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Abstract 

A versatile method is explored to decorate vertically aligned multi-walled carbon 

nanotubes (VACNTs) with NiO nanostructures. Multi-walled VACNTs are grown by 

plasma enhanced chemical vapor deposition and coated with NiO nanoparticles (NPs) 

by drop casting. After that, the system is submitted to nanosecond pulsed UV laser 

irradiation in atmospheric environment. Laser irradiation provokes rapid heating-

melting-cooling processes which lead to the recrystallization of NiO NPs on the outer 

walls of VACNTs. In this way, and depending on the laser fluence and the number of 

accumulated pulses, different nano-architectures such as continuous NiO coatings and 

spiny features on VACNTs are obtained. High resolution scanning and transmission 

electron microscopies and Raman spectroscopy, corroborated with photothermal 

simulations, suggest that the grown nanostructures are mainly created by the laser-

induced high temperatures (photothermal mechanisms). However, the observed 

reconstruction of the outer graphitic shells of VACNTs point to the catalytic action of 

NiO NPs, probably induced by the direct action of the laser radiation. 
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1. Introduction 

For many electrical and electrochemical applications, conductive materials with an 

extended chemically active surface are required to improve the performance of the 

devices. Low dimensional sp2-hybridized carbon nanostructures as carbon nanotubes 

(CNTs) and graphene-based materials are promising materials for this subject. 

Particularly, vertically aligned CNTs (VACNTs) can exhibit high electrical conductivity 

and adhesion to the substrate, in addition to large stability, mechanical flexibility and 

very large surface area able to interact with external molecules. Of particular 

importance for electronic devices is the low electric resistance in VACNT systems. 

VACNTs exhibit better electrical connection to the electrode and larger effective 

surface area for electrochemical applications than randomly, or horizontally aligned 

CNT yarns. Consequently, intense research efforts are being devoted to achieve 

controlled synthesis of these types of nanostructures, with the objective to develop high 

performance devices. For instance, VACNT forests have been synthesized for the 

fabrication of flexible supercapacitors with enhanced electric capacitance [1,2]. Besides, 

VACNTs with controlled structure have been also used as light-weight high specific 

surface current collector material for lithium batteries and IR radiation detectors [3-5]. 

Furthermore, and due to their large electrochemical active surface area, VACNTs have 

been also integrated in highly sensitive chemical sensors [6-8]. 

On the other hand, transition-metal oxides (TMO) have been also extensively studied in 

many application fields as supercapacitors, batteries and electrocatalysts for oxygen 

reduction reactions [9-12]. NiO appears as one of the most promising TMO material 

due to its nontoxicity, high chemical stability and good performance in faradaic 

reactions. However, TMO materials exhibit limited conductivity that precludes their 

practical application in electrochemical devices. In recent years, it has been 

demonstrated that the decoration of CNTs with TMO can increase their electrochemical 

performance [13-15]. In particular, NiO-CNT architectures have been reported to be 

good candidates for the fabrication of efficient electrochemical devices. Thus, NiO-

CNT composites have been used to develop H2 and volatile organic gas sensors [16,17] 
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as well as glucose sensors [18], high performance supercapacitors [19-21] and lithium-

ion batteries [22-24]. Regarding catalytic applications, NiO-CNT materials have been 

used as electrocatalyst for water splitting and in microbial fuel cells [25,26]. These 

composites also show high catalytic performance for the oxidation removal of toluene 

and the electrochemical reduction of CO2 [27,28]. 

Though the synthesis of NiO-CNT compounds by chemical and electrochemical 

methods are being developed, inherent limitations due to hydrophobic properties of 

CNTs, chemical incompatibilities of reagents or electro-induced damaging are still 

issues yet to be resolved in order to produce NiO-decorated CNT-based structures with 

improved performance for practical applications. Therefore, the design of new 

architectures by using innovative methodologies will play a vital role in achieving of 

materials with enhanced functionality. Laser processing techniques are an interesting 

alternative to conventional synthesis methods. It is widely reported that laser radiation 

can induce physical and chemical mechanisms in materials, usually coupled between 

them and far from the thermodynamic equilibrium, provoking phase transitions not 

achievable with conventional methods. For instance, significant diffusion and even 

selective melting processes can be induced in nanostructures due to the short and 

intense laser-induced thermal cycles [29,30]. Moreover, thin films composed of 

graphene oxide (GO) and GO decorated with TMO NPs have been recently reported to 

suffer complex structural transformations after their irradiation with nanosecond laser 

pulses [31-33]. Nonetheless, a scarce number of works reports structural 

transformations of carbon nanotubes by the action of laser irradiation [34-36] and, to 

our best knowledge, no works have been published regarding the laser irradiation of 

CNT-TMO hybrid nanomaterials.  

Herein we study the effects of ultraviolet (UV) nanosecond pulsed laser irradiation in 

VACNT films coated with NiO NPs. The irradiations are conducted in air, at 

atmospheric pressure by accumulating a number of laser pulses at different laser 

fluences. Structural-compositional analyses reveal notable modification of the 

NiO/VACNT structure, led by thermally-activated diffusion-melting-recrystallization 

processes. 

 

2. Materials and methods 
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Fig. 1 shows a scheme of the experimental procedure, composed of three steps. First of 

all, VACNTs were grown by means of plasma enhanced chemical vapor deposition 

technique (PECVD) (step “i” in Fig. 1). After that, NiO NPs were deposited on the 

VACNT layer (step “ii” in Fig. 1). Finally, the NiO/VACNT systems were irradiated 

with laser for achieving their recrystallization (step “iii” in Fig. 1). (i) A mat of carbon 

nanotubes was grown on boron doped p-Si wafers, 2” diameter, with low resistivity 

(range 0.01 0.02 Ω·cm). As usual, before each growing process, the pressure of the 

reactor was lowered below 4×10-4 Pa as a guaranty of clean conditions. Then, Ar gas 

was injected up to a pressure of 2 Pa. Silicon wafer was coated with 3 nm layer of Fe 

catalyst by magnetron sputtering, being the 3” Fe target excited at 50 W by RF power 

(13.56 MHz).  PECVD was preferred as the simplest process to grow vertically aligned 

CNTs. In order to avoid oxidation of deposited materials, a mobile substrate holder 

allowed us performing a sequential processing of sputtering and PECVD inside the 

chamber without breaking the vacuum conditions [37]. For the present study, the 

PECVD synthesis of VACNTs was carried out heating at 680°C during 900 s in an 

atmosphere of NH3/C2H2 gas mixture, where NH3 was the carrier gas and C2H2 the 

precursor gas (Table 1). (ii) Dilute dispersions of NiO NPs (ca. 50 nm in diameter; 

Sigma-Aldrich) in water were obtained with a concentration of 0.01 wt.%. After 

thorough sonication, 2 µL/(mm2 of sample) of dispersion was casted on VACNT/Si 

samples at 50ºC, leading to a uniform deposition over the whole surface, and left to dry 

at this temperature. (iii) The obtained NiO/VACNT samples were submitted to UV 

pulsed laser irradiation by means of a Brilliant B system (Quantel) in order to induce the 

recrystallization of NiO nanoparticles on the VACNT surface. The laser wavelength 

was 266 nm, the duration of the pulses was ca. 5 ns and the repetition rate was set to 10 

Hz. The laser beam was expanded with a Gaussian telescope, shaped with a squared 

mask and then focused onto the samples by means of a convergent lens. This way, 1×1 

mm2 squared and homogeneous laser spots were obtained on the samples’ surface. 

Areas up to 5×5 mm2 were processed by irradiating adjacent locations with a separation 

distance of 1 mm. The irradiation experiments were performed in the air, at atmospheric 

pressure, by accumulating 100, 500, 1000 and 2000 laser pulses at different locations, 

each of them with 40, 80, 160 and 260 mJ cm-2 laser fluences.  
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Fig. 1. Scheme of the fabrication process of NiO/VACNT samples. 

Substrate Annealing RF-PECVD (50 W, 13.56 MHz)  

Type RF magnetron H2 parameters General parameters Gas replacement H2 to NH3 C2H2 parameters 

 Fe  
(nm) 

Self Bias 
(V) 

Flow  
(sccm) 

Pressure  
(Pa) 

Temperature  
(0C) 

Rampe, 
Heating  

(s) 

Flow  
(sccm) 

Pressure  
(Pa) 

Time  
(s) 

Self Bias  
(V) 

Flow  
(sccm) 

Pressure  
(Pa) 

G(t) R 

c-Si 3 -96 100 200 680 750, 120 100 80 30 -398 50 100 900 NG 

 

Table 1. VACNT growth parameters. 

 

The morphology of the obtained materials was characterized by field emission scanning 

electron microscopy (SEM) using a QUANTA 200 FEG-ESEM equipment from FEI, 

and extreme high resolution SEM (XHR SEM) by means of a Magellan 400L system 

(FEI). The structure was analyzed by high resolution transmission electron microscopy 

(HRTEM) and high angle annular dark field scanning TEM (HAADF-STEM) using a 

Tecnai F20 microscope from FEI. This equipment also allowed us to study the local 

composition of the samples through energy-dispersive X-ray spectroscopy (EDX). TEM 

specimens were prepared by carefully rubbing TEM copper grids on the NiO/VACNT 

samples surface. This way, the material detaches from the substrate and is deposited on 

the grid. Moreover, Raman spectroscopy study was carried out by a LabRAM 800 

system from Horiba Jobin Yvon. Several spectra, in the 150 – 3120 cm-1 range, were 

acquired in all the samples by focusing a 532 nm laser wavelength, with a power of 1.5 
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mW, in spots about 500 nm in diameter. The acquisition time was set to 20 s and 3 

scans per spectrum were averaged for minimizing signal noise. 

 

3. Results and discussion 

PECVD treatment leads to the growth of VACNTs, about 2-3 µm in length and up to 

100 nm in diameter, totally covering the silicon surface (Fig. 2a). Most of the VACNTs 

exhibit a straight shape, though a fraction of them are slightly bent. The lateral distance 

between adjacent nanotubes varies in the range of few hundreds of nanometers. One of 

the most accepted models to describe the mechanism of growth of CNTs is the vapor-

liquid-solid (VLS) model, proposed in 1970’s by Baker et al. [38]. Although this model 

describes a growth mechanism for carbon filaments, it is also applicable to CNTs when 

metal catalyst particles are employed. Originally, the model suggests that the role of the 

metal particles is to form a droplet of liquid alloy, which absorbs carbon atoms until the 

supersaturated state is established. In our case and after reaching this state, carbon is 

segregated forming ordered structures molded by the Fe particle shape. In our 

experiments, the tubular structure of the CNTs was verified by HRTEM (Fig. 3). The 

type of CNT structure shown in Fig. 3b is defined as “bamboo like” because of the 

hollow cylindrical shape inside the nanotube. Usually, bamboo shaped nanotube 

consists of regular cone shaped compartments. Compartment formation in the bamboo 

like structure occurs because of periodic precipitation of graphite sheets on the top of 

catalyst particle. NH3 can easily be dissociated due to weaker bonds compared to that of 

H2. Martin S. Bell et al.[39] found bamboo-structures in nitrogen containing plasma and 

hollow tubes in nitrogen-free plasma. This suggests that nitrogen played critical role in 

compartment formation. Further, it is believed that CNT growth occurs via surface 

diffusion (SD) and/or bulk diffusion (BD) of carbon species through catalyst particles. 

High concentration of CN promoted BD of carbon through Fe particles and suppressed 

SD by keeping the catalyst surface clean and hence, leading to shorter compartment 

length. Concerning the electrochemical behavior of these structures, it has been reported 

that bamboo like CNTs with a higher ratio of edge-to-plane sites along its surface, show 

a higher electronic transfer than the straight, hollow CNTs for electrochemical 

experiments [40,41]. There is a possibility of CN diffusion through the Fe particles as 

well [39]. But CN or N have very limited solubility in Fe so the concentration of N or 



 

 

Fig. 2. Scanning electron microscope images of (a) as grown VACNTs, (b) NiO 

nanoparticles deposited on VACNTs, and details of the samples obtained at (c) 80 mJ 

cm-2 after accumulation of 500 pulses, and 160 mJ cm-2 accumulating (d, e) 500 and (f) 

1000 laser pulses. Arrows in (c) and (d) point to the excess NiO clusters. 

 

 

Fig. 3. HRTEM images of PECVD grown multiwalled CNTs. (a) CNTs with catalyst on 

their top surfaces. The side walls of CNTs contain amorphous carbon, which is a by-

product deposited during the PECVD growth. (b) Elongated catalyst particle (Fe) at the 

tip of the CNT, which clearly evidences the CNT growth mechanism. The arrows inside 

the nanotube point to the graphene transversal layers inside the nanotube at regular 
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distances. The micrograph on the upper right corner shows the image of the CNTs mat 

grown by PECVD on p-Si wafers. 

 

CN in Fe is supposed to be very low compared to carbon. Outer diameter of growing 

tube is confined by the size of the catalyst particle. The shape of the tip is controlled by 

the local geometry of the catalyst particle seeding the growth of the tube [42]. The 

production of nanotubes requires a controlled deposition of carbon, which can then self-

assemble into an energetically favored nanotube form. This controlled deposition rate is 

achieved through the combination of two reactions: the dissociation of a carbon-rich gas 

(in our case, C2H2) and the removal of excess carbon, which would otherwise lead to 

amorphous carbon deposits. The main role of NH3 in the growth phase of CNT was to 

prevent the formation of amorphous carbon and dilute the C2H2. At high NH3 ratios, 

NH3 decomposes preferentially over C2H2 due to the relative weakness of its molecular 

bonds. This allows the C2H2 to decompose slowly, generating the controlled amounts of 

carbon necessary for nanotube formation and giving rise to clean, well-aligned carbon 

nanotubes. At high C2H2 ratios, there is insufficient NH3 to effectively suppress C2H2 

decomposition, resulting in higher levels of carbon generation and the deposition of 

amorphous carbon onto the substrate. NH3 has a key role in removing any excess of 

carbon through the generation of reactive atomic hydrogen [43]. XPS analysis of the 

VACNTs presents a nitrogen concentration of about 4.3% due to the use of ammonia 

during growth [37]. The main form of this nitrogen is pyridinic and aliphatic amine. 

Fig. 2b shows the VACNT surface after the drop casting deposition and drying of the 

NiO NPs. As observed, NiO NPs appear highly aggregated leading to the formation of a 

non-uniform layer, with hundreds of nanometers to micron range thickness, covering 

the VACNT surface. It should be remarked that, due to the large aggregation of the NPs 

into hundreds of nanometers clusters, most of the voids between the CNTs seem to not 

be completely filled of NPs. The optical absorption coefficient of NiO at 266 nm 

wavelength (4.7 eV photon energy) is ca. 5×105 cm-1 [44], being the corresponding 

optical penetration depth about 200 nm. Thus, the laser radiation is mainly absorbed in 

NiO film with thickness larger than this value. The radiation is also absorbed by the 

CNTs in the zones with low coverage of NiO. It has to be noticed that the reported Ni-O 

bond dissociation energy is about 392 kJ mol-1 (ca. 4.1 eV/bond) [45] which is 
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comparable to the UV photon energy. Consequently, laser irradiation of NiO NPs might 

cause their direct chemical decomposition and light-induced reactivity with surrounding 

chemical species (photochemical mechanisms). Subsequently, the deposited energy 

would transform to thermal one leading to the fast increase of the temperature in the 

material with each laser pulse. SEM studies reveal that laser irradiation of NiO/VACNT 

system at low 40 mJ cm-2 fluence does not lead to remarkable modification of the 

morphology in the whole range of accumulated pulses. However, irradiation at higher 

laser fluences provokes significant change of the treated material, being more 

pronounced as the accumulation of laser pulses proceeds. The material irradiated with 

80 mJ cm-2 laser fluence shows VACNTs coated with irregular layer at the surface of 

their outer walls up to 2 µm in depth. Between them hundreds of nm sized spherical 

particles can be identified (Fig. 2c; Fig. S1, Supporting Information). The characteristic 

shape of these particles points to melting-merging and resolidification processes of 

excess NiO NPs into larger clusters (arrows in Fig. 2c, d). Due to the absence of the 

initial NiO layer on the top of the VACNT forest, it can be assumed that, during laser-

driven heating, the top NiO layer is molten and flows on the CNT outer surface, 

covering them. Thus, the irregular surface morphology observed on CNTs would be due 

to the deposition of a NiO continuous coating on them. Interestingly, the accumulation 

of 2000 pulses with 80 mJ cm-2 laser fluence, or even at just 100 pulses with 160 mJ cm-

2 fluence leads to the formation of an extended structure in the radial direction of the 

NiO/VACNTs giving them a “spiky” aspect (Figs. 2d, e). The accumulation of laser 

pulses provokes the proliferation of “spiky” CNTs and the quantity of these features on 

the carbon nanotubes. However, a shortening of these structures and the formation of a 

kind of granular coating on the CNTs is observed beyond 1000 pulses with 160 mJ cm-2 

fluence (Fig. 2f; Fig. S2, Supporting Information). Further accumulation of pulses at 

this laser fluence, or higher, up to 260 mJ cm-2 provokes the partial melting and collapse 

of the CNTs. 

Due to the greater effective area of “spiky” NiO/VACNT structures and their potential 

interest for electrochemical applications, further investigation of their structure is 

carried out. Fig. 4 shows HAADF-STEM images (Z-contrast) of NiO/VACNT 

processed applying 500 laser pulses at 160 mJ cm-2 fluence. As observed, VACNTs are 

totally decorated with NPs, about few to 30 nm in size. EDX spectra reveal the presence 

of Ni, O, C, Cu and less intense Fe signal in the NPs (Fig. 4c). The Fe signal arises from 
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the residue of catalyzer used in the PECVD growth of the VACNTs, and the C and Cu 

signals come from the nanotube and TEM grid, respectively. Thus, it could be pointed 

out that the observed NPs are mainly composed of NiO. It must be reminded that the 

initial diameter of the NiO NPs is around 50 nm. The presence of much smaller NiO 

 

Fig. 4. (a, b) High angle annular dark field (Z-contrast) STEM images of NiO/VACNT 

obtained by accumulation of 500 laser pulses at 160 mJ cm-2. (c) Typical EDX signals 

in (up) a nanostructure and (down) in the VACNT wall. 

 

NPs on the CNT surface would support the proposed laser-induced melting, flowing and 

recrystallization mechanisms. Besides, protrusions located on the VACNT surface, 

which show less contrast than NPs, do not show any sign of metals and only contain C 

and a tiny quantity of O. These zones would be ascribed to carbon nanotubes’ structure. 

HRTEM analyses are carried out in the same sample for the study of the crystalline 

structure of the material submitted to irradiation. Fig. 5a shows the TEM image of the 

same location presented in Fig. 4b for comparison. High resolution images reveal that 

the NPs are crystalline, since parallel planes domains are observed inside them. The 

interplanar spacing can be calculated at these domains by fast Fourier transform (FFT). 

Thus, at locations indicated by arrows in Fig. 5b, interplanar distances of 0.21 and 0.24 

nm are measured, corresponding respectively to (200) and (111) planes of cubic NiO 

(Bunsenite; JCPDS 00-047-1049) [46]. At other locations, at about 5 nm distance inside 

the NPs additional planes with 0.14, 0.19 and 0.41 nm spacing, corresponding to (220), 

(210) and (100) planes of NiO are recorded (not shown). The combination of planes and 

their orientation change inside the NPs is a clear indication of their polycrystalline 

nature. In addition to the NiO nanostructures, the outer graphitic planes of the CNTs 
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appear distorted and intertwined in many sites (arrows in Fig. 5c), indicating the 

development of high thermal stress and the creation of defects in the VACNT structure. 

No significant flaws are observed in the inner part of the CNTs. Previous works report 

the formation of different types of damage in CNT submitted to laser irradiation 

[47,48]. Furthermore, profuse laser-induced effects can lead to complex structural 

modifications such as unzipping of CNT to graphene nanoribbons, and even their 

transformation to polymers [49,50]. 
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Fig. 5. HRTEM images of NiO/VACNTs irradiated with 160 mJ cm-2 fluence and 

accumulating 500 pulses. (b) Includes FFT patterns of the marked zones. The arrows in 

(c) point to twisted graphene sheets. 

 

 

Fig. 6. (a) STEM and (b) HRTEM images of a protrusion located in a NiO/VACNT 

irradiated with 160 mJ cm-2 fluence and accumulating 500 pulses. The arrow in (b) 

indicates graphitic planes surrounding a NiO nanostructure. 

 

The spiky structures that appear at the VACNT surface are also specifically studied by 

TEM (Fig. 6). As observed, these nanostructures can extend several tens of nanometers 

in length and are constituted by both NiO and carbon features.  Interestingly, high 

resolution TEM reveals that they are composed of beams of graphitic planes which 

appear to grow from NiO NPs. Additionally, parallel graphene planes are also observed 



13 
 

nearby the NiO nanostructures, surrounding their surface to some extent (see arrow in 

Fig. 6b). These facts would point to the reconstruction of the CNT graphitic shells 

influenced by the action of the high temperatures and the catalytic activity of NiO 

nanostructures. Probably, carbon nanotube would remain in solid state in this process, 

since melting would lead to its amorphization [34]. Although the catalytic behavior of 

nickel during the growth of carbon nanotubes is well known [1], the catalytic effect of 

NiO is less studied, and only some works about the NiO-assisted growth of carbon 

nanostructures are reported [51-53]. It is worth noticing that the catalytic growth of sp2-

hybridized carbon materials is normally accomplished in vapor phase. In this case, 

reactant molecules (generally hydrocarbons) have significant mobility and decompose 

when interacting with the hot catalyst, leading to the surface / bulk diffusion of carbon 

atoms and further growth of graphitic shells. Interestingly, this work suggests that NiO 

nanostructures inserted in VACNTs could drive the solid state reconstruction of 

graphitic shells by means of photochemical-photothermal mechanisms when irradiated 

with ultraviolet laser pulses. In particular, the photochemically-induced brief 

decomposition of NiO to Ni species could lead to high reactivity and enhanced catalytic 

action with each laser pulse. 

In order to get more understanding on the physical mechanisms taking place, thermal 

simulations of idealized NiO/VACNT structures irradiated with a UV laser pulse is 

carried out (Fig. 7). The structures used in the model are composed of VACNTs 2 µm 

long and 100 nm in diameter on silicon substrate: one VACNT stands alone (CNT), 

another one has a 20 nm-sized NiO nanostructure (NS) on the top-side (CNT-NiO NS), 

and the last one is coated with a 20 nm-thick NiO layer (CNT-NiO layer) (Fig. 7a). The 

designated size for simulated NiO NS and layer (20 nm) is a representative size of NiO 

nanostructures’ observed on VACNT surface (Fig. 5a). The numerical calculations are 

carried out by means of the finite element method, solving the 2D heat equation in the 

described assemblies using COMSOL 5.2 software. For the sake of simplicity, the 

model neglects the effects of nanometric dimensions in heat transport and optical 

properties, and only considers photothermal processes. The optical and thermal 

properties of VACNTs, NiO and Si materials are taken from Refs. [34,44,54]. The 

pulsed laser radiation, considered to be incident from the top part of the structures, is 

absorbed at the top CNTs and NiO surfaces leading to the heating of the whole 

assemblies in the nanosecond regime, given the small size and high thermal 
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conductivity of the involved materials. As observed in Fig. 7b, the laser pulse provokes 

the development of rapid thermal cycles in the modelled features. The achieved 

maximum temperatures become higher with the laser fluence: whereas temperature rises 

to ca. 700 K at 80 mJ cm-2, up to about 1200 K is obtained at 160 mJ cm-2. As expected, 

 

Fig. 7. (a) Simulated temperature distribution in CNT, CNT-NiO NS and CNT-NiO 

layer assemblies irradiated with 160 mJ cm-2 laser pulse at 10 ns. (b) Temperature 

evolution with time on a surface point of CNT, CNT-NiO NS and CNT-NiO layer 

assemblies irradiated with 80 mJ cm-2 (open symbols) and 160 mJ cm-2 (solid symbols) 

pulses. Insets: Details of temperature distributions at structures irradiated with 160 mJ 

cm-2 at 6 ns. 

 

the maximum temperatures remain far below the CNT and NiO melting temperatures, 

considered to be ca. 4800 K and 2230 K, respectively. Nonetheless, the developed 

temperature range can change significantly depending on the relative angle between 

CNTs and laser beam incidence axis [34]. Since the absorption coefficient of NiO is 

more than ten-fold higher than the one of carbon nanotube, the modelled NiO/VACNT 

assemblies reach slightly higher temperatures than the VACNT one. As it can be 
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observed in CNT-NiO NS, the NiO nanostructure acts as an absorbing center reaching 

quite large temperatures (inset in Fig. 7b). Nevertheless, the overall temperature of the 

CNT-NiO NS is just a few tens of degrees higher than the VACNT alone. This 

phenomenon is more noticeable in the CNT-NiO layer assembly which points to the 

development of higher temperatures with greater NiO coverage of the carbon nanotubes. 

Evidently, the maximum temperature also increases with the thickness of the NiO layer 

/ nanostructure. Therefore, under the action of cumulative laser pulses, initial thick 

enough NiO nanostructures (or continuous layer) covering the VACNTs reach melting 

temperature and undergo flowing and dewetting along the CNT surface, leading to the 

formation of smaller NiO features (initial process of melting and dewetting achieved 

with the first laser pulses is not simulated). Since melting temperature of graphitic 

carbon is much higher than that of NiO, no melting of CNTs is expected, though high 

temperatures, probably assisted by photochemical mechanisms, would trigger the 

creation and migration of structural defects at CNT graphitic shells [34,55]. Further 

irradiation leads to the heating without melting of the small NiO particles besides the 

surrounding carbon material to several hundreds of degrees, provoking the thermally-

activated diffusion of nearby carbon atoms and the catalytic recrystallization of 

graphitic shells around NiO, leading to the growth of the spiky features.  

Raman spectroscopy measurements of NiO/VACNT samples are expected to provide 

additional insight into the structural properties of the constituent materials. Fig. 8a 

depicts characteristic spectra of non-irradiated NiO/VACNT film after NiO NPs 

deposition and drying, as well as one film irradiated by accumulation of 500 pulses with 

160 mJ cm-2 laser fluence. The presence of intense bands centered at around 490, 1100, 

1360 and 1590 cm-1 is revealed. After deconvolution process, the broad band centered at 

1100 cm-1 can be considered to be composed of two bands, centered at about 980 and 

1120 cm-1. Moreover, an additional band appears at ca. 1500 cm-1. The bands located at 

490, 980, 1120 and 1500 cm-1 can be ascribed to one-phonon (1P), two-phonon (2P) and 

two-magnon (2M) scattering at NiO nanostructures (Fig. 8a) [56]. The bands located at 

1360 and 1590 cm-1 are respectively attributed to the disorder-induced (D) and graphitic 

(G) bands of VACNTs [57]. As observed, 1P NiO band is the dominating one in the 

spectrum of non-irradiated NiO/VACNT sample. However, after irradiation, the 

intensity of NiO bands, especially 1P, significantly decreases whereas the relative 

intensity of VACNT bands increases as compared to NiO ones. This effect is easily 
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discernible in Fig. 8b, where the NiO (1P)-to-G band intensity ratio is calculated. As 

observed, NiO (1P) / G ratio in non-irradiated NiO/VACNT sample exhibits large range 

of values due to the variable thickness of the deposited NiO NPs film. However, when 

irradiated, the range of NiO/G calculated values is confined to smaller values. The NiO 

 

Fig. 8. (a) Typical Raman spectra obtained in non-irradiated NiO/VACNT sample and 

after accumulation of 500 laser pulses at 160 mJ cm-2. (b) Plot of the D/G versus NiO 

(1P)/G intensity relations in samples irradiated with 80 and 160 mJ cm-2. Inset: 

Evolution of the 1P/2P (1120 cm-1) area relation versus laser fluence after the 

submission of 1000 laser pulses. 

 

bands intensity decrease is mainly due to the decrease of the NiO layer thickness after 

laser irradiation, as confirmed by SEM analyses (Fig. 2). Besides, it has been previously 

reported that no first-order Raman scattering is expected in the paramagnetic phase of 
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NiO with the NaCl structure. Nevertheless, when NiO contains high density of 

structural flaws or becomes antiferromagnetically ordered, the intensity of 1P band 

considerably increases [58]. Thus, the relation of 1P (490 cm-1) over 2P (1120 cm-1) 

bands areas could account to the nickel oxide crystallinity, decreasing with the increase 

of the crystalline quality. Inset in Fig. 8b shows the evolution of the mean value of 

1P/2P ratio of non-irradiated sample as well as the ones submitted to 1000 laser pulses 

at 80 and 160 mJ cm-2. As observed, 1P/2P ratio decreases with the increase of the laser 

fluence from about 3 in non-irradiated sample to around 2 when irradiated with 80 mJ 

cm-2, where an irregular and continuous NiO film is observed on the top of the 

VACNTs (Fig. 2c). At the sample processed with 160 mJ cm-2, composed of “spiky” 

NiO/VACNTs, containing polycrystalline NiO crystals (Fig. 5b), 1P/2P ratio clearly 

decreases to ca. 0.7, indicating better crystallinity as compared to the initial NiO NPs.   

Furthermore, we studied the evolution of the D and G Raman bands of VACNTs. D 

band is related to structural defects/disorder and G mode arises from sp2-bonded carbon 

atoms. Thus, the D/G intensity ratio is generally used as a figure of merit of the flaw 

content in the CNTs structure [59]. As revealed in Fig. 8b, non-irradiated NiO/VACNT 

shows D/G values in range of 1.45-1.70. The relatively wide range of D/G values 

indicates the growth of VACNTs with varied degree of structural defects. This fact is 

commonly present in CVD-grown CNTs since their nucleation highly depends on 

elements as the catalyst crystallographic properties provoking great impact in the 

growth and defect concentration levels in the resulting CNT material [60-62]. Samples 

submitted to laser irradiation at 80 and 160 mJ cm-2 reveal D/G ratios amidst the initial 

ones. Indeed, D/G values seem to be independent of laser irradiation conditions and 

relative amount of NiO-to-CNTs (NiO/G), to some extent. Previous works show that 

rapid high-temperature annealing treatments can induce the graphitization of CNTs, 

leading to D/G decrease, even though above a temperature threshold the creation of 

structural defects is provoked, accounting for a D/G augment [63]. Furthermore, UV 

laser irradiation of MWCNTs performed in N2 atmosphere in conditions in which 

substantial melting and amorphization of CNT structure is accomplished leads to 

notable D/G reduction [34]. Therefore, similar D/G ratios of laser irradiated 

NiO/VACNT samples as compared to non-irradiated ones reveal that the laser-induced 

modifications and defects of VACNTs observed in the CNT structure by TEM (Figs. 5, 

6) are not widely extended. Moreover, electron microscopy inspections revealed that the 
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main structural integrity of the VACNTs is preserved and the defects seem to be mainly 

located in the surface, where carbon material highly interacts with NiO and oxygen 

from the surrounding atmosphere. 

 

4. Conclusion 

UV pulsed laser irradiation of VACNT forests coated with NiO NPs has been carried 

out in ambient conditions. The accumulation of laser pulses induces the cyclic rapid 

heating of the NiO and CNT materials, provoking the melting of NiO NPs beyond a 

laser fluence threshold. Molten NiO flows on the CNT surface and, after cooling-

crystallization, creates different NiO/VACNT configurations depending on the 

experimental conditions. At low fluence, a continuous NiO layer is formed, leading to 

an extended coating of VACNTs. More energetic processing leads to breaking-up of the 

NiO liquid layer and the formation of nanometric-sized NiO nanostructures covering the 

VACNT surface. Besides, prickly structures appear covering the CNT surfaces. These 

nanostructures, up to few tens of nanometers long, are composed of parallel beams of 

graphitic shells that seem to propagate from NiO structures. The origin of these features 

could be the reconstruction of carbon material by the action of the developed high 

temperatures and NiO catalytic interactions, probably assisted by photochemical 

processes. Pulsed laser irradiation of NiO-CNT systems has been demonstrated to be 

capable to create remarkable nanostructures by the activation of complex and coupled 

phenomena. The development of such kind of NiO/VACNT structures, which could 

significantly increase the active area and electrochemical properties of the processed 

materials, could lead to the development of enhanced functional devices in a relatively 

easy, cheap and non-toxic way.   
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