of 

animals fed the high-fat and high-protein diets, similar to that of control animals. These results agreed 

with data previously described [12,27], although in both cases (higher or normal body weight gain 

for the high-fat diet and lower or normal body weight gain for the high-protein diet), the magnitude 

of the changes depended on the particular diet composition used [12,27].  

The known obesogenic effects of cafeteria diets were confirmed by a significant increase in body 

weight [18], more marked in males and largely caused by the accumulation of fat, mainly in adipose 

tissue, although an increase in fat content affects all tissues [13]. This increase is accompanied by 

parallel, but less extensive, increases in lean body mass [28], with enhanced protein deposition (in 

absolute terms) [29]. This is in part driven by higher amino-N availability, paralleled by lower urea 

N excretion [9]. 

Despite the important differences in N intake, circulating amino acids showed only minor 

differences between groups, remaining practically unchanged, especially when compared to the 

marked variability of plasma urea. Food intake increases plasma amino acids, which stimulates 

insulin release and mTOR-dependent protein synthesis in muscle [1]. Most excess amino acids are 

oxidized (especially the non-essential or the highly available essential ones) [1,30]. These mechanisms 

are well regulated, resulting in remarkably maintained plasma amino acid levels even under 

conditions of protein restriction [31]. The liver is, at least in part, responsible for the limited effect of 

nutrient intake on plasma amino acid levels, since it disposes of most of the excess amino acids 

provided by a normal diet [31]. However, the extent to which amino acids are used by the liver is 

different for alanine and glutamine [32], which act as inter-organ vectors carrying amino-N and 

ammonium to the liver essentially for disposal [33], than for branched-chain amino acids, most of 

which are oxidized elsewhere [34].  

Estimated enzyme activities are not direct approximations of in vivo enzyme function, but are 

generally taken as a correlate of the total amount of functional enzyme (i.e., that corresponding to 

Vmax) and, consequently, of overall enzyme ability to carry out its physiological function. Since this 

study was done using different diet conditions on rats of both sexes, the finding of significant 

correlations between plasma urea concentrations and arginine-succinate synthase and lyase activities 

reinforce their assumedly important regulatory role in the control of liver urea cycle operation [35,36]. 

This correlation, akin to control of hepatic urea production, also suggests that circulating urea may 

be considered a fair index of urea cycle operation. This is strengthened by the fact that plasma urea 

levels vary in parallel to urinary losses: High plasma urea levels parallel high urine urea excretion 

following a high-protein diet [37–39], and both lower plasma urea and limited urinary losses have 

been found in rats fed cafeteria diets [6,9,39,40].  

Increased protein intake, obvious in high-protein diets, initiates at least two major metabolic 

responses: An increase in protein synthesis (largely in muscle) driven by insulin [41,42] paralleled by 

an increased hepatic production of urea [43]. The urea cycle operates in part to prevent porta or 

hepatic metabolism-derived ammonium from entering systemic circulation [44]. However, a cafeteria 

diet, also characterized by a higher intake of protein-derived amino acids, resulted in both low 

plasma urea and excretion. As far as we know, the diet fat content did not affect per se the 

functionality of the urea cycle. This is a direct conclusion of the present study, and also confirms 

previous reports [25], since although the cafeteria diet lowered urea cycle operation, the high-fat diet 

did not. 

It can be assumed that the relatively low contribution of protein-derived energy in relation to 

the total energy budget of the cafeteria diet could induce strongly unwanted protein-sparing 

mechanisms similar to those observed in situations of amino acid scarcity: Starvation [45] or diluted 

diets [46]. In all these cases, amino acid oxidation is diminished with a parallel decrease in urea 

synthesis [47], but circulating amino acids are maintained by the well-balanced equilibrium between 
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protein synthesis and proteolysis [48]. There is a conflict between the setting of amino acid sparing 

mechanisms (lower urea production, higher intestinal absorption, decreased urinary N excretion, etc. 

[49]) and their higher availability derived from the ingestion of roughly the same amount of amino-

N and the effectiveness of the amino-N sparing mechanisms. Thus, the only outlets available for 

disposal of the excess amino-N are a shift to protein turnover favoring higher protein accrual and the 

unexplained and not yet understood mechanisms that have been defined as a “nitrogen gap” [3,6] 

and that have been described as a direct production of nitrogen gas [5]. It has been postulated that 

this “nitrogen gap” excretion process is related to the metabolism of arginine [39] and is influenced 

by sex [25]. It may be speculatively suggested that a lower operation of the guanidine-handling 

enzymes of the urea cycle in the liver of cafeteria diet-fed rats may allow an increased derivation of 

intermediates toward this so far unknown path for N excretion. 

The factors that regulate the fate of N, described here, may also be important in humans since, 

western societies are characterized by an excessive intake of both protein and energy. The excess of 

protein causes an overload of N, whose elimination is hindered by the consequent excess of energy. 

The main question is how metabolic machinery can override the strong protective mechanisms 

preventing N-wasting under conditions of excess energy [50]. It is possible to venture that not only 

the excess of nutrients, but also the imbalance in the proportion of nutrients, can have important 

metabolic consequences: Part of the dysregulation found in the metabolic syndrome may be an 

unwanted consequence of this N disposal conflict. 

5. Conclusions 

In conclusion, the food protein/energy ratio has potentially important consequences in the 

control of urea cycle operation, since high-energy diets tend to inhibit urea cycle function: The 

different regulation observed hints at the existence of an additional nitrogen disposal pathway 

capable of eliminating excess nitrogen in situations of high availability of both energy and proteins. 
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