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Abstract 

The synthesis of the cationic gold(I) complexes [Au(C≡CC5H4N)(CH3-PTA)]X (X = I, 

1; X = OTf, 4), [Au(C≡CC5H4N-CH3)(PTA)]X (X = I, 2; X = OTf = 5; PTA = 1,3,5-

triaza-7-phosphatricyclo[3.3.1.13.7]decane) and [Au(C≡CC5H4N-CH3)(DAPTA)]X (X 

= I, 3;  X = OTf = 6, DAPTA = 3,7-diacetyl-1,3,7-triaza-5- 

phosphabicyclo[3.3.1]nonane) gives cationic complexes showing unexpected 

supramolecular assemblies in water going from rod-like structures (1) to vesicles (2 and 

3) and square-like structures (5 and 6). These morphologies are completely different 

from the fibers previously obtained with their parent neutral complexes 

[Au(C≡C5H4N)(PTA)] and [Au(C≡C5H4N)(DAPTA)]. Nevertheless, the introduction of 

triflate as counterion in 1 (complex 4) gives rise to the formation of highly soluble 

complex in water which does not display any significant aggregation in solution. 

These results reveal the importance of the introduction of a positive charge on the global 

supramolecular assemblies and how the counterion can modify also the resulting 

package. Interestingly, we have also proved that the aggregation of complexes 2, 3, 5 

and 6 is also affected by the solvent with direct influence on their absorption and 

emission properties and the global morphology of the aggregates. 

 

Keywords: supramolecular assemblies, gold(I), aurophilicity, rods, vesicles, 

photophysics, microscopy.  
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Introduction 

Topology is taken proper root in material science in order to understand if it can 

affect materials physical properties at the nano-/mesoscale and can be used to 

understand and design materials from this new perspective.
1
 This incipient appreciation 

for the importance of topology is giving rise in the last years to entirely new materials 

with unusual topologies that lead to either exotic or enhanced properties.
2-4

 Self-

assembly of small molecules has received great attention in this field in the past decade, 

not only because of their fascinating and innumerable supramolecular morphologies 

(including spherical or cylindrical micelles, vesicles, toroids, rods, ribbons, lamellar 

platelets, scrolls or nanotubes)
5
 but also due to their potential applications in material 

science,
6
 mimic biological systems or functions

7,8
 or in molecular devices.

9
  

In the last years, gold(I) complexes represent an emerging area of investigation 

within this field, as they show weak Au(I)···Au(I) aurophilic interactions
10

 which can 

modulate and govern the resulting assemblies and properties in very different potential 

applications.
11

 Among the resulting supramolecular structures obtained with low 

molecular weight gold(I) complexes, recent reports on hydrogelators should be 

highlighted.
12-14

 The formation of these gels has been driven through non-covalent 

interactions, which are commonly van der Waals forces, hydrogen bonding, electrostatic 

attractions and  stacking interactions, together with aurophilic interactions.
12

 

Our recent results on the formation of hydrogels from small organometallic 

complexes containing Au(I)-alkynyl moieties,
15-17

 prompted us to go one step further in 

the design and synthesis of novel supramolecular nanostructures constituted by self-

assembly of small molecules. In particular, we are interested on the understanding of 

how supramolecular packing can be modulated by modifications of the chemical 

structure or the environment of small gold(I) organometallic precursors. The design and 

synthesis of novel self-assembling materials with tunable properties are challenging, but 

undeniable crucial, and the understanding of the factors that control such properties has 

aroused much interest in the last few years.
18-25

 We are mainly interested on gold(I) 

alkynyl complexes, due to their appealing stems from the two-coordinate linear 

geometry of the metal atom and the linearity of the alkynyl moiety, which together have 

made them ideal candidates for the exploration of self-assembling functional properties 

and have grown attention due to their wide range of different properties.
11

 For these 

reasons, in this work, we report how the 3D assemblies of gold(I) derivatives previously 

reported by us
15,16

 can be modulated by the introduction of different factors. In fact, we 
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have been able to tune the large pre-organized fibrilar structures previously found and 

convert them into rods, spherical vesicles or square-like morphologies, among others, 

by the introduction of a positive charge on the chemical structure either at the phosphine 

(complexes 1 and 4 Chart 1) or at the pyridyl unit (complexes 2, 3, 5 and 6). The 

influence of the counterion of these positively charged complexes has been also 

explored together with the effect of the polarity of the solvents in the intermolecular 

interactions giving rise to unprecedented changes on their photophysical and 

morphological properties. Very recently, it has been reported about the formation of 

different structures with Au alkynyl amphiphilic systems with different long alkyl 

chains.
18

 But the absence of these long alkyl chains in our complexes make them 

particularly appealing regarding the study of their aggregation processes. And, to the 

best of our knowledge, this is the first example that shows how the polarity of different 

solvents and the presence of different counterions can induce the formation of distinct 

supramolecular structures in solution with this family of compounds. On the other hand, 

as was observed for the effect of solvent vapours on the resulting luminescent properties 

of organometallic gold(I) complex crystals,
26-30

 the rearrangements that occur in 

solution, also affect the emission of the aggregates. 

 

 

 

 

 

 

 

 

 

 

 

Chart 1. Positively charged species studied in this work.  
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Results and Discussion 

Synthesis and Characterization 

Complex 1 was obtained by the reaction of the [Au(C≡CC5H4N)(PTA)] with 

CH3I at low temperature (Scheme 1). Previously, we assayed the reaction involving 

[Au(C≡CC5H4N)]n and (PTA-Me)I but was unsuccessfully accomplished. On the other 

hand, positively charged complexes at the pyridyl unit were also obtained by 

modifications on the synthetic procedures (Scheme 2). For this, the previous synthesis 

of the organic ligand N-methyl-4-ethynylpyridinum iodide was necessary (Scheme S1). 

In these cases, the acac method
31

 was necessary to remove the terminal alkynyl proton 

and obtain complexes 2 and 3 in moderate yields (ca. 50%).  

 

 

 

Scheme 1. Synthesis of [Au(C≡C5H4N)(PTA-Me)]I complex. 

 

 

 

 

 

 

Scheme 2. Synthesis of [Au(C≡C5H4N-Me)(PR3)]I (PR3 = PTA, DAPTA) complexes. 

 

 

Characterization of complexes 1-3 by 
1
H, 

31
P-NMR, IR spectroscopy and mass 

spectrometry verified the successful formation of these products. The ESI-MS 

experiments display the molecular peaks in all cases (Figures S1-S3). IR spectra also 

show the corresponding C≡C and C=N vibrations of the chromophoric units in all cases. 

Mainly, the disappearance of the terminal alkynyl proton detected by IR and 
1
H-NMR is 

a clear evidence of the formation of the complexes 2 and 3. Additionally, 
1
H-NMR 

spectra of the complexes show the characteristics H and H protons of the pyridine 

together with the characteristic patterns of the PTA (2) or DAPTA (3) phosphines in 

D2O (Figures S4 and S5). The formation of aggregated samples in this solvent was 

evidenced by the presence of different H and H pyridyl protons where this moiety 
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must be directly affected.
15,16

 Only phosphine protons are detected in chloroform, due to 

the poor solubility of the ionic part of the molecules in apolar solvents (Figures S6 and 

S7).
15-17,32-34

 Moreover, the more asymmetric pattern of the methylated phosphine (1) 

was also recorded by 
1
H-NMR in D2O (Figure 1 top).

35-37
 Interesting findings were 

observed from 
1
H-NMR characterization in D2O. The corresponding spectra of the three 

complexes clearly displayed the characteristic protons of the phosphines while protons 

of the ethynylpyridyl chromophore could be only observed (and with very low 

intensity) at diluted conditions (Figure 1 top). Similar behaviour was recently observed 

with the [Au(C≡C5H4N)(PTA)]
15

 complex being a proof of the aggregation process in 

this solvent, where the organic chromophoric unit must be directly involved. In the 

absence of aggregation, (as observed in CDCl3, Figure 1 bottom) the 
1
H-NMR spectrum 

shows the correct integration ratio of 2:6 between the pyridyl Ha and phosphine protons. 

For the reasons above, some kinds of supramolecular assemblies were also expected for 

1-3 in water. Nevertheless, the lack of the expected gel behaviour of the solutions did 

not indicate the formation of long fibers promoting gelification in these cases (see 

below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 
1
H-NMR spectrum of complex 1 in D2O (top) and in CDCl3 (bottom). H 

protons in the spectrum below are buried under the CDCl3 signal. 
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In 1, the phosphine groups are expected to point towards water molecules while the 

more hydrophobic ethynylpyridyl moieties are expected to pack closely to each other 

through hydrophobic interactions. In the case of 2 and 3, the presence of a positive 

charge at the pyridyl groups is expected to promote a different aggregation pattern, 

where the positively charged unit is located towards the water molecules. This 

hypothesis was also confirmed by the Z potential values measured by DLS experiments 

(see below). 

 

Analysis of the aggregates by electronic and optical microscopies. 

Electronic microscopies were important tools to get insight into the 

supramolecular assemblies of these complexes and to analyse the effect of the positive 

moiety (1-3) in the resulting, and unpredictable, three-dimensional supramolecular 

packing. Rod aggregates of 1 are about 20-30 μm length; individual spherical 

aggregates of 2 and 3 measure around 20 nm and the presence of a multilayer system 

(typical of vesicles) containing in some cases hollows (darker colour) showing its empty 

inner can be detected for 2 (Figure 2). Moreover, the spherical aggregates seem to 

agglomerate in ca. 200 nm sizes or larger (Figure S8). Cryo-TEM images were key 

evidences to verify the presence of the micellar-vesicles topologies of 2 and 3 in 

solution (Figure 2D).  

Interestingly, these morphologies seem to be maintained in larger structures 

detectable by optical microscopy (Figure 3).  

Hence, it seems clear that cationic charges produces a clear effect on the global 

morphology of the supramolecular assemblies and precludes the formation of long 

empty fibers previously observed for their neutral analogous complexes 

[Au(C≡C5H4N)(PTA)]
15

 and [Au(C≡C5H4N)(DAPTA)].
16
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Figure 2. Scanning electron microscopy images of dried samples of 1 (A), 2 (B) and 3 

(C). Cryo-Transmission electron microscopy image of dried sample of 2 (D). 

 

 

Figure 3. Optical microscopy images of dried samples of 1 (A), 2 (B) and 3 (C).  

 

 Dynamic Light Scattering 

Dynamic Light Scattering experiments were carried out for the spherical 

samples (vesicles) at 5x10
-5

 M solutions and indicate that the expected size is around 20 

nm with a positive Z potential value of around +25 and +15  mV for 2 and 3 

respectively (Figure S9). These data suggest that the positive charge may be pointing 

outwards in the vesicles’ structure. The lowest positive value measured for 3 could be 

attributed to the larger steric hindrance of the DAPTA phosphine that must be related to 

different packing structure (see below). DLS experiments carried out at different 

concentrations showed that the smaller vesicles’ size are detected at ca. 10
-5

 M (~20 
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nm), and they agglomerate up to ca. 130 - 140 nm at ca. 1x10
-4

 M concentration (Figure 

4), in agreement with data retrieved from SEM experiments (see above). Thus, we can 

suspect that the spherical shape is maintained both in solution and in dried samples. 

 

 

 

 

 

 

 

 

 

Figure 4. Vesicles’ size of different of solutions of 2 in water at different concentrations 

measured by DLS (left); DLS distribution at two different concentrations: 5·10
-5

M, 

black line, and 1·10
-3

M, red line (right). 

 

Such vesicles-topology, to the best of our knowledge, is the first example 

reported in the literature based on weak interactions with low molecular weight 

complexes. Only small micelles were very recently found with a Au(I)-

metalloamphiphile in buffered water.
38

 

 

Effect of counteranion on the resulting package. 

The nature of the counterion can affect the resulting supramolecular package as 

observed in other gold supramolecular structures.
39

 With this in mind, the complex 

[Au(C≡C5H4N)(PTA-Me)]OTf (4) was synthesized following a procedure similar to the 

one used to obtain 1 but using MeOTf instead of MeI. The resulting product was 

observed to be highly soluble in polar solvents and is shown in the corresponding 
1
H-

NMR spectrum in D2O, which shows all the protons of the molecule in the correct 

integrating ratio (Figure S10). Thus, no significant aggregation was expected and 

consequently, complex 4 does not seem to give rise to the formation of highly 

preorganized and ordered structures.  

The synthesis of N-methyl-4-pydidylethynyl triflate ligand was also performed 

following similar procedure than the corresponding to iodide ligand (Scheme S2) in 

order to investigate if the counteranion could induce changes on the spherical-type 
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aggregates observed for 2 and 3. Different attempts were also performed in order to 

introduce other counteranions such as perchlorate (see Scheme S3) but the very low 

yield (~ 2%) of the resulting organic precursor and the oily nature of the obtained 

gold(I) derivatives precluded their correct isolation and corresponding studies. 

The reaction of the triflate ligand with [Au(acac)(PR3)] (PR3 = PTA, DAPTA) 

was accomplished by the same procedure shown in Scheme 2 for iodide derivatives and 

the resulting [Au(C≡C5H4N-Me)(PR3)]OTf (PR3 = PTA (5), DAPTA (6)) were 

successfully obtained in moderate-high yields (ca. 70-80%) in agreement with 

characterization data (Figures S11 and S12). Optical microscopy images of dried 

aqueous samples of 5 and 6 showed the formation of large structures presenting like-

square concentric shape (Figure 5A and S13). SEM characterization confirms this fact 

and let us to measure their size as ca. 20-40 mm (Figure 5B and C and S14). It could be 

seen that the use of a different counteranion (triflate instead of iodide) modulates the 

formation of different supramolecular package:  squares for triflate complexes instead 

of micelles/vesicles, observed for iodide derivatives (Table 1). 

 

Figure 5. Optical microscopy images of aqueous dried samples of 6 (A). SEM images 

of aqueous dried samples of 5 (B) and 6 (C).  

 

Table 1. Summary of the different supramolecular assemblies of complexes 1-6 in 

water. 
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Analysis of the packing parameter and relation with the observed geometry 

It has been seen that the critical packing parameter (CPP) is an important tool to 

determine the geometry of the micellar type of aggregates. It is based on the calculation 

of the ratio v/(lmax*a) where v is the volume of one molecule, lmax is length of the 

hydrophobic part and a the area of a cross section of the more hydrophilic part of the 

molecule involved in the aggregate. The calculation of the CPP values corresponding to 

the cationic part of the molecules (involved directly on the packing formation) was 

carried out by measuring the length of each molecule based on simple Spartan models 

(Figure 6). The calculated CPP values are 0.51, 1.01 and 4.07 for [Au(C≡C-

C5H4N)(CH3PTA)]
+
, [Au(C≡C-C5H4N-CH3)(PTA)]

+
 and [Au(C≡C-C5H4N-

CH3)(DAPTA)]
+
 respectively. This is in agreement with the formation of hexagonal 

preferred aggregate structures for the complex with the cationic charge located at the 

phosphine (Figure 6 left) and lamellar aggregates (Figure 6 middle) and reversed 

micelles (Figure 6 right) for the aggregation of complexes with the positive charge at 

the pyridyl moiety and PTA and DAPTA phosphines respectively.
40

 The lamellar 

structures tend to minimize the interactions between water molecules and the 

hydrophobic parts that are inside the lamellar phase. At the same time, the positively 

charged head groups induces a curvature, closing the structure, that will also minimize 

the repulsion between the positively charged head groups and results on the formation 

of a vesicle.
41

 This is in agreement with the characterization images obtained by SEM 

(see above). Finally, the high steric hindrance of the DAPTA phosphine must be the 

responsible of the formation of reversed micelles, instead of vesicles, where the most 

bulky group (phosphine) is located outside the cavity. The presence of amines in this 

phosphine makes this location possible since amine may be protonated at neutral 

aqueous pH. 
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Figure 6. Critical packing parameters (CPPs) and preferred aggregate structures for 

geometrical packing reasons of [Au(C≡C-C5H4N)(CH3PTA)]
+ 

(left), [Au(C≡C-C5H4N-

CH3)(PTA)]
+
 (middle) and [Au(C≡C-C5H4N-CH3)(DAPTA)]

+
 (right). 

 

 It is known that simple inorganic counterions are very loosely associated with 

the micelles. They are very mobile and there is no specific complex formed with a 

defined distance with the external part of the micelle. For this, iodide counterions of 1-3 

are not expected to affect the resulting packages and CPP could give a reasonable 

explanation for the packing. 

We are not convinced that the same is true for triflate derivatives 4-6, due to its 

lower water solubility and the evidence for a possible anion- interaction with 

compound 4 (see below).  The very different structures for the aggregates of 5 and 6  

suggests that the packing must take into account the possible intercalation of triflate in 

the aggregates, despite we cannot proof this. In such a case (triflate intercalation in the 

structure) repulsions between the positive moieties may be less important and for this, 

the resulting packages are extended structures of lamellar phase giving rise to square-

like samples instead of vesicles.  

Several attempts carried out to grow single crystals suitable for X-ray diffraction 

were unsuccessful. In order to gain more information about the crystal packing, powder 

DRX experiments were performed for complexes 2 and 5 that differ on the counterion 

(Figure S15). The results show a crystalline packing for the iodide complex while 

amorphous for the triflate structure. This fact can be tentatively assigned to a previous 

organization of the organometallic iodide derivatives in the powder that could be in 

agreement with the fact that in these cases, counterion is outside the supramolecular 

assemblies in vesicles and micelles already before solubilization in water. Nevertheless, 
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it seems credible that the observed organizations studied in this work are globally 

resulting of assemblies in solution. 

 

Effect of the solvent on the resulting package 

Diluted solutions of complexes 2 and 3 present different colours in polar and 

apolar solvents. For this, the effect of the polarity of the solvent on the resulting 

spectroscopic properties and morphology was investigated. 

 

Absorption and emission characterization in water 

Absorption and emission spectra of the complexes 1-6 were recorded in water at 

ca. 10
-5

 M concentration and the results are summarized in Table S1 and Figures 7, S16 

and 8. The absorption spectrum of 1 presents an intense absorption at ca. 265-300 

assigned to intraligand (IL) π-π* (C≡Cpy) transitions based on literature.
11,15,16,42,43

 This 

transition exhibits some broadening (not completely vibronically resolved) which is 

indicative of an aggregation process where the Au-C≡Cpy moiety is directly involved.
15

 

Thus,  stacking together with aurophilic interactions are expected to be present in 

solution and should be responsible for the formation of the rod-like structures. A lower 

intensity broad band or tail above 300 nm can be assigned to a σ*Au···Au - π* transition 

according to theoretical studies carried out recently for analogous neutral 

complexes.
42,44

 The intraligand absorption band of 2-6 is about 20 nm red-shifted and 

without vibronical resolution. In the case of 2, 3, 5 and 6, this is due to the methylated 

pyridyl group.  

Another band around 400 nm is recorded for the PTA complexes 2 and 5. This 

band should be due to the absorption of aggregated species since PTA complexes 

aggregate easier than their DAPTA analogous. An additional transition around 450 nm 

was recorded for fresh solutions of 2 and 3 which has been tentatively assigned to 

XLCT transitions (X = halide), as reported in the literature for other organometallic 

compounds.
45,46

 This charge transfer transition is favoured by the coordination of an 

electrowithdrawing group (Au-phosphine) to the pyridinium moiety
47

 and was observed 

to disappear in aged solutions (Figure S17).  This could be probably due to a 

reorganization of the iodide anions in the aggregates with time.  

A particular profile was displayed by 4 (Figure S16). The highest recorded extinction 

coefficient is in agreement with the lack of formation of aggregates. Nevertheless, the 

profile is not completely understood since it resembles the spectra of the methylated 
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pyridyl derivatives (2, 3, 5 and 6) but the 
1
H-NMR spectra does not show any upfield 

shift typical for this coordination. The largest 
1
H-NMR downfield shift of H and H 

protons of 4 together with the smaller calculated coupling constants, are in agreement 

with a possible anion- stacking disposition.
48

 Thus, triflate counterion could interact 

with the aromatic pyridyl ring giving to a red-shifted and unresolved absorption band. 

These interactions may be favoured with this counterion due to the possibility to 

establish hydrogen bonding and could be the reason for the different package observed 

by SEM. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Absorption spectra of 5x10
-5

M solutions of complexes 1, 2 and 6 in water. 

 

Emission spectra, recorded upon excitation all the samples at 370 nm, display 

the presence of a broad band around 450 nm (or vibronically structured with 

progressional spacings at ca. 2000 cm
-1

,
 
in the case of 1) and an additional band near 

600 nm for the PTA derivatives 1, 2 and 5 (Figure 8). The vibronical structuration 

observed in 1 let us to assign this higher energy band to an intraligand 
3
[π-π*(alkynyl)] 

emission origin. This resolution is lost for methylated pyridyl derivatives 2, 3, 5 and 6, 

as observed in other methyl-pyridinium compounds.
45,46,49

 The lower energy emissions 

may be attributed to MMLCT transitions within the aggregates as recently observed for 

platinum alkynyl derivatives and for the emission spectra recorded at different 

concentrations (Figure S18).
50,51

 The recorded yellow emission is also in agreement 

with this assignment and with the fact that approximation of Au centers increases the 

emission in this region of the spectrum.
42

 An XLCT origin should be ruled out since it is 

also observed for triflate derivatives and also for aged solutions where the XLCT 

absorption band disappears. 
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Figure 8. Emission spectra of 2.5x10
-5

M solutions of complexes 1-6 in water  

(exc = 370 nm). 

 

Absorption and emission in solvents of different polarity 

It was observed that complexes 2 and 3 displayed different colours when 

dissolved in water and in chloroform. In order to check the effect of the solvents in the 

corresponding solutions, 1x10
-3

M samples of complexes 2, 3 and their triflate analogous 

5 and 6 in solvents of different polarity were prepared and their absorption and emission 

spectra recorded. No solvent effect was observed by naked eye for 1 and 4. As 

displayed in Figure 9, the solutions of 3 present a wide range of different colours, and 

for this, their solvatochromic behaviour and the corresponding spectroscopic properties 

and resulting package were investigated. 

 

 

Figure 9. 1x10
-3

 M solutions of 3 in solvents of different polarity (1, water; 2, 

methanol; 3, acetonitrile; 4, chloroform; 5, THF; 6, toluene; 7, cyclohexane).  
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Absorption and emission spectra were collected for freshly prepared samples in all 

different solvents and the multiparametric method of Kamlet and Taft,
52

 in which UV-

Vis absorption and emission energies are correlated with different solvent properties 

according to equation 1, was applied.
53-57

 In this equation, 

0 is the value of the 

absorption and/or emission energies in a reference solvent (cyclohexane; * = 

0), is an index of the solvent’s ability to act as a hydrogen-bond donor (or electron 

pair acceptor) toward a solute and is a measure of the ability of a bulk solvent to act as 

a hydrogen-bond acceptor (or electron-pair donor), * is an index of the solvent 

polarity/polarizability which measures the solvent’s ability to stabilize a neighbouring 

charge or dipole through non-specific dielectric interactions and  is polarizability 

correction for different classes of solvent (aliphatic, aromatic or halogenated). Often, the 

contribution of  is negligible leading to the simplified equation 2, from which the 

parameters a, b and p (corresponding to the responses of the appropriate solute 

molecular property to the relevant solvent property) can be retrieved through a 

multiparametric fitting on various solvents. , and * are tabulated values (Table S2). 



  = 


 0 + a + b + p(* + d)  Equation 1 



  = 


 0 + a + b + p*   Equation 2 

 

The absorption band around 450 nm of compounds 2 and 3 in water is observed to be 

strongly dependent on solvent polarity (Table S3 and Figures 10 and S19). Interestingly, 

this band does not appear for triflate derivatives (5 and 6) in agreement with the 

previous XLCT assignment (X = I
-
) and solvatochromic effect was not detected. A large 

negative solvatochromism (hypsochromic effect) is observed for 2 and 3 (62 nm and 65 

nm respectively (~155000 cm
-1

)) due to a stabilization of the ground state in more polar 

solvents during the transition. Kamlet-Taft multiparametric fitting (Table 2 and Figures 

S19-S21) shows that the polarity/polarizability (measured by * parameter) is the main 

effect on this hypsochromic shift (larger p value), that means that the stabilization by H-

bonding of the ground state is less important and even less for the DAPTA derivative, 3. 

Nevertheless, the ability to establish or to accept H-bonds between solvent and solute is 

not negligible. In fact, both a and b values are positive, and indicate a stabilization of 

the ground state, increasing the energy of the transition.  
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Figure 10. Normalized absorption spectra of complex 3 recorded in different solvents. 

Hypsochromic effect with increasing polarity (negative solvatochromism) is shown. 

 

Table 2. a, b, p and 

 0 values, in cm

-1
, as well as slope and correlation coefficients 

obtained from Kamlet-Taft multiparametric fitting of the absorption data. 

Compound A b p 

 0 slope r

2
 

2 942 959 2537 17789 1 0.99 

3 726 707 3288 17430 1 0.99 

 

Interesting findings may be retrieved from emission spectra recorded for all 

different solvents upon excitation at the lowest energy absorption band (ca. 370 nm). 

Two different emission bands at ca. 450 nm and 550 nm were recorded for all 

complexes as exemplified for 2 in Figure 11 (see also Figures S22 and S23 for the other 

complexes). In the case of 2 and 5, the general observed trend is that the lowest energy 

emission band increases in intensity with the solvent polarity. In the less polar solvents 

as chloroform, THF, toluene and cyclohexane the band at 550-600 nm drastically 

disappears. By comparison with previous studies
15,16

 the broad emission shape of both 

bands seem to be assigned to emissive aggregates. The lowest energy emission band 

recorded in polar solvents may indicate the formation of larger structures in these media 

in agreement with NMR data. A particular case is the emission spectrum recorded in 

cyclohexane (less polar solvent) that displays a different profile with a vibronically 

structured shape (see Figure 11).  This could be attributed to the emission of monomer, 

in agreement with previous works.
15,16
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Excitation spectra collected at the emission maxima display two different bands 

centred at ca. 350 nm (more apolar solvents) and an additional band 450 nm (only 

observed in more polar solvents) corresponding to absorption of the less and more 

aggregated samples (see Figure S24). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Normalized emission spectra of 5·10
-5

M solutions of 2 in different solvents 

(exc = 370 nm).  

 

No emission bands were displayed for 3 and 6 in less polar solvents upon 

excitation of the samples at 370 nm (absorption of larger aggregates). Excitation of 

these samples at the lower absorption wavelength (ca. 300 nm) gives rise to emission 

bands centred at ca. 350 nm and 450 nm. This fact is in agreement with the higher 

solubility of the DAPTA complexes with respect to the analogous PTA derivatives. 

 

Analysis of the samples with diferent solvents under microscopic techniques 

The dried samples were also observed under optical microscopy and SEM in 

order to correlate the morphology of the aggregates with the observed absorption and 

emission bands. No supramolecular structures could be detected for the samples 

prepared in cyclohexane, which together with the lack of the broad emission at 550-600 

nm, corroborates the fact that emissive aggregates are responsible for this emission. On 

the other hand, different topologies were detected in the remaining solvents, which 

means that in all cases supramolecular structures were obtained and that these different 
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shapes can be correlated with the different spectroscopic emission patterns recorded 

(Figures 12 and S25-28). 

 

 

Figure 12. SEM images of dried samples of 5 in water (A), methanol (B), acetonitrile 

(C) and CHCl3 (D)  

 

It is accepted in the literature that the presence of aurophilic interactions can 

produce long wavelength luminescent crystals that are responsive to changes in their 

environment.
58,59,60

 In particular, many gold crystalline complexes display solvo- or 

vapoluminescence that is a result of uptake solvent molecules into the solid phase. 

Nevertheless, to the best of our knowledge, this is the first report where it is shown how 

solvent promotes the formation of different supramolecular shapes of gold(I) alkynyl 

aurophilic aggregates. 
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Conclusions 

We have demonstrated how to modulate the resulting supramolecular morphology of 

gold(I) alkynyl complexes by the introduction of different modifications on the 

chemical structure and environment. The effect of the introduction of a positive charge 

let us to create rod-like structures when a cationic charge is located at the PTA 

phosphine (complex 1). This morphology completely changes to the formation of 

vesicles or reversed micelles when this charge is located on the pyridyl unit (complexes 

2 and 3).  

Changing the counterion from iodide to triflate determines a different supramolecular 

package giving rise to the formation of square-like assemblies (complexes 5 and 6) in 

water while the higher solubility of the triflate analogous of 1 (complex 4) precludes the 

formation of aggregates. Hence, we can modulate the formation of different types of 3D 

structures formed by the establishment of weak interactions between molecules (mainly 

aurophilic interactions).  

The solutions of complexes 2, 3, 5 and 6 in different solvents let us to demonstrate that 

this parameter also affects the resulting supramolecular package as could be seen by the 

corresponding emission spectra and microscopy images. Moreover, Kamlet-Taft 

multiparametric analysis of XLCT absorption band of complexes 2 and 3 indicates that 

the observed negative solvatochromism in absorption is mainly due to 

polarity/polarizability effects while solvent polarity affects on the resulting emission of 

the aggregates.  
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Experimental Section 

 

General procedures  

All manipulations have been performed under prepurified N2 using standard Schlenk 

techniques. All solvents have been distilled from appropriated drying agents. 

Commercial reagents 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane (PTA, Aldrich 

97%), 3,7-diacetyl-1,3,7-triaza-5- phosphabicyclo[3.3.1]nonane (DAPTA, Aldrich 

97%), MeI (Aldrich, 99%) and MeCF3SO3 (Aldrich, 99%) have been used as received. 

Literature methods have been used to prepare N-methyl-4-ethynylpyridine iodide,
60

 

[AuCl(PTA)],
61

 [AuCl(DAPTA)],
61

 [Tl(acac)]
62

 and [Au(C≡C-C5H4N)(PTA)].
15

 Similar 

procedure previously reported for N-methyl-4-ethynylpyridine iodide was used for the 

synthesis of N-methyl-4-ethynylpyridine triflate,
63

 but using MeCF3SO3 instead of MeI. 

 

Physical measurements 

Infrared spectra have been recorded on a FT-IR 520 Nicolet Spectrophotometer. 
1
H-

NMR (δ(TMS) = 0.0 ppm), 
31

P{
1
H}-NMR (δ(85% H3PO4) = 0.0 ppm) spectra have 

been obtained on a Varian Mercury 400, Bruker 400 and Bruker DMX 500. ES(+) mass 

spectra has been recorded on a Fisons VG Quatro spectrometer. Absorption spectra 

were recorded on a Varian Cary 100 Bio UV- spectrophotometer and emission spectra 

on a Horiba-Jobin-Ybon SPEX Fluorolog 3.22 and Nanolog spectrofluorimeters. 

Microspectrofluorimetry measurements have been obtained with a MicroSPEX 

instrument where the Spex Fluorog apparatus 3.22 is connected to an Olympus BX51 M 

confocal microscope (Universidade Nova de Lisboa). Fluorescence microscopy have 

been recorded on an Axioplan 2ie Zeiss imaging microscope equipped with a 

NikonDXM1200F digital camera (Universidade Nova de Lisboa) and Leica DMIRB 

fluorescence microscope (Universitat de Barcelona). Optical microscopy was carried 

out on an Olympus BX51. Scanning electron microscopy has been carried out a 5kV 

using a Neon40 Crossbeam Station (Zeiss) equipped with a field emission gun. Cryo-

Transmission electron microscopy measurements have been obtained with a Tecnai G2 

F20 (FEI) 200kV FEG TEM cryomicroscope. A Horiba Scientific Nanoparticle 

Analyzer SZ-100 (Universidade Nova de Lisboa) operating at 25 °C was used to obtain 

the dynamic light scattering (DLS) measurements. 
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Preparation of the samples 

Optic and fluorescence microscopy measurements 

1 mg of each compound was dissolved in 5 ml of each solvent. To make the 

measurements, a drop of each solution was placed into a microscope slide and 

evaporated to dryness. 

 

SEM measurements 

4x10
-4

 M solutions of the complexes were used. A drop of each solution was deposited 

into a silicon plate and evaporated to dryness in contact with air. This process was 

carried out in the same way for all the different solvents. 

 

Polarity effect studies. 

The solvents used were double-distilled water, methanol p.a. (Fluka), acetonitrile p.a. 

(Fluka), THF (appropriate drying agents), chloroform p.a. (Fluka), toluene (appropriate 

drying agents) and cyclohexane p.a. (Panreac). 

To prepare solutions of 2, 3, and 5, 6, 1 mg of each compound was dissolved in 5 ml of 

each solvent, then the mother solutions were diluted to half concentration and the 

spectra were recorded. All measurements were made immediately after solution 

preparation as the coloring of these varies with time. 

 

Synthesis of [Au(acac)(PTA)] (1a). Solid Tl(acac) (76 mg, 0.25 mmol) was added to a 

solution of [AuCl(PTA)] (100 mg, 0.25 mmol) in acetone (10 ml). After four days of 

stirring at room temperature, the resulting white suspension was filtered. The solution 

was concentrated to ca. 5 ml and n-hexane (10 ml) was added to precipitate 

[Au(acac)(PTA)] as a white solid which was filtered off and dried in vacuum. Yield: 71 

% (82 mg). 
1
H-NMR (400 MHz, CDCl3): 4.60-4.46 (AB q, J = 12 Hz, 6H, N-CH2-N), 

4.28 (s, 6H, N-CH2-P), 2.25-2.12 (m, 8H, CH3-(CO)-CH2-(CO)-CH3). 
31

P{
1
H}-NMR 

(162 MHz, CDCl3): -45.1. IR (KBr, cm
-1

): 1635 (C=O).  

 

Synthesis of [Au(acac)(DAPTA)] (2a). Solid Tl(acac) (90 mg, 0.30 mmol) was added 

to a solution of [AuCl(DAPTA)] (120 mg, 0.30 mmol) in acetone (10 ml). After four 

days of stirring at room temperature, the white suspension was filtered. The resulting 

solution was concentrated to ca. 5 ml and n-hexane (10 ml) was added to precipitate 

[Au(acac)(DAPTA)] as a white solid which was filtered off and dried in vacuum. Yield: 
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73 % (99 mg). 
1
H-NMR (400 MHz, CDCl3): 5.80 (d, J = 20.0 Hz, 1H, N-CH2-N), 5.60 

(dd, J = 20.0/12.0 Hz, 1H, N-CH2-P), 4.96 (d, J = 16.0 Hz, 1H, N-CH2-N), 4.80-4.60 

(m, 2H, N-CH2-P + N-CH2-N), 4.15 (dt, J = 20.0/4.0, 1H, N-CH2-P), 4.07 (d, J = 20.0 

Hz, 1H, N-CH2-N), 3.87 (s, 2H, N-CH2-P), 3.57 (dt, J = 20.0/4.0 Hz, 1H, N-CH2-P), 

3.85 (s, 3H, N-CH3), 1.85 (s, 6H, CO-CH3), 2.25-2.12 (m, 8H, CH3-(CO)-CH2-(CO)-

CH3). 
31

P{
1
H}-NMR (162 MHz, CDCl3): -48.3. IR (KBr, cm

-1
): 1675 (C=O). 

 

Synthesis of [Au(C≡C-C5H4N)(CH3PTA)]I (1). CH3I (0.12 ml, 0.19 mmol) was added 

dropwise to a solution of [Au(C≡C-C5H4N)(PTA)] (60 mg, 0.13 mmol) in CH2Cl2 (10 

ml) at -40ºC. The suspension was allowed to warm until room temperature for 4 hours. 

The resulting pale yellow solution was concentrated to ca. 5 ml, and diethyl ether (10 

ml) was added to precipitate a pale yellow solid. Yield: 80% (73 mg). 
1
H-NMR (400 

MHz, D2O, ppm): 8.46 (d, J = 8.0 Hz, 2H, Hα-pyr), 7.41 (d, J = 8.0 Hz, 2H, Hβ-pyr), 5.08-

4.90 (AB m, 4H, N-CH2-N
+
), 4.69-4.59 (AB m, 2H, N-CH2-N), 4.56-4.44 (m, 2H, P-

CH2-N
+
), 4.33-4.06 (AB, m, 4H, N-CH2-P), 2.86 (s, 3H, N

+
-CH3). 

31
P-NMR (162 MHz, 

D2O, ppm): -57.2. IR (KBr, cm
-1

): 3425 (C-H (CH3)), 2100 (C≡C), 1664 (C=N). ES-MS 

(+) m/z: 471.10 ([M]+, calc.: 471.10).
  
Elemental Analyses Calc. %: C: 29.33, H, 3.77, 

N: 9.12; Found %: C: 29.42, H: 3.80, N: 9.31. 

 

Synthesis of [Au(C≡C-C5H4N-CH3)(PTA)]I (2). Solid [Au(acac)(PTA)] (40 mg, 0.08 

mmol) was added to a solution of N-methyl-4-ethynylpyridine (10 mg, 0.08 mmol) in 

THF (10 ml). After 1 hour of stirring at room temperature, the resulting red solution was 

concentrated, and diethyl ether (10 ml) was added to precipitate a dark red solid. Yield: 

75% (30 mg).  
1
H-NMR (400 MHz, D2O): 8.10 (d, J = 12.0 Hz, 2H, Hα-pyr), 7.61 (d, J = 

12.0 Hz, 2H, Hβ-pyr), 4.67-4.50 (AB q, J = 16.0 Hz, 6H, N-CH2-N), 4.37 (s, 6H, N-CH2-

P), 3.88 (s, 3H, CH3).  
31

P-NMR (162 MHz, CDCl3, ppm): -48.2. IR (KBr, cm
-1

): 3425 

(C-H), 2104 (C≡C), 1640 (C=N). ESI-MS (+) m/z: 471.10 ([M]+, calc.: 471.10). 

Elemental Analyses Calc. %: C: 29.33, H, 3.77, N: 9.12; Found %: C: 29.44, H: 3.81, 

N: 9.28. 

 

Synthesis of [Au(C≡C-C5H4N-CH3)(DAPTA)]I (3). Solid [Au(acac)(DAPTA)] (44 

mg, 0.09 mmol) was added to a solution of N-methyl-4-ethynylpyridine (10 mg, 0.09 

mmol) in THF (10 ml). After 1 hour of stirring at room temperature, the resulting red 

solution was concentrated, and diethyl ether (10 ml) was added to precipitate a dark red 
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solid. Yield: 50% (23 mg). 
1
H-NMR (400 MHz, D2O): 8.80 (d, J = 12.0 Hz, 2H, Hα-pyr), 

7.70 (d, J = 12.0 Hz, 2H, Hβ-pyr), 5.65 (d, J = 20.0 Hz, 1H, N-CH2-N), 5.40 (dd, J = 

20.0/12.0 Hz, 1H, N-CH2-P), 5.10 (d, J = 16.0 Hz, 1H, N-CH2-N), 4.70-3.88 (m, 7H, N-

CH2-P + N-CH2-N + N-CH2-P + N-CH2-N + N-CH2-P + N-CH2-P), 3.76 (s, 3H, N-

CH3), 1.85 (s, 6H, CO-CH3). 
31

P{
1
H}-NMR (162 MHz, CDCl3, ppm): -17.2. IR (KBr, 

cm
-1

): 3430 (C-H), 2100 (C≡C), 1937 (C=O), 1634 (C=N). ESI-MS (+) m/z: 543.12 

([M]+, calc.: 543.12). Elemental Analyses Calc. %: C: 30.46, H, 3.46, N: 8.36; Found 

%: C: 30.49, H: 3.49, N: 8.41. 

 

Synthesis of [Au(C≡C-C5H4N)(CH3PTA)](CF3SO3) (4). CH3CF3SO3 (4.1 μl, 0.36 

mmol) was added dropwise to a solution of [Au(C≡C-C5H4N)(PTA)] (11 mg, 0.24 

mmol) in CH2Cl2 (10 ml) at -40ºC. The suspension was allowed to warm until room 

temperature for 4 hours. The resulting pale yellow solution was concentrated to ca. 5 

ml, and diethyl ether (10 ml) was added to precipitate a yellow solid. Yield: 80% (15 

mg). 
1
H-NMR (400 MHz, D2O, ppm): 8.60 (d, J = 6.4 Hz, 2H, Hα-pyr), 7.85 (d, J = 6.4 

Hz, 2H, Hβ-pyr), 5.10-4.92 (AB m, 4H, N-CH2-N
+
), 4.69-4.59 (AB m, 2H, N-CH2-N), 

4.54-4.45 (m, 2H, P-CH2-N
+
), 4.34-4.12 (AB, m, 4H, N-CH2-P), 2.89 (s, 3H, N

+
-CH3). 

31
P{

1
H}-NMR (162 MHz, D2O, ppm): -43.6. IR (KBr, cm

-1
): 3433 (C-H (CH3)), 2113 

(C≡C), 1629 (C=N), 1264 (C-F). ES-MS (+) m/z: 471.10 ([M]+, calc.: 471.10). 

Elemental Analyses Calc. %: C: 30.43, H, 3.55, N: 7.89, S: 4.51; Found %: C: 3.59, H: 

3.45, N: 7.80, S: 4.70. 

 

Synthesis of [Au(C≡C-C5H4N-CH3)(PTA)](CF3SO3) (5). 

Solid [Au(acac)(PTA)] (60 mg, 0.13 mmol) was added to a solution of N-methyl-4-

ethynylpyridine triflate (43 mg, 0.15 mmol) in THF (10 ml). After 1 hour of stirring at 

room temperature the solution was concentrated to half volume and diethyl ether (10 

ml) was added to precipitate a dark green solid. Yield: 68 % (55 mg). 
1
H NMR 

(CD3OD, 400 MHz, ppm): 8.53 (d, J = 5.9 Hz, 2H, Hα-pyr), 7.87 (d, J = 6.2 Hz, 2H, Hβ-

pyr), 4.71-3.85 (m, 15H, N-CH2-N + N-CH2-P + N-CH3). 
31

P{
1
H}-NMR (162 MHz, 

CD3OD, ppm): -27.0. IR (KBr, cm
-1

): 2109 (C≡C), 1636 (C=N). ESI-MS(+) m/z: 

471.10 ([M]
+
 calc: 471.10). Elemental Analyses Calc. %: C: 30.43, H, 3.55, N: 7.89, S: 

4.51; Found %: C: 30.52, H: 3.60, N: 7.81, S: 4.67. 
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Synthesis of [Au(C≡C-C5H4N-CH3)(DAPTA)](CF3SO3) (6). 

Solid [Au(acac)(DAPTA)] (25 mg, 0.05 mmol) was added to a solution of N-methyl-4-

ethynylpyridine triflate (15 mg, 0.05 mmol) in THF (5 ml). After 1 hour of stirring at 

room temperature the solution was concentrated to half volume and diethyl ether (10 

ml) was added to precipitate a dark green solid. Yield: 70 % (22 mg). 
1
H NMR 

(CD3OD, 400 MHz, ppm): 8.64 (d, J = 6.5 Hz, 2H, Hα-pyr), 7.79 (d, J = 6.6 Hz, 2H, Hβ-

pyr) , 5.71 (d, J = 13.9 Hz, 1H, N-CH2-N), 5.54 (m,  1H, N-CH2-P), 5.08 (d,  J = 14.7 

Hz, 1H, N-CH2-N), 4.79-4.69 (m,  2H, N-CH2-P + N-CH2-N), 4.51-3.68 (m, 8H, N-

CH2-P (1H) + N-CH2-N (1H), N-CH2-P (2H) + N-CH2-P (1H) + N-CH3 (3H)), 2.10 (m,  

6H, CO-CH3). 
31

P{
1
H}-NMR (162 MHz, CD3OD, ppm): -17.8. IR (KBr, cm

-1
): 2116 

(C≡C),  1635 (C=N). ESI-MS(+): m/z: 543.12 ([M]+, calc: 543.12). Elemental Analyses 

Calc. %: C: 31.22, H, 3.35, N: 8.09, S: 4.63; Found %: C: 30.97, H: 3.45, N: 7.95, S: 

4.61. 
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TOC synopsis 

 

The synthesis of different cationic gold(I) complexes gave rise to the formation of 

unexpected supramolecular assemblies in water going from rod-like structures to 

vesicles and square-like structures. The aggregation process has been observed to be 

dependent on the counterion, the position of the positive charge and the solvent. 
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