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ABSTRACT:  

The employment of three structurally related Schiff bases H2L1, H2L2 , and H3L3 with zinc and 

lanthanide salts under various reaction conditions, gave four families of compounds formulated as 

[ZnII
2LnIII

2(L1)4(EtOH)6][ClO4]2 (1-3), [ZnII
5Ln(OH)(L1)6(H2O)] (4-6), 

[(ZnII
4LnIII

2(OH)2(L2)4(OAc)2(NO3)2(DMF)3]) (7-9), [ZnII
2LnIII

2(L3)2(NO3)2(CO3)2(CH3OH)2] (10-

12) with robust and novel topologies. Synthetic aspects are discussed. A comprehensive topological 

analysis of all reported ZnII/LnIII  CCs with a core nuclearity of four and above is presented and 

identifies that families (4-6) and (7-9) are the first examples of the 2,3,4M6-1 motif in ZnII/LnIII 

chemistry. Magnetic studies are presented for the DyIII  analogues (1, 7 and 10) are presented, 7 

demonstrates field-induced slow relaxation of the magnetization. Fluorescence studies are also 

discussed. 
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Introduction 

In recent years, 3d-4f polynuclear Coordination Clusters (CCs) have attracted increasing interest as a 

result of their extraordinary and fascinating structural characteristics1–5 as well as their many potential 

applications in fields such as molecular magnetism,6–8 optical materials9–13 and catalysis.14–18 In 

particular, the first heteronuclear ZnII – EuIII /SmIII  CCs were reported in 1995 by Brennan et al19,20 ; 

more recent ZnII/LnIII  examples followed.13,21,22, in 2009 Murugesu et al10 reported a multifunctional 

pentanuclear ZnII2DyIII
3 CC exhibiting Single Molecule Magnet (SMM) and fluorescent properties. 

Since then the synthesis of ZnII/LnIII  CCs has gained remarkable attention, this since to a) magnetic 

behaviour that can be explained due to the diamagnetic character of the ZnII ion, which has also been 

shown to enhance the energy barrier in ZnII/DyIII SMMs23  and b) EuIII  and TbIII  are attractive 

luminescent centres, due to their long lived 5D0 and 5D4 excited states and the accompanying large 

Stokes’ Shifts. In addition, the combination with ZnII ions may produce species with enhanced 

luminescent properties via f –d energy transfer,24 a plethora of such mixed metal species have been 

reported and the magnetic and luminescent properties of such compounds have been very well 

investigated.9,25–46  

Several organic ligands have been employed to build ZnII/LnIII  CCs and Schiff Base ligands 

represent an ideal host to accommodate both elements and allow them to interact.27,35,47,48 The 

synthesis of the Schiff base ligand (E)-2-(2-hydroxy-3-methoxybenzylideneamino)phenol H2L1 

(Scheme 1, left), was initially reported in 1971 and used to sequester UO2.49 Since then, a number of 

3d/4f compounds bearing this ligand have been reported.15,50–55 Recently, we employed H2L1 in 

ZnII/LnIII  chemistry, to assemble a family of bimetallic tetranuclear CCs formulated as 

[Zn2Ln2(L1)4(NO3)2(DMF)2].2DMF (Ln is Sm, Eu, Tb, Gd, Dy and Yb) which promote Fiedel 

Crafts17,56 and multicomponent catalysis.57 An interesting feature of these molecules is the retention 

of their topology into solution, presenting further importance to the rigidity of the ligands and allows 

some synthetic control over topology.  



H2L1 is particularly versatile and straightforward to synthesise, and readily modified to 

enhance the luminescent properties eg. by the introduction of chromophoric moieties such as napthol, 

are often employed to transfer absorbed energy efficiently to the lanthanide ions58 . We therefore used 

a systematic synthetic study using H2L1 and its structurally related organic ligands H2L2 and H3L3 

(Scheme 1, centre and right) in the synthesis of ZnII/LnIII  CCs. This study is limited to the formation 

and characterization of the DyIII , TbIII  and EuIII  derivatives which are expected to show interesting 

magnetic (DyIII) and fluorescent (TbIII /EuIII) properties. Herein, we describe twelve new CCs 

formulated as [ZnII2LnIII
2(L1)4(EtOH)6] 2(ClO4) (1-3) where Ln is DyIII  (1), TbIII  (2) or EuIII(3). 

[ZnII
5Ln(OH)(L1)6(H2O)] (4-6) where Ln is DyIII  (4), TbIII  (5) or EuIII(6). [ZnII

4LnIII
2(OH)2(L2)4 

(OAc)2(NO3)2(DMF)3].DMF (7-9) where Ln is DyIII  (7), TbIII  (8) or EuIII (9). 

[ZnII
2LnIII

2(L3)2(CO3)2(NO3)2(CH3OH)2] (10-12) where Ln is DyIII  (10), TbIII  (11) and EuIII (12). 

Magnetic studies of the dysprosium analogues are presented, as well as luminescent analyses in 

solution.  

 

Scheme 1. Schiff Base ligands used in this study 

EXPERIMENTAL SECTION 

Materials. Chemicals (reagent grade) were purchased from Sigma Aldrich and Alfa Aesar. The 

synthesis and characterization of the HL ligand are described in the ESI. All experiments were 

performed under aerobic conditions using materials and solvents as received. Safety note: Perchlorate 

salts are potentially explosive; such compounds should be used in small quantities and handled with 

caution and utmost care at all times. 

Instrumentation. IR spectra were recorded over the range of 4000-650 cm-1 on a Perkin Elmer 

Spectrum One FT-IR spectrometer fitted with a UATR polarization accessory. ESI-MS data were 
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obtained on a VG Autospec Fissions instrument (EI at 70 eV). TGA analysis was performed on a TA 

Instruments Q-50 model (TA, Surrey, UK) under nitrogen and at a scan rate of 10 °C/min (University 

of Sussex). All steady-state UV-Vis absorbance measurements (University of Kent) were made by 

use of a Shimadzu UV-1800 UV-Vis Spectrophotometer in examples were dissolved in DMF as 

indicated. with quartz cuvettes, while all stead-state solutions fluorescence emission measurements 

were carried out using a Cary Eclipse Fluorescence Spectrometer in either acetonitrile, or DMF as 

indicated with quartz cuvettes.  

Magnetic studies. Variable-temperature magnetic studies were made by use of  a MPMS-5 Quantum 

Design magnetometer operating at 0.03 T in the 300-2.0 K range. Magnetization measurements were 

made under a magnetic field range of 0 - 5 T. Diamagnetic corrections were applied to the observed 

paramagnetic susceptibility using Pascal’s constants. 

Ligand synthesis. The syntheses of H2L159 and H2L259 and  H3L3 60 were by the reported 

procedures.  

Experimental 

Preparation of Complexes  

[ZnII
2LnIII

2(L1)4(EtOH)4] [ClO4]2 (1-3) where Ln is DyIII  (1), TbIII  (2) or EuIII(3). To a solution of 

H2L1 (48.2 mg, 0.2 mmol) in EtOH (20 mL), Zn(ClO4)2 6H2O (74 mg, 0.2 mmol) and Ln(OTf)3 (61 

mg, 0.1 mmol) were added and the resultant solution was stirred for 5 minutes, Et3N (62 µL, 0.45 

mmol) was added and the mixture was stirred for a further 1h. The resulting cloudy yellow solution 

was filtered and allowed to stand at room temperature. After 4 days, small yellow crystals were 

obtained with yields in the range of 52% based on Zn. For 1, CHN [ZnII
2DyIII

2(L1)4(EtOH)6][ClO4]2 

observed: C-43.19%, H-4.06%, N-2.79%; expected: C-43.08%, H-4.26%, N-2.96%. for 2 CHN 

[ZnII
2TbIII

2(L1)4(EtOH)6][ClO4]2 observed: C-43.21%, H-4.44%, N-3.04%; expected: C-43.30%, H-

4.28%, N-2.97%., for 3 CHN [ZnII
2EuIII

2(L1)4(EtOH)6][ClO4]2 observed: C-43.53%, H-4.26%, N-

2.92%; expected: C-43.59%, H-4.31%, N-2.99%.,  



[ZnII
5Ln(L1)6(OH)(H2O)] (4-6) where Ln is DyIII  (4), TbIII  (5) and EuIII(6). To a solution of H2L1 

(48.2 mg, 0.2 mmol) in MeCN (20 mL), LnCl3.xH2O (37 mg, 0.1 mmol) and ZnCl2 (27.2 mg, 0.2 

mmol) were added and the mixture was stirred for 5 minutes, Et3N (62 µL, 0.45 mmol) was added 

and the mixture stirred for a further 1h. The resulting cloudy yellow solution was filtered and allow 

to stand at room temperature. After 3 days, small yellow crystals were collected with yields in the 

range of 67% based on Zn. CHN (4) [ZnII
5Dy(L1)6(OH)(H2O)] observed: C- 51.32%, H-3.41%, N-

4.19%; expected C-51.29%, H-3.53%, N-4.27% , for 5 [ZnII
5Tb(L1)6(OH)(H2O)] observed: C- 

51.41%, H-3.50%, N-4.35%; expected C-51.29%, H-3.53%, N-4.27% , for 6 

[ZnII
5Eu(L1)6(OH)(H2O)] observed: C- 51.45%, H-3.60%, N-4.14%; expected C-51.58%, H-3.55%, 

N-4.29% ,.  

[ZnII
4LnIII

2(OH)2 (L2)4(OAc)2(NO3)2(DMF)3].DMF (7-9) where Ln is DyIII  (7), TbIII  (8) or EuIII  (9). 

To a solution of H2L2 (52 mg, 0.2 mmol) in DMF (10 mL), Ln(NO3)3.5H2O (44 mg, 0.1 mmol), 

Zn(CH3CO2)2.2H2O (45 mg, 0.2 mmol) and Et3N (62 µL, 0.45 mmol) were added and the solution 

was stirred for 1h. The clear yellow solution was filtered and underwent vapour diffusion with Et2O. 

After 7 days, yellow needle-like crystals were obtained with yields of 44%. CHN 

[ZnII
4DyIII

2(OH)2(L2)4(OAc)2(NO3)2(DMF)3].DMF observed: C-45.41%, H-3.86%, N-6.19%; 

expected C-45.59%, H- 3.83%, N-6.05%. for 5 [ZnII
4TbIII

2(OH)2(L2)4(OAc)2(NO3)2(DMF)3].DMF 

observed: C-45.67%, H-3.79%, N-6.11%; expected C-45.79%, H- 3.85%, N-6..07%, for 6 

[ZnII
4EuIII

2(OH)2(L2)4(OAc)2(NO3)2(DMF)3].DMF observed: C-45.99%, H-3.90%, N-6.15%; 

expected C-46.03%, H- 3.86%, N-6.10%.  

[ZnII
2LnIII

2(L3)2(CO3)2(NO3)2(CH3OH)2] (10-12) where Ln is DyIII  (10), TbIII  (11) and EuIII(12). To 

a solution of H3L3 (71.6 mg, 0.1 mmol) in MeOH (20 mL), Et3N (61.5 µL, 0.45 mmol) was added 

and the solution was stirred for 10 min. Ln(NO3)3.5H2O (44 mg, 0.1 mmol) and Zn(NO3)2.6H2O (58 

mg, 0.2 mmol) were added and the resultant solution was stirred for a further 40min. The clear yellow 

solution was filtered and left to stand at room temperature. After 5 days, small yellow crystals were 

obtained with a yield of 80 % based on Zn. CHN (10) [ZnII
2DyIII

2(L3)2(CO3)2(NO3)2(CH3OH)2] 



observed C-34.89%, H-3.16%; N-5.88%; expected C-34.95%,H-3.21%,N-5.83%. for 11 

[ZnII
2TbIII

2(L3)2(CO3)2(NO3)2(CH3OH)2] observed C-35.21%, H-3.34%; N-5.81%; expected C-

35.19%, H-3.23%, N-5.86%. for 12 [ZnII
2EuIII

2(L3)2(CO3)2(NO3)2(CH3OH)2] observed C-34.55%, 

H-3.24%; N-5.89%; expected C-35.49%,H-3.26%,N-5.91%. 

X-ray Crystallography. Data and unit cells(Tables S1-S4) for 1-6, 10, 11 and 12 (Ȧ- scans) were 

obtained at the University of Sussex by use of an Agilent Xcalibur Eos Gemini Ultra diffractometer 

with CCD plate detector under a flow of nitrogen gas at 173(2) K using Mo KĮ radiation (Ȝ = 0.71073 

Å). CRYSALIS CCD and RED software was used respectively for data collection and processing. 

Reflection intensities were corrected for absorption by the multi-scan method. Data for 7, 8, 9, 13 and 

14 were collected at the National Crystallography Service, University of Southampton61 on a Rigaku 

CrystalClear, processed with CrysAlisPro and solved by intrinsic phasing methods with SHELXT62. 

All crystal structures were then refined on Fo2 by full-matrix least-squares refinements using 

SHELXL.62 All non-H atoms were refined with anisotropic thermal parameters, and H-atoms were 

introduced at calculated positions and allowed to ride on their carrier atoms. Structures 7, 8 and 9 are 

isostructural with a large solvent channel parallel to the b-axis present in each structure.  From the 

difference map a large peak of electron density is present in each of these structures which has proved 

impossible to assign in a chemically sensible manner.  For each of these structures we performed the 

elemental and TGA analysis three times for each sample and obtained the expected results at all times. 

The absence of Cl was confirmed by ICP analysis. Additionally, data were collected at 30K for 9 in 

an attempt to better characterize the structure within the solvent channel but this was unsuccessful. 

The electron contribution from this large peak along with that of the diffuse solvent has been taken 

into account using the SMTBX solvent masking as implemented in Olex2.  

Geometric/crystallographic calculations were performed using PLATON,63 Olex2,64 and WINGX65 

packages; graphics were prepared with Crystal Maker.66 Crystallographic details are given in Tables 

S1-S4. CCDC 1505845-1505854   



RESULTS AND DISCUSSION 

Synthetic issues. It is well-known that the stoichiometric ratio, metal salt, temperature, atmosphere, 

solvent, time of reaction, can all affect the nature of the final product. The semi-rigid H2L1 ligand 

has two pockets-I(ONO) and –II(ONO) (Scheme 1, left) which are suitable for binding both 3d and 

4f metal ions. The reaction between, Dy(OTf)3, Zn(ClO4)2 and H2L1 in the presence of base (Et3N) 

in EtOH in the molar ratio 1:2:2:4.5, afforded yellow needle like crystals of 1 in a tolerable yield 

(57%) after 1 week. The reactions with similar ratios but different counter anions and solvent yielded 

the recently reported isoskeletal59 CCs formulated as [Zn2Ln2(L1)4(NO3)2(DMF)2].17 Aiming to 

synthesize the isoskeletal tetranuclear zinc analogue of [Ni2Ln2(L1)4Cl2(CH3CN)2],15 we performed 

the reaction with similar ratios in MeCN with DyCl3 and ZnCl2 that yielded after 2 weeks jagged 

crystals of 4 possessing a topology unseen in the literature for these metals. A modified form of this 

ligand (E)-3-((2-hydroxy-3-methoxybenzylidene)amino)naphthalen-2-ol (H2L2, Scheme 1 middle) 

that offers similar pockets to H2L1 has been employed to act as a sensitizer to enhance luminescence 

of the resulting complexes. The same molar reactant ratios in DMF, with Dy(NO3)3 and Zn(OAc)2., 

After 1 week of vapour diffusion with Et2O, large yellow plate like crystals of 7 were afforded in a 

good yield (70%). With the retention of the o-vanillin unit and replacement of the aminophenol by 

1,3-diamino-2-propanol the  ligand H3L3 (Scheme 1, right), offering similar pockets to that in H2L1 

and H2L2 and one extra pocket was obtained. The use of H3L3 for the first time in ZnII/LnIII  chemistry, 

gave the tetranuclear compounds 10 – 12. A summary of these synthetic procedures is shown in Table 

1 and Scheme 2. 

  



Table 1. Synthetic Strategies of preparing ZnII/LnIII  CCs. 

Ratioa Ligand Ln source Zn source Crystallisation 

method/ time( 

days) 

Solvent Compound 

A:B:C:D = 

1:2:2:4.5 

H2L1 Ln(OTf)3 Zn(ClO4)2.6H2O SE / 7 EtOH Zn2Ln2 

(1,2,3) 

A:B:C:D = 

1:2:2:4.5 

H2L1 Ln(NO3)3.5H2O Zn(NO3)2.6H2O VD Et2O / 9 DMF Zn2Ln2
17 

A:B:C:D = 

1:2:2:4.5 

H2L1 LnCl3.XH2O ZnCl2 SE / 3 MeCN Zn5Ln 

(4,5,6) 

A:B:C:D = 

1:2:2:4.5 

H2L2 Ln(NO3)3.5H2O Zn(CH3CO2)2.2H2O VD Et2O / 7 DMF Zn4Dy2  

(7,8,9) 

A:B:C:D = 

1:2:2:4.5 

H3L3 Ln(NO3)3.xH2O Zn(NO3)2.6H2O SE / 5 MeOH Zn2Ln2  

(10,11,12) 

(a) A= DyIII salt, B = ZnII salt, C= HxLY, D = Et3N 

O
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Scheme 2. Synthetic scheme for the preparation of (1-12) 



Crystal Structure Description. Compounds 1 ʹ 3 crystallize in the monoclinic P21/n space group 

and are isoskeletal, thus only 1 will be described. The asymmetric unit of 1 contains one ZnII ion; one 

DyIII  ion; two doubly deprotonated organic ligands (L1); three coordinated ethanol molecules; one to 

the ZnII and the other two to the DyIII  ion; one perchlorate and one ethanol molecule. The main core 

of 1 can be described as defect dicubane 67 and is isoskeletal to the previous reported Ni2Ln2,15,50 and 

Co2Ln2
15,51 cores. The organic ligands exhibit two different coordination modes (modes I and II, 

Scheme 2). In the first mode (mode I, Scheme 2), the two phenoxide oxygen atoms and the imine 

nitrogen atom are chelated to the ZnII centre, and the two phenoxide atoms are further bonded to two 

DyIII  ions (Dy(1) and its symmetry related) and the methoxide oxygen atoms is and bound to Dy(1). 

In the second mode (mode II, Scheme 2), the two phenoxide oxygen atoms and the imine nitrogen 

atom are chelated to the DyIII  centre, while the phenoxide oxygen atom (from the 2-aminophenol 

unit), is further bound to two ZnII centres. One ethanol molecules is bound one to the ZnII ion and two 

others are bound to the DyIII  ion. Each ZnII centre coordinates to six atoms (O5N) and displays an 

octahedral coordination, while each DyIII  centre coordinates to eight atoms (O7N). Using Shape 

software,68 the geometry of Dy(1) can be best described as biaugmented trigonal prismatic, with an 

S(P) value 1.415. There are two ZnII···DyIII  distances at 3.5513(5)Å and 3.5329(5) Å and one 

ZnII···ZnII distance at 3.172(5)Å. Two coordinating ethanol molecules, one to ZnII and one to DyIII  

ion, form an H-bond (O8 – H8···O9) while the third coordinating ethanol molecule forms an H-bond 

with the lattice EtOH (O7 – H7···O10), which in turn is H-bonded to the uncoordinated methoxide 

oxygen atom (O10 – H10A··· O1) (Fig S1). No other intramolecular interactions (e.g H-bonds or 

stacking) can be found between neighbouring entities. According to our topological 

representation,69,70 the main core of compound 1 can be described as 2,3M4-170 and according to a 

literature survey71 this topology can be found in Zn2Eu2
19 and Zn2Yb2

72 CCs and the recent examples 

reported by us.17 



 

Figure 1. The structure of compound 1 (up) and its core (down). C, H atoms and lattice molecules are omitted 

for clarity. Colour code Zn (grey), Dy (light blue), O (red), N (blue). 
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Scheme 3. The coordination modes found in 1 and 4.  

Compounds 4 ʹ 6 crystallize in the triclinic P-1 space group and are isoskeletal, thus only 4 will be 

further described. The asymmetric unit of 1 contains five ZnII ions, one DyIII  ion, six doubly 

deprotonated organic ligands (L1), one triply bridging hydroxyl group, one coordinated water 

molecule and two lattice molecules (one water and one acetonitrile). The main core of 1 can be 

considered as four fused triangles forming a distorted ‘‘chair’’ shaped core. The five ZnII ions are 

situated in plane, while the DyIII  is situated 1.998Å above this plane. Each of the six organic ligands 

is chelated to one metal centre and further bridges other metal centres with the phenoxide and 

methoxide oxygen atoms. Three different coordination modes can found for the six organic ligands; 

3, 1 and 2 for modes I, II and III, respectively (Scheme 3). The hydroxyl group bridges Zn2, Zn3 and 

Dy1 and is situated (0.311Å) above their plane. The coordination sphere of Zn3 is completed by one 

water molecule. Zn1 and Zn5 are five coordinated (O4N) with trigonality index Ĳ = 0.7λ and 0.88, 

respectively, indicating that they adopt  distorted trigonal bipyramidal coordination. Zn2 and Zn3 are 

five coordinated (O4N) with trigonality index Ĳ = 0.46 and 0.43, respectively, indicating that the 

coordination is between square pyramidal and trigonal bipyramidal 73 Zn4 is six coordinated (O5N). 

From Shape software,68 the geometry of Zn4 can be best described as trigonal prismatic, with S(P) 

value 5.126. The DyIII  centre coordinates to nine atoms (O8N). From Shape software,68 the 

coordination of Dy(1) can be best described as between a spherical tricapped trigonal prism and a 

spherical capped square antiprism [S(P) 1.606 and 1.656, respectively]. There are two ZnII···DyIII  

distances of 3.4317(3) Å and 3.4452(3) Å and four ZnII···ZnII distances at 3.0942(3) Å, 3.1296(3) Å, 

3.527(3) Å and 3.626(3) Å. The coordinating water molecule forms two strong H-bonds, one with 

the methoxido oxygen atom (O7···O1AA) and the other with lattice water (O7···O3A). No other 



supramolecular interactions (H-bonds or stacking) can be found between neighbouring entities. 

According to our topological representation,69,70 the main core of compound 4 can be described as 

2,3,4M6-170 and represents the first example of this configuration in ZnII/DyII I chemistry. 

 



 

Figure 2. The structure of compound 4 (upper) and its core (middle). C, H atoms and lattice molecules are 

omitted for clarity. Colour code Zn (grey), Dy (light blue), O (red), N (blue), (Lower) The decorated 2,3,4M6-

1 motif. 

 

Compounds 7 –9 crystallize in the monoclinic P21/c space group and are isoskeletal, thus only 7 

will be further described. The asymmetric unit of 7 contains four ZnII ions, two DyIII  ions, four doubly 

deprotonated organic ligands (L2), two triply bridging hydroxyl groups, two acetates, , three 

coordinating and one lattice DMF molecules. One of the coordination sites of Dy is disordered with 

water and  nitrate present. The core of 7 can be considered as four fused triangles. Dy2, Zn1, Zn2 and 

Zn3 are strictly coplanar, while Dy1, Zn4, Zn3 and Zn2 are nearly so. The distorted angle between 

the two mean planes is 62.39°. Alternatively, the core can be considered as a ZnII
4 defect dicubane 

with each DyIII  ion attached in the wings. Each organic ligand is chelated to one ZnII ion forming four 

neutral metalloligands (ZnL2) which are further bridged to neighbouring ZnII and two DyIII  ions. In 

total each L2 coordinates to three metal centres; two ZnII and one DyIII , exhibiting a coordination 

mode analogous to mode I (Scheme 3). Each hydroxyl group bridges three metal centres, O1 bridges 

Dy1, Zn2 and Zn4, and O2 bridges Dy2, Zn1 and Zn3, and O1 and O2 are 0.895 and 0.911Å, 

respectively above the plane. Each acetate group bridges two metal centres, Dy1 – Zn4 and Dy2,  



Zn1. Two DMF molecules coordinate to Dy1 and one N,N’ – DMF and one nitrate complete the 

coordination geometry of Dy2. Each ZnII ion has coordination number six (O5N) albeit with a 

distorted  octahedral coordination geometry. Each DyIII  ion coordinates to eight oxygen atoms. From 

Shape software,68 the geometry of Dy(1) and Dy(2) can be best described as between biaugmented 

trigonal prismatic and triangular dodecahedral [S(P) values 1.763 and 1.868, respectively] and 

biaugmented trigonal prism [S(P) value 1.626], respectively. There are four ZnII···DyIII  distances 

between 3.3598(10) Å - 3.5333(10) Å and four ZnII··· ZnII distances 3.1216(12) Å - 3.354(12) Å.  

The lattice N,N’ – DMF molecule forms strong H-bonds with the two hydroxyl groups. No other 

supramolecular interactions (H-bonds or stacking) can be found between neighbouring entities. 

According to our topological representation,69,70 the core of compound 7, like the core of 4, can be 

described as 2,3,4M6-170. A literature survey reveals that the same motif with the same M/Ln ratio 

can be seen in Ni/Ln52 and Co/Ln74 chemistry.  



 



 

Figure 3. The structure of compound 7 (upper) and its core (middle). C, H atoms and lattice molecules 

are omitted for clarity. Colour code Zn (grey), Dy (light blue), O (red), N (blue), (Lower) The 

decorated 2,3,4M6-1 motif. 

 

Compounds 10 ʹ 12 are tetranuclear CCs synthesized from a mixture with a 2:1:1:4.5 Zn / Dy / 

ligand / base ratio in MeOH as solvent. All compounds crystallized in the monoclinic P21/n space 

group and are isoskeletal, thus only 10 is further described. The asymmetric unit contains one ZnII 

ion, one DyIII  ion, one doubly deprotonated organic ligand (HL3), one carbonate, one nitrate and one 

methanol molecule. The main core of 10 can be considered as two of Zn-Dy pairs bridged by two 

carbonate groups. The four metal centres are situated in a plane (Torsion angle Zn1 – Dy1 – Dy1 – 

Zn1 is 0). Each organic ligand is chelated to the ZnII ion via the two imino N atoms and the two 

phenoxide O atoms and to the DyIII  ion via the two methoxido and two phenoxide O atoms (Scheme 

3). The carbonate group bridges the two DyIII  ions via oxygen O3 and coordinates to Zn1 and the 

nitrate group is chelated to the DyIII  ion. The distorted octahedral geometry (O4N2) of the ZnII ion is 

completed by the oxygen atom of a methanol molecule. The coordination number of the DyIII  ion is 

completed by one chelated nitrate. From Shape software,68 the geometry of Dy(1) can be best 



described as spherical capped square antiprism [S(P) 2.489]. There is one ZnII···DyIII  distance at 

3.446(2) Å and one DyIII ···DyIII  distance at 4.007(2) Å. The central OH group of the organic ligand 

remains protonated and forms a strong H-bond with an oxygen atom of a carbonate group of a 

neighbouring ZnII2DyIII
2 entity forming a two dimensional (2D) H-bonded framework, which extends 

perpendicular to the ac plane. According to our topological representation,69,70 the main core of 

compound 10 can be described as 1,2M4-170 and it is the fifth example of the motif in ZnII/DyIII  

chemistry.32,34,39,41 A comparison between the H3L3 ligand used for the synthesis of 10 and the Schiff 

base ligands used in the previous reported the same 1,2M4-1 motif indicates that ,despite the existence 

of the central OH group, this type of ligand favours the formation of Zn-Ln27 dimers which combine 

via the carbonate unit to the tetranuclear motif.   

 



 

Figure 4. The structure of compound 10 (upper) and its core (middle).. C, H atoms and lattice molecules 

are omitted for clarity. Colour code Zn (grey), Dy (light blue), O (red), N (blue). (lower) The 2D H-

bonded framework seen in the crystal structure of 10.  

 

Magnetic Properties. Magnetic measurements were made on selected powdered samples of 

compounds 1, 7 and 10 to detect any SMM response. In preliminary AC measurements at zero field 

and two frequencies (10 and 1000 G) for the three compounds showed a similar response, was only 

observable by the tail of their AC signals. A series of new measurements under fields up to 3000 G 

showed a shift of the signals to higher temperature but AC peaks were not observable for 1 and 10, 

(Figure S9). In contrast, well defined peaks were obtained for 7 for frequencies larger than 80 Hz and 

under a field of 3000 G, Figure S10. These measurements are evidence of strong tunnelling relaxation. 

Complementary susceptibility measurements were made for 7. The MT product at room temperature 

is 27.2 cm3mol-1K, slightly lower than the expected value of 28.3 for two DyIII  cations, (Figure 5, 

left). On cooling the MT value decreases monotonically down to a final value of 20.7 cm3mol-1K at 

2 K. Magnetization experiments show a fast increase of the magnetization and a roughly linear 

dependence with the applied field in the 2 - 5 T field range. The final value of 9.4 N (for the two 



DyIII  cations) under the maximum explored field of 5 T is lower than the expected suggesting a 

moderately high anisotropy. 

 

Figure 5. (left) MT product vs. temperature for complex 7. (right) AC susceptibility measurements 

for 7 at frequencies comprised between 23 and 1500 Hz. 

 

The AC susceptibility measurement in the 80-1500 Hz frequency range show well defined frequency-

dependent peaks. An Arrhenius fit of the maxima of the peaks for compound 7 gives an energy barrier 

of 10.2 cm-1 and o = 7.1·10-6, (Figure 5, right). In the light of the structural data it shows that the two 

DyIII  cations are do not interact and are well isolated by the Zn4 butterfly, compound 7 should be 

assumed as a Single-Ion-Magnet with a low barrier for the reversal of magnetization.  

The magnitude of the barrier for systems of this kind is sensitive to multiple factors but the 

importance of the ligand field and the position of the charged or neutral donors around the lanthanide 

cation to determine the spatial arrangement of electronic density in the oblate-prolate model.75–77 For 

the case of DyIII  its oblate electron density will generate larger barriers when negatively charged 

donors are above and below the radial plane of the cation. For 7 we are far from this situation because 

the O-phenoxo and O-carboxylate donors (with the shorter Dy-O distances) are placed on the same 

side of the coordination sphere whereas the other side is occupied by solvent molecules with two Dy-

O distances larger than 2.5 Å. Calculation of the direction of the easy axis for the DyIII  cations, in low 



symmetry environments, such as that in of 7 can be performed with the MAGELLAN program.78 The 

directions  are similar, as can be expected from the similar (but not identical) coordination spheres 

around Dy1 and Dy2. The axes are directed towards the O-phenoxo donors and are inclined at 54.1º   

not parallel. Both factors in non-ideal arrangements of the charged O-donors around the DyIII  cations 

and the angle between the easy axes contribute to the low energy barrier of the system. 

 

Figure 6. Relative position of the easy axis of the two DyIII  cations on the core of 7 (top) and in their 

DyO8 coordination spheres (bottom). Red O-atoms corresponds to the O-phenoxo and O-carboxylate 

donors. 

Photoluminescence. Solution luminescence measurements were made for nine of the CCs (4-12) in 

DMF and each of the three ligands (in MeCN). The spectra of the DyIII  containing species (Figure 7) 

show that broad ligand-based emission with some metal contribution (resulting in red-shift of the 

profile) dominates for each of the three compounds. Though each of these species have distinctly 

different absorption spectra, all three emit near 560 nm (4μ Ȝem = 560, 7: Ȝem = 567, and 10: Ȝem = 555) 

correlating with the 4F9/2 - 6H13/2
 transition that accompanies DyIII  emission. However, the broad 

nature of these signals indicates the significance of the ligand contribution to these emitters. 

Compounds 4 - 9 containing L1 and L2 exhibited similar behaviour (see Figure S11). However, Tb 

and Eu-containing complexes with L3 (Figure S12-S13) displayed more typical emission spectra for 



lanthanide species with multiple narrow emission bands correlating to specific transitions within a 

broad ligand emission peak. In particular, 11 exhibits an emission spectrum centred at 550 nm 

comparable to that described by Murugesu and coworkers in 2009 with discrete 5D4 – 7F6, 5D4 - 7F5, 

5D4 – 7F4, 5D4 – 7F3 transitions.10 Emission in the NIR region was not observed below 1100 nm for 

any of the nine compounds tested. 

 

Figure 7. Normalised absorption (dashed line) and emission spectra (solid line) of compounds 4 

(blue; Ȝex = 440), 7 (red; Ȝex = 400), and 10 (yellow; Ȝex = 355) recorded in DMF (1x10-5M, 298 K). 

Synthetic and Topological Aspects. Many polynuclear heterometallic ZnII/LnIII  compounds have 

been reported in the literature, but a significant number of these are di or tri-nuclear species. There 

are fewer examples with a nuclearity above four, as above  in Table 2 along with their core topology 

(Figure 6) and ligand (Scheme 4).  Recently two ZnII/LnIII  CC with nuclearity 30 were reported, 

showcasing the current interest in ZnII/LnIII  chemistry.79,80 Adopting our topological approach, all 

compounds can be presented by the NDK-symbol (Table 2). The most common nuclearity reported 

of the ZnII/LnIII clusters is four; it shows a number of topologies, which appear to be dependent on 

the structure of the ligand used for their synthesis.  



The most common ZnII/LnIII  CC topology, share a common ligand structure (Scheme 4-top 

Left). The 1,2M4-1 topology is formed in alcoholic solvents (MeOH, EtOH) (Table 2 entries 1,4,9, 

31); ZnII ions are co-ordinated between the imine/secondary amine and deprotonated hydroxyl 

groups, while LnIII  ions are bound to the deprotonated hydroxyl and methoxy groups, forming a 

[ZnIILnIII(L)] 3- unit. In these examples, counter-ions such as Cl or carbonate (from atmospheric CO2) 

bridge between two [ZnIILnIII (L)] 3 units to form the 1,2M4-1 topology as a dimer. The coordination 

sphere is then completed by counter-ions such as NO3 and solvent molecules for charge balance. Of 

the Schiff base ligands employed in polynuclear Zn/Ln CC synthesis, few demonstrate a nuclearity 

above five, tetranuclear compounds are the most frequently reported. This may be due to the many 

co-ordinating groups usually present and the ridged structural fragments. The 2,3M4-1 motif 

corresponding to a defect dicubane topology is  very common motif in 3d/4f chemistry. We recently 

reported the first example of a family of Zn/Ln CCs that possess this motif,17 and in this work we 

report another variation of this topology. The second most widespread motif in hexanuclear 3d/4f 

chemistry is 2,3,4M6-1 (Figures 2&3 lower). According to a survey in CSD,71 33 crystal 

structures52,54,81–89 possess this motif that corresponds to four fused triangles aligned in a plane or 

forming a twisted boat. The first 3d/4f CCs with this topology can be found in a family of Mn4
IIILn2

III   

compounds where Ln is Gd, Tb, Y, reported in 2008 by Oshi et al.81 Other examples were reported 

in Mn/4f, 54,82,83 Ni/4f,52,86 Co/4f,74,84,85,87 and Fe/4f88 chemistry.  

The 2,4M6-1 motif, in comparison to the previously discussed examples, is less common in 

3d/4f chemistry. This motif is best described as a single central triangle with 3 triangles fused side on 

to each side. Overall this forms a larger triangle, which can be planar or distorted. The first example 

of this topology was a heterometallic MnIII
3Li I

3 cluster90 reported in 1991, until recently only 

homometallic clusters e.g.  CoII
3/CoIII

3
91 and ZnII692,93 have been reported. There are three examples 

of 3d/4f CCs with the 2,4M6-1 motif exist in the literature CrIII
3 LnIII

3 94, CoIII
3LnIII

3 
95

  and NiII3LnIII
3
96

 

species. These examples show the same configuration of 3d and 4f ion nodes within the motif, with 

4f ions occupying the vertices of the central triangle and 3d ions occupying the vertices of the larger 



triangle resulting in a core of LnIII  ions. Compounds 7-9 are the first examples of the 2,4M6-1 motif 

in ZnII/LnIII  chemistry. In the present study, despite using organic ligands that offer similar pockets, 

a range of topologies was obtained and the unexpected involvement of the non-expected formed 

carbonate group, does not allow for a complete systematic study.  
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Scheme 4. The organic ligands used in the synthesis of Zn/Ln CCs. 

 

 



Table 2. Reported Polynuclear ZnII/LnIII  species with a nuclearity of 4 and above. 

Entries  Complexes Ligand Nuclearity Nucleari
ty 

Topological 
Nomenclature 

Reference 

1 [Nd2(ZnL5)2Cl6(MeOH)2]·MeOH 
[Dy2Zn2(L6)2(OAc)2(CO3)2]·10CH3

OH 

H2L5 
H2L6 

Zn2Ln2 4 1,2M4-1 34,47 

2 [Zn2Ln3(L4)3(N3)5(OH)2]  
Ln = (Tb, Eu, Ho, Dy) 
 

H2L4 Zn2Ln3 5 1,2,3M5-1 10 

3 [Zn2(L6)3Cl2(OH)3Ln3(N3)2]; 
Ln=(La, Nd, Yb, Er) 

H2L6 Zn2Ln3 5 1,2,3M5-1 97 

4 [ZnII
2LnIII

2(L7)2(CO3)2(NO3)2].solv 
Ln = Dy, Tb, Gd 
 

 

H2L7 Zn2Ln2 4 1,2M4-1 39 

5 [ZnII
2LnIII

2(L8)2(CO3)2(NO3)2].solv 
Ln = Dy, Tb, Gd 
 

 

H2L8 Zn2Ln2 4 1,2M4-1 39 

6 [Zn2Yb2(L6)2(l-OH)2Cl4]·2MeCN H2L9 Zn2Ln2  4 1,2M4-1 98  
7 [Zn8Ln4 (L10)2(OAc)20(OH)4] 

 Ln= Nd, Yb 
H2L10 Zn8Ln4 

 
12 2(1,2,3M6-

1) 

99 

8 [Zn4Eu4(L11)4(CO3)6]·EtOH H2L11 Zn4Ln4 
 

8 1,3M8-1 35 

9 [ZnII
2EuIII

2(PhCOO)2 (L12)4] 
[ZnII

2DyIII
2(PhCOO)2(L12)4] 

[ZnII
2TbIII

2(PhCOO)2 (L12)4] 
 

H2L12 Zn2Ln2 
 

4 2M4-1 100,25,101 

10 Zn2Dy2(L12)2(ȝ3-OH)2(ȝ4-
OH)(dbm)2(MeOH)2]X (X = NO3, 
ClO4) 
 

 

H2L12 Zn2Ln2 
 

4 3M4-1 40 

11 [ZnII
2LnIII

2(L13)2(CO3)2(NO3)2].4C
H3OH 
Ln = Gd, Yb 

H2L13 Zn2Ln2 
 

4 1,2M4-1 32 

12 [(YbL14)2(H2O)Cl(Oac)]2·[ZnCl4]2 HL14 Zn2Ln2 
 

4 3M4-1 102 

13 [Zn2Ln2(OH)2(L15)2(OAc)5(EtOH)
(H2O)](ClO4)· 2EtOH·1.5H2O 
Ln= Gd, Dy 

H2L15 Zn2Ln2 
 

4 3M4-1 33 

14 [Zn3LaL19(OAc)3] H4L19 Zn3Ln 
 

4 1,3M4-1 103 

15 [Zn3LaL20(OAc)3] H4L20 Zn3Ln 
 

4 1,3M4-1 104 

16 Zn3La(L21)(NO3)3(MeOH)2] /  
Zn3La(L21)3(NO3)2(MeOH)6](NO3)
.MeOH 

 

H6L21 Zn3Ln 
 

4 1,3M4-1 93 

17 Zn4Dy(L17)4(DMF)4(NO3)3  
Ln=Dy, Tb, Y, Er 

 

H2L17 Zn4Ln 5 1,4M5-1 38 

18 Zn16Ln(L17)16(Py)8(CF3SO4) 
Ln= Tb, Dy, Yb, Er, Nd 

H2L17 Zn16Ln 17 2,3,8M17-1 105 



19 Zn9Ln2 (L17)10(OH)(NO3)2.25Cl0.75;  
Ln=Dy, Tb, Eu 

H2L17 Zn9Dy2 11 1,1,2,2,5,7
M11-2 

29 

20 [Zn8Ln(L16)8(OH)3];Ln= Dy, Nd 
 

H2L16 Zn8Ln 
 

9 1,2,8M9-1 
 

29 

21 [ZnII
8GdIII

4(OH)8(L18)8(O2CHMe2)
8](ClO4)4 

HL18 Zn8Gd4 
 

12 3,6M12-1 42 

22 [Zn2Ln2(L18)4(PhCO2)5(ROH)2](Cl
O4) (MeOH)2  Ln=Dy,Gd 

HL18 Zn2Ln2 4 3M4-1 36 

23 [Zn6Ln(OH)(L22)6(NO3)3](OH)(N
O3)2. 8H2O Ln = Er, Dy 

HL22 Zn6Ln 
 

7 2,6M7-1 106 

24 [Zn6Dy(L23)6(OH)3(Oac)3(NO3)3] HL23 Zn6Ln 
 

7 2,6M7-1 107 

25 [Zn6Ln24 (L24)24(Oac)22(ȝ3-
OH)30(H2O)14](ClO4)7(OAc)·2CH3

OH·26H2O Ln = Gd, Tb, Dy 

HL24 Zn6Ln24 
 

30 3(3,3,5M10
-1) 

79 

26 [ZnII
12DyIII

18(OH)30(L25)12(sal)6(O
Ac)6(NO3)3(H2O)6](NO3)3 12MeOH 
5H2O  

H2L25 Zn12Ln18 
 

30 3,4,6,8M30
-1 

80 

27 [Zn2Ln(L26)2(Py)2(NO3)2][ZnLn(L
)(Py)(NO3)3(H2O)] (NO3) (solv) 
Ln= Er, Gd 

H2L26 Zn3Ln2 
 

5 (1,2M3-
1)+(1M2-1) 

108 

28 [(THF)8Ln4Se(L27)8][Zn8Se(L27)16

].THF Ln=Sm, Nd 
L27 Zn8Ln4 

 
12 (3,6M8-

1)+(3M4-1) 

109 

29 [Zn4Nd2(L28)4(1,4-
BDC)2][ZnNd(L28)(NO3)3(OAc)]2 

H2L28 Zn6Nd4 10 2(1,2M3-
1)+2(1M2-

1) 

110 

30 [Zn2Ln2(L1)4(EtOH)6].2(ClO4) H2L1 Zn2Ln2 4 2,3M4-1 This 
work 

31 [ZnII
5Ln(OH)(L1)6(H2O)] H2L1 Zn5Ln 6 2,3,4M6-1 This 

work 
32 [ZnII

4DyIII
2(OH)2(L2)4(OAc)2(NO3)

2(DMF)4] 
H2L2 Zn4Ln2 6 2,3,4M6-1 This 

work 
33 [ZnII

2LnIII
2(L3)2(CO3)2(NO3)2(CH3

OH)2] 
H3L3 Zn2Ln2 4 1,2M4-1 This 

work 
34 [Zn2Ln2(L1)4(NO3)2(DMF)2] H2L1 Zn2Ln2 4 2,3M4-1 17 

 



 

Figure 9. The topological representation of all known polynuclear Zn/Ln CCs 

  



Conclusions 

Reactions of zinc and lanthanide salts with various Schiff bases and  a range of reaction 

conditions yielding four families of Zn/Ln CCs with robust and unseen topologies. Magnetic studies 

reveal the single ion magnet behavior of 7, and luminescence studies indicate a significant ligand 

contribution to the emitters. Despite incorporating organic ligands, that offer similar coordination 

pockets, in similar synthetic ratios, products with a range of,nuclearities, motifs are obtained, showing 

that more systematic studies are required to fully understand the growth of such crystalline species 

and target the specific products. However, these structural studies should be carried out in a careful 

manner. When we studied the reaction that yielded 4 under reflux instead of room temperature, two 

different type of crystals were observed [Zn4Dy7(OH)4(O2)2(L1)8Cl4(H2O)4]Cl5 (13) and 

[Zn6Dy4(OH)2(L1)10(MeOH)2(H2O)4]Cl2 (14) and corresponding to 2,2,3,3M10-1 and 2,4,4,4M11-1 

topologies, respectively (Fig S14). Our future studies will be focused as the following directions: a) 

to extend the synthetic study metal, ligand, co-ligands, ratios, aiming to obtain higher nuclearity 

Zn/Ln CCs and b) to test our ligand and coordination environment pockets selection in our topological 

approach to synthetic stratergy.70,111  
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