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Abstract 

Motivated by the interest in AgBiS2 material for solar light harvesting applications, a 

detailed bulk first principles quantum mechanical of surface properties is presented. 

Density functional theory based calculations with the Perdew-Burke-Ernzerhof 

functional have been carried out for different surface orientations and terminations of its 

matildite polymorph. From the results, two particularly stable facets are predicted to 

dominate Wulff shaped AgBiS2 nanoparticles. These are the (001) type nonpolar 

surface and the (111) polar terminations where facets are exposed containing solely Ag 

or S atoms. The Wulff equilibrium shape is predicted to be a cube with only two edges 

capped. This particular shape explains a previously reported surface enrichment of Ag 

with respect Bi of ~1.5. The (001) surfaces display an ionic character similar to bulk 

AgBiS2, with a low work function of 4.31 eV, although the inspection of the density of 

states (DOS) reveals a bandgap increased by 0.3 eV compared to bulk. This surface 

effect could explain the bulk wavelength overestimation of the absorption coefficient 

decay, as previously determined. Last but not least, the DOS of (111) polar termination 

reveals a metallic character, where Fermi level is located below that on the (001) 

surfaces. Possible implications of the different electronic structure of these surfaces in 

the reported photoactivity are discussed.  
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1. Introduction 

Silver-Bismuth sulphur (AgBiS2) has recently been the focus of much research 

attention since its nanoparticles can be used in high-performance solar cells.1 Aside, it 

has been appointed as a sensitizer and/or counter-electrode in sensitized solar cells,2,3 

plus its ultralow thermal conductivity enables the use in thermoelectric power 

generation. 4 , 5  Matildite renewed interest goes along other materials of the I-V-VI2 

family —I = Cu, Ag, or an alkali metal; V = Sb or Bi; VI = S, Se, or Te— lately studied 

also for solar cells,1,6 but well considered in addition in thermoelectrics4,7 and phase-

change memory devices.8,9  

A recent thorough fundamental study based on density functional (DF) theory10 

showed that the origin of the high photoactivity of AgBiS2 is linked to the existence of 

its Matildite polymorph —Pearson symbol hP12 and space group 164, i.e. P3�m1—, and 

specifically to the different effective masses of excited electrons in the conduction band 

and the generated electron holes in the valence band, plus a high dielectric constant10,11 

and a large absorption coefficient.10 However, it is worth pointing out that, for the 

above-commented applications, AgBiS2 colloidal nanocrystals are used with 4.62 ± 0.97 

nm size1 with a large surface/bulk ratio. Note also that even when employing larger size 

nanoparticles, such as the ~16 nm particles in sensitized solar cells,6 the surface region 

is directly in contact with media. Hence, surfaces are likely to play a paramount role in 

carrier transport and recombination as in the solution processed AgBiS2 based solar 

cells.1 A similar situation is found for the grains of ~50 nm as detected in AgBiS2 thin 

films by means of atomic force microscopy (AFM).12 Therefore, a thorough theoretical 

study on AgBiS2 matildite surfaces and possible nanoparticle shape is mandatory, in 

order to rationalize and better interpret past and future research on matildite, a piece of 

the puzzle which is, hitherto, inexistent. 

Regarding the available information of the different surfaces of matildite, 

previous high-resolution transmission electron microscopy (HR-TEM) experiments on 

AgBiS2 reveal a preferential bulk stacking along (100), (110), and (111) directions, with 

interlayer distances, d║, of 0.287, 0.207, and 0.316 nm, respectively,1 in line with other 

HR-TEM studies, which found a layer distance along (111) direction of 0.32 nm,7 

0.285 nm along the (100),6 and values of 0.33 and 0.28 nm for the (111) and (100) 

directions, respectively.11 Note that experiments sometimes refer to a cation disordered 
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schapbachite Fm3�m rocksalt structure, yet cation ordering is not observable by HR-

TEM means, and only indirectly by changes in conductivity at high temperatures.13 

Indeed, the matildite structure can be embedded within a Fm3�m rocksalt type of 

structure, and so, misinterpreted as such, see below.  

In any case, and similarly to other semiconductors, such as ZnO, different 

AgBiS2 morphologies can be obtained depending on the nanoparticle production 

procedure and the present capping agents,14 including so far irregular nanoparticles, 

hexagonal prisms, nanostructured flowers, and nanorods of µm of length.11,15-17 The 

variety of conditions and capping agents, including passivation agents, and crosslinking 

molecules is out of the scope of the present research,1,11 which is first aimed at 

completely describing the structure and stability of the preferential surface terminations 

of pristine orderly structured matildite and the natural nanoparticle isolated morphology, 

enabling the posterior study of the interaction of solution molecules on them, including 

the morphology reshaping.   

2. Surface models and computational details 

The experimental crystallographic structure of matildite AgBiS2 has been 

acquired (a trigonal based primitive unit cell with Pearson symbol hP12 and space 

group 164, i.e. P3�m1),18 known to be the responsible polymorph with photoelectronic 

response. However, for convenience, we used a cubic supercell Fm3�m rocksalt alike, 

known and employed in the literature as D4, AFIIb, or alternate cation polymorphs.13,19-

21 Note that, because of this choice, we use in the following the Miller notation instead 

of the Miller-Bravais notation. See in Figure 1 the matildite cubic bulk supercell, easily 

recognizable as a face-centred cubic arrangement of S atoms, in which Ag and Bi atoms 

insert in a NaCl fashion, being alternated in each of the three cell directions, where the 

P3�m1 structure can be embedded. Despite all {001} planes are equivalent within the 

periodic boundary conditions, the cation alternation creates an anisotropy for the {011} 

planes, and because of this, two possible terminations have been considered, named 

(011)I and (011)II, see Figures 1 and 2. This anisotropy shows up for the {111} planes, 

in which in one particular direction alternating planes of Bi and Ag exist, and 

consequently, two terminations are possible while maintaining the material 

stoichiometry: Either featuring endings containing only Bi or S, (111)I, or containing 

only Ag or S, (111)II, see Figures 1 and 2. In addition, other three {111} directions 
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exist, in which the S ending combines with a bimetallic AgBi termination, (111)III, see 

Figures 1 and 2.  

Calculations have been carried out within the framework of DF theory using the 

Vienna ab initio simulation package VASP.22 Since the main target is the structure-

energy relationship, calculations have been carried out using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation (xc) functional,23 a well-known member of the 

family of functionals issued from the generalized gradient approximation (GGA), and 

suited at correctly describing the energetic preference.10,13 The previously PBE 

optimized matildite bulk structure has been used as a kick-off structure, from which 

surfaces are simulated employing slab models with periodic boundary conditions. For 

details on the AgBiS2 bulk optimization, we refer to the recent work in the literature.10  

Surface slabs have been constructed by aligning the surface direction with the 

unit cell c axis, accounting for a given number of material layers, and adding, in all 

cases, a vacuum region of 10 Å, known to be sufficient to isolate slabs and to avoid 

interactions among translationally repeated slabs. Details of the employed slabs, 

including the number of AgBiS2 structural units, n, the slab width, and the bulk 

interlayer spacing are contained in Table 1. Test calculations using thicker slabs 

delivered negligible variations in the bandgap below 0.05 eV. Note how the interlayer 

distances, d║, are in excellent agreement with those recently reported, with deviations of 

at most 0.07 Å. Figure 2 depicts the supercell dimensions in a and b cell vectors, while 

Figure 3 shows a side view of them. Table 1 also contains Monkhorst-Pack24 k-points 

meshes employed, adjusted to maintain the k-point density optimized for bulk matildite, 

where variations of that just succinctly modified the total energy with variations below 

0.04 eV.  

In the present calculations a plane-wave basis was used to represent the valence 

electronic density, with a kinetic energy cutoff of 415 eV. The effect of the core 

electrons in the valence electronic density has been taken into account using the 

projected augmented wave (PAW) method as implemented in VASP. 25 , 26  Note in 

passing by that the PAW method is effectively all electron with a frozen core including 

scalar relativistic effects, especially important for heavy elements such as Ag or Bi. 

Atomic positions were allowed to fully relax until forces acting on atoms were below 

0.01 eV Å-1. Calculations were carried in a spin-polarized fashion, although the total 
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magnetic moments were found to be nominally zero, and so further analysis was carried 

out in a non spin-polarized manner. A tetrahedron method was used for the smearing, 

with an energy window of 0.1 eV, although final energies are extrapolated to 0 K. 

Atomic charges have been estimated through a Bader analysis.27,28 

Cleavage energies, Ecl, have been gained from the energy of the relaxed slab 
models, Eslab, as:  

𝐸𝐸𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑛𝑛·𝐸𝐸𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏
𝐴𝐴

     (5) 

where n is the number of AgBiS2 units in the slab, Ebulk the energy of one bulk AgBiS2 

unit, and A the area of the exposed surface in the unit cell, see Figure 2. For slabs where 

both terminations are identical, the Ecl equals twice the surface energy, γ, of each 

ending. The relaxed Ecl values which are used to depict the Wulff construction optimal 

shape,29,30 employing the visualization for electronic and structural analysis (VESTA) 

package. 31  The work function (φ) for the studied surfaces has been determined 

following the usual definition and equaling the difference between the energy of one 

electron in a vacuum and that of the Fermi energy (EF). 

 Note in passing by that some of the modeled surfaces are polar, given that 

AgBiS2 is a Type 3 solid according to Tasker classification.32 Because of this, the 

surface and cleavage energies of the pristine models diverge with the slab width. 

Diverse mechanism exist to nullify this electric dipole moment, which include charge 

transfer among the different polar endings, the surface reconstruction, the dipole 

quenching by molecular adsorption, and the appearance of surface vacancies. Likely 

these polar surfaces exist as here modeled either in small nanoparticles, where such 

charge transfer is likely, and the electric dipole moment instability is not acute, or in the 

case such surfaces are capped with molecules, as happens in ZnO polar surfaces.33 

Notice that other than these situations, a proper study on the polar surfaces 

reconstruction and/or vacancies formation and clusterization should be undertaken, 

which is, however, out of the scope of the present study purposes.     

3. Results and discussion 

The cleavage energies of the optimized surfaces are reported in Table 2. On one 

hand one has to first realize the small range involving these surface energies; they span 

a 0.5-1.8 J m-2 range where other semiconductors such as ZnO feature values up to ~3 J 
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m-2,14 even up to ~7 J m-2 for molybdenum carbides, with mixed metallic-ionic bonds.34 

This can be taken as an indication of the feasibility of synthesizing small nanoparticles 

of AgBiS2 compared to other materials. Furthermore, notice that for the polar (111) 

direction, the cut combining Ag and S endings, i.e. the (111)II, is much more stable —

0.48 J m-2— compared to the Bi and S endings —(111)I, 1.37 J m-2—, highlighting that 

the Ag-S bonds within matildite are much weaker than Bi-S ones, point that goes along 

with an easier Ag vacancy formation compared to Bi.13  

Indeed, the (111)II surface is the one most stable from those explored here, even 

despite displaying polar endings, and actually naturally explains the Ag rich surface 

observation in nanoparticle samples.1 The Wulff constructed shape acquired following 

the cleavage energies encompassed in Table 2 is depicted in Figure 4, and reveals that 

only (001) — Ecl of 0.52 J m-2— and (111)II surfaces are exposed, i.e. the optimal Wulff 

shape is a cube featuring {001} facets, with only two cuts along (111)II direction. 

According to it, a 84.81% of the nanoparticle surface would belong to the nonpolar 

{001} facets, and the other sensible 15.19% would belong to the polar (111)II ending. 

With such a ratio of exposure, and noting that {001} facets contain Ag, Bi, and S atoms, 

and that (111)II contain only Ag and S atoms in each of the two endings, one can 

estimate the surface atomic Ag:Bi ratio in Wulff shaped nanoparticles, which according 

to our estimates is 1.36, actually, in rather good agreement to the ratio obtained from X-

ray photoemission spectroscopy (XPS) measurements in as-synthesized matildite 

nanoparticles of 1.5. Keeping that in mind, the easier Ag vacancy formation in bulk13 is 

then a sensible explanation for other studies where Ag poor samples were detected.11,35 

As far as local charges of surface atoms, results from a Bader analysis are 

reported in Table 2. It is worth noting how charges on (001) nonpolar surfaces are very 

similar to those previously calculated in bulk matildite, of +0.47, +1.21, and -0.83 e for 

Ag, Bi, and S, respectively, with variation of at most 0.08 e. In this sense, such 

termination is the most bulk-like. However, charges are sensibly attenuated on nonpolar 

(011)I and (011)II surfaces, with absolute reductions of 0.2-0.3 e compared to bulk 

conditions. This goes along with the above-commented charge-transfer mechanism, 

although the small charge transferred seems to point for a small electric dipole moment 

term. Regardless of that, the work functions of nonpolar surfaces are of ~4.3 eV, and 

only higher by 0.32 eV on the more unstable (011)II surface, which highlights again the 

surface charge compensation in such nonpolar endings. This charge attenuation is of 
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similar extent on polar (111) endings, with reductions of 0.2-0.3 e for surface Ag and S 

atoms. However, the reduction is much higher for those (111) surfaces containing 

surface Bi atoms, these are the (111)I and (111)III surfaces. There, the high positive 

charged of Bi cations get reduced by ~0.6 e, although such a big reduction, probably a 

consequence of a charge transfer mechanism to reduce polarity,32,36 does not implies a 

particular stability, as such surfaces containing surface Bi atoms are the least stable of 

those here contemplated. For the studied polar surfaces, the work functions are higher 

than for the nonpolar ones, by in between 1.5 to 2.2 eV, regardless of the higher 

instability; clearly the dipole moment barrier is a factor when it comes to electron 

extraction. However, the polarity is not detrimental for the high stability for (111)II 

Ag/S polar endings, where such surface dipole exists, though quenched, and despite of 

that is the most stable surface here contemplated, clearly preferable to the competing 

(111)I Bi/S termination. In that sense, the Ag layer termination is much more stable 

than the Bi terminated one. Considering the above-commented Wulff ratios, the mean 

workfunction of a Wulff shaped AgBiS2 nanoparticle would be 4.55 eV.  

Finally, the surface density of states (DOS) is shown in Figure 5 as projected on 

surface atoms per studied surface. For the bulk reference, we refer to the recent 

literature.10 Note that for each surface the potential energy of an electron in the vacuum 

is used as the energy reference, EV, instead of the usual Fermi level (EF), which is then 

located at minus the workfunction energy value as listed in Table 2. From the DOS 

several conclusions can be extracted. For instance, the DOS of the nonpolar (001), 

(011)I, and (011)II surfaces quite resemble that of bulk matildite AgBiS2,10 in the sense 

that valence band is dominated by Ag and S orbitals, whereas conduction band is 

dominated by Bi and S. Further than that, such surfaces display a bandgap. In the case 

of (001) surface, the bandgap Eg at surface is 0.72 eV, 0.3 eV larger than that of bulk 

estimated to be 0.42 eV at the same PBE level.  

Such sensible enlargement of the bandgap, when applied to better estimates 

obtained using hybrid functionals, could account for the wavelength overestimation 

when simulating absorption coefficients, thus helping to reconcile computational 

simulations with experiments,1,10 which here remarks the paramount role of (001) 

surface termination in solar light triggered processes. The (011)I and (011)II surfaces, 

not expressed in Wulff shapes, see Figure 4, feature reduced band gaps of 0.21 and 0.23 

eV. Last but not least, polar (111) surfaces feature no band gap at all, i.e. these surface 
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terminations can be considered metallic. Particularly, the states near EF are governed by 

S orbitals, mainly, and those above EF by Bi states for (111)I and (111)II surfaces, and 

by Ag states in (111)II surface. Since EF of the Wulff expressed (111)II surface with 

respect to the vacuum is located sensibly lower in energy to that of (001) surface, a 

photo-generated electron/hole pair on (001) surfaces could be followed by an electron 

transfer to the metallic (111)II surface, fostering charge separation which help to explain 

the better photoactive performance of matildite AgBiS2, as similarly previously found 

on other semiconductors as ZnO.14 This reasoning however has to be taken with 

caution, possible applicable to small nanoparticles, as size, and likely the presence of 

capping agents can revert such situation, recovering the bandgap at polar surfaces, 

points which should be the matter of future studies. 

IV. Conclusions 

Motivated by the interest in matildite AgBiS2 material for solar light harvesting 

applications, we follow up a detailed bulk first principles quantum mechanical study by 

a through investigation of the surface morphology. DFT calculations carried out at the 

PBE level on different surface orientations and terminations highlight the likely 

presence of two particularly stable facets in Wulff shaped AgBiS2 nanoparticles; the 

(001) type nonpolar surfaces, and (111) polar terminations where facets are exposed 

containing solely Ag or S atoms. Considering them the Wulff equilibrium shape is a 

cube with only two edges capped. This particular shape explains a previously 

experimentally determined surface enrichment of Ag with respect Bi of ~1.5. The (001) 

surfaces display an ionic character similar to bulk AgBiS2, with a low work function of 

4.31 eV, although the inspection of the DOS reveals a bandgap increased by 0.3 eV 

compared to those of bulk. Such surface increase could explain the bulk wavelength 

overestimation of the absorption coefficient decay, as previously determined. Last but 

not least, the DOS of (111) polar termination reveals a metal character, where Fermi 

level is located below that on the (001) surfaces. According to this, a possible 

(001)→(111) electron transfer of the (001) surface generated exciton could explain a 

hindered exciton recombination, and thus account for the excellent reported 

photoactivity.    
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Figure 1. Matildite bulk crystallographic structure, employing the cubic supercell (top 

image), with the explored surface orientations, and the embedded trigonal primitive unit 

cell (bottom image, highlighted atoms with red lines to guide the eyes). Grey, pink, and 

yellow spheres denote Ag, Bi, and S atoms, respectively. 
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Figure 2. Top views of the matildite AgBiS2 (001), (011)I, (011)II, (111)I, (111)II, and 

(111)III surfaces. Dashed white lines denote the surface unit cells employed. Atomic 

sphere coloring as in Figure 1. 
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Figure 3. Side views of the matildite AgBiS2 (001), (011)I, (011)II, (111)I, (111)II, and 

(111)III surfaces. Atomic sphere coloring as in Figure 1. 
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Figure 4. Wulff construction shaped gained from cleavage energies as computed and 

presented in Table 2.  
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Figure 5. Atomic projected DOS for the studied surfaces, following the colour code of 

Figure 1, and referenced to the vacuum level (EV), denoted by a dashed black line. For 

each surface, the Fermi energy, EF, is marked with a solid red line. 
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Table 1. Number of AgBiS2 units, n, for each surface slab model, together with 

the slab width, in Å. Experimental (Exp.) and calculated (PBE) interlayer 

distances, d║, also in Å, and dimensions of the Monkhorst-Pack k-point meshes. 

Surface n width d║(PBE) d║(Exp.)a k-points 

(001) 16 8.5 2.83 2.87 5×5×1 
(011)I 8 14.0 2.00 2.07 9×3×1 
(011)II 16 14.0 2.00 2.07 5×5×1 
(111)I 3 17.5 3.18 3.16 9×9×1 
(111)II 3 17.5 3.18 3.16 9×9×1 
(111)III 3 17.5 3.18 3.16 9×9×1 

a Ref. 1. 
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Table 2. Cleavage energies, Ecl, in J m-2, work functions, φ, in eV, and charge on 

surface atoms, Q, in e. 

Surface Ecl φ QAg QBi QS 

(001) 0.52 4.31 +0.45 +1.29 -0.90 
(011)I 0.90 4.30 +0.24 +0.91 -0.62 
(011)II 1.14 4.63 +0.26 +1.03 -0.70 
(111)I 1.37 6.47 – +0.56 -0.34 
(111)II 0.48 5.92 +0.31 – -0.70 
(111)III 1.76 5.79 +0.24 +0.61 -0.50 
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