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Abstract

The nine SLAM family (Slamf) receptors are positive or negative regulators of adaptive and innate 

immune responses, and of several autoimmune diseases. Here we report that the transfer of 

Slamf6−/− B6 CD4+ T cells into co-isogenic bm12 mice causes SLE-like autoimmunity with 

elevated levels of autoantibodies. In addition, significantly higher percentages of Tfh cells and 

IFN-γ-producing CD4+ cells, as well as GC B cells were observed. Interestingly, the expression of 

the Slamf6-H1 isoform in Slamf6−/− CD4+ T cells did not induce this lupus-like phenotype. By 

contrast, Slamf1−/− or Slamf5−/− CD4+ T cells caused the same pathology as WT CD4+ T cells. As 

the transfer of Slamf [1+6]−/− or Slamf [1+5+6]−/− CD4+ T cells induced WT levels of 

autoantibodies, the presence of Slamf1 was requisite for the induction of increased levels of 

autoantibodies by Slamf6−/− CD4+ T cells. We conclude that Slamf6 functions as an inhibitory 

receptor that controls autoimmune responses.
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1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic relapsing autoimmune disease, which is 

caused by interactions among genetic, hormonal and environmental factors and affects 

various end organs [1]. One main aspect of SLE is the breakdown in B and T cell tolerance 

leading to uncontrolled activation of effector T cells and self-reactive B cells which produce 

a large variety of autoantibodies. Genome-wide linkage scans have identified a large number 

of Lupus susceptibility loci in humans and mice [2], e.g. the mouse Sle1b locus on 

chromosome 1 [3, 4]. Approximately half of the Sle1b locus, a 0.9-Mb DNA segment, 

comprises the genes of the mouse Signaling Lymphocytic Activation Molecule Family of 

cell surface receptors (Slamf genes) [5]. Two haplotypes are found in inbred strains: Slamf-
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haplotype 1 (e.g. in B6) and Slamf-haplotype 2 (e.g. in 129, NZW, BALB/c) [6]. 

Autoimmunity is thought to develop in Sle1b mice because of an epistatic interplay between 

one or more Slamf-haplotype 2 genes with several B6 genes [5, 7].

The nine receptors of the Slamf-family: CD150 (Slamf1), CD48 (Slamf2), CD229 (Slamf3). 

CD244 (Slamf4), CD84 (Slamf5), Ly108 (Slamf6), CD353 (Slamf8), and CD84-H1 

(Slamf9) are differentially expressed on the surface of hematopoietic cells[8–10]. Binding of 

Slam family specific adaptors SAP and EAT-2 to the immunoreceptor tyrosine-based switch 

motifs (ITSMs) in the cytoplasmic tails of several Slamf receptors not only promotes 

immune responses, but also block the recruitment of the protein phosphatases SHP1/2 and 

lipid phosphatase SHIP1, which leads immune cell activation[8, 11–13]. On the other hand, 

SAP-deficient mice are unable to develop normal GC responses and generate humoral 

memory due to the profound defect in forming long-lasting T-B cell interaction in germinal 

center [14]. Slamf5 and Slamf6, which are highly expressed on T and B cells, are shown to 

partly contribute to SAP-mediated T-B cell adhesion [15]. Consistent with defect in humoral 

response, Lupus like-autoimmunity does not develop in Sle1b mice that lack SAP expression 

in T cells [16].

In this paper we examine the role of Slamf6 gene in autoantibody production. Murine 

Slamf6 encodes three protein isoforms, i.e. Slamf6-1, Slamf6-2 and Slamf6-H1, which are 

generated by alternative exon usage [16, 17]. Introduction of one copy of a BAC-based 

transgene encoding Slamf6-H1 suppresses the spontaneous autoantibody production in 

Sle1b mice, which do not express this isoform [16, 17]. Furthermore, the transfer of Sle1b × 
Slamf6-H1 B6 CD4+ T cells into co-isogenic bm12 recipients induces dramatically less 

autoantibodies than Sle1b CD4+ T cells [17]. Unlike Slamf6-H1, Slamf6-1 and Slamf6-2 do 

not mitigate Sle1b-driven autoantibody formation [16, 17]. To examine here whether 

autoantibody production would be similarly regulated we adopted a well-established chronic 

graft versus host (GVH) model in which CD4+ T cells from the same three B6 (H-2b) Slamf-

deficient mice are transferred into the co-isogenic bm12 (H-2bm12) mouse [18]. Because the 

H-2bm12 mouse differs from C57BL/6 (H-2b) in three amino acids in its Class II MHC beta 

chain, donor CD4+ T cells will be activated and differentiate into Tfh cells [16, 17, 19]. The 

later provide cognate help to host B cells, resulting in GC formation and autoantibody 

production with symptoms closely resembling SLE.

2. Materials and Methods

2.1. Mice

B6 WT and B6.C-2bm12/KhEg (bm12) mice were obtained from the Jackson Laboratory. 

Slamf5−/−, Slamf6−/−, Slamf[1+6]−/− and Slamf[1+5+6+]−/− mice were generated from 

C57BL/6 ES cells [17, 20, 21]. Slamf1−/−[129xB6] was backcrossed ten times with B6 [22]. 

BACSlamf6-H1 transgenic mice were generated as described previously [16]. Slamf6−/− × 
BACSlamf6-H1+ mice were generated by crossing BACSlamf6-H1 with Slamf6−/− mice. 

Age-matched female mice were used at 8–10 week. Animal protocols were approved by The 

Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee.
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2.2. Anti-Slamf receptor antibodies

Rat anti-mouse Slamf1 mAbb (9D1) is specific for the extracellular region of mouse 

Slamf1[23]. Mouse anti-mouse slamf6 mAbs (13G3) are specific for the extracellular region 

of mouse slamf6. Anti-Slamf1 and anti-Slamf6 used in our studies were purified by affinity 

chromatography (Harlan bioproducts for Science).

2.3. Murine transfer model of lupus

We adapted the bm12 transfer model, as originally described by Morris et al. [17, 18]. To 

this end, 8–10 week-old naive female bm12 mice were injected i.p. with 3×106 purified 

CD4+ T cells from WT and Slamf5−/−, Slamf6−/−, Slamf[1+6]−/− and Slamf[1+5+6+]−/− B6 

mice.

For in vivo anti-Slamf6 treatment, recipients were injected i.p. with 80 μg of anti-Slamf6 

antibody or 80 μg mouse Ig isotype control on day 14 after transfer of 3×106 WT CD4+ T 

cells into female bm12 mice.

2.4. Flow cytometry

Single-cell suspensions were prepared from spleens using standard procedures. After RBC 

lysis, cells were blocked with anti-CD16/32 Ab (2.4G2, Biolegend) and stained in FACS 

staining buffer (2.5% FBS, 0.05% sodium azide in PBS). The following antibodies were 

used: CD4 (L3T4), CD44 (IM7), CD62L (MEL-14, CD69 (H1.2F3), CD86 (GL-1), CD138 

(281-1), B220 (RA3-6B2), FAS (Jo2), T-and B-cell activation antigen (GL-7), CXCR5 

(2G8), and PD-1 (29F, 1A12) were purchased from eBioscience, BD, or BioLegend. 

Follicular T cells were stained as previously described [21] in a two-step process using 

Biotinylatd CXCR5 following by PE-labeled streptavidin in FACS staining buffer on ice. 

Dead cells were excluded upon DAPI uptake. Data were acquired with cytometer (LSRII: 

BD) and analyzed using FlowJo software (Tree Star).

Cytokine production was assessed with BD Cytofix/Cytoperm containing BD Golgi-Plug 

(BD Biosciences). Cells were restimulated with phorbol 12-myristate 13-acetate (PMA, 50 

ng/ml, Sigma), Ionomycine (1μg/ml, sigma), and GolgiStop (1μl/ml, BD Biosciences) at 

37°C in 5% CD2 for 4 hr. After surface staining, cells were fixed, permeabilized, and stained 

for IFN-γ (PE-anti-mouse IFN-γ, Biolegend), IL-4 (PE-anti-mouse IL-4, Biolegend) and 

IL-17 (PE-anti-mouse IL-17A, Biolegend). For intracellular staining IL-21, permeablized 

cells were incubated with IL-21R/Fc chimera (R&D systems) for 1 h at 4°C. Cells were then 

washed and stained with PE-conjugated affinity-purified F(ab′)2 fragment of goat anti-

human Fc γ antibody (Jackson ImmunoResearch Laboratories) for 30 min at 4°C. Viability 

was assessed using LIVE/DEAD Cell Viability Assays (Life Technologies).

2.5. ELISA

Titers of serum anti-nucleosome antibodies were determined by ELISA as described 

previously [16, 17]. In brief, met-BSA-precoated Immunolon plated were coated overnight 

with dsDAN and then with total histone solution. Samples were incubated on plates in 

various dilutions between 1:600 and 1:1,200, and then plates were washed, and 

autoantibodies were detected with anti-mouse IgG-HRPO (GE Healthcare).
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Autoantibody titer was expressed as ELISA unit, comparing OD values of samples with a 

standard curve prepared with serial dilutions of ANA-positive NZM2410 serum pool. 

Antichromatin and anti-dsDNA titers were determined as for the antinucleosome levels. UV-

irradiated Immunolon plates were incubated overnight with 3μg/ml chicken chromatin [24] 

or mung bean nuclease (New England Biolabs, Ins.)-treated dsDNA (Sigma-Aldrich. Anti-

single-stranded DNA (ssDNA) was determined as describe previously [25]

2.6. Statistical analysis

Statistical significance was determined by unpaired t-test (two-tailed with equal SD) using 

Prism software (GraphPad, San Diego, CA, USA). The p value <0.05 was considered 

statistically significant.

3. Results

3.1. The transfer of Slamf6−/− CD4+ T cells into co-isogenic bm12 mice induces a strong 
autoantibody response

To assess the overall role of the Slamf6 gene in autoantibody production we employed the 

chronic GVH model in which CD4+ T cells isolated from female Slamf6−/− and B6 WT 

mice were transferred into co-isogenic female bm12 mice, which differ in three amino acids 

in their MHC II. This transfer leads to activation of CD4+ T cells and subsequent 

differentiation into Tfh cells [26]. These cells provide MHC class II-restricted cognate help 

to host B cells, resulting in GC formation and autoantibody production. Surprisingly, the 

bm12 recipients of Slamf6−/− CD4+ T cells had a markedly larger spleen and numbers of 

splenocytes [169 ± 10×106 vs. WT 74 ± 8 ×106] than recipients of WT CD4+ T cells (Fig. 

1A, 1B). Significantly higher levels of anti-dsDNA, anti-ssDNA and anti-chromatin 

antibodies were present in the serum of bm12 mice after the transfer of Slamf6−/− CD4+ T 

cells compared to recipients of WT cells (Fig. 1C–E). Consistent with the autoantibody 

titers, the frequency of CD4+PD-1+CXCR5+ Tfh cells (Fig. 1F) and their absolute cell 

numbers [2.9 ± 0.6 ×106 vs. 0.3 ± 0.08×106] were increased in bm12 recipients of Slamf6−/− 

CD4+ T cells, as compared to WT CD4+ T cell. As judged by expression of CD44, CD62 

and CD69, the number of effector CD4+ T cells was higher after the transfer of Slamf6−/− 

CD4+ T cells compared to WT T cells. (Fig. 1G). Similarly, the frequency and absolute 

numbers of B220+FAS+GL-7+ GC B cells in recipients of Slamf6−/− CD4+ T cells were 

increased over WT (Fig. 1H and 3.85 ± 0.7 × 106 vs. 1.19 ± 0.1 ×106). More activated 

CD86+ B cells were also found in recipients of Slamf6−/− CD4+ T cells (Fig. 1I). We 

conclude that the lupus-related autoantibody production was at least as high as that obtained 

after transfer of CD4+ T cells from the lupus prone Sle1b mouse into bm12 mice [17].

3.2. Accumulation of IFN-γ-producing cells in recipients of Slamf6−/− CD4+ T cells

As established in the literature, several cytokines produced by T cells have a profound 

impact on B cell development and influence the outcome of immune responses [27, 28]. We 

evaluated whether levels of different cytokine production is observed in donor CD4+ T cells. 

The production of IFN-γ, IL-4, and IL-17 was examined by cytoplasmic staining of 

splenocytes that had been harvested four weeks after transfer of Slamf6−/− CD4+ T cells into 

bm12 recipients. Once again, the frequency of IFN-γ-producing CD4+ T cells was 
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significantly higher after transfer of Slamf6−/− CD4+ T cells than that of WT CD4+ T cells 

(Fig. 1J, Left panel). In order to exclude the contribution of recipient IFN-γ producing 

CD4+ T cells, IFN-γ producing CD4+ T cells were further dissected into Slamf6 positive 

and Slamf6 negative IFN-γ producing CD4+ T cells according to the expression of Slamf6. 

As expected, the majority of the IFN-γ-producing CD4+ T cells were Slamf6 negative (Fig. 

1J, Right panel). No difference of IL-4 and IL-17 production was observed (Fig. 1 K, 1L).

3.3. Introduction of one copy of the “suppressive isoform” Slamf6-H1 prevents 
autoantibody responses caused by Slamf6−/− CD4+ T cells

The mouse Slamf6 gene was first reported to encode two distinct proteins: Slamf6-1 and 

Slamf6-2, which are generated by alternative exon usage [29]. We recently identified an 

additional protein isoform, Slamf6-H1[16, 17]. This isoform Slamf6-H1 is only expressed in 

B6 mice and plays a dominant role in suppressing the pathogenesis of SLE [17]. Therefore, 

we examined whether introduction of one copy of the isoform Slamf6-H1 into the Slamf6−/− 

mice would suppress the T cell driven autoantibody production. (See M&M). Indeed, upon 

the transfer of Slamf6−/− × tgBACSlamf6-H1 CD4+ T cells, spleen weight (Fig. 2A) and the 

number of splenocytes [WT: 69 ± 6×106; Slamf6−/− 146 ± 11×106; Slamf6−/− × 
BACSlamf6-H1 71 ± 5 ×106 ], as well as the serum anti-ssDNA, anti-dsDNA and anti-

chromatin autoantibodies were similar to those obtained after transfer of WT CD4+ T cells 

(Fig. 2B–D). The transfer of Slamf6−/− × tgBACSlamf6-H1 CD4+ T cells reduced the 

frequency (Fig. 2E) and numbers [WT 0.43×106 ± 0.2×106; Slamf6−/− 2.6 ± 0.3 ×106; 

Slamf6−/− × BACSlamf6-H1 0.39 ± 0.2 ×106] of Tfh cells compared to Slamf6−/− CD4+ T 

cells. The proportion of activated CD4+ T cells, as judged by expression of CD62lo and 

CD69hi, was lower in the recipients of Slamf6−/− × tgBACSlamf6-H1 CD4+ T cells (Fig. 2F, 

2G). Furthermore, lower numbers of GC B cells [WT 0.9 ± 0.05×106; Slamf6−/− 3.3 ± 0.07 

×106; Slamf6−/− × BACSlamf6-H1 0.8 ± 0.04 ×106], plasma cells and activated B cells (Fig. 

2H–J) were found in the spleen of recipients of Slamf6−/− × tgBAC Slamf6H-1 CD4+ T 

cells. Taken together, the data indicate that the expression of Slamf6 H-1 counteracts the 

induction of autoimmunity in the absence of Slamf6.

3.4. CD4 T cell-intrinsic role of Slamf6 in autoimmune responses

Although the preceding observations strongly suggest that Slamf6-deficient CD4+ cells may 

be primarily responsible for the increased number of Tfh cells and GC B cells in recipients 

of Slamf6−/− CD4 T cells, it is plausible that other cell types may also be important for the 

altered response because besides T cells, B cells and other antigen presentation cells also 

express Slamf6 (Immgen. org). To determine whether the enhanced autoimmune responses 

was intrinsically caused by the absence of Slamf6 in CD4+ T cells, we crossed Slamf6−/− 

mice with bm12 mice to create Slamf6−/− × bm12 recipients in which B cells and other 

APCs do not express Slamf6. Next, the reciprocal experiment was done in which B6 CD4+ T 

cells were transferred into Slamf6−/− × bm12 recipients. However, 28 days after the transfer 

the levels of serum autoantibodies (Fig. 3A–C) and the proportions of Tfh cells and GC B 

cells in the spleen were indistinguishable from the control group (Fig. 3E, 3G). Also, no 

discernible difference was observed in the expression of activation markers CD62, CD69 

and CD86 on T cells, B cells and DCs between Slamf6−/− × bm12 and bm12 recipients (Fig. 

1F, 1H and data not shown). Thus, these experiments suggested that stronger autoimmune 
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responses are driven by the absence of Slamf6 in CD4+ T cells whilst the B cells, DCs and 

macrophages in the recipient bm12 mice still express Slamf6.

3.5. Slamf1 is requisite for the autoantibody production induced by Slamf6−/− CD4+ T cells

Like Slamf6, Slamf1 and Slamf5 are highly expressed on T and B cells [8–10], leading us to 

investigate potential effects of Slamf1 and Slamf5 on autoimmune response in chronic GVH 

model. Although the transfer of Slamf1−/− CD4+ T cells caused a significant reduction in 

anti-ssDNA serum titers, the titers of anti-chromatin and anti-dsDNA IgG were only slightly 

reduced (Supplemental fig. 1B–D). In addition, no significant reduction of spleen size and 

frequencies of Tfh or GC B cells or activated T and B cells was detectable in recipients of 

Slamf1−/− CD4+ T cells (Supplemental Fig. 1E–J). Similarly, the transfer of Slamf5−/− CD4+ 

T cells has no influence on the development of Tfh cells and GC cells or autoantibody 

production (Supplemental Fig. 5). Clearly, neither Slamf1 nor Slamf5 alone can induce the 

high levels of autoantibodies in bm12 recipient mice.

It has been shown that Slamf1 and Slamf6 synergistically regulate NK T cell development 

[20, 30] This prompted us to evaluate whether combined deletion of Slamf[1+6] or 

Slamf[1+5+6] in CD4+ T cells can further influence GC formation and autoantibody 

production in bm12 recipients. Surprisingly, transfer of Slamf[1+6]−/− or Slamf[1+5+6]−/− 

CD4+ T cells did not increase numbers of splenocytes [WT: 80 ± 6×106; Slamf6−/− 127 

± 12×106; Slamf[1+6]−/− 88± 4×106; Slamf[1+5+6]−/− 58 ± 5×106 ] in recipient bm12 mice, 

and resulted in significantly lower serum levels of anti-dsDNA, anti-ssDNA and anti-

chromatin antibodies compared to that after the transfer of Slamf6−/− CD4+ T cells (Fig. 

4A–C). After the transfer of Slamf[1+6]−/− or Slamf[1+5+6]−/− cells the proportion (Fig. 

4D) and numbers of Tfh cells [WT: 0.47± 0.1×106; Slamf6−/− 3.7 ± 0.5×106; 

Slamf[1+6]−/− 0.65 ± 0.08×106; Slamf[1+5+6]−/− 0.44 ± 0.06×106 ] were similar to those 

after transfer of WT cells. The proportion (Fig. 4E) and number of GC B cells were also 

similar to those in the WT control experiments [WT: 0.2 ± 0.03×106; Slamf6−/− 1.3 

± 0.2×106; Slamf[1+6]−/− 0.2 ± 0.05×106; Slamf[1+5+6]−/− 0.1 ± 0.02×106 ]. In addition, 

the frequencies of effector CD4+ T cells and B cells in the recipients of Slamf[1+6]−/− and 

Slamf[1+5+6]−/− CD4+ T cells were also similar to that in the transfer of WT CD4+ T cells 

(Fig. 4F–H). Therefore, the absence of Slamf[1+6] and Slamf[1+5+6] in CD4+ T cells 

appears to have similar effects.

We next wanted to determine the cytokine profile of CD4+ T cells from the recipients of 

Slamf1−/−, Slamf6−/−, Slamf[1+6]−/− and WT CD4+ T cells. CD4 cells were isolated at the 

peak of autoantibody production (day 28) in recipient mice and analyzed for IL-21, IL-17, 

IL-4 and IFN-γ production. While the frequency of IFN-γ+ CD4 cells was increase in 

recipients of Slamf6−/− CD4+ T cells (Fig. 1J and Fig. 5D), CD4+ T cells lacking Slamf6 

had the percentages of IL-21+, IL-17+ and IL-4+ cells that were comparable with WT CD4+ 

T cell transfer (Fig. 5A–C). Consistent with reduced autoantibody production, there was a 

dramatic reduction in IL-4+, IL-17+, and IL-21+ CD4+ T cells in the recipients of 

Slamf[1+6]−/− CD4+ T cells (Fig. 5A–C). Contrary to cytokine profile in recipients of 

Slamf[1+6]−/− CD4+ T cells, no significant differences were detected in the frequencies of 

IL-21, IL-17 and IFN-γ producing CD4+ T cells except for lower IL-4+ CD4 cells in the 
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recipients of Slamf1−/− CD4+ T cells (Fig. 5A–D). These findings showed that the 

expression of Slamf1 in Slamf6−/− CD4+ T cells is essential for the secretion of substantial 

amount of important cytokines including IL-21, which is required for enhanced autoimmune 

responses driven by Slamf6−/− CD4+ T cells.

3.6. Administration of anti-Slamf6 ameliorates autoantibody production

As the transfer of Slamf6−/− CD4+ T cells instigated autoimmunity, we reasoned that 

Slamf6-mediated inhibitory signaling in vivo might be initiated by treatment of mice with 

anti-Slamf6 antibody. Indeed, we observed that anti-Slamf6 antibody administered at day 14 

after the transfer of WT CD4+ T cells had an significantly ameliorative effect on production 

of anti-chromatin, anti-ss-DNA, anti-dsDNA IgG (Fig. 6A–C). Consistent with reduction in 

autoantibodies, anti-Slamf6 treatment decreased the proportion of Tfh cells and GC B cells 

(Fig. 6D, 6E). Next we evaluated the effect of anti-Slamf1 antibody on autoimmune 

response in the same model. In contrast, we found a slight, but not significantly, increase in 

anti-chromatin and anti-ssDNA autoantibody production in anti-Slamf1-treated mice (Fig. 

6F, 6G). In addition, increased Tfh cells and GC B cells were consistently detected, but the 

difference was not reach significance in anti-Slamf1-treated mice (Fig. 6I, 6J).

Taken together, anti-Slamf6 efficiently inhibits autoantibody production through a 

diminished differentiation of CD4 T cells and B cells into Tfh cells and GC B cells.

4. Discussion

The unexpected finding that the transfer of Slamf6−/− CD4+ T cells induces robust 

autoantibody responses with increasing frequencies of Tfh cells and GC B cells suggests that 

the interaction of Slamf6 between T cells and B cells is critical for the establishment of T-

cell and B-cell tolerance. As SAP and SHP1/2 competitively bind to immunoreceptor 

tyrosine-based switch motifs [ITSM] on the cytoplasmic tail of Slamf6 [8, 9], the expression 

levels of SAP and SHP1/2 would determine the outcome of activated T cells during immune 

responses. We previously reported that SAP expression was down-regulated upon activation 

of T cells: 7 days post-stimulation, SAP protein was barely detected [31]. In contrast, the 

expression of SHP1 was markedly augmented in activated T cells (data now shown). We, 

therefore, hypothesize that the interaction of Slamf6 in the bm12 model could recruit more 

SHP1 or SHP2 to immune synapses and suppress Tfh cell differentiation and GC formation 

because of relatively high expression of SHP1 and Slamf6 and low level of SAP expression 

during long-term activation of donor T cells and recipient B cells. This scenario mimics 

partial SAP deficiency in which Slamf6 is converted into a potential suppressive receptor in 

lupus development.

We have previously shown that anti-Slamf6-mediated engagement induced inhibitory effect 

on humoral immune responses [21]. To directly confirm that Slamf6 plays an inhibitory role 

in aberrant Tfh cell and GC B cell expansion we observed following transfer of Slamf6−/− 

CD4+ T cells, we employed the bm12 transfer model with administration of anti-Slamf6 

antibody. In marked contract to the enhanced Tfh and GC B cell differentiation and 

autoantibody production in the transfer of Slamf6−/− CD4+ T cells, anti-Slamf6 indeed 

inhibited autoimmune responses in the recipients of WT CD4+ T cell. Suppression 
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mechanism responsible for limiting Tfh cell and GC B cell differentiation in anti-Slamf6 

treated mice is unclear. We hypothesize that crosslinking by anti-Slamf6 antibody may 

induce highly tyrosine-phosphorylation in ITSMs of Slamf6, which recruits inhibitory 

signaling molecules, such as SHP1, in T and B cells. Further experiments are necessary to 

investigate these possibilities.

As there is functional redundancy among Slam family member [20, 30], we next investigated 

whether combined deletion of Slamf[1+6] and Slamf[1+5+6] in CD4+ T cells causes more 

severe diseases in the recipient mice. However, we were surprised to find that in contrast to 

the transfer of Slamf6−/− CD4+ T cells, the absence of Slamf1 and Slamf6 in CD4+ T cells 

greatly reduced autoimmune responses. It is not yet clear why the expression of Slamf1 is 

required for high autoantibody production in Slamf6−/− CD4+ T cell-mediated 

autoimmunity. However, SAP and some Slamf receptors were demonstrated to be necessary 

for forming lasting mobile conjugate pairs of T and B cells in the germinal center [14, 15]. 

Therefore, we hypothesize that there are normal frequencies of antigen-specific T-B cell 

conjugation in the absence of trans-Slamf6 interactions, which allows T and B cell 

differentiation to Tfh cells and germinal center B cells. However, combined absence of 

Slamf[1+6] or Slamf[1+5+6] on T and B cells would compromise interaction of T cells and 

B cells. For example, published studies have described coordinated action of Slamf5 and 

Slamf6 in maintaining sustained T-B cell conjugate [15]. This is suggestive of the possibility 

that in this model Slamf6−/− CD4+ T cell intrinsic role for highly autoimmune responses was 

dependent on the expression of Slamf1, which likely contribute to the sustaining T-B cell 

interaction.

In addition for sustaining T-B cell interaction, Slamf1 signaling is also required for cytokine 

production in CD4 cells [22, 32]. It is shown that Slamf1 is specifically required for IL-4 

production by GC Tfh cells, which is necessary for optimal B cell help [33]. The data 

presented here is consistent with Slamf1 having a key role regulating IL-4 production. 

Furthermore, using this model, our studies unexpectedly revealed that although IL-21 and 

IL-17 production in the transfer of either Slamf1−/− or Slamf6−/− CD4+ T cells was 

comparable with that of WT CD4+ T cells, combined deletion of Slamf1 and Slamf6 in 

CD4+ T cells had a profound negative effect on IL-21 and IL-17 secretion. The multitude of 

potential roles for IL-21 on T and B cell behavior has been documented [34, 35]. IL-21 has 

an important role in regulating T cell-dependent B cell responses, partly in cooperation with 

IL4 [36]. Both T and B cells express the receptor for IL-21, and the ligation of IL-21 

receptors initiates signaling, which supports the differentiation and survival of Tfh cells and 

antibody-forming B cells. Additionally, IL-21 promotes the generation and population of 

Th17 cells [37]. Our results, described above, strongly suggest that Slamf1 and Slamf6 

synergistically regulate IL-21, IL-17 and IL-4 production, which are critical for T-dependent 

humoral responses. It is therefore possible that the defect in the multiple key cytokine 

production also contributes to reduced autoimmune responses in the transfer of 

Slamf[1+6]−/− CD4+ T cells into bm12 recipient mice.

In conclusion, we have observed that the transfer of Slamf6−/− CD4+ T cells into bm12 mice 

induced robust autoantibody production and high Tfh cell and GC B cell development. Our 

results clearly show Slamf6 functions as an inhibitory receptor that controls autoimmune 
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responses. Moreover, the Slamf6-H1 isoform is demonstrated to be a major player in 

suppressing development of lupus-like diseases. The outcomes of our studies also show that 

the adhesion molecule Slamf1 is requisite for the function of Slamf6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The transfer of Slamf6−/− CD4+ T cells into co-isogenic bm12 female recipients induce 
Lupus-related autoantibody responses
A. 3×106 CD4+ T cells isolated from Slamf6−/− and WT female mice were transferred into 

bm12 female recipients by i.p. injection. After 4 weeks, the indicated recipient mice were 

scarified and their spleens and serum were analyzed.

B. Spleen weights.

C–E Anti-chromatin, Anti-ssDNA and Anti-dsDNA in the serum of recipient mice, as 

determined by ELISA and expressed as ELISA units (EU).
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F. Representative Flow Cytometry plots (left Panel) and percentages (Right Panel) of 

CD4+PD-1+CXCR5+Tfh cells.

G. Percentages of CD4+CD44hiCD62loCD69+ effector/memory T cells.

H. Representative Flow Cytometry plots (left Panel) and percentages (Right Panel) of 

B220+GL-7+FAS+ GC B cells.

I. Expression of CD86 (MFI) on B220+ B cells.

J. Percentages of IFN-γ-producing CD4+ T cells by intracellular staining (left) and 

Percentages of IFN-γ-producing CD4+ T cells in Slamf6+CD4+ (whit and black circles) and 

Slamf6−CD4+cells (Triangle).

K. Percentages of IL-4-producing CD4+ T cells.

L. Percentages of IL-17-producing CD4+ T cells.

Data are representative of at lest three independent experiments.
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Figure 2. Expression of one copy of tgBAC-Slamf6-H1 in Slamf6−/− CD4+ T cells prevents the 
autoimmunity phenotype observed after the transfer of Slamf6−/− CD4 T cells
3×106 CD4+ T cells from Slamf6−/−, Slamf6−/− × tgBACSlamf6-H1 or WT female mice 

were i.p. injected into bm12 female recipients. After 4 weeks, the indicated recipient mice 

were scarified and their spleens and serum were analyzed.

A. Spleen weights.

B–D. Anti-chromatin, -ssDNA and -dsDNA IgG titers in the serum were determined by 

ELISA and expressed as ELISA units (EU).

E–G. Percentages of CD4+PD-1+CXCR5+ Tfh cells, CD4+CD44hiCD62lo memory T cells 

and CD4+CD44hiCD69+ activated cells.

H–J. Percentages of B220+GL-7+FAS+GC B cells, B220+IgD-CD138+ plasma cells and 

B220+CD86+ activated B cells.

Data are representative of at lest three independent experiments.
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Figure 3. Slamf6−/− × bm12 mice are protected from the development of higher autoantibody 
responses after the transfer of bm12 CD4+ T cells
WT CD4 cells were isolated from spleens and transferred into Bm12 and Slamf6−/− × bm12 
mice by i.p. injection. After 4 weeks, the indicated recipients mice were scarified and their 

spleens and serum were analyzed.

A. Spleen weight

B–D. Anti-chromatin antibody titer, anti-ssDAN, and anti-ds-DNA in sera of Bm12 and 

Slamf6−/−xBm12 recipients.

E. Percentages of CD4+PD-1+CXCR5+ Tfh cells in spleens of recipients.

F. Percentages of CD4+ effector and memory cells in spleens of recipients.

G. Percentages of B220+GL-7+FAS+ GC B cells in spleens of recipients.

H. Percentages of B220+CD86+ activated B cells in spleens of recipients.

Data are representative of three independent experiments.
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Figure 4. Expression of Slamf1 is requisite for the increased GC responses and autoantibody 
production induced by the transfer of Slamf6−/− CD4 T cells
3×106 CD4+ T cells from Slamf6−/−, Slamf[1+6]−/−, Slamf[1+5+6]−/− or WT female mice 

were i.p. injected into bm12 female recipients. After 4 weeks, the indicated recipients mice 

were scarified and their spleens and serum were analyzed.

A–C. Anti-chromatin, Anti-ssDNA and Anti-dsDNA antibody titers in the serum were 

determined as in Fig. 1

A. Percentages of CD4+PD-1+CXCR5+ Tfh cells in CD4+ T cells

B. Percentages of B220+GL-7+FAS+ GC B cells in B220+ B cells
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F–H. Percentages of CD4+CD44hiCD69+ activated cells, CD4+CD44hiCD62lo memory T 

cells and B220+CD86+ activated B cells.

Data are representative of at lest three independent experiments
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Figure 5. Defective cytokine production in recipient of Slamf[1+6]−/− CD4+ cells
WT, Slamf1−/−, Slamf6−/− and Slamf[1+6]−/− CD4+ T cells were transferred into bm12 

recipients for four weeks. Single-cell suspensions from spleens of these recipients were 

stimulated with PAM and ionomycin for 4h. Cells were surface stained for CD4 and 

permeabilized and stained for IL-4, IL-17, IL-21 and INF-γ.

Data are representative of three independent experiments
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Figure 6. Administration of anti-Slamf6 antibody, not anti-Slamf1 antibody, protects bm12 
recipients of B6 CD4+ T transfer from autoimmune responses and inhibits Nox2 activity in B 
cells
A–E, the female bm12, which were recipient of WT CD4+ T cells were injected with anti-

slamf6 (13G3) or Ig isotype control. The mice were sacrificed on day 28 and were analyzed.

A–C, Sera were collected to measure anti-chromatin antibody, anti-ss-DNA antibody and 

anti-ds-DNA antibody in anti-Slamf6 treated recipients

D. Percentages of CD4+PD-1+CXCR5+ Tfh cells in the spleens of anti-Slamf6 treated bm12 
recipients

E. Percentages of B220+GL-7+FAS+ GC B cells in anti-Slamf6 treated recipients
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F–J, the bm12 recipient mice of WT CD4+ T cells were injected with anti-slamf1 (9D1) or 

Ig isotype control. The mice were sacrificed on day 28 and were analyzed.

F–H, Sera were collected to measure anti-chromatin antibody, anti-ds-DNA antibody and 

Anti-ss-DNA antibody in anti-Slamf1 treated recipients

I. Percentages of CD4+PD-1+CXCR5+ Tfh cells in the spleens of anti-Slamf1 treated bm12 
recipients

J. Percentages of B220+GL-7+FAS+ GC B cells in anti-Slamf1 treated recipients

Data are representative of at lest three independent experiment.
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