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We present a family of 3-qubit states to which any arbitrary state can be depolarized. We f
classify those states with respect to their separability and distillability properties. This provide
sufficient condition for nonseparability and distillability for arbitrary states. We generalize our res
to N-particle states.
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Entanglement is an essential ingredient in most app
cations of quantum information. It arises when the sta
of a multiparticle system is nonseparable; that is, when
cannot be prepared locally by acting on the particles in
dividually. Although in recent years there have been im
portant steps towards the understanding of this feature
quantum mechanics, we do not know yet how to classi
and quantify entanglement.

Several years ago, entanglement was thought to be
rectly connected to the violation of Bell-type inequalities
[1]. However, Werner [2] introduced a family of mixed
states describing a pair of two-level systems (qubits
the so-called Werner states (WS) which, despite bein
nonseparable, do not violate any of those inequalities [3
This family is characterized by a single parameter, th
fidelity F, which measures the overlap of WS with a Bel
(maximally entangled) state. A WS withF . 1�2 is
nonseparable, whereas ifF # 1�2, it is separable. WS
have played an essential role in our understanding of t
quantum properties of two-qubit states [4]. First of all
any state of two qubits can be reduced to a WS by actin
locally on each qubit (the so-called depolarizatio
process) [5]. This automatically provides a sufficien
criterion to determine if a given state is nonseparab
[6,7]. On the other hand, Bennettet al. [5] showed
how one can obtain WS of arbitrarily high fidelity
out of many pairs withF . 1�2 by using local op-
erations and classical communication. This proces
called distillation (or purification), is one of the most
important concepts in quantum information theory
When combined with teleportation [8], it allows one
to convey secret information via quantum privacy am
plification [9] or to send quantum information over
noisy channels [8,10]. In the case of two qubits, th
partial transposition [11] turned out to be a central too
in the classification of such systems, providing nece
sary and sufficient conditions for separability [6,7] an
distillability [12].

The description of the entanglement and distillability
properties of systems with more than two particles is st
almost unexplored (see Refs. [13,14], however). In th
Letter we provide a complete classification of a family o
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states of three-particle systems. These states are cha
terized in terms of four parameters and play the role
WS in such systems. In order to classify 3-qubit stat
with respect to their entanglement, we define five diffe
ent classes. To display the distillability properties, w
introduce a powerful purification procedure. We also ge
eralize our results to systems ofN qubits. Among other
things, this allows us to give the necessary and suffici
separability and distillability conditions of mixtures of a
maximally entangled state and the completely depolariz
state [15,16]. Moreover, since all states can be depo
ized to the form we analyze, our results automatica
translate into sufficient conditions for nonseparability an
distillability of general multiparticle systems. This pa
per is organized as follows: first we give a classificatio
of entangled states of three qubits; then we analyze
separability and distillability properties of a certain clas
of three-qubit states, and then we generalize our result
more than three qubits.

1. Classification of states.—Let us consider three
qubits A, B, and C. We classify their possible state
according to whether they are separable or not w
respect to the different qubits. In particular, accordin
to whether they can be written in one or more of th
following forms:

r �
X

i

jai�A �aij ≠ jbi�B �bij ≠ jci�C �cij , (1a)

r �
X

i

jai�A �aij ≠ jwi�BC �wij , (1b)

r �
X

i

jbi�B �bij ≠ jwi�AC �wij , (1c)

r �
X

i

jci�C �cij ≠ jwi�AB �wij . (1d)

Here, jai�, jbi�, and jci� are (unnormalized) states o
systemsA, B, and C, respectively, andjwi� are states
of two systems. We have the following complete set
disjoint classes of states:

Class 1, fully inseparable states: Those are sta
that cannot be written in any of the above forms (1
© 1999 The American Physical Society
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An example is the GHZ state [17] jC
1
0 � � �j000� 1

j111���
p

2 [18], which is a maximally entangled state of
the three qubits.

Class 2, 1-qubit biseparable states: Biseparable states
with respect to qubit A are states that are separable with
respect to the first qubit, but nonseparable with respect
to the other two. That is, states that can be written in
the form (1b) but not as (1c) or (1d). A trivial example
would be a state j0�A ≠ jF1�BC , where jF1� � �j00� 1

j11���
p

2 is a maximally entangled state of two qubits.
Class 3, 2-qubit biseparable states: Biseparable states

with respect to qubits A and B are states that are separable
with respect to the first qubit and second qubit, but non-
separable with respect to the third one. That is, states that
can be written in the forms (1b) and (1c) but not as (1d).
For examples, see below.

Class 4, 3-qubit biseparable states: Those are states that
can be written as (1b), (1c), and (1d), but not as (1a). For
an example, see Ref. [19].

Class 5, fully separable states: These are states that can
be written in the form (1a). A trivial example is a product
state j0�A ≠ j0�B ≠ j0�C .

One can also consider the process of distillation of mul-
tiparticle states and relate it to this classification. As-
sume that we have many trios (3 qubits) in the same
state r and we can perform only local operations. Then,
if the state r belongs to the class k it is clear that
it is not possible to obtain one trio of a class k0 , k
(for instance, one cannot convert a 2-qubit biseparable
state into a 1-qubit biseparable state). In some cases, how-
ever, one may produce some maximally entangled states
within one class: (i) Within the fully inseparable states,
one may be able to distill a GHZ state; (ii) within the 1-
qubit biseparable states, one may distill a jF1� state of
two particles. The specific conditions under which this is
possible are not known. On the other hand, if one has
some extra entanglement, one may activate some of the
states and change the corresponding class. For example,
if we have a biseparable state with respect to particles A
and B (class 3) whose density operator has a negative par-
tial transpose [11] with respect to C and we have some
extra states jF1�AB at our disposal, then one can distill a
GHZ state (class 1) [20]. This leads to the interesting re-
sult that even though particle A is disentangled from BC
and B from AC, with entanglement between AB we can
obtain a fully inseparable state. Note also that this way
of activating some hidden entanglement is different from
the one presented in Ref. [21]. It is also worth mentioning
that it is not known whether the entanglement of the states
in class 4 can be activated in any form.

2. Three-qubit systems.—Let us define the orthonormal
GHZ-basis [17]

jC6
j � �

1
p

2
�j j�AB j0�C 6 j�3 2 j��AB j1�C� , (2)

where j j�AB � j j1�A j j2�B with j � j1j2 in binary nota-
tion. For example, jC6
0 � �

1
p

2
�j000� 6 j111�� are stan-

dard GHZ states. We consider a family of three-qubit
states of the form

r3 �
X

s�6

ls
0 jC

s
0 � �Cs

0 j

1

3X

j�1

lj�jC1
j � �C1

j j 1 jC2
j � �C2

j j�. (3)

The ls are positive numbers and are restricted by
tr�r3� � 1, and therefore the states are characterized by
four parameters. We will assume that the labeling has
been chosen so that D � l

1
0 2 l

2
0 $ 0. By using ran-

dom local operations one can convert any state to this
form while keeping the values of l

6
0 � �C6

0 jrjC6
0 �

and 2lj � �C1
j jrjC1

j � 1 �C2
j jrjC2

j � unchanged [22].
Thus, any state can be reduced to this form using this de-
polarization procedure. Note that one has the freedom
to choose a local basis �j0�, j1�� in A, B, and C. In this
sense, the state jC

1
0 � is an arbitrary maximally entangled

state.
We will need later on the conditions under which

the operator r3 has negative partial transpose [11] with
respect to each qubit. One can readily check that

r
TA
3 $ 0 iff D # 2l2 ,

r
TB
3 $ 0 iff D # 2l1 , (4)

r
TC

3 $ 0 iff D # 2l3 .

2.1. Separability.—We start out by analyzing the sepa-
rability properties of the states (3). We show: (i) r3

can be written in the form (1b) iff r
TA
3 $ 0 [and ana-

logously for (1c) and (1d) with r
TB
3 $ 0 and r

TC

3 $

0, respectively]. (ii) r3 can be written as (1a) iff
r

TA
3 , r

TB
3 , r

TC

3 $ 0. These results give rise to the classi-
fication of the states given in Table I.

(i) If r
TA
3 $ 0, then r3 can be written in the form (1b)

(the opposite is true given the fact that positive partial
transposition is a necessary condition for separability [6]).
The idea of our proof is to define an operator r̃ which
can be written as (1b) and can be brought into the form
(3) by local operations, which is sufficient to show the
separability of r3 since a separable operator is converted
into a separable one by depolarization. We define

r̃ � r3 1
D

2
�jC1

2 � �C1
2 j 2 jC2

2 � �C2
2 j� . (5)

TABLE I. Separability and distillability classification of r3.

Positive operators Class Distillability

None 1 (GHZ) jC1
0 �ABC

r
TA
3 2 (pair) jF1�BC

r
TA
3 , r

TB
3 3 activate with jF1�AB

All 5 · · ·
3563
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This operator is positive since D # 2l2 [equivalently,
r

TA
3 $ 0, cf. (4)] and fulfills r̃TA � r̃. It has been shown

in [23] that all states in C�2 ≠ C�N which fulfill r̃TA � r̃

are separable, thus the last property ensures separability
of particle A. Furthermore, the state r̃ can be depolarized
to the state r3 [22].

(ii) We show that if r
TA
3 , r

TB
3 , r

TC

3 $ 0 then r3 is fully
separable (note again that the opposite is trivially true).
Again, the idea is to define an operator r̂ which can be
depolarized into the form r3 by using local operations and
that is fully separable. Let r̂ be a state of the form (3)
with coefficients l̂

6
0 � l

6
0 , and l̂

6
k � lk 6 D�2 (k �

1, 2, 3). Clearly, r̂ can be depolarized into r3 [22]. We
now rewrite r̂ as follows:

r̂ �
1
2

3X

k�0

�l̂1
k 1 l̂2

k 2 D� �jC1
k � �C1

k j 1 jC2
k � �C2

k j�

1 D

3X

k�0

jC1
k � �C1

k j . (6)

Since r
TA
3 , r

TB
3 , r

TC

3 $ 0, all coefficients in (6) are
positive. The first term in (6) can be written asP3

k�0
�l̂1

k 1l̂
2
k 2D�

2 �jk, 0� �k, 0j 1 j�3 2 k�, 0� ��3 2 k�, 0j�
and is thus separable. Let us define jf0� � j 1 11�,
jf1� � j 1 2�, jf2� � j 2 12�, and jf3� � j 2 1�,
where j6� � �j0� 6 j1���

p
2. Using this, the second

term in (6) can now be written as
P3

k�0 jfk� �fkj and is
thus also separable, which concludes the proof.

2.2. Distillability.—We turn now to analyze the distil-
lability properties of r3. We show that we can distill a
maximally entangled state jF1�ab between a and b iff

both r
Ta

3 , r
Tb

3 are not positive. This automatically means
that if all three partial transposes are not positive, we can
distill a GHZ state (since we can distill an entangled state
between A and B and another between A and C and then
connect them to produce a GHZ state [24]). Furthermore,
from our previous analysis on separability we have that if
any state belongs to class 3 the partial transpose with re-
spect to the third particle is negative (otherwise, it would
belong to class 5). As mentioned above, if we have that
rTC is not positive but rTA , rTB $ 0 and we have maxi-
mally entangled states between A and B at our disposal,
then we can activate the entanglement between ABC and
create a GHZ state [20] (see Table I).

In order to prove the statements concerning distillabil-
ity, we just have to show that if r

TB
3 , r

TC

3 are not positive
then we can distill a maximally entangled state between
B and C. That this condition is necessary follows from
the fact that by local operations one cannot change the
positivity of the partial transpose, and therefore if one is
able to distill [21] (which gives rise to nonpositive partial
transposes) one must start with nonpositive partial trans-
poses. Let us consider first that we perform a projec-
tion measurement in A on the state j1�; one can easily
show that the remaining state of B and C is purifiable iff
3564
D�2 . l1 1 l3 (which corresponds to having a fidelity
F . 1�2 between the resulting pair). It may happen that
this condition is not satisfied even though D�2 . l1, l3

[i.e., r
TB
3 , r

TC

3 are not positive, cf. (4)]. In such a case, we
can use the following purification procedure. The idea
is to combine M trios in the same state r3, perform a
measurement, and obtain one trio with the same form (3)
but in which the new D is exponentially amplified with
respect to l1,3. In order to do that, we proceed as fol-
lows: We take M trios, and apply the operator P �
j00 · · · 00� �00 · · · 00j 1 j10 · · · 00� �11 · · · 11j in all three
locations. This corresponds to measuring a POVM that
contains P obtaining the outcome associated to P. The
resulting state P≠3r

≠M
3 �Py�≠3 has the first trio in an (un-

normalized) state of the form (3) but with D̃�2 � �D�2�M

and l̃k � l
M
k . Given that D�2 . l1, l3, for M suffi-

ciently large we can always have D̃�2 . l̃1 1 l̃3. This
implies that if we project A onto j1� in this new trio we
will have a state between B and C with F . 1�2 and
therefore that can be purified to a maximally entangled
state.

3. Multiqubit systems.—We now generalize the above
results to the case of N $ 3 qubits. We will just quote
the results here, since the corresponding proofs are similar
to those of the three-qubit case (see [25]). We consider
the family of states

rN �
X

s�6

ls
0 jC

s
0 � �Cs

0 j

1

2�N21�21X

j�1

lj�jC1
j � �C1

j j 1 jC2
j � �C2

j j� . (7)

with the GHZ basis

jC6
j � �

1
p

2
�j j� j0� 6 j�2N21 2 j 2 1�� j1�� , (8)

and j is again understood in binary notation. As before,
using spin flip and phase-shift operations, one can de-
polarize any state of N qubits into this form [25]. We
will denote as A1, A2, . . . , AN the different qubits. One
can readily check that the partial transpose of this op-
erator with respect to the qubit AN is positive iff D �
l

1
0 2 l

2
0 # 2l2N2121 and similarly for the rest of the

qubits.
3.1. Separability.—On one hand, we have that

if r
TAk
N $ 0 then it can be written in the form

rN �
P

i jai�Ak �aij ≠ jwi�rest �wij, and therefore rN

is separable with respect to particle Ak . On the other
hand, if considering all possible partitions of the qubits
in two sets it turns out that for each partition the partial
transpose with respect to one of the sets is positive, then
rN is fully separable.

3.2. Distillability.—In order to analyze the distillabil-
ity of a maximally entangled state between particles Ai
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and Ak let us consider all possible partitions of the N
qubits into two sets such that the particles Ai and Ak be-
long to different sets. If for all such partitions, the partial
transposition with respect to one set is negative, then dis-
tillation is possible.

3.3. Example.—Finally, we will apply our results to the
case in which we have a maximally entangled state of N
particles mixed with the completely depolarized state

r�x� � xjC1
0 � �C1

0 j 1
1 2 x

2N
1 . (9)

These states have been analyzed in the context of robust-
ness of entanglement [16], NMR computation [15], and
multiparticle purification [13]. In all these contexts bounds
are given regarding the values of x for which r�x� is
separable or purifiable. For example, in Refs. [15,16] they
show that in the case N � 3 if x # 1��3 1 6

p
2�, 1�25

then the state is separable, respectively. In Ref. [13] it
is shown that for N � 3 if x . 0.32 263 then r�x� is
distillable. Using our results we can state that r�x� is
fully nonseparable and distillable to a maximally entan-
gled state iff x . 1��1 1 2N21�, and fully separable oth-
erwise. Specializing this for the case N � 3 we obtain
that for x . 1�5 it is nonseparable and distillable.

In summary, we have given a full characterization of
the entanglement and distillability properties of a family
of states of three qubits. These states play the role of
Werner states in these systems since any state can be
reduced to such a form by depolarization. Thus, our
results provide sufficient conditions for nonseparability
and distillability for general states. In particular, if a state
r after depolarization belongs to the class k, then r must
be in a class k0 # k. We have generalized our results to
an arbitrary number of particles.
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