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Abstract

Studies analyzing the temporary repercussions of motor vehicle accidents
are scarcer than those analyzing permanent injuries or mortality. A regres-
sion model to evaluate the risk factors affecting the duration of temporary
disability after injury in such an accident is constructed using a motor in-
surance dataset. The length of non-hospitalization medical leave, measured
in days, following a motor accident is used here as a measure of the severity
of temporary disability. The probability function of the number of days of
sick leave presents spikes in multiples of five (working week), seven (calen-
dar week) and thirty (month), etc. To account for this, a regression model
based on finite mixtures of multiple discrete distributions is proposed to fit
the data properly. The model provides a very good fit when the multiples for
the working week, week, fortnight and month are taken into account. Victim
characteristics of gender and age and accident characteristics of the road user
type, vehicle class and the severity of permanent injuries were found to be
significant when accounting for the duration of temporary disability.
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1. Introduction

Road traffic accidents are a major health problem worldwide and the
eighth leading cause of death (WHO, 2013). The risk factors associated with
the mortality and permanent injuries resulting from such accidents have been
widely investigated in the literature (Shibata and Fukuda, 1994; Savolainen
et al., 2011; Boucher and Santolino, 2010; Mannering and Bhat, 2014: Ale-
many et al., 2013; Tay and Rifaat, 2007; Yasmin and Eluru, 2013). However,
studies analyzing the temporary consequences of motor vehicle accidents are
more scarce. The period that motor victims are recovering from injuries has
an important sociocconomic impact in terms of the usc of health services and
lost of productivity, among other consequences (Miller and Galbraith, 1995;
Blincoe et al., 2002). This paper proposes a regression model to evaluate the
risk factors affecting the duration of temporary disability as a result of road
traffic injuries.

Temporary disability can be defined as the impairment of an individual's
mental or physical faculties that impede the victim from functioning nor-
mally for as long as they remain under treatment (or until their injuries have
stabilized). The severity of a temporary disability is closely associated with
the length of the period during which the victim is on sick leave recovering
from the injurics sustained in the accident. The most common approach
taken in the literature to analyze the severity of temporary disability is to
consider the length of hospitalization (Gardner et al., 2007; Peek-Asa et al.,
2011; Ayuso et al., 2015; Santolino et al., 2012; Guria, 1990), and to examine
its relationship with the characteristics of the injury suffered and those of
the victim.

Analyses of the duration of hospitalization are in part motivated by the
availability of data. However, such an approach may underestimate the total
social costs of a traffic injury. Non-serious injuries do not, as a rule, require
hospitalization, but may nevertheless be associated with substantial tempo-
rary disability, the case, for example, of whiplash injuries (Buitenhuis et al.,
2009). For this reason, Ebel et al. (2004) made simulated projections of the
number of work days lost as a result of motor vehicle crashes and studied the
factors that influenced a victim's return to work. Berecki-Gisolf et al. (2013),
on the other hand, restricted their analysis of the work disability period to
musculoskeletal and orthopedic traffic injuries.

The aim of this study is to describe the distribution and determinants of
temporary disability duration outcomes for any type of motor vehicle injury.



A motor insurance claim datasct is used to cvaluate the number of days of
medical leave taken by accident victims. The length of hospitalization was
excluded from the analysis. since key drivers of hospital length of stay have
been already investigated (Ayuso et al., 2015; Santolino et al., 2012). In
this study our attention is focused on the analysis of factors affecting the
length of temporary disability without hospitalization. In Spain, the period
of non-hospitalized temporary disability as a consequence of a motor crash
is set by doctors of the public health system who determine the number of
days of medical leave required by out-patients. This information is required
to compute the motor insurance compensation and, in case of the victim was
also time off from work, the paid sick leave amount.

The frequency distribution of the length of non-hospitalization temporary
disability (measured in days) exhibits regular spikes at certain multiples. The
periodic peaks observed in the frequency distribution could reflect the time
scales used by doctors when determining the number of days of sick leave
before the next scheduled medical examination. For example, a doctor is
more likely to program a rcevaluation of the medical evolution of injurics in
two weeks' time than in thirteen days. This decision may be because doctors
think on a daily/ weekly/ monthly scale when scheduling patient evaluations,
based on the severity of injuries and the number of days the patient will be
off sick. The doctor's agenda constraints may also be a reason (i.e. the
doctor only visits onc day in the week). In fact, regularly spaced spikes in
the frequency distribution are observed at multiples of 5, 7, 15 and 30.

Data with periodic peaks are observed in various applications. Examples
include the misreporting of age (Siegel and Swanson, 2004; Camarda et al.,
2008), number of cigarettes smoked (Wang et al., 2012) and duration of
unemployment (Torelli and Trivellato, 1993; Wolff and Augustin, 2003). This
phenomenon of rounding exact counts to even multiples of reported units is
known as digit preference or heaping. The literature on this phenomenon
assumes that data can be interpreted as indirect (or rounded) observations
of a latent distribution. The goal usually pursued is to model the unobserved
latent variable using smoothing methods (Camarda et al., 2008; Wang et al.,
2012; Wang and Heitjan, 2008; Wang and Wertelecki, 2013).

A different modelling approach is proposed in this paper. We directly
model the random variable with peaks rather than with an unobserved smoothed
variable. The methodology for fitting frequency data with regular spikes is
based on finite mixtures of discrete distributions of different multiplicities,
as proposcd by Bermudez ct al. (2017). This methodology is extended to
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the regression modelling analysis reported in this article. A discrete mixture
regression model is developed to fit data with regular spikes conditioned on
a set of covariates. The duration of temporary disability following a traffic
accident is modelled, including, as explanatory variables, characteristics of
the victim (gender and age) and the accident (road user type, vehicle class
and severity of permanent injuries).

The article is organized as follows. The regression model is presented in
the next section. Section 3 describes the data. The results are shown in
section 4. Concluding remarks are given in section 5.

2. Regression model

2.1. Discrete distributions
Let X € N be a discrete random variable that takes non-negative integer
values including zero. In statistics, the most frequently used parametric
distributions to model discrete random variables are the Poisson distribution
and the negative binomial (NB) distribution (Boucher and Santolino, 2010).
The probability function (pf) of the Poisson distribution with parameter A,
denoted as PP()), is given by
—A)A\?
Pf(X:x):M, A>0, 2=0,1,2,...
x!
The Poisson distribution has the following moments,

E(X)=X and Var(X) = A

The Poisson distribution assumes variance equal to the mean and. hence,
it has limitations when dealing with overdispersed data, i.e. when the sam-
ple variance exceeds the sample mean. In this context, the negative binomial
distribution is often more adequate. The pf of the negative binomial distri-
bution with parameter \ and r, where \ is the mean parameter and r the
additional parameter to account for overdispersion, is given by

"T(r+xz) ( X\
PP(X =)= [ — ~0,1,2,...
i 2 <r+/\) z!T(r) <r+/\) P TR S

The NB distribution has the following moments,

)\2
E(X)=X and Var(X) = </\—|— —) ,
.
It is casy to sce that if » — oo the negative binomial tends to the Poisson.
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2.2. Multiple discrete distributions

Often, the variable of interest is the sum of lower-level units and we are
specifically interested in analyzing the random variable measured in the lower
level units. For example, a survey will ask how many packs of cigarcttes the
subject smokes per week, because this is easier to calculate than the actual
number of cigarettes; however, the variable of interest in the study is the
number of cigarettes (let's say twenty per pack). In this case, the variable of
interest takes multiples of twenty (that is 0,20, 40, .. .).

To dcal with data mcasurcd on a different scale to the scale of interest,
multiple discrete distributions are used. Such distributions are generaliza-
tions of the discrete distributions that allow for different multiplicities. The
multiple discrete distribution versions of the Poisson and NB are introduced.

The pf of the multiple Poisson with multiplicity m and parameter A,
denoted as P2, is as follows:

exp(—A)\*
|

otherwisc.
It is straightforward to obtain the first two moments:
E(X)=m) and Var(X)=m?),

This generalization gives positive probability to points 0, m.2m, ... and
0 elsewhere. So, the Poisson distribution can he understood as a particular
casc of the multiple Poisson distribution with a multiplicity cqual to onc, m =
1. Using a similar approach, we can define the multiple negative binomial
distribution. The pf and first two moments of the multiple negative binomial
with multiplicity m and parameters A and r are as follows:

oy | G HE Gy 01
m =Y =

0 otherwise,

22
B(X)=mA and Var(X)=m?*- <)\ + —> ,
,

Note that the multiple Poisson distribution is also a limiting case of the
multiple negative binomial distribution when r — oc.



2.3. A finite mizture discrete distribution

When the random variable of interest can be interpreted as resulting from
different subpopulations/subgroups, the finite mixture distribution can be
casily derived from distributions of the individual subpopulations/subgroups.
Alternative mixtures of discrete distributions have been defined in the litera-
ture. For example, in the road safety literature, the well-known zero-inflated
distribution is a mixture between a Bernoulli distributed random variable
and a discretely distributed random variable, such as a Poisson or negative
binomial distribution (Lord ct al., 2005; Ayuso ct al., 2015: Anastasopou-
los, 2016; Boucher and Santolino, 2010; Shankar et al., 1997). Other, less
frequently used, mixtures in the road safety literature include finite mixture
distributions based on the combination of two or more discrete distributions
(Park and Lord, 2009; Zou et al., 2014; Park et al., 2010, 2014).

Let’s consider that the random variable of interest Y € N is constructed as
a mixture of pairwise independent discrete random variables X, Xo, ..., X,
where X; takes no negative integer values Vj, and a categorical random
variable 7 that consists of K categories. That is,

K
Y = Zﬂz - XK
=1

where 1, takes a value of 1 when Z = j and O otherwise, j = 1...., K.
Denote by Y; the count of some event for i = 1,...,n observations. If we
assume that X; is a Poisson distributed random variable with parameter \;

for ) = 1,..., K, then the pf of Y is defined as,
k
P(Yi=y)=Py)=> mPyl\), y=0,1,. .. (1)
j=1

where 7; = P(Z; = j) is the probability that the i-th observation belongs
to group 7 with 0 < m; < 1 for j = 1,..., A with ) m; = 1. Intuitively,
conditional on the fact that the i-th observation belongs to the j-th group
or component, the observed counts come from a Poisson distribution with
parameter \;. The probability that a randomly selected individual belongs to
group j is 0 < m; < 1. The information provided by (1) is the unconditional
probability when we do not know which group the i-th observation belongs
to.



If we assume that X is a NB distributcd random variable with paramcters
Ajand r; for j =1,..., K, then the pf of Y is defined as,

k
P(Yi=y) = Ply) =) mP"(ylh.rs). y=0.1... (2)

=1

As noted previously, an appealing feature of the multiple discrete distri-
bution is that we can modcl data mcasured on different scales. Expressions
(1) and (2) can be generalized for multiplicities different to one. If we assume
that m; is the multiplicity associated with the Poisson distributed X, then
pdf of Y is defined as,

K
P(K:y)zzﬂ_]pﬂj(yp\‘?) yzovlv (3>
=1

If X; is a NB distributed random variable, then

K

P(Y;=y) =Y mPm(yl\i.r), y=0.1,... (4)

J=1

The idea underpinning this representation is that we can have data that
arc mecasurcd on different scales. For example, we know that the data arc NB
distributed, but we have observations measured in terms of days, weeks, and
months (that is PPP(Ay, 1), Pro(Ar,m7) and PRo(Xs0,730) Tespectively). So, if
an observation is randomly selected, we have to consider the probability that
the observation is measured on a particular scale (days, weeks, or months)
and the probability that this observation takes a specific value given that
it is measured on this particular scale. Obviously, each of the components
has a simple interpretation when modelling and fitting the data referring
to a particular scale (days, working weeks, weeks, and months). Here, it
should be stressed that certain values of y might be obtained from different
components. For example, in the case of the value y = 35, this might be
obtained from components related to both day and week multiples, but not
from components associated with the month multiple. Zero values can be
seen in relation to all components.

The flexible construction of the mixture discrete distributions permits
the combination of different families of discrete distributions, that is, some
non-ncgative discrete random variables arc Poisson distributed and others arc



ncgative binomially distributed. An interesting issuc emerges from definitions
(3) and (4). In this article, we consider multiplicities as being known and,
therefore. they can be set beforehand. Normally, it is possible to recognize the
position of peaks in the frequencies, as this implies certain multiples related
to the context and reflects our knowledge of the data. Bermidez et al. (2017)
show how multiplicities can be estimated when they are unknown.

2.4. A finite mizture discrete regression model

The goal is to construct a model to fit count data that exhibit periodic
peaks in their frequency distribution attributable to the fact that different
scales arc being implicitly used at the same time. Models (3) and (4), or
a combination of the two, can be extended if we allow the mean of each
component to depend on some covariates related to the i-th individual.

We relate the \’s with some covariates. Hence we now have two subscripts
for X’s assuming that

lOg/\ijzﬁjl-Xij, z’zl,...,n, j:]_qK

where n is the sample size and 3; a vector of regression coeflicients. The
index j implies to which of the components they refer and X;; is a vector
of covariates for the i-th individual associated to the j-th component. For
generality, we assume that a different vector of covariates is considered for
each component. However, the modeling approach allows us to analyze the
effect of the same covariates on the different time scales.

The mixing proportions may also be related to the covariate vectors by
means of a standard multinomial logistic model. The interpretation of the
mixing proportions is that they reveal the proportion of observations from
each component and, hence, in this case, the time scale the doctors use when
scheduling re-examinations.

2.5. Estimation

The estimation of the discrete mixture regression model is easily con-
ducted using an expectation-maximization (EM) algorithm. In Bermidez
et al. (2017) an EM-type algorithm was described based on the fact that the
model is represented as a standard finite mixture model. Here, we adapt the
algorithm to the regression modeling context. but a closed form M-Step is
no longer available. Instead, we fit a weighted GLM model at this stage.



Using the standard approach for finite mixtures, the sct of unobserved
latent component indicator variables Z;; is defined, i.e., Z;; = 1 if the -
th observation belongs to the j-th group and 0 otherwise. Hence Z; =
(Zi1, ..., Zi). Note that some observations clearly have Z;; = 0 by defi-
nition for certain multiplicities. For example, for the multiplicity equal to 2,
every odd observation cannot be generated from this component.

The steps of the algorithm are the following.

At the E-step, using the current parameter estimates, and denoting as
P, (+16;) any model with multiplicity m; and parameters ¢;, which can be
either the Poisson or the negative binomial, calculate

7T]‘ij (ylw])
Ef:l 7Terr (yzwr)
and then update the paramcters at the M-step as

n
> Wi
O

7Tj—

“’ij = E(ZZ]) ==

n

which is always the case. For the regression and other parameters, this is
achicved by fitting the relevant GLM model (Poisson or negative binomial)
by weighted likelihood, using as weights the w;;’s from the E-step, and using
as responses the observed values divided by the multiplicity of the relevant
components. Note that this will end up with an integer, because, if not, the
weights w;; will be 0.

As usual, the algorithm stops when the log-likelihood stops increasing.
In practice, that is when the relative improvement is smaller than a small
number (107® is used herein).

All the advantages and disadvantages of the EM for finite mixtures hold.
But, of course, the typical cautionary remarks concerning EM also apply here.
We need good initial values to avoid problems of local maxima. Simple initial
values can be derived for considering the data from the possible multiplicities
and from the initial values for \’s, as well as from the mixing proportions.
For example, for a multiplicity ' = 10, we can only use the data presenting
values 10x and from these we can derive some estimate that fits a simple
GLM. In our extensive examination of the algorithm, this approach leads to
the rapid convergence of the algorithm to the global maximum.



Finally, notc that the derivation of the finite mixture and the algorithm
does not exclude the case of the same multiplicity for some components.
In this case. the derivation of starting values is equivalent to that of finite
Poisson mixtures.

3. Data

The data rccord the duration of outpatient medical lcave owing to a
motor vehicle accident. The database was provided by one of Spain's largest
motor insurance companies. The data set has been used previously for other
purposes in Boucher and Santolino (2010), Santolino et al. (2012) and Ayuso
et al. (2016). We draw on 20,257 observations from non-fatal victims of traffic
collisions in Spain. All of the victims included in the datasct reccived an
insurance compensation for their injuries in 2007, although the accident may
have occurred before that year. In the settlement year all of the individuals
were fully recovered, or with stable injuries.

In Spain there exists a legislative scale regarding the assessment of dam-
ages for automobile bodily injuries in motor insurance claims. This scale
provides a compensation system for three general categories: death. tempo-
rary disability and permanent disability. The severity of permanent injuries is
assessed according to the motor victim’s permanent disability score in accor-
dance with the Spanish medical legal scale. The scale of permanent injuries
ranges from 0 (no permanent injuries) to 100 points (maximum severity of
permanent injuries). The judge determines the final injury score according
to severity. The basic compensation for permanent injuries depends on the
overall scoring (in positive proportion) and the age of the victim (in inverse
proportion). Under the Spanish system the temporary disability entitle the
victim to a daily basic compensation. The daily amount for temporary dis-
ability depends on whether the vietim was hospitalized, out-of-hospital with
inability to work or out-of-hospital without inability to work. The total
basic compensation is obtained aggregating all compensatory components.
The basic compensation is later adjusted according to the financial situation
and family responsibilities of the victim. Information impacting the size of
the insurance compensation is normally recorded by insurcrs when process-
ing and tracking claims until settlement. Specifically, information regarding
the number of days of disability reported by each victim is used to evalu-
ate the amount of compensation for temporary disability. Unfortunately the
standard information from the police accident reports could not be retrieved.
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Police reports provide details of the circumstances of the collision but provide
limited information on how injuries may develop after the collision.

The number of out-of-hospital disability days are shown in Figure 1. The
most interesting feature of the data is that there occur various spikes at
certain values. Figure 1 presents significant spikes at certain values that
apparently coincide with the different time scales employed by doctors in
evaluating the severity of the patient’s injuries: 5 days (a working week), 7
days (a calendar week), 10 days, 15 days (a fortnight), 20 days, 30 days (a
month), 60 days and 90 days (a trimester).

1500
I

1000
1

Frequency

500
1

L

I T T T T T 1
0 50 100 150 200 250 300

days of absence
Figure 1: Empirical distribution of the number of days of temporary disability (limited to
300 days)

A set of regressors is considered when modelling this duration of tempo-
rary disability. A description of the variables is provided in Table 1. Explana-
tory factors include the victim’s age and gender, casualty type (a distinction
being drawn between drivers and non-drivers), vehicle type (a distinction be-
tween heavy and non-heavy vehicles) and the score (in log scale) for scrious
permanent injuries.
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Gender 1 if the injured victim was male; 0 otherwise.

Age Age of the victim in years (divided by 10).

Driver 1 if the injured victim was the driver; 0 otherwise.
Heavy vehicle 1 if the vehicle was a heavy vehicle; 0 otherwise.
Injury score the log of the score (+1) for permanent injuries.

Table 1: Description of variables

Mcan St.Dcv  Min  Max
Days of temporary disability 77.78 82.70 0 995
Age 3.82 1.67 0 0.99
Injury score 1.20 0.72 0 4.61

(a)

Variable equals 0 Variable equals 1

(Number of observations) (Number of observations)

Gender 11,141 9,116
Driver 9.926 10,331
Heavy vehicle 19,285 972

(b)

Table 2: Descriptive statistics of continuous variables (a) and frequency distribution of
binary variables (b)

Descriptive statistics of the continuous variables are recorded in Table
2a and the empirical frequency distribution of the dichotomous variables is
shown in Table 2b. The empirical variance in the duration of temporary
disability equals 6,839 and the mean equals 77.78. That is, the sample
variance is much greater than the sample expectation, indicating that the
data show overdispersion.

4. Results

Model parameters were estimated via maximum likelihood (ML). The
expectation-maximization algorithm described in section 2.5 was used to ob-
tain ML cstimates. Results were obtained in the programming language R.
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4.1. Model selection

To start with, and in order to obtain a better initial idea of the mod-
elling approach, several models without covariates, using increasingly more
multiplicitics, were fitted. In Table 3, the log-likclihood valuc and Baycsian
Information Criterion (BIC) are reported for a set of discrete models with-
out covariates combining different multiplicities. First, the Poisson and NB
model with just the multiple associated with days (m = 1) were estimated,
that is, the most common count data models. These models were labelled 1-
Poisson and 1-NB, respectively, with the number indicating the multiplicity.
In the next stage, the multiple associated with the working week (m = 5)
was added to the 1-NB model and labelled 1-5 NB. In each new stage, an ad-
ditional multiple was included. Weeks (m = 7), fortnights (m = 15), months
(m = 30) and two months (m = 60) were considered.

Model Log-lik BIC
1-Poisson -545226.60 1090463.12
1-NB -106866.17  213752.17
1-5-NB -101765.20  203579.98
1-5-7-NB -100862.10  201803.53
1-5-7-15-NB -08727.48  197564.04
1-5-7-15-30-NB -97745.29  195629.41

1-5-7-15-30-60-NB ~ -97730.74  195630.06

Table 3: Comparison of the models (without covariates).

Table 3 shows that adding multiplicitics notably improves the log-likelihood,
indicating the need to account for the spikes in the data.

The next step involved adding the covariates to the regression model. The
flexible specification of the model allows us to use different distributions for
each component. Here, the Poisson and negative binomial components were
considered. Note that negative binomial components for certain multiplicities
may tend to Poisson components when the dispersion parameter tends to occ.
In this case, to avoid numerical problems and for the sake of simplicity,
Poisson components were used.

The 1-5-7-15-30-NB regression model was selected based on the BIC crite-
rion. Its loglikelihood value was —95809.5, pointing to a marked improvement
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Figure 2: Empirical distribution function and the fitted cdfs of the different models

when using covariate information. Since the last two components presented
a size parameter tending to oo, indicative of Poisson rather than negative
binomial components, the last two components with multiplicities of 15 and
30 days were fitted as Poisson (1-5-7-NB/15-30-Poisson regression model).

Figure 2 shows the empirical cumulative distribution function (cdf) of
the data, together with the cdf for the fitted 1-5-7-NB/15-30-Poisson regres-
sion model and the simple 1-NB regression model. The right-hand plot is
limited to 120 days for reasons of visibility. The spikes can be identified on
the vertical jumps at certain points. The goodness of fit of the 1-5-7-NB/15-
30-Poisson model is evident. The 1-5-7-NB/15-30-Poisson regression model
captures the spikes in the data very accurately as is shown by the close resem-
blance between the estimated 1-5-7-NB/15-30-Poisson cdf and the empirical
cdf. On the other hand, and as expected due to the special characteristics of
the data, the 1-NB model performs poorly, failing to capture the spikes.

4.2. Parameter estimates

The results are shown in Table 4. Coefficient estimates and standard er-
rors of the 1-5-7-NB/15-30-Poisson modecl arc shown in the first six columns.
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Standard crrors were obtained on 1,000 non-paramctric bootstrap replica-
tions. The last two columns show the p-value of the likelihood ratio test
(LRT) statistic with the variable, and the marginal effect (ME) of the binary
covariates.

Coefficients (St.error) for each component

m—1 _ m—5 m=—7  m-15 m—30 LRT ME
(Significance)
Constant 3.739 1181 —0.404 0250  —0.119
ons (0.032) (0.051) (0.64) (0.156) (0.048)
0.056 0.081 0.519 —0.079  0.080
Gender (0.015)  (0.037) (0.341) (0.082)  (0.030) <0.001  8.59
0.005 0.023 0.004 0.006  —0.030
Age (0.005)  (0.009) (0.084) (0.021)  (0.008) <0.001
- ~0.058 0.05 0.057 ~0.008  —0.041
Driver (0.017)  (0.037) (0.33) (0.079)  (0.029) <0.001 841
o —0.032  0.001 0.016 —0.348  0.136
Heavy vehicle (0.034)  (0.095)  (0.454)  (0.268)  (0.063) 0.014 661
- 0.578 0.82 1.232 0.545 0.679 ~ 0.001
njury score (0.011)  (0.026) (0.353) (0.176)  (0.024) '
Mixine oro 0.527 0.164 0.034 0.088 0.187
& prop- (0.005) (0.004) (0.003) (0.005) (0.005)
. 2.296 1.063 0.774
NB size

(0.045)  (0.269)  (1188.14)

Table 4: Results from fitting the 1-5-7-NB/15-30-Poisson rcgression model.

The LRT and ME columns in Table 4 help provide some insights into
the relevance of the covariates for explaining the duration of sick leave of the
motor accident victims. The LRT column captures the change in likelihood
when the variable is included or excluded from the model. Note that the
variable selection in the finite mixture regression setting is not simple, since
each of the covariates appears in all the components. Coefficient estimates
are probably correlated and, therefore, the interpretation of each coeflicient
estimate and its standard error taken individually need to be considered with
some caution.

Analyzing the variables’ aggregate explanatory capacity, by mecans of the
LRT test, is more informative of the importance of each variable. The model
was fitted by removing each covariate one at a time from all the components
and the impact of this on the log-likelihood was analyzed. The results in
Table 4 show that all the covariates were statistically significant. In terms
of the variation level of the maximum likelihood value when the variable was
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Figure 3: Smooth effect (red line) of age on the mean of the number of leave (black line)
based on the fitted model.

removed, the variable capturing score of permanent injuries was, as expected,
the most relevant, followed by the victim’s age (values not shown).

The MEs of the binary covariates are also shown in Table 4. The ME of a
dichotomous covariate was computed as the difference between the expected
value of the period of sick leave when the covariate took the value 1 (presence)
and when the covariate took the value 0 (absence). Sample mean values were
considered for the rest of the covariates. Here, we can see that the impact
on the expected duration of sick leave is similar for all binary regressors.
When we observe any of these characteristics. the expected number of days
of disability increases by less than ten in all cases.

Finally, the cffect of continuous variables is analyzed. For the continuous
covariates, the ME on the expected duration is illustrated in graph form.
First, the effect of the victim's age on the expected duration of sick leave is
displayed. Figure 3 shows the estimated duration of sick leave for different
ages, smoothed with a LOESS smoother. The expected duration seems to
incrcasc cxponcntially with age, being rclatively stable at around 70 days
until the age 30 and, then, increasing quickly in line with age.

Now, the effect of the score for permanent injuries on the expected du-
ration of sick leave is displayed in Figure 4. The expected duration clearly
increases with permanent injury score.
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Figure 4: Smooth effect (red line) of injury score on the mean of the number of leave
(black line) based on the fitted model.

We can observe that the score of permanent injuries has the greatest effect
on the expected duration of sick leave. Now we split the data into victims
with serious permanent injuries and victims without serious permanent in-
juries. A motor victim's permanent disability score over 10 according to the
Spanish legislative scale is often considered by medical specialists to indicate
that the motor victim has sustained serious permanent injuries. The serious
injury indicator is constructed taking value one if the victim has a score for
permanent injuries over 10 and 0 otherwise. Figure 5 shows the fitted model
values for the sex, driver and heavy vehicle covariables, but here victims are
grouped according to the serious injury indicator. Gray boxplots represent
a scrious injury indicator cqual to 0: bluc boxplots a scrious injury indicator
equal to 1. It is clear, as discussed above, that the role played by severity
of permanent injuries is the most important. Likewise, we can see that the
differences in the marginal effects conditional on the indicator of serious in-
juries are almost the same for the three variables. No interactions between
the covariates arc found.

In short, according to our results, males, drivers, crashes involving heavy
vehicles and the elderly face longer periods of temporary sick leave to recover
from their injuries after a motor accident. These results are in line with those
reported in previous studies. Prior research suggests that male drivers are
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Figure 5:

Note: Gray(blue) boxplots refer to victims without(with) serious permanent injuries.
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involved in more scrious crashes (Abdel-Aty, 2003; Tay and Rifaat, 2007),
although other studies found that females are more likely to suffer severe
injuries (FEvans, 2001; Bedard et al., 2002). The identification of elderly vic-
tims as being a group at risk of sustaining serious injuries has been broadly
recognized (Hanrahan et al., 2009; Delen et al., 2006; O “Donnell and Con-
nor, 1996). The effect of the road user type on the severity of injury remains
unclear. Vulnerable road users are generally associated with more serious in-
juries. Comparing between occupants of the vehicle, previous studies suggest
that passengers are less likely to be seriously injury than drivers (Tay, 2016).
It could be in part explained because those occupants occupying front seats
are at a greater risk than those occupying rear seats (Smith and Cummings,
2004).

5. Concluding Remarks

Studies analyzing the repercussions of traflic accidents focus primarily
on mortality and permanent injuries. Temporary injuries are rarely studied
and, when they are, the focus is solely on the length of hospitalization, rather
than on the total number of days the victim takes off sick as a result of the
accident. This focus means that many of the consequences of road accidents
are excluded from the analyses. In this article, we contribute to the study
of temporary disabilities and the determination of their risk factors. More
specifically, using a motor insurance dataset, the distribution of the number
of days of sick leave taken by the victims of traflic accidents conditioned on
a set of risk factors was analyzed.

The frequency distribution presented by the number of days of sick leave
exhibited regular spikes at certain multiples, presumably reflecting the spe-
cific time scales used by doctors when determining the period of time they
should allow to lapsc before the next scheduled medical examination (in
weeks, fortnights, months, etc.). This phenomenon is known in the literature
as digit preference or the heaping of reported count data, i.e. rounding exact
counts to even multiples of reported units. Studies dealing with digit prefer-
ence/heaping assume that outcomes are indirect (or rounded) observations
of a latent distribution and the principal ideca underlying the approach is that
of modeling the latent (unobserved) variable by smoothing techniques.

In the context dealt with here, we claim that valuable information would
be lost with the application of smoothing techniques. This article has de-
veloped a suitable regression model for dealing with random variables that
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present regular peaks. To account for digit preference/heaping, the regres-
sion model is based on finite mixtures of multiple discrete distributions. We
found that the negative binomial-Poisson mixture regression model provided
the best performance when working week, week, fortnight and month mul-
tiplicities were considered (1-5-7-NB/15-30-Poisson). This regression model
specification captured the spikes in the data very accurately and the resem-
blance of its cumulative distribution function to the empirical distribution
function was very similar to that obtained with standard alternatives, such
as the more usual negative binomial regression model.

The analysis of the risk factors influencing the length of medical leave
showed that characteristics such as gender. age, road user type. vehicle class
and severity of the permanent injuries were statistically significant when ex-
plaining the expected duration of sick leave. The factor indicating serious
permanent injuries was found to have the greatest impact on expected tem-
porary disability. Gender, age, road user type and vehicle class had more
moderate impacts in this regard. Males and drivers were associated with
longer periods of temporary disabilitics. The expected temporary disability
of victims was also higher when heavy vehicles were involved. Finally, yvoung
victims were associated with shorter periods of temporary disabilities. The
expected duration of temporary disability was relatively stable until victims
entered their early thirties, but was increasing from this age on.

We arguc that these results may be helpful in different arcas. Decision
makers may well be interested in modeling the data itself, i.e. the data with
regular peaks, instead of smoothing the data to obtain the latent distribution,
as digit preference or heaping literature assumes. Focusing on road traffic
accidents, health planners, public managers and insurance providers may be
interested in modeling the data with peaks when conducting a cost-benefit
analysis. Different economic costs are derived from temporary disabilities of
motor victims. Direct costs include motor insurance compensation payments,
frequently related to a daily based compensation for the duration of the
temporary disability, and payments for medical sick leave days, guaranteed
by the Spanish labor legislation in case of victims are time off from work.
These costs are highly related with the doctor’s criteria to fix the medical
leave time. For non-hospitalised motor victims, the evolution of their injuries
can not be monitored by doctors on a real time basis. So, the fixation of a
lapse of time between medical reexaminations is necessary.

Shortening the timing between medical examinations would enhance the
accuracy of the cstimation of the true victim’s recovering time. However, a
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morc intensive use of medical services would be required and, therefore, more
economic resources would be involved. In this cost-benefit analysis, public
health planners and insurance managers may be interested in introducing an
optimization criterion to fix the lapse of time between the medical exami-
nations of traffic victims based on road accident information. The optimal
lapse of time between reexaminations may be not the same for all motor
victims and depend on the characteristics of the victim and the accident. In
this framework the analysis of the impact of the risk factors on the shape of
the distribution function of the length of medical leave would be required.
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