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Abstract 

It is well known that several ceramic materials develop an usual; and sometimes unique; 

combination of properties as a result of mixing different phases with similar expansion 

coefficients. Sometimes they are elastically stiff, have relatively low thermal expansion 

coefficients, good thermal and electrical conductivities, and are resistant to chemical attack. 

As this paper will show, their mechanical properties are also enhanced. 

Nanoindentation technique is used to measure the mechanical properties for each phase of 

NiO-YSZ and CoO-YSZ eutectics produced by the laser floating zone technique, and also the 

analogues Ni-YSZ and Co-YSZ cermets produced by reduction from the eutectics precursors. 

The different tests have been performed at a constant indentation depth of 100nm, in order to 

obtain a residual imprint lower than the size of the secondary phase and extract the hardness 

and Young’s modulus using the Oliver and Pharr approach. Moreover, several tests have been 
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performed at 2000nm of indentation range to obtain the general response of each material. In 

this case, only hardness and Young’s modulus of the composite can be determined. Finally, 

the different residual imprints have been visualized by Atomic Force Microscopy to correlate 

each mechanical property with each phase.  

 

Keywords: Solid Oxide Fuel Cell, Directionally Solidified eutectic, Laser floating zone 

technique, Ceramic materials, Nanoindentation, Hardness, Young’s modulus 

 

1. Introduction 

Eutectic ceramic composites produced by directional solidification from melt (DSEC) are 

fully dense materials with a fine and homogeneous microstructure of separated phases, 

lamellae, fibres or more complex morphologies, well aligned along the solidification 

direction. They show unusual and very different properties from those expected from simple 

addition of the component phases [1]. The domains in directionally solidified eutectics are 

single crystalline which sizes ranging from hundreds of micrometers to tens of nanometers [2] 

connected by clean and strong interfaces at atomic scale. Moreover, the size, , of the eutectic 

structure can often be modified by simply changing the growth rate, V, according to the law 

V=constant. Ceramic eutectics have been studied because of their unpaired mechanical 

properties consequence of the small phase size and the high quality of interfaces. Moreover, 

the extraordinary regularity of the eutectic microstructure and the neatness of the interfaces 

usually increases the thermal stability to these compounds [3]. DSEC present higher 

mechanical, thermal shock resistance and fracture strength than single crystals and glasses, 

and a better thermal stability and retention of mechanical resistance up to temperatures near to 

the melting point than conventional ceramic [4].  
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A Solid Oxide Fuel Cell (SOFC) is a device widely employed to convert the chemical energy 

of different types of fuel to electricity. For the anode in these devices, porous cermets of 

metallic nickel and yttria-stabilized cubic phase of the zirconia (YSZ) are commonly used 

[5,6]. The properties of these anodes are mostly dependent on their microstructure being the 

main concern the relatively poor mechanical properties and the tendency to coarsening of Ni 

particles under operation conditions. It was recently reported that highly structured porous 

Ni–YSZ [7] and Co-YSZ [8] produced from directionally solidified NiO/YSZ and CoO/YSZ 

eutectics and its subsequent reduction seem to present numerous advantages compared with 

conventional Ni–YSZ cermets. The stable interfaces formed between the phases during NiO-

YSZ or CoO-YSZ eutectic growth and subsequent treatment of the DSE in a reducing 

atmosphere produces the Ni (or Co)–ZrO2 cermet, where the Ni phase and the ZrO2 phase are 

bonded by low-energy interfaces, assuring long term stability. Moreover, the channeled 

microstructure of this textured cermet improves the performance of the material, allowing 

good gas flow and electronic conduction through the Ni porous lamellae, and also provides an 

appropriate thermal expansion coefficient (TEC = 10.8 x 10-6 K-1), thus achieving a good 

thermochemical integration with the YSZ electrolyte [9,10]. 

Thermo and mechanical strength are essential properties for those devices, as they are formed 

by various layers of different materials that have to present high-quality integration. 

Experimental data on the mechanical properties of DSEC are very limited because of the 

small size of samples available and high stiffness of the compounds involved, which implies 

the need of non-standard techniques to determine the strain [1]. Moreover, the component 

phases are not exactly “pure” single crystal phases. For example, 2 mol% Ni2+ and 5 mol% 

Co2+ ions dissolved in the YSZ matrix during the eutectic solidification process [9]. As a 

consequence determination of the mechanical properties of components is also of great 

interest. 
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Elastic properties of YSZ electrolytes and YSZ-NiO anode precursors were studied by Selçuk 

and Atkinson who obtained effective Young´s (Eeff) and shear (G*) moduli using the impulse 

excitation technique [11]. The mechanical properties (hardness, Young’s modulus and 

fracture toughness) of YSZ electrolytes have been previously examined by Nanoindentation 

technique yielding values of 19.7-14.2GPa, 260-223GPa, and 1.79MPa.m1/2, respectively 

[12]. Here we have studied the mechanical properties of each component phase at nanometric 

scale for NiO-YSZ, Ni-YSZ, CoO-YSZ, and Co-YSZ composites. In particular, those of NiO-

YSZ and CoO-YSZ eutectics produced by the laser floating zone (LFZ) technique, and also 

the analogues Ni-YSZ and Co-YSZ cermets produced by reduction from the eutectics 

precursors.  

Nanoindentation is a powerful tool which allows studying the materials response at 

nanometric scale, by obtaining the hardness (H) and the Young’s modulus (E) using the 

Oliver and Pharr approach. The different tests have been performed at constant penetration 

depths of 100nm and 2000nm, in order to either isolate the phase under study or to obtain the 

response of the composite, respectively.  

In brittle materials indented with a Berkovich tip, surface examination of residual imprints by 

Atomic Force Microscopy (AFM) can reveal some typical features, such as: surface 

deformation effects (sink-in [13,14]), microcracks or damage inside the imprints [15], fracture 

mechanisms such as radial cracks emanating from the imprint corners [15], or chipping [16]. 

These effects may contribute to errors in the recorded depths and, consequently, to the 

hardness and modulus determination. We performed AFM studies of the imprints in order to 

ascertain that important aspect. 

 

2. Experimental details 
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2.1. Samples preparation 

 

Precursor ceramic cylinders, 2 mm in diameter and 10 cm in length, were prepared from a 

mixture of the oxides NiO (99.99%, Alfa Aesar) and 8YSZ (8 mol% Y2O3-stabilized ZrO2, 

99.9%, Tosoh) by cold isostatic pressing followed by sintering at 1350ºC during 12 h. 

Directionally solidified NiO–YSZ and CoO-YSZ eutectic rods were produced from these 

cylinders by the laser floating-zone method (LFZ) at a growth rate (R) of 100 mm/h. CoO-

YSZ eutectics were growth under argon atmosphere in order to avoid CoO oxidation to 

Co3O4. Channeled cermets were obtained after reduction in a 5% H2–Ar atmosphere at 850 

ºC. Additional details about the sample preparation method, and microstructure of the 

cermets, as well as on the reduction kinetics process, can be found in Laguna-Bercero et al. 

[7,8,9]. The composition of the studied materials is given in Table 1. 

 

2.2. Microstructural characterization 

 

The microstructure of the samples was studied using Optical Microscopy (OM). We have also 

performed transmission electron microscope (TEM Model 2000FXII, Jeol, Japan) 

experiments on NiO (or CoO)–YSZ and Ni (or Co)–YSZ transverse-cross sections. Ion 

milling (Model 600dif, Gatan, Warrendale, PA) was carried out at liquid nitrogen 

temperatures to prevent reduction of the YSZ phase by radiation damage. 

 

2.3. Measurement of mechanical properties with a Berkovich tipped nanoindenter 

 

Nanoindentation tests were carried out with a Nano Indenter® XP System (Agilent 

Technologies) with continuous stiffness measurement, CSM (harmonic displacement 2nm and 
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frequency of 45Hz). The strain rate was held constant at 0.05s-1. The different experiments 

were performed at room temperature using a Berkovich diamond tip and performed at a 

maximum applied load of 100 and 2000nm. The indenter shape has been carefully calibrated 

for true penetration depths by indenting fused silica samples of known Young’s modulus 

(72GPa). Surface topography around nanoindentation imprints has been observed by AFM; 

using a Dimension 3100 microscope from Veeco (Santa Barbara, CA) in tapping mode. 

Images have been then processed with the WSxM image analysis software [17]. 

 

 

3. Results and Discussion 

 

3.1. Microstructure of the NiO (or CoO)-YSZ eutectics and Ni (or Co)-YSZ cermets 

 

NiO-YSZ and CoO-YSZ eutectic rods present regular lamellar microstructure, as observed in 

figure 1. Samples are formed by eutectic grains of about 10 to 80 µm. Each eutectic grain 

consist of NiO (or CoO) lamellae (~500 nm wide) alternating with YSZ lamellae (~400 nm 

wide). The major growth crystallographic directions were [100] for YSZ and  [110] for NiO 

although growth of YSZ lamellae along the [110] directions has been also reported. At this 

relatively high growth rate the YSZ-CoO eutectic grows with [111] CoO// [111]YSZ [9]. The 

low-energy interface planes have been clearly established in the YSZ-NiO eutectic as 

(111)NiO//(002)YSZ [9]. The interlamellar spacing (λ~900 nm) is consistent with the empirical 

relationship λ2R=10−4 mm3/h, given by Dhalenne and Revcolevschi [18]. Subsequent 

treatment of the NiO-YSZ and CoO-YSZ eutectics under 5%H2/Ar atmosphere at 800 ºC 

during 6 hours produce de resulting Ni-YSZ and Co-YSZ. Under those conditions, NiO (or 

CoO) is reduced to metallic Ni (or Co) forming additional porosity of 23.4 vol% and 26.2 
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vol% respectively. It is interesting to point out here that reduction of NiO to Ni sometimes 

implies a reorientation of Ni crystallographic planes [7]. Transverse cross-sections for the Ni-

YSZ and Co-YSZ cermets are also shown in figure 1, where we can observe an homogeneous 

distribution on metal particles and pores constrained by the YSZ lamellae. These 

microstructure is more detailed in the TEM images shown in figure 2. Residual stresses are 

clearly observed for the NiO-YSZ eutectic in both NiO and YSZ phases (figure 2a), which are 

of about 1GPa [19]. Those residual stresses, formed after solidification due to the differences 

on the TEC for both components, are a clear indication of the good adhesion between phases, 

as the stresses have not been relaxed. As pointed before, after NiO reduction the 

microstructure changes to form highly porous Ni lamellae. The microstructure is now highly 

defective and also most of the residual stressed have been relaxed, as observed in figure 2b. 

Similar results were observed for the analogues CoO-YSZ and Co-YSZ samples. 

 

3.2. Mechanical properties 

 

3.2.1. Loading/unloading curve 

 

Loading/unloading curves have been measured in all the samples. Figure 3 displays typical 

loading/unloading curve for Co-YSZ. This plot supplies qualitative information about the H 

and E for each phase. As it can be seen, the YSZ phase presents a larger applied load than the 

other two different phases, then; this phase will be the hardest one. However, the porous 

metallic phase, Co in this case, will be the softest phase. In other words, the YSZ and the 

metal will present different deformation mechanisms; one brittle and the other one ductile, 

respectively. Each phase present a different deformation mechanisms under a compression 

tests. However, the Co-YSZ phase present an interaction of each phase, then, the mechanical 
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properties present a contribution of each phase. Therefore, the Young’s modulus is correlated 

with the slope during the unloading curve. In these cases we cannot get any qualitative 

conclusion.  

 

3.2.2. Hardness and Young’s modulus 

 

Figure 4 and 5 exhibits the H and the E evolution, respectively from 0 to 100nm of 

penetration depth for each material of study and each phase. As expected, the hardness is 

smaller in the metallic phase. Figure 6 and 7 shows the H and E evolution for the composite at 

2000nm of indentation depth. As it is shown in the Figures 5 and 7, the Young’s modulus 

increases when the indentation depth increases until a value, which remains constant with 

indentation depth. Saturation values correspond to the true Young’s modulus. For the low 

indentation depth case (100nm), the Young’s modulus remains constant after 50nm depth. 

However, for the higher indentation depth case (2000nm), Young’s modulus increases with 

depth until 250nm for NiO-YSZ and CoO-YSZ. 

The behaviour is completely different in the case of metallic cermets. For the Ni-YSZ and Co-

YSZ samples, the Young’s modulus increases, reaches a maximun and then decreases with 

indentation depth. These phenomenon could be attributed to a relatively poor adherence 

between the porous metallic lamellae and the ceramic scaffold and also to the highly defective 

microstructure (figure 2b). This relatively bad interface will act as a microcrack between both 

phases and an elastic dissipation of the elastic energy could be produced yielding this 

instability inside of each material.   

Table 2 shows the values of H and E for each phase present in the samples studied at 100 and 

2000nm of maximum penetration depth.  

In the case of YSZ, the data obtained by nanoindentation for H are higher than those reported 

by Dahl et al. [20](12.4-13.5GPa), using a Vickers microindenter, and also comparable with 
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the values around 16GPa reported by Menvie Bekale et al. [21] using microindentation. In 

any case, measured hardness for YSZ lamellae are in agreement with reported values of 13-

20GPa [22,23,24,25] for YSZ bulk samples. However, the H values reported for NiO-YSZ by 

Roa et al. [25] for bulk NiO-YSZ ceramics (6.9-7.5GPa) are lower than the values obtained 

for NiO lamellae in this manuscript (13.8GPa). This difference could be attributed to the 

higher density of the eutectics (100 % dense) and also to the lamellar orientation of the 

component phases. As can be observe in Figure 3a, until 40nm of indentation depth exists a 

strong interaction between the different lamellae.  

Young moduli are compared with data for the individual phases taken from literature and 

those calculated for the composite using the limits for isostrain (maximum) and isostress 

(minimum) approaches (Tables 2 and 3): 

E= EaVa+EbVb        (1) 

1/E=Va/Ea+Vb/Eb        (2) 

Where Ei and Vi are the Young modulus and volume fractions of phase a and b respectively. 

The Young’s modulus for NiO measured by nanoindentation is close to 220GPa given by 

Radovic and Lara-Curzio [27] and Giraud and Canel [26]. The E-values for the eutectic NiO-

YSZ also agrees well with the value calculated for the composite. However the value obtained 

for CoO is smaller than that given in the literature and could be attributed to an experimental 

error. 

In the reduced samples nanoindentation gives slightly smaller E-values for the YSZ phase 

than in the eutectic. The decrease in the Young modulus of the metallic phases could be due 

to the porosity. Effect of porosity in the effective moduli of SOFC materials has been study by 

Selçuk and Atkinson [11]. There are some empirical relations expressing the Young modulus 

as a function of porosity. The linear relationship is widely used for low porosity levels: 

E=E0(1-bEp)         (3) 
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here E0 is the bulk Young modulus for the dense materials, p is the volume porosity and bE a 

fitting parameter defining the porosity dependence of the modulus. Measurements of E as a 

function of porosity have been done in both NiO-YSZ ceramics and Ni-YSZ cermets being bE 

2.12 and 1.75 respectively [¡Error! Marcador no definido.].  Assuming the last value to be 

valid for both Ni-YSZ and Co-YSZ cermets we estimated the Young modulus of cermets in 

table 3. 

The Young’s modulus for the cermet Ni-YSZ, 110 GPa, is slightly smaller than calculated for 

the theoretical porosity given in Table 4 but higher that the values reported by Giraud et al. 

[26] at room temperature, 85GPa. However, Radovic and Lara-Curzio [27] report a value as 

small as 55GPa for a cermet with 40% of porosity and containing 63wt%  of NiO before the 

reduction process.  

As it can be seen in Table 2, the different values obtained at maximum indentation depth are 

in agreement with the previous values obtained at 100nm depth in the case of unreduced 

samples, NiO-YSZ and CoO-YSZ. These materials do not present size effect [28] because 

they are dense materials without internal stresses and with a good adherence between phases 

as corresponds to DSEC ceramics.  The Young’s modulus remains stable at very low 

indentation depths.  

However, for the reduced samples the mechanical properties present strong size effect 

dependence. This effect could be attributed to presence of interface defects generated during 

the reduction process due to: i) different expansion coefficient between the metallic and 

ceramic lamella yielding a high amount of dislocations at the vicinity of the interface, ii) high 

amount of stresses generated in the interphase interface and iii) to internal porosity which 

modifies the plastic and the elastic mechanical response. 

As a summary, the E as well as H of these materials; measured by nanoindentation, were 

higher than those reported by conventional techniques (Vickers indentation, bending, etc). 
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Another possibility is that by this technique we measure local mechanical properties due to 

the small volume of study and at that scale we only study pure phases without the influence of 

macroscopic defects or secondary phases.  

 

3.3. Imprints visualization  

 

Figure 8 shows AFM images of a CoO-YSZ eutectic sample surface, cut perpendicular to the 

growth direction, in which indentation imprints have been performed to 100nm of indentation 

depth AFM reveals the presence of YSZ and CoO-lamella of about 500nm width 

homogeneously distributed in the textured sample. However, they cannot be easily associated 

to a particular eutectic component using a conventional tool like macro/microindentation 

technique due to the fact that the residual size of the imprint will be larger than the size of 

each individual phase. On the contrary, present technique allows performing indentation 

imprints with depths of several nanometers which allow us to isolate the mechanical 

behaviour of each phase. Innset 1 in Figure 8, shows a magnification of the region marked 

with a black square where several imprints have been performed in a YSZ grain. This is a 

particular experiment that allow us to unequivocally identify the properties of the YSZ phase 

in the case of individual YSZ lamellae.  

After the mechanical characterization, the AFM observation of the different imprints permits 

to study the different fracture mechanisms taking place during the indentation process. As an 

example, Figure 9 shows different residuals imprints in a YSZ-grain in Co-YSZ samples 

performed at 100nm of indentation depth. As it can be seen all imprints present a field strain 

in the vicinity of the residual imprint. A magnification of one imprint can be observed in the 

inset 1. This deformation mechanism activated during the indentation process is called 
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chipping. In addition, this figure illustrates the presence of several cracks at the corners of the 

imprint due to the field stress generated during the indentation process.  

Figure 10 exhibits a residual imprint performed at 2000nm of indentation depth in Co-YSZ 

(Figure 10a) and CoO-YSZ (Figure 10b) samples. As it can be seen, in both cases the size of 

the residual imprint overcomes that of lamella. At that indentation depth is impossible to 

isolate the contribution of each phase and only a macroscopic behaviour of each material can 

be obtained. Figure 10a shows an abnormal behaviour (like a kink) at the boundary of the 

imprint. This effect could be attributed to the ductile behaviour introduced by the metallic 

phase (Co). Consequently, this behaviour was not observed in CoO-YSZ sample (see fig. 

10b). In that case the plastic field can be clearly observed in two sides of the imprints denoted 

with black arrows.  

 

5.Conclusions 

 

Nanoindentation at maximum indentation depth of 100nm and using the Oliver and Pharr 

approach allows us to determine the Hardness and Young’s modulus for each phase present in 

some well-known SOFC materials: NiO-YSZ, CoO-YSZ, Ni-YSZ and Co-YSZ directionally 

solidified eutectics have been obtained for each phase separately. The YSZ phase is harder 

than the oxide (NiO and CoO) and metallic (Ni and Co) phases.  

The Young’s modulus and Hardness values for the interphase are in correct agreement with 

different values reported in the literature obtained using sharp indentations. 

Nanoindentation at low indentation depth (around 100nm) allows us to isolate the mechanical 

properties of each phase. However, the measurements performed at 2000nm do not permit 

difference each phase, due to the size of the residual imprint is higher than the thickness of 

each phase. 
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Figure Captions 

 

Figure 1. Optical image of the transverse cross-section of a NiO-YSZ, CoO-YSZ DSE 

eutectic and also for the Ni-YSZ and Co-YSZ cermets. Bright phase: Ni (or Co); Light gray 

phase: NiO (or CoO); dark gray phase: YSZ; dark phase: pore 

Figure 2. TEM images for a NiO/YSZ (a) and Ni/YSZ (b) samples. 

Figure 3. Loading/unloading evolution for Co-YSZ at 100nm of penetration depth. 

Figure 4. Hardness evolution for each phase present in: (a) NiO-YSZ; (b) CoO-YSZ, (c) Ni-

YSZ, and (d) Co-YSZ at 100nm of indentation depth. 

Figure 5. Young’s modulus evolution for each phase present in: (a) NiO-YSZ; (b) CoO-YSZ, 

(c) Ni-YSZ, and (d) Co-YSZ at 100nm of indentation depth. 

Figure 6. Hardness evolution for each sample performed at 2000nm of indentation depth. 

Figure 7. Young’s modulus evolution for each sample performed at 2000nm of indentation 

depth. 

Figure 8. AFM-error micrographs of residual imprints performed at 100 nm of indentation 

depth in the CoO-YSZ. Inset 1: Magnification of a YSZ grain with several imprints. 

Figure 9. Topographic image for an YSZ-grain performed in Co-YSZ samples. Innset 1: 

Magnification of one of the residual imprints. 

Figure 10. AFM-topography image of residual imprint performed at 2000nm of indentation 

depth for (a) Co-YSZ and (b) CoO-YSZ. 
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Table Captions 

Table 1. Composition analysed by image analysis (vol%) for the NiO-YSZ  and 

CoO-YSZ eutectics, and also for the Ni-YSZ and Co-YSZ cermets 

NiO-YSZ  CoO-YSZ  

NiO (or Ni) YSZ pores CoO (or Co) % YSZ pores 

56.5 ± 1.7 43.5 ± 1.7 - 61.0 ± 1.5 39.0 ± 1.5 - 

Ni-YSZ Co-YSZ 

33.1± 0.7 43.5 ± 1.7 23.4 ± 0.7 34.8 ± 0.9 39.0 ± 1.5 26.2 ± 0.6 

 

Table 2. H and E values for NiO-YSZ, CoO-YSZ, Ni-YSZ and Co-YSZ for indentation 

depths of 100 and 2000nm. 

Sample 
Phase h = 100 nm h = 2000 nm 

 H (GPa) E (GPa) H (GPa) E (GPa) 

Co-YSZ 
Co 3.9± 0.2 102 ± 2 - - 

YSZ 16.9 ± 0.8 179 ± 5 - - 
Co-YSZ 9.4 ± 0.4 159 ± 3 5.9 ± 0.6 60 ± 2 

Ni-YSZ 
Ni 3.7 ± 0.3 65 ± 4 - - 

YSZ 15.4 ± 0.2 180 ± 5 - - 
Ni-YSZ 6.9 ± 0.4 110 ± 3 1.0 ± 0.1 20 ± 1 

CoO-YSZ 
CoO 5.4 ± 0.2 100 ± 2 - - 
YSZ 12.5 ± 0.2 190 ± 5 - - 

CoO-YSZ 8.8 ± 0.2 165 ± 4 8.5 ± 0.5 185 ± 7 

NiO-YSZ 
NiO 9.5 ± 0.4 215 ± 3  - - 
YSZ 17.5 ± 0.4  220 ± 5 - - 

NiO-YSZ 13.8 ± 0.2  219 ± 4 12.6 ± 0.3  215 ± 4 
 

Table 3. Bulk E-values for the component phases taken from literature 

 YSZ [11] NiO Ni CoO Co 

E(GPa) 220 220 220 170 209 

 

Table 4. Theoretical E-values of the eutectics and porous cermets (see text) 

CoO-YSZ 189.5-186.5 
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NiO-YSZ 220 

Ni-YSZ 129.3 

Co-YSZ 101.8 
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Figure 4a Esto sería NiO no? 
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Figure 4b 
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