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Spin, Parity, and Nature of the ��1620� Resonance
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Using a unitary extension of chiral perturbation theory with a lowest-order s-wave SU(3) chiral
Lagrangian we study low-energy meson-baryon scattering in the strangeness S � �2 sector. A
scattering-matrix pole is found around 1605 MeV which corresponds to an s-wave � resonance with
JP � 1=2�. We identify this resonance with the ��1620� state, quoted by the Particle Data Group with
I � 1=2 but with unknown spin and parity. The addition of the S � �2 state to the recently computed
��1670�, ��1620�, and N�1535� states completes the octet of JP � 1=2� resonances dynamically
generated in this chiral unitary approach.
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S � �1 sector and identified the ��1670� and ��1620�
resonances as two additional members of the same JP �

channels. Recent unitary extensions of chiral perturba-
tion theory (U
PT) rely upon the inverse amplitude
Since the discovery of the first baryon resonance, the
��1232�, over 50 years ago, there has been a persistent
question regarding the nature of such resonances: Are
these genuine states that appear as bare fields in the
driving term of the meson-baryon scattering matrix? Or
can they be generated dynamically, i.e., by iterating an
appropriate nonpolar driving term to all orders? Early
attempts by Chew and Low to generate the ��1232� by
iterating a crossed nucleon pole term were eventually
overtaken by the success of the SU(3) quark models
which established the ��1232� as part of the SU(3)
ground-state decuplet. The subsequent discovery of over
100 additional baryon resonances and their mostly suc-
cessful incorporation into quark models appeared to have
settled the question in favor of treating them as genuine
fields. However, one persistent exception for many years
was the lowest-lying S � �1 resonance, the SU(3) singlet
��1405�, which appeared quite naturally as a dynamical
pole in the K�p scattering matrix using a variety of
approaches [see the discussion of the Particle Data
Group [1] about the history of the ��1405�]. The advent
of chiral Lagrangians combined with unitarization tech-
niques placed these efforts on more solid theoretical
grounds [2–5]. Next came the suggestion that the
N��1535�, which in some works is considered the JP �
1=2� chiral partner of the nucleon and hence would be
degenerate with the nucleon were it not for chiral sym-
metry breaking [6,7], can also be generated dynamically,
extending the same techniques into the S � 0 sector
[2,3,8–11]. Invoking the same framework but extending
it to higher energy, Ref. [12] returned the search to the
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1=2� octet that appear naturally within the chiral unitary
framework.

The purpose of this paper is to extend this chiral
approach with unitarization yet again to the S � �2
sector and demonstrate that the last remaining member
of the lowest-lying JP � 1=2� octet, an s-wave � reso-
nance, can indeed be found as a pole in the appropriate
meson-baryon scattering matrix. The experimental situ-
ation of the S � �2 low-lying � resonances is rather
unclear. There is a well-known p-wave state, the
P13��1530� resonance, with I�JP� � 1=2�3=2��, which
is 4-star rated by the Particle Data Group [1]. Next
come the ��1620� and ��1690� resonances which are
rated with one and three stars, respectively. While an
isospin value of I � 1=2 is quoted for both resonances,
the spin and parity of these states have not been measured.
We note that the ��1620� and ��1690� resonances are of
too low mass to be accommodated in most quark models
[13,14], which produce � states at energies of the order or
above 1800 MeV. In the present paper we present argu-
ments that the ��1620� corresponds to the lowest-lying
JP � 1=2� octet of baryon resonances generated dy-
namically through multiple scattering of meson-baryon
pairs in a coupled-channels approach.

The states are generated in the following way. One
constructs the set of coupled channels from the octets of
ground-state baryons and pseudoscalar mesons and, us-
ing the SU(3) version of the chiral Lagrangians for
mesons and baryons [15–18], one implements any of the
unitary extensions of chiral perturbation theory to gen-
erate the scattering amplitudes connecting the various
2002 The American Physical Society 252001-1



TABLE I. Coefficients Cij of the meson baryon amplitudes
for isospin I � 1=2 (Cji � Cij).
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method of [19] extended to coupled channels [20] or the
N=D method including explicit fields of genuine resonan-
ces (which would survive in the large Nc limit) [21], also
used in [22] to study 
N scattering. This latter method
was also used in [5] to study the low-energy interaction of
antikaons with baryons and it was found to be equivalent
to the formalism used in [4] to study the same problem
using the Bethe-Salpeter equation with coupled channels,
with the difference that the loops were regularized in [5]
with dimensional regularization, while a cutoff was ap-
plied in [4].

In order to search for a � resonance we follow closely
the work of Ref. [12], where the ��1670� and ��1620�
resonances were discovered in the S � �1 channel. Here
we focus on the S � �2 sector for which, as an example,
the zero-charge states of the coupled-channels framework
252001-2
are 
���, 
0�0, �K0K0�, K���, �K0K0�0, and ��0. We
solve the coupled-channels Bethe-Salpeter equation for
the scattering amplitude,

T � �1� V G��1 V; (1)

where the driving (kernel) V matrix
Vij � �Cij
1

4f2
�2

���
s

p
�Mi �Mj�

�
Mi � Ei

2Mi

�
1=2

�
Mj � Ej

2Mj

�
1=2

(2)

is obtained from the chiral Lagrangian for the meson-

baryon interaction at lowest order and Cij are SU(3)
coefficients with i and j denoting channel indices. The
(diagonal) matrix G in Eq. (1) accounts for the loop
integral of a meson and a baryon propagator and depends
on the regularization scale, �, and a subtraction constant
for each channel, al, that comes from a subtracted dis-
persion relation. The explicit expression of G can be found
in Refs. [5,12]. The regularization scale � is of course
arbitrary but the subtraction constants depend on it.

Our study relies upon coupled channels of one meson
and one baryon. Although there is phase space for the
production of one extra pion, these channels proved to be
rather unimportant in the study of 
N and coupled chan-
nels in I � 1=2 around the N��1535� resonance region
[11], and for the states studied here the only experimental
evidence of their contribution is in a negligible branching
ratio of the ��1690� into �

 [1].

In the present work we use the isospin basis, which
contains the states 
�, �KK�, �KK�, and �� for isospin I �
1=2 and the states 
� and �KK� for isospin I � 3=2. For
the particular isospin I � 1=2 case needed in the present
study, the coefficients Cij have the values shown in Table I.
We have four different subtraction constants, namely a
�,
a �KK�, a �KK�, and a��. Assuming that the regularization
scale � gives the size of the maximum momentum in
the cutoff regularization method, then the values of al
can be deduced approximately from [5] and they are
found to be of the order of �2 when a cutoff of 630 MeV
is chosen as done in [4]. This value for the subtraction
constant is what is called a magnitude of natural size in
[5], since it corresponds to using cutoffs of the order of
1 GeV which are considered natural in the chiral ap-
proaches. We point out that the choice of the coefficients
al accounts for contributions of higher-order Lagrangians
to the process, as shown in [20].

In the present S � �2 study we set, as a trial run, the
four values of the subtraction constants to a value of �2
and we discover a pole in the second Riemann sheet of
the I � 1=2 
� ! 
� amplitude at 1607� i140 MeV.
This would lead to a width around 280 MeV, unacceptably
large compared to those of the two I � 1=2 resonances of
interest, the ��1620� and the ��1690�, which are reported
to be of the order of 50 MeV or less. The mass of the
particle, around 1607 MeV, would be closer to the
��1620� resonance.

Demanding the subtraction constants to be of natural
size is important. Indeed, our claims that the ��1620�
resonance is dynamically generated rely upon the ability
of the present approach to generate it from the lowest-
order Lagrangian using natural size cutoffs or subtraction
constants. An alternative method would use the lowest-
order Lagrangian and bare resonances, whose couplings
to the physical channels would be given by fits to the data.
This is done in [22] for 
N scattering and in [21] in
meson-meson scattering. In such a case, the bare reso-
nances, such as the � in [22] and the � in [21], require
finite couplings to the physical channels; such couplings
would be compatible with zero for the dynamically gen-
erated resonances. If no bare resonant fields are included
explicitly, using a lowest-order Lagrangian may either not
generate such resonances at all, or they would require
unphysical cutoff or subtraction constant (a cutoff of the
order of 1 TeV for the � according to [21,23]).

Allowing the subtraction constants al to change within
a reasonable natural range, we obtain the results shown in
Table II. Only a
� and a �KK� are varied, since we find the
couplings of the resonance to the �KK� and �� states to be
very weak. The values of the couplings, calculated from
the residue of the diagonal scattering amplitudes [12], are
also shown in Table II. The second and third columns
show that a change of 10% in the subtraction constants
a
� and a �KK� modifies the mass of the resonance only
slightly but has a larger influence on the width.
Investigating the dependence of the results on the values
252001-2
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of these two subtraction constants we observe that the
mass of the resonance is confined to a range around
1600 MeV. The width, on the other hand, can be reduced
considerably by a simultaneous increase of the strength of
a
� and a decrease of a �KK�, while keeping both of them
negative and still reasonably close to the reference value
of �2. In the fifth column we see that the width can be
reduced to 130 MeV with acceptable values for the coef-
ficients. While this width might still appear as grossly
overestimating the experimental ones, we show below
that this is not the case.

Since the ��1620� resonance decays only into 
� final
states, it is experimentally visible through the 
� invar-
iant mass distribution in reactions leading, among others,
to 
 and � particles. Our calculated distribution, dis-
played in Fig. 1, shows a smaller apparent width com-
pared to the one obtained at the pole position. For the
values of the subtraction constants in the fifth column of
Table II we see in Fig. 1 (solid line) an apparent Breit-
Wigner width of around 50 MeV and a shape for the
distribution which resembles the experimental peaks ob-
served. This well-known phenomenon, usually referred to
as the Flatté effect [24], is due to the presence of a
resonance just below the threshold of a channel to which
the resonance couples very strongly. In our case the �KK�
channel opens at 1611 MeVand, as shown in Table II, the
resonance couples very strongly to that state. What ac-
tually happens is that at an invariant energy close to the
resonance mass the amplitude is given essentially by the
inverse of the resonance width. As soon as the threshold is
crossed, the new channel leads to an additional energy-
dependent contribution for the width which grows very
rapidly with increasing energy. This produces a fast fall-
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FIG. 1. The 
� invariant mass distribution as a function of
the center-of-mass energy, for several sets of subtraction con-
stants. Solid line: a
� � �3:1 and a �KK� � �1:0; Dashed line:
a
� � �2:5 and a �KK� � �1:6; Dotted line: a
� � �2:0 and
a �KK� � �2:0. The value of the remaining two other subtraction
constants, a �KK� and a��, is fixed to �2:0 in all curves.
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off for the amplitude, leading to an apparent width much
smaller than the actual width at the pole.

We have also analyzed effects of flavor symmetry
breaking by replacing the f2 factor appearing in Eq. (2),
where f is taken as an average value f � 1:123f
, by the
product of physical decay constants fifj, where f
 �
93 MeV, fK � 1:22f
, and f� � 1:3f
. The results are
displayed in the last column of Table II and should be
compared to those in the first column. The changes ob-
served are moderate and do not alter the analysis and
conclusions of the present work.

The question now arises which of the two I � 1=2
candidates should be identified with the resonance ob-
tained here. The value found for the mass of the state
would suggest identification with the ��1620�. The ex-
perimental situation regarding this 1-star resonance is the
following: Three experiments see the resonance in the
�
 spectrum in reactions where K�p goes to three or
four particles in the final state, including �
 [25–27].
Taking into account the experimental errors of all experi-
ments, the resonance mass is found in the range
1600–1640 MeV and the width in the range 15–50 MeV.
The ��1690� state is better known and is rated as a 3-star
resonance. Reference [28] even gives quite accurate ratios
of partial decay widths. We therefore investigate whether
the parameters of the theory provide enough flexibility to
produce a pole with a real part closer to 1690 MeV, since
the results of Table II show that by decreasing the size of
a
� or a �KK� one increases the mass of the resonance.
However, the presence of the �KK� threshold leads to
mass values that stabilize around the cusp of this thresh-
old for a certain range of the parameters. Continuing to
change these al parameters beyond this range leads to a
disappearance of the pole —and with it the resonance —
entirely. The above argument clearly favors identifying
the resonance found here with the ��1620� state and leads
us to conclude that the ��1690� is most likely an intrinsic
or genuine resonance using the terminology of Ref. [29].

The other argument in favor of the ��1620� assign-
ment is the following: The results of Table II show that the
resonance couples strongly to the 
� and the �KK� chan-
nels but very weakly to �KK� and ��. This is opposite to
the observed properties of the ��1690� resonance, for
which Ref. [28] gives a ratio of branching ratios for �KK�
to �KK� around 3 and for 
� to �KK� of less than 0.09. In
our opinion, this argument rules out identifying the reso-
nance found here with the ��1690� state.

We also point out here that using QCD sum rules one
obtains a JP � 1=2� octet of excited baryons where the �
and the � states appear degenerate and with a mass
around 1620 MeV [30]. Furthermore, the lowest � reso-
nances have been seen on the lattice, however, these
results do not yet allow any quantitative conclusions [31].

In summary, we find a � resonance with an energy
around 1606 MeVand a width at the pole position around
100 MeV. Because of a significant threshold effect the
apparent (Breit-Wigner) width is much smaller and
252001-3



TABLE II. Resonance properties for various sets of subtraction constants.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 (physical fi)

a
� �2:0 �2:2 �2:0 �2:5 �3:1 �2:0
a �KK� �2:0 �2:0 �2:2 �1:6 �1:0 �2:0
a �KK� �2:0 �2:0 �2:0 �2:0 �2:0 �2:0
a�� �2:0 �2:0 �2:0 �2:0 �2:0 �2:0

jg
�j
2 8.7 7.2 7.4 7.2 5.9 6.7

jg �KK�j
2 5.5 4.6 4.2 5.8 7.0 3.4

jg �KK�j
2 0.68 0.59 0.54 0.74 0.93 0.36

jg��j2 0.36 0.27 0.38 0.14 0.23 0.09

M 1607 1597 1596 1604 1605 1568

�=2 140 117 134 98 66 122
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compatible with experimental findings quoted in [1] for
the � resonances in question. Of the two relevant � states
with isospin 1/2, the 1-star rated ��1620� and the 3-star
rated ��1690�, we argued that the ��1690� must be ruled
out because, on the one hand, it was impossible within our
approach to find a pole with an energy close to 1690 MeV
and, on the other hand, there are large disagreements
between the resonance couplings to meson-baryon states
found here and the measured partial decay widths to
those states [28]. The findings presented here indicate
that overwhelming evidence supports the assignment of
the quantum numbers JP � 1=2� to the ��1620� reso-
nance. Thus, the computation within the chiral unitary
approach of the ��1620�, along with its partners, the
N��1535�, the ��1670�, and the ��1620�, plus the
��1405� which largely accounts for the SU(3) singlet,
completes the JP � 1=2� nonet of dynamically generated
s-wave resonances. Clearly, the special nature of the
resonance discussed here calls for renewed experimental
efforts, especially for the 1-star rated ��1620�, ��1620�
states.

Since the SU(3) octet of low-lying JP � 1=2� reso-
nances represents the chiral partner of the JP � 1=2�

ground-state octet, the description of these states demon-
strates the extraordinary power of the chiral unitary
approach. That these states should appear especially
with as simple a driving term as provided by the first-
order chiral Lagrangian with very few open parameters is
truly remarkable and shows that the nature of these states
is well represented by a cloud of meson-baryon compo-
nents. This would be in principle different to other excited
states in higher partial waves or higher excitation energy
which might be better represented in terms of their quark
constituents.
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[24] S. M. Flatté, Phys. Lett. B 63, 224 (1976).
[25] R. T. Ross et al., Phys. Lett. B 38, 177 (1972).
[26] E. Briefel et al., Phys. Rev. D 16, 2706 (1997).
[27] A. de Bellefon et al., Nuovo Cimento Soc. Ital. Fis. 28A,

289 (1975).
[28] C. Dionisi et al., Phys. Lett. B 80, 145 (1978).
[29] C. M. Shakin and H. Wang, Phys. Rev. D 63, 014019

(2000).
[30] D. Jido and M. Oka, hep-ph/9611322.
[31] W. Melnitchouk et al., hep-lat/0202022.
252001-4


