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This paper is the first of a two-part series dealing with quantum-mechanical (density-functional-
based) studies of helium-mediated deposition of catalytic species on the rutile TiO2(110)-(1×1) sur-
face. The interaction of helium with the TiO2(110)-(1×1) surface is first evaluated using the Perdew-
Burke-Ernzerhof functional at a numerical grid dense enough to build an analytical three-dimensional
potential energy surface. Three (two prototype) potential models for the He-surface interaction in he-
lium scattering calculations are analyzed to build the analytical potential energy surface: (1) the
hard-corrugated-wall potential model; (2) the corrugated-Morse potential model; and (3) the three-
dimensional Morse potential model. Different model potentials are then used to study the dynamics
upon collision of a 4He300 cluster with the TiO2(110) surface at zero temperature within the frame-
work of a time-dependent density-functional approach for the quantum fluid [D. Mateo, D. Jin, M.
Barranco, and M. Pi, J. Chem. Phys. 134, 044507 (2011)] and classical dynamics calculations. The
laterally averaged density functional theory-based potential with an added long-range dispersion in-
teraction term is further applied. At variance with classical dynamics calculations, showing helium
droplet splashing out of the surface at impact, the time evolution of the macroscopic helium wave-
function predicts that the helium droplet spreads on the rutile surface and leads to the formation
of a thin film above the substrate. This work thus provides a basis for simulating helium mediated
deposition of metallic clusters embedded within helium nanodroplets. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3698173]

I. INTRODUCTION

The analysis of wetting and spreading properties of quan-
tal fluids (e.g., helium or para-hydrogen films) adsorbed on
different substrates has stimulated much experimental and
theoretical work during the last years (see, for example,
Refs. 1–4). Besides obtaining a better microscopic under-
standing of the fundamental physics upon collision of a quan-
tal fluid with a surface, the fruitful application of helium nan-
odroplets to the soft-landing deposition of catalytic species
(e.g., metallic nano-clusters) immersed within the drop on the
surface of different substrates5–7 has provided a renewed im-
petus for further theoretical works.

Soft-landing (SL) techniques (see, e.g., Ref. 8 for a
recent review) were already described in the seventies and
proposed as a tool to prepare modified surfaces by Cooks
and co-workers.9 Two decades later, the same group applied
the method to achieve the intact deposition of mass-selected
ionized species onto self-assembled mono-layer surfaces.10

Further studies showed that the method allows the intact
deposition of complex ions such as peptides and proteins on

a)E-mail: Pilar.deLara.Castells@csic.es.

different substrates (see, e.g., Ref. 11). Nowadays, rapid de-
velopment in the fields of nano-science and nano-technology
has raised new challenges in the application of SL techniques
as, for example, in the controlled synthesis and characteri-
zation of nano-structured metal/oxide catalysts.12–14 In fact,
re-structuring of metallic nano-particles upon adsorption on
the supported oxide (i.e., fragmenting and/or sintering after
deposition) can alter their targeted size-dependent catalytic
properties,15 making the development of SL techniques an
important research goal.16 Recent experimental studies car-
ried out by Vilesov and co-workers7 have shown that helium
nanodroplets serve not only as a gentle matrix where metallic
clusters tailored in size are formed but also as carriers to the
surface of a substrate at very low landing energies (below
0.1 eV per atom7). The realization of SL conditions in which
the embedded species sticks the surface, with a probability
near unity,6 keeping its identity17 was indirectly proven by
the similar size-distribution of the metallic clusters within the
droplet and after deposition on the substrate, according to the
images obtained by transmission electron microscopy.7

Despite these important recent progress on helium-
mediated deposition techniques,6, 7 little is known about the
microscopic mechanism that renders the soft-landing of the

0021-9606/2012/136(12)/124703/14/$30.00 © 2012 American Institute of Physics136, 124703-1
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embedded metal cluster possible. The evolution of the droplet
carrier itself upon collision (i.e., with wetting, rebounding,
spreading or splashing as possible outcomes) and character-
istic time-scales play a crucial role in pre-conditioning the
metallic cluster deposition process. This study is aimed at
providing basic understanding on the collision of the helium
droplet carrier with a surface, choosing a prototype metal-
oxide as the substrate.

In recent years, a few first-principle molecular dynam-
ics simulations on the soft-landing of metal clusters (e.g.,
Pd clusters) onto oxide surfaces have been carried out by,
for example, Landman and co-workers (see, e.g., Ref. 18).
These studies revealed that metal clusters retain their gas-
phase structures at low impact energies of 0.1 eV per atom.
In contrast with the nuclear dynamics of heavy metal atoms,
a proper description of the helium droplet must consider
its quantum nature, specially at the low droplet tempera-
ture in the experimental measurements.6, 7 A time-dependent
density-functional-theory (TDDFT) description of the helium
droplet has proved to be an efficient, computationally fea-
sible and robust approach to study different dynamical pro-
cesses in helium droplets such as the photo-desorption of al-
kali atoms,19 or the evolution of electron-bubble states.20 We
apply this approach here to model the collision dynamics of a
helium drop with a metal-oxide surface with the initial condi-
tions chosen to resemble those described in the experimental
setup.7

As a technological relevant system in photo-electronics
and heterogeneous catalysis and photo-catalysis21–23 and
a prototype metal-oxide substrate with well-characterized
properties21 we have chosen the perfect rutile TiO2 (110)-
(1×1) surface. This selection is also motivated by the fact that
nano-sized particles of noble metals adsorbed on TiO2-based
surfaces play a key role in improving the catalytic and photo-
catalytic properties of the substrate,24 allowing the formation
of new active sites and facilitating a more efficient separation
and diffusion of photo-generated electron-hole pairs.25

A prerequisite for these dynamical studies is the avail-
ability of a realistic potential energy surface (PES). By resort-
ing to the pairwise approach, the global PES is expressed as
a sum of N He−TiO2 plus the He-He potential energy terms.
Whereas the ground-state He−He interaction potential is
well-characterized (see, e.g., Ref. 26 and references therein)
we are aware of only one first-principle study on the He-
TiO2(110)-(1×1) interaction.27 This recent study has shown
that periodic calculations using the Perdew-Burke-Ernzerhof
(PBE) functional and an electronic basis set tailored to
minimize the basis set superposition error, yield a short and
medium-range interaction potential, as a function of the verti-
cal height z above the most stable adsorption site, in very rea-
sonable agreement with those obtained using correlated wave-
function-based methods and finite, hydrogen-terminated and
embedded, model cluster approaches. In particular, the
well-depth (84 cm−1) and the equilibrium distance (3.2 Å)
obtained through periodic PBE calculations underestimated
by less than 2% and 5%, respectively, the values evaluated at
local Möller-Plesset second order perturbation (LMP2) level
on the largest hydrogen-terminated cluster considered (of
stoichiometry Ti9O34H32). Likewise, the correlation energies

calculated with a modified version28 of the cluster-in-solid
embedding technique29 agreed with those obtained with a
similar size hydrogen-terminated cluster within 10%, indi-
cating the validity of the adopted hydrogen-saturated cluster
models.27 On the other hand, MP2 correlation energies cal-
culated with the embedded cluster approach underestimated
those evaluated using the more accurate coupled cluster the-
ory through perturbative triples, CCSD(T), by less than 15%.
Benchmark periodic MP2 calculations with the CRYSCOR

code30 on the He−MgO(100) interaction by Martinez-Casado
et al.31 also revealed a good agreement between PBE and
MP2 results for the well-depth (to within 0.3 meV). Similarly
to the case of the He−TiO2(110) interaction,27 these results
showed the inability of the PBE approach to describe the
long-range dispersive interaction and then the proper −1/z3

asymptotic behaviour. This arises from the well-known
fundamental problem of local and semilocal DFT functionals
to capture the correct 1/R6 dependence of the dispersion
energy as a function of the distance R between the interacting
fragments (see, e.g., for recent reviews Refs. 32 and 33).

Due to the lack of long-range dispersion correlation, the
ability of the PBE approach to perform reasonably in weakly
bound systems (e.g., water-metal interfaces34) has been at-
tributed to overbinding effects in the water-water interaction
compensating for the missing dispersion contribution.35, 36

Besides compensating effects, a localized molecular orbital
energy decomposition analysis combined with symmetry
adapted perturbation theory (SAPT) by Jordan and co-
workers37 disclosed the recovery of short-range dispersion
effects (i.e, defined in the framework of SAPT) in DFT calcu-
lations of water clusters. Unraveling such effects in PBE cal-
culations of the He−TiO2 interaction would benefit from such
decomposition studies by using model cluster approaches.
Given the lack of any experimental study giving insight into
the characteristics of the He−TiO2(110)-(1×1) interaction
or higher level ab initio calculations to compare with, we
consider our periodic PBE approach as sensible for the
calculation of the short- and medium-range region of the full,
three-dimensional, He−TiO2(110)-(1×1) PES. On the other
hand, the exact form of the long-range tail is not expected to
affect strongly the collision dynamics due to the high veloci-
ties of the helium nanodrop in the experimental measurements
(about 200 m/s from Ref. 7). With the aim of assessing it, we
also considered a model potential which includes a long-range
correction term in the dynamics calculations. Moreover, ad-
ditional calculations are presented by using the van der Waals
density functional (vdW-DF) of Langreth and co-workers.38

The periodic DFT calculations reported in Ref. 27 were
restricted to the potential regions falling around the mini-
mum energy path. We have performed additional calculations
on a dense three-dimensional grid to provide the necessary
data for the fitting of the global He-surface PES. Specifi-
cally, three models of increasing complexity have been cho-
sen so that the adjustable parameters have a clear physical
interpretation: (1) the hard-corrugated-wall (HCW) potential
model; (2) the corrugated-Morse (CM) potential model; and
(3) a three-dimensional Morse (3DM) potential model. The
HCW and CM models are commonly used for first-principle
simulations on the diffraction of atomic helium beams from
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metal and metal-oxide surfaces (see., e.g., Ref. 39). Although
such simulations are beyond the scope of our work, we also
present the fitted parameters of these model potentials with
the aim of providing some guidance on first-principle simu-
lations of helium atom diffraction. The TDDFT simulation of
the helium droplet dynamics in collisions with the TiO2(110)-
(1×1) surface has been carried out with a cluster composed by
300 helium atoms. Although this cluster size is much smaller
than the average sizes formed through the experimental setup7

(i.e., nanodroplets with more than 106 He atoms), it is consid-
ered large enough to provide meaningful physical insight into
the process and, at the same time, keeping the computational
calculation feasible. Pioneering TDDFT simulations of 4He
nanodroplets interacting with (weakly) attractive alkali metal
surfaces were carried out by Giacomazzi et al.1 As far as we
are aware, our work represents the first study considering the
case of a metal-oxide surface. With a well-depth more than
an order of magnitude larger than in the case of alkali metal
surfaces (10 vs. 0.6 meV for a Cs surface from Ref. 40) the
TiO2(110) surface can be considered as representative of a
stronger adsorber.

Section II provides the details on the construction of the
He@TiO2(110)-(1×1) potential energy surface, including the
analysis of the different potential models, considering the in-
clusion of long-range dispersion corrections, and testing the
validity of the pairwise additive approach in the case of two

He atoms interacting with the surface. A very brief outline
of the TDDFT method and the analysis of its application
to the collision dynamics of a 4He300 cluster impinging the
He−TiO2(110)-(1×1) surface are provided in Sec. III. The
classical dynamics calculations are also presented in this sec-
tion. The last section closes with a summary of the results and
some final remarks. Additional details of our work are pro-
vided in the supplementary material.41

II. HE@TIO2(110)-(1 × 1) POTENTIAL
ENERGY SURFACE

The details of the computational setup have been
presented in a previous study27 so we give just a brief
description here. The computations were performed with
the CRYSTAL 09 code,42 employing the PBE form43 of the
generalized gradient approximation with an all-electron basis
set and Bloch functions defined as linear combinations of
atom-centered Gaussian-type functions. The basis set was
specifically tailored to minimize the basis set superposition
error.27 The TiO2(110)-(1×1) surface was represented by the
slab shown in Fig. 1. It consists of five molecular layers and a
(3 × 1) surface unit cell (i.e., triple in the [001] direction and
single in the [1̄10] direction, see Fig. 1). The Brillouin-zone
integrations were carried out with a Monkhorst-Pack grid44

using a shrinking parameter IS = 6.42 Two helium atoms were

FIG. 1. Ball-and-stick representation of the 3 × 1 supercell slab model used to represent the rutile TiO2(110)-(1×1) surface. The highlighted area defines the
irreducible zone if a D2h symmetry is imposed for the first molecular layer. Titanium (oxygen) atoms are highlighted in yellow (red). Green color spheres denote
the adsorbed He atoms. The lattice vectors and atomic displacements from bulk-terminated positions are also indicated.
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then placed on both sides of the slab so that the symmetry is
higher. Since the He−He interaction decays very rapidly at
large distances, this is justified. The slab geometry was frozen
to experimental-based atomic positions (see below). As also
mentioned in Ref. 27, the frozen slab approach is justified
by the fact that only minor surface ion displacements were
observed upon helium physisorption (0.0013 Å as much).

The surface exposes two types of titanium atoms,
5-fold coordinated Ti(5f) and 6-fold coordinated Ti(6f), and
two types of oxygen atoms: 2-fold coordinated protruding
O atoms (bridging oxygen) and 3-fold coordinated in-plane
O atom (basal oxygen). The ideal bulk-terminated TiO2(110)
surface, with lattice constants a = b = 4.593 Å and
c = 2.985 Å from Ref. 45, has adjacent bridging oxygen
rows separated by a1 = 6.495 Å and elevated by about 1.2 Å
with respect to the basal plane, and bridging oxygen atoms
within the same row separated by a2 = 2.985 Å, with a1 and
a2 denoting the surface lattice constants. In the relaxed TiO2

(110)-(1×1) surface, the atomic positions are considerably
displaced as compared with ideal bulk-terminated positions.
According to a very recent analysis of low-energy electron-
diffraction and surface x-ray diffraction data obtained from
the TiO2(110)-(1×1) surface,46 the Ti(5f) atoms beneath the
basal plane by 0.11 ± 0.01 Å whereas the bridging oxygen
atoms experience a vertical displacement away from the bulk
of 0.10 ± 0.04 Å (see also Fig. 1). As a result, the bridging
oxygen atoms protrude by ∼1.5 Å from the Ti(5f)-surface
plane. The atomic positions within the slab were fixed to
these experimental-based values.46

The Cartesian coordinate axes were defined in such a way
that x, y, and z correspond to the [001], [1̄10], and [110] crys-
tallographic directions with the origin at the deepest atomic

site in the basal plane (the Ti(5f) site). The sampling of the
three-dimensional V(x, y, z) PES was obtained by choos-
ing the helium lateral positions (x, y) on an equally spaced
grid 4 × 6 within the asymmetric cell with �x = 0.50 and
�y = 0.65 Å as shown in Fig. 1. The z grid associated to
each lateral position (x, y) was composed by an average of
20 unequally spaced points with a �z spacing between 0.1
and 0.5 Å. This z-grid was calibrated to ensure a smooth pro-
file of the potential energy curves V(z) obtained by cubic in-
terpolation with a �z spacing of 0.1 Å.

Figure 2 shows contour plots of the PES for four different
z values. As discussed in Ref. 27, the global minimum is lo-
cated on top of the Ti(5f) site with an equilibrium He−Ti(5f)
distance of 3.2 Å and a well-depth of 83.6 cm−1. On the
other hand, the PES has a saddles (local minima) on top of
the bridging oxygen atoms, at a vertical distance of about
4.7 Å from the Ti(5f)-plane, the three-fold coordinated oxy-
gen atoms, and the Ti(6f) sites. The equilibrium vertical
distances of the interaction potentials upon adsorption of a
helium atom on top of Ti(5f) and bridging oxygen sites differ
by about 1.5 Å. This is the same value obtained for the vertical
distance between the Ti(5f) and the protruding oxygen atoms
which is related to the surface corrugation along the [1̄10] di-
rection. We adopt the term potential corrugation here as the
energy difference �V between the potential at the atomic hills
(located at the bridging oxygen sites) and the atomic valleys
(defined as the locations of the Ti(5f) sites) on the basal plane.
The z-dependence of the absolute value of �V on a loga-
rithmic scale is depicted in the lower panel of Fig. 2. Both
the potential contours and �V(z) show the so-called poten-
tial anti-corrugation. At large z distances, the minima are lo-
cated at the protruding oxygen atoms, �V is negative, and the

FIG. 2. Upper panel: Contour plots of the He-TiO2(110)-(1×1) potential energy surface for four different vertical distances between the helium atom and the
surface, taking the position of the Ti(5f) atom as zero. The atoms exposed on the surface are shown to guide the eye. Lower panel: z-dependence associated to
the absolute value of the energy difference �V between the potential interaction with a helium atom sitting on the bridging oxygen atom and located on top the
Ti(5f) sites.
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potential is thus anti-corrugated. At closer vertical distances,
however, the opposite trend is observed and the potential be-
comes corrugated (minima at the Ti(5f) sites and a positive
value of �V). In the asymptotic limit, �V is negligible (i.e.,
about −0.01 cm−1 at z = 15 Å). As the helium atom ap-
proaches the surface the (negative) value of �V increases
(see the lower panel of Fig. 2). Then, at z ∼ 4.8 Å, the �V
value starts to decrease, becoming equal to zero at z = 4.42 Å
(see Fig. 2) and reverting its sign closely to the Ti(5f)-surface
plane. This effect has been also found in the case of differ-
ent rare-gas atoms interacting with metal surfaces (see., e.g.,
Ref. 47). The existence of a vertical atom-surface distance for
which the potential corrugation equals to zero has suggested
the existence of a super-lubricity state at some pressure value
for sliding rare-gas mono-layers on metal surfaces.47 All the
calculated DFT-PBE energies are available on request from
the authors.

A. Parameterization of the three-dimensional
potential energy surface

As mentioned above, before deriving an analytical ex-
pression for the periodic PES V(x, y, z), we tested commonly
used functional forms for the He-surface interaction in ana-
lyzing He-atom scattering from metal and metal-oxide sur-
faces (see, e.g., Ref. 48).

1. The hard-corrugated-wall potential model

The hard-corrugated-wall (HWC) potential model is the
simplest model using the eikonal approximation.49 Very re-
cently, it has been found to be a useful approximation in an-
alyzing grazing scattering of atoms from the MgO(001) via
the fast atom diffraction (FAD) technique.48, 50 The analytical

expression of the helium-surface potential reads then as

V (x, y, z) =
{

0 if z > ζ (x, y)

∞ if z ≤ ζ (x, y)
, (1)

where ζ (x, y) is the so-called corrugation (or shape) func-
tion (CF). This function reflects the electronic density con-
tours built up by the TiO2(110) surface atoms.51 The same
model has been used to characterize the He−MgO interaction
upon the analysis of diffraction patterns52 via the He atom
scattering (HAS) technique.53 It is usually considered as an
acceptable approximation if the incident energy of the incom-
ing helium atom is of the same order of magnitude or larger
than the well-depth of the He-surface potential. Since typi-
cal HAS measurements use atomic beams of thermal energy
(10−100 meV) while the FAD method handles projectile en-
ergies up to some KeV and the calculated He−TiO2(110) po-
tential exhibits a well-depth of about 10 meV at the global
minimum, the HWC approximation could be (in principle)
considered as an acceptable zero-order approximation to ra-
tionalize both HAS and FAD data.

The corrugation function can be estimated from the ef-
fective corrugation function (ECF), ζ (x, y; ε). This function
depends on the incidence energy ε of the helium atom. It can
be calculated from the classical turning points of the repul-
sive part of the He−TiO2 potential satisfying the following
implicit equation,

V (x, y; ζ (x, y; ε)) = ε. (2)

In order to determine the effective corrugation functions, we
have selected nine ε values in the range [10–700] cm−1 and
the ECFs have been determined by inverse interpolation with
cubic splines. Figure 3 displays contour plots of the equipo-
tential surfaces (ECFs) with ε = 50 (left panel) and 500 cm−1

(right panel). The computed ECFs are found to be virtually
indistinguishable from each other.

FIG. 3. Contour plots of the equipotential surfaces (effective corrugation functions) with energies E = 50 and 500 cm−1. The reference geometry is located at
the position of the Ti(5f) atom (center of the figure).
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By accounting for the periodicity conditions, the effective
corrugation functions can be expanded in a complex Fourier
series as

ζ (x, y; ε) =
∑

G

ζG(ε)eiG·R, (3)

where the sum runs over all reciprocal two-dimensional lat-
tice vectors defined as G = 2π (n/a1,m/a2), with a1 and a2

as the surface cell parameters (see above) and with R = (x,
y) as a lattice vector defining a plane parallel to the surface.
Hereafter the notation G = (n,m) will be used to index a re-
ciprocal space vector for the sake of simplicity. Symmetry
considerations allow to re-write Eq. (3) in a more compact
form as

ζ (x, y; ε) =
(nmax ,mmax )∑
(n,m)=(0,0)

ζ(n,m)(ε) cos

(
2πn

a1
x

)
cos

(
2πm

a2
y

)
,

(4)

where the zero-order Fourier term ζ (0, 0)(ε) represents the av-
erage of the z distances associated to the classical turning
points of a He atom of energy ε (in the normal direction)
scattering off the surface. This laterally averaged value de-
cays monotonically as a function of ε (see the upper panel
of Fig. S1, presented as supplementary material41). Follow-
ing the model of Esbjerg and Nørskov,51 the He-surface in-
teraction energy is considered to be proportional to the local
electron density at the He atom location. The decreasing be-
havior of the ζ (0, 0)(ε) function with respect to ε thus reflects
the deeper penetration of higher energy helium atoms into the
surface electronic-density profile. On the other hand, the first-
order Fourier terms ζ (1, 0) and ζ (1, 0) can be interpreted as the
half of the corrugation amplitudes along the [001] and [1̄10]
directions, respectively. Higher-order terms ensure an accu-
rate representation of the function.

The calculated effective corrugation functions were fitted
to a discrete Fourier representation (Eq. (4)) by the nonlinear
least square Levenberg-Marquart algorithm. Within the inci-
dence energy range considered, the selection of nmax = 2 and
mmax = 3 (i.e., a total of 12 Fourier terms) ensures maximum
and mean square errors smaller than 0.01 and 0.03 Å, respec-
tively. In fact, a very fast convergence rate with the number
of G terms was obtained. In contrast to ζ (0, 0)(ε), the G �= 0
terms vary very little as a function of the atomic beam incident
energy (see the lower panel of Fig. S1, presented as supple-
mentary material41). Hence, it is sensible to use an averaged
corrugation function. The values of the ζG matrix elements are
also provided as supplementary material.41 By averaging the
effective corrugation functions over the considered range of
incident energies, the calculated corrugation amplitudes along
the main crystallographic directions are ζ (001) = 0.090 Å
and ζ(110) = 1.239 Å. These values are of the same order
of magnitude as the apparent corrugation measured through
the scanning tunneling microscopy technique. For example,
values of 0.14 (Ref. 54) and 1.2 Å (Ref. 55) have been re-
ported for the corrugations in the [001] and [110] directions,
respectively.

2. The corrugated-Morse potential model

The description of bound-state resonances observed in
HAS measurements makes necessary the consideration of an
attractive potential well within the model for the He-surface
interaction. The CM potential model, originally proposed by
Armand and Manson,56 uses the following explicit form for
the He-surface potential:

V (R, z) = D

{
1

ν0
e−2α[z−ze−ζ (R)] − 2e−α(z−ze)

}
, (5)

where D is the well-depth, α is the stiffness parameter, and
ν0 is the average of the first term over the surface unit cell
A of area S, ν0 = 1

S

∫
A e2αζ (R) dR. It is thus assumed that

only the repulsive part of the potential is corrugated while
the attractive part (second term) remains invariant under
lateral displacements. This potential is assumed to support
bound states agreeing with the experimentally determined
absorption resonances.

By accounting for the TiO2(110)-(1×1) surface periodic-
ity and additional spatial symmetry properties of the system,
the He-surface potential can be expanded in a real Fourier se-
ries as

V (R, z) =
∑

G

VG(z) cos (G · R) , (6)

where the Fourier coefficients VG(z) can be numerically cal-
culated from

VG(z) = 1

S

∫
A

V (R, z) cos (G · R) dR. (7)

The Fourier coefficients of the interaction potential
have a clear physical meaning, accounting for the coupling
between the different diffraction channels. By inserting the
analytical expression of V (R, z) from Eq. (5) into Eq. (6),
explicit forms of the Fourier coefficients within the CM
model are obtained

VG(z) =
⎧⎨
⎩

D[e−2α(z−ze) − 2e−α(z−ze)] G = 0,

D
(

νG
ν0

)
e−2α(z−ze) G �= 0,

(8)

where the terms νG are defined as

νG = 1

S

∫
A

e2αζ (R) cos (G · R) dR. (9)

Hence, within the CM potential model, non-diagonal Fourier
coefficients VG �=0(z) show a simple exponential form as a
function of the vertical distance to the surface z while the
VG=0(z) component has a one-dimensional Morse potential
form. Typically, the non-diagonal Fourier coefficients are
repulsive, increase rapidly as z decreases and their strengths
decrease with |G|.

For the sake of comparison, numerical Fourier coeffi-
cients VG(zk) have been obtained from Eq. (7) by first inter-
polating the calculated DFT energies on an equally spaced
z-grid {zk} at a given lateral geometry (x, y). The numerical
details can be found in the supplementary material.41 The nu-
merical coefficients are shown in Fig. 4. As clearly appar-
ent from this figure, the numerical values V(0, 0) (highlighted
with black circles) fit very well with a Morse functional form
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FIG. 4. Fourier coefficients of the interaction He−TiO2(110)-(1×1) poten-
tial as a function of the vertical distance z from the surface (with z = 0 lo-
cated at the surface Ti(5f) plane). The solid lines for non-diagonal coefficients
VG �= 0 are drawn with cubic splines. Inset panel: comparison between the
V00 component obtained by fitting to a Morse potential (dashed line) and
numerically (solid circles). The energy differences are shown in the upper
(inset) panel.

(drawn with a black dashed line). Our fitting gives the val-
ues D = 38.89 ± 0.0021 cm−1, α = 1.675 ± 0.017 Å−1,
and re = 4.3643 ± 0.0044 Å. As can be seen in the inset of
Fig. 4, however, the fitted Morse potential energy curve de-
parts from the numerical values at energies above 500 cm−1.
The analytical form of the corrugation function ζ (R) (see
Sec. II A 1) can be inserted in Eq. (8) to get analytical ex-
pressions of the non-diagonal VG �=0 coefficients within the
framework of the CM model. These coefficients are drawn
along with the numerical values in the supplementary material
(see Fig. S2 in Ref. 41). The numerical non-diagonal coeffi-
cients VG �=0(z) depart noticeably from those obtained with the
corrugated-Morse-potential model, specially the G = (n,m)
components with n and/or m greater than 2. For example, as
also apparent from Fig. 4, the numerical coefficient V(0, 3) in-
creases as z decreases whereas the opposite holds for the CM-
based V(0, 3) term (see Fig. S2 in Ref. 41). The CM-based
Fourier series converges very rapidly so that the magnitude of
the VG coefficients with |G| > 3 is very small. In contrast, the
convergence rate of the numerical coefficients is extremely
slow so that (in principle) a larger amount of diffraction chan-
nels would have to be included in a close-coupling calculation
to get convergence. As pointed out by Wolken,57 however, the
number of diffraction channels to be included is not only de-
termined by the structure of the potential coupling matrix but
also and more directly by the corrugation amplitude, which is
rather large in our case. On the other hand, the CM model is
not able to account for the fine details of the numerical co-
efficients. The potential anti-corrugation is only qualitatively
reflected in the numerical V(0, 1) and V(1, 1) coefficients (see
Fig. 4), they increase as the helium atom approaches the sur-

face, become equal to zero at z = 4.32 and 4.62 Å, respec-
tively, and revert their signs closer to the surface. This feature,
however, is lacking in the CM-based coefficients.

3. The three-dimensional Morse potential model

Finally, the DFT-PBE energies have been fitted to a three-
dimensional Morse potential functional form

V (x, y, z) = D(x, y)

×{e−α(x,y)[z−ze(x,y)] − 2e−2α(x,y)[z−ze(x,y)]},

where all the Morse parameters are periodic functions with
the symmetry of the underlying TiO2(110)-(1×1) lattice. At
variance with the CM potential model, this functional form
accounts for the lateral modulation of the equilibrium dis-
tance ze and the well-depth De induced by the strong struc-
tural corrugation of the TiO2(110) surface. The detailed fit-
ting procedure is provided in the supplementary material.41

Briefly, the DFT-PBE energies obtained at a given lateral po-
sition (x, y) are fitted to a z-dependence Morse potential. The
continuity of the He-surface potential interaction along the z
variable for each (x, y) is obviously ensured, but not the re-
ciprocal. The functions D(x, y), α(x, y), and ze(x, y) functions
are shown in the left-hand panels of Fig. 5. It can be seen
that these functions may not be smooth enough. For example,
the function α(x, y) displays two shoulders at the neighbor-
hoods of the bridging oxygen atoms while the function D(x,
y) has a small roughness around the Ti(5f) site. These small
oscillations arise from the imprecision of the electronic struc-
ture calculation itself and are therefore a numerical artifact
that could affect further dynamical calculations. As described
in the supplementary material,41 these functions were further
Fourier expanded so that an analytical functional for the final
He-surface PES was obtained

P (x, y) =
2∑

n=0

3∑
m=0

PG cos

(
2πn

a1
x

)
cos

(
2πm

a2
y

)

with P ≡ D, α, ze. As clearly apparent in the right-hand panels
of Fig. 5, this procedure gives functional Morse parameters
exhibiting smooth and completely regular profiles.

The robustness of the 3DM functional form was also
tested by calculating the Fourier coefficients of the poten-
tial as a function of z, having an analytical expression within
this model. As can be seen in Fig. S3 from Ref. 41, the
3DM Fourier coefficients keeps the same sign as the numer-
ical Fourier coefficients along the z variable. This is in con-
trast with the CM potential model which inverts the sign of
some Fourier coefficients. Also at variance with the CM co-
efficients, the special profile of the V(0, 1) and V(1, 1) terms, re-
flecting somehow the potential anti-corrugation, is preserved
through the fitting to the 3DM potential model. On the other
hand, the 3DM functional form attains an important advan-
tage over the numerical representation: the strength of the
Fourier coefficients decreases rapidly with |G|. For example,
the value of the V(3, 3) term is already negligible.
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FIG. 5. Fittings of the Morse potential parameters D(x, y) (upper panels),
α(x, y) (center panels), and re(x, y) (lower panels). Left-hand panels: param-
eters obtained after fitting to a Morse potential of the DFT energies at each
lateral location (x, y). Right-hand panels: “analytical” parameters which have
been calculated by applying least-square minimization to the calculation of
the Fourier expansion coefficients.

B. On the long-range dispersive interaction and the
pairwise approximation

As mentioned in the Introduction, local and semi-local
DFT functionals such as PBE neglect long-range dispersive
interaction contribution. By using both Grimme’s scheme
(e.g., the so-called DFT-D2 (Ref. 58)), in which damped
−C6/R6 corrections are included, and the first principles van
der Waals density functional (termed vdW-DF) approach38 in-
corporating non-local correlation, the long-range dispersive
interaction can be accounted for in DFT calculations. The
PBE-D2 approach was previously tested for the He−TiO2

interaction by using a small model cluster of stoichiometry
(TiO2)(H2O)3 in Ref. 27. The PBE-D2 binding energy over-
estimated the energy obtained at CCSD level by a factor of
∼3.5. A similar factor (∼4) is found by comparing the ener-
gies obtained at PBE and PBE-D2 levels, using the periodic
approach presented here. Some preliminary calculations us-
ing the original formulation of the vdW-DF approach38 (i.e.,
using the revPBE (Ref. 59) functional for the exchange en-
ergy) are presented as supplementary material.41 These ad-

ditional revPBE-vdW calculations were carried out by us-
ing the projector-augmented wave method implemented in
the VASP code.60, 61 Specifically, the revPBE-vdW interac-
tion potential as a function of the vertical height z above
the Ti(5f) site was calculated and compared with that ob-
tained either at the LMP2 level on a model cluster of stoi-
chiometry (TiO2)9(H2O)16,27 or using the periodic PBE ap-
proach. The revPBE-vdW well-depth differs by less than
15% from PBE and LMP2 values, while the revPBE-vdW
(PBE) equilibrium distance is about 0.15 Å larger (shorter)
than its LMP2 counterpart. The overestimation (underestima-
tion) of the adsorbate-surface distance (the binding energy)
by revPBE-vdW is in line with a recent analysis on the appli-
cation of vdW-DFs to solids62 (to H-bonded duplexes63).

Even better potentials could probably be obtained by fol-
lowing the procedure of Michaelides and co-workers to de-
sign modified vdW-DFs as in Ref. 62. Concerning DFT-D fla-
vors, DFs “mimicking” closely the short-range Hartree-Fock
repulsive behaviour, such as revPBE, have been found to per-
form better in DF+D constructions than pure PBE on weakly
hydrogen-bound systems (see, e.g., Refs. 32 and 64). Another
idea that has been put forward by Pernal et al.65 consists in us-
ing dispersionless DFs on top of which “+D” corrections can
be surely added. As mentioned in the Introduction, localized
molecular orbital energy decompositions and SAPT calcula-
tions, such as those carried out by Jordan and co-workers,37

using a small cluster as a model system of the He−TiO2 in-
teraction (see above), can also be useful. Work in these direc-
tions is currently in progress.

In this work, the laterally averaged potential (LAP),
VG = 0(z), was slightly modified to account for the correct
−1/z3 scaling by adding the term −f (z; z0, a)( C3

z3 ), where the
expression of the damping function reads

f (z; z0, a) = 1

2

{
1 + tanh

[
z − z0

a

]}
. (10)

It should be noted than the same LAP is obtained from the
CM and the 3DM models. The correction would start affect-
ing the LAP from approximately z ≥ z0 − 2a. The values of
the z0 and a parameters were fixed to 6.0 and 0.5 Å, respec-
tively. They were selected so that the minimum region of the
potential is kept almost unaltered and the continuity of the
functions VG = 0(z), V′

G=0(z) (first-derivative), and V′′
G=0(z)

(second derivative) is ensured. As mentioned in the Introduc-
tion, the pragmatic justification for the former condition is
that the model cluster LMP2 calculations provided a shaft re-
gion agreeing very well with that obtained with the periodic
DFT-PBE approach.

Concerning the C3 prefactor, we adopted the approach
described by Johnson and Hinde in Ref. 66 where it was ap-
plied to the He−MgO(100) interaction to obtain an effective
C3 coefficient. Within this framework, the He−TiO2(110) in-
teraction is modeled as a sum of pairwise additive He−Ti and
He−O attractive interactions with a Lennard-Jones −C6, X/R6

form, with X = Ti or O, allowing to get an analytical ex-
pression of the C3 coefficient as a function of the C6, X terms.
By using the Slater-Kirkwood formula, these terms are ex-
pressed as a function of the static polarizabilities for He
(Ref. 67) and for the Ti4 + and O2 − ions in TiO2,68 and
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the effective number of valence electrons.67 We obtained the
values C6, Ti = 1.798 a.u. and C6, O = 11.470 a.u, and an
effective He−TiO2(110) coefficient (referred to as CLJ

3 ) of
245.809 meV Å3. It is stressed that a similar value is ob-
tained with the C6, X coefficients within the DFT-D2 ansatz
of Grimme58 (241.794 meV Å3). These values are almost a
factor of six larger than the prefactor obtained from fitting the
DFT-PBE results above (Cfit

3 = 38.988 meV Å3). This prefac-
tor Cfit

3 remained practically unaltered with the lateral position
(x, y). As mentioned in Refs. 66 and 67, the actual value is
expected to be smaller than the prefactor CLJ

3 because of sur-
face dielectric screening effects in successively deeper layers.
Since DFT-PBE neglects long-range correlation (i.e., Cfit

3 is
just an adjustable parameter), it can be expected that the actual
value might lie between the values of Cfit

3 and CLJ
3 . The num-

ber and energies of the bound states supported by the LAP po-
tential are very sensitive to the value of the prefactor. These
are presented as supplementary material.41 Therefore, direct
experimental information on selective absorption resonances,
as already reported for the He−MgO(001) case,69 would be
very useful in assessing the reliability of the corrected LAP.
In order to assess the role of the long-range dispersive term,
dynamics calculations were carried out by using both the pure
LAP and the corrected LAP with the damped −CLJ

3 /z3 term
(referred to as LAP+CLJ

3 ).
Before closing this section, we would also like to men-

tion that the adequacy of the pairwise additive approximation
was tested on the He2−TiO2(110)-(1×1) case. The results
are presented as supplementary material.41 Briefly outlined,
relative errors within the effective range of interatomic
He−He distances in liquid helium are found to be lower than
8%. However, the quantitative accuracy deteriorates rapidly
beyond this regime.

III. COLLISION OF A HELIUM DROPLET WITH THE
TIO2(110)-(1×1) SURFACE

The dynamical evolution of a helium nanodrop on the
surface was followed by performing TDDFT calculations.20

This is a general algorithm for solving a three-dimensional
time-dependent Schrödinger-like equation for the effective
helium wave-function. This TDDFT method relies on a DFT
approach differing largely from the DFT-PBE approach ap-
plied to the electronic structure problem. While the latter is
used within the Kohn-Sham formulation of DFT (Ref. 55), the
former is an orbital-free method in which the kinetic energy
is calculated by a functional of the density alone. Also, the
density functional applied to the helium motion was designed
to reproduce bulk experimental properties of liquid 4He
(Ref. 70) while the PBE functional43 was constructed to sat-
isfy different physical constraints as having the correct free-
electron gas limit. The details of the TDDFT approach has
been provided elsewhere (see, e.g., Ref. 20) so that only a
brief outline is provided here.

A. Outline of the method and computational setup

Within the DF approach, the energy of a helium nan-
odrop composed by 300 4He atoms at zero temperature is first

written as a function of the effective helium wave-function
�(r) = √

ρ(r):

E[�] = ¯2

2mHe

∫
dr |∇�|2 +

∫
dr EHe−He[ρ]

+
∫

dr ρ(r)V He−TiO2
ext (r),

where the EHe−He[ρ] term denotes the helium-helium po-
tential energy density accounting for mean-field and short-
range correlation effects, and V

He−TiO2
ext (r) represents the ex-

ternal He-TiO2 potential acting on the helium drop. For this
work we have chosen the finite-range Orsay-Trento density
functional.70 This functional is designed omitting the term
mimicking the black-flow effects (i.e., elementary excitations
within superfluid 4He). Previous studies71 have shown that
the incorporation of this term have minor effects in the dy-
namical evolution and a high computational cost. The explicit
functional form of EHe−He[ρ] is given in Ref. 70, and can be
written (in abbreviated form) as

EHe−He[ρ] = 1

2

∫
dr

∫
dr′ρ(r)ρ(r′) VHe−He(|r − r′|)

+
∫

dr Ec(r) +
∫

dr
ρ(r)

2
mHe|v(r)|2,

where VHe-He is the He−He interaction potential screened
at short distances. The last two terms account for short-
range correlation effects arising from the hard-core of the
He−He potential, and the hydrodynamic current, respectively.
By minimizing E[�] with respect to variations of the effec-
tive wave-function �(r) one obtains the ground-state wave-
function �0(r), fulfilling

− ¯2

2mHe
��0 +

{
∂EHe−He[ρ]

∂ρ
+ V

He−TiO2
ext

}
�0 = μ�0,

(11)
where μ is the helium chemical potential that ensures the con-
servation of the number of helium atoms. On the other hand,
the dynamical evolution of the helium nanodrop evolves ac-
cording to the time-dependent equation,

∂�(r, t)
∂t

= − ı

¯
×

{
− ¯2

2mHe
�+ ∂EHe−He[ρ]

∂ρ
+ V

He−TiO2
ext (r)

}
×�(r, t). (12)

The differential operators are discretized using 13-point
finite-difference formula (although 25-point formula was sel-
dom employed to test the quality of the solution). The time-
dependent Schrödinger-type equation is solved numerically
with Hamming’s method of order five72 while a fourth or-
der Runge-Kutta scheme is used for the first four iterations.
Unitarity of the evolution is ensured by using a time step
�t of 2 × 10−4 ps. We work in three-dimensional Cartesian
coordinates that allow to exploit fast Fourier transformation
techniques73, 74 in the calculation of the convolution integrals
entering the definition of the effective He−He potential.70

The simulation is performed using 256 × 256 × 128 grid for
the FFT. The integration steps have been selected so that the
dimension of the 3D box is 200 × 200 × 60 Å3 (�x = �y
= 0.781 Å, �z = 0.469 Å). These values are chosen so that
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one has a large enough space in the xy −plane for the drop to
expand through the surface. We chose a dense z mesh which is
capable of accommodating the short-wavelength density os-
cillations associated with high-momentum components of the
incoming droplet.

The wave-function is damped upon reaching the box
boundaries to avoid its artificial reflection. We employed
the damping procedure described in Ref. 20 but with the
damping-free region as a cylinder plus a plane parallel to the
surface instead of a sphere. In practice, the time-dependent
Schrödinger-type equation governing the evolution of the
wave-packet is modified as

∂�(r, t)
∂t

= (ı + �(r))

¯

{
− ¯2

2mHe
� + ∂EHe−He[ρ]

∂ρ

}
�(r, t)

− ı

¯

{
V

He−TiO2
ext (r)

}
�(r, t),

where the damping function �(r) can be expressed in cylin-
drical coordinates (ρ =

√
x2 + y2 and z) as

�(ρ, z) =
∑
s=ρ,z

�0

[
1 + tanh

(
s − s0

a

)]
, (13)

where z = 0 is the position of the TiO2 surface, x = y = 0
being the line connecting it with the helium droplet center of
mass. The dimensionless parameter �0 is fixed to 2.5, and the
values of ρ0, z0, and a are set to 90, 57.4, and 5 Å, respec-
tively. The wave-packet is thus absorption-free in a cylinder
of radius ρ < ρ0 −2a and height z < z0 −2a.

We have used the laterally averaged He−TiO2(110)-
(1×1) potential, depending only on the z height above the
surface VHe−TiO2

ext (z), with and without the damped −CLJ
3 /z3

term (see Sec. II). This is the most sensible choice compati-
ble with the hydrodynamical description of He and the phe-
nomenological treatment of the He−He correlations in the
functional. The short-range correlations are taken into ac-
count in by means of the coarse-grained density, an averaged
density over a sphere of radius h = 2.19 Å. In this procedure
one is assuming that the energy functional does not depend
on the details of the structure at lengths scales smaller than
h, as this structure will be smoothed out by correlations. The
surface corrugation was taking into account, however, in clas-
sical dynamics calculations by using the 3DM potential model
(see Sec. III C).

B. Evolution of the helium density profiles

The initial helium wave-function can be written as

�(r, t = 0) = �0(r)eık0·r, (14)

with ρ0(r) as the helium density obtained by minimiz-
ing the energy without the adsorbing He−TiO2 potential
(Eq. (11) without the term V

He−TiO2
ext ). We have added a boost

k0 = −1.26 êz Å−1 in order to provide the helium nanodrop
with a collective initial velocity towards the surface plane of
200 m/s, according with the experimental setup.7 The dynam-
ical simulation starts by placing the helium droplet mass cen-
ter at 27.4 Å from the surface.

FIG. 6. Snapshots showing the dynamical evolution of the helium density
profiles associated to a 4He300 drop at impact with the TiO2(110)-(1×1) sur-
face. The display frames are 80 × 50 Å2. The TiO2(110) surface is located
at 2.4 Å from the bottom edge of the box. Left-hand panel: 2D contours of
the helium density profiles. Red arrows indicate the current field with a size
proportional to the current intensity at a local point. The panels correspond
to times t = 0, 8, 16, and 22 ps. The clearer the color, the higher the helium
density. Right-hand panel: iso-probability helium density surfaces. See also
the TDDFT movie presented as supplementary material.41

Figure 6 shows the evolution of the helium density pro-
file of the 4He droplet during the first 22 ps. The spreading
of the helium droplet at impact can be followed from the se-
quence of snapshots in this figure. The distortion of the drop
due to the interaction with the TiO2 surface is already appar-
ent at t = 8 ps, when a pressure density wave starts to prop-
agate due to the compression of the helium drop. A feature
worth mentioning is that although the pressure density wave is
propagating backwards from the surface along the symmetry
axis z, the direction of the local current field (indicated by ar-
rows in the left-hand panels of Fig. 6) is almost always point-
ing towards the surface. The density waves that are travelling
up through the droplet, while the current field is going down
are associated to phononic excitations of the helium droplet.
The spreading starts at about 10 ps, with the mean square
radius of the droplet growing linearly in time.41 At about
t = 16 ps, fractions of the total density are expelled backwards
from the helium droplet. Then at t = 22 ps, the drop continues
expanding along the (x, y) plane. The simulation was nec-
essarily finished when the droplet reached the edges of the
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simulation box. The value of the sticking probability con-
verged to 0.7 and the velocity in the spreading was estimated
to be 137.8 m/s (see Sec. S7 in the supplementary material41).
Therefore, the droplet losses about 90 particles due to the
impact with the surface. We also stress that minor differ-
ences were observed when the −CLJ

3 /z3 long-range term was
included41 so that the calculated velocity of spreading was the
same within numerical accuracy.

Let us now compare our results with those obtained by
considering weakly attractive surfaces.1 In contrast with weak
adsorbers such as the Cs surface1 (it is not wet by 4He at very
low temperatures), our TDDFT results show that the rutile
surface is a rather strong adsorber. Not only 4He wets the
surface at T = 0 but also density peaks with ρ = 0.08 Å−3 (i.e,
a value which is close to the helium solidification point75) are
found for the equilibrium configuration of a helium slab de-
posited on top of the surface. However, some similarities were
found with the equilibrium density profiles reported for the
Cs surface in Ref. 1 such as the formation of a thin precursor
layer separated by a quasi-node from the layer with the high-
est density, and a quasi-linear scaling dependence of the mean
square radius of the droplet as a function of time in the earlier
stage of the spreading process. The velocity of spreading is,
however, much larger in our case (138 vs. 50 m/s from Ref. 1)
due to both the stronger attraction exerted by the TiO2(110)
surface and the high velocity of the incoming droplet.

Finally, it should be stressed that the spreading process,
which is characterized by a plastic deformation of the incom-
ing species,17 differs from the soft-landing case, in which col-
lision induced deformations are elastic.17 However, it is also
worth-mentioning that the spreading of the helium droplet
upon impact is consistent with the “intact” soft-landing de-
position of an embedded species. The discussion on how
the helium carrier spreading affects the deposition of a cat-
alytic species, formed inside the droplet, has been left for a
forthcoming paper. It is also recalled that the chosen Orsay-
Trento density functional describes helium properties at
T = 0. Therefore, a zero temperature of both the helium
droplet and the surface is assumed. In the experimental setup,6

the produced helium droplets cools very rapidly, reaching a
temperature (0.37 K) below the superfluid transition temper-
ature (2.17 K). On the other hand, substrate samples at room
temperature (about 300 K) are employed.7 Finite-temperature
(phonon-mediated) surface effects are not expected to affect
the dynamical process described here too much because these
effects typically develop on the time scale of nanoseconds
(i.e., much longer that the spreading process). However, these
effects would ultimately lead to the helium droplet evapora-
tion during the thermalization process with the surface.

C. TDDFT vs. classical dynamics

For the sake of comparison, we also performed clas-
sical trajectory (CT) calculations. The analytical He−He
potential derived by Aziz and Slaman76 was employed to
account for the He−He interaction. A recent study using full-
configuration-interaction (FCI) calculations with increasing
basis set sizes on the helium dimer27 showed the convergence

trend of FCI results (i.e., energy and wave-function of
the bound state) to those obtained with the Aziz-Slaman
potential. Concerning the He−TiO2 interaction, we used the
LAP, the LAP with the damped −CLJ

3 /z3 term (referred to as
LAP+CLJ

3 ), and the 3DM potential models.
The density of the isolated 4He300 cluster obtained with

the DFT approach at T = 0 was sampled by using the ran-
dom walk Metropolis algorithm. To avoid the cluster disin-
tegration, we imposed a minimal distance of 3 Å between
each helium atom pair. Newton’s equations of motion were
solved through numeric integration by using the velocity Ver-
let algorithm77 with a time step of 0.005 ps. In this way, the
conservation of energy was better than 1 in 107. Alternative
methods for classical dynamics propagations as Beeman’s al-
gorithm were proved, providing an almost identical picture.
The chosen Verlet algorithm was found to be faster in our
case.

The CT calculation started by assigning zero initial ve-
locities to the helium atoms within the cluster. Next, a ther-
malization run of 20 ps at 0.1 K was carried out by using the
Berendsen thermostat78 with a time step of 0.04 ps.78 This
was followed by a simulation run of 600 ps without temper-
ature control to ensure that the cluster is stable. The cluster
center-of-mass was then placed at 25 Å from the TiO2(110)
surface and the helium atoms were provided with an initial ve-
locity directed perpendicular to the surface, corresponding to
the droplet collective velocity of 200 m/s in the experiment.7

With this setup, we obtained the snapshots displayed in
Fig. 7. They correspond to one classical trajectory from the
88 trajectories considered41 and the LAP model.

All our CT calculations show the helium droplet evap-
oration after the collision, with a sticking probability below
3%. By comparing the results obtained with the LAP and the
LAP+CLJ

3 models (see Figs. S8 and S9 in Ref. 41), the minor
influence of the long-range correction is apparent so that the
lateral (z-dependent) distributions are practically coincident.
On the other hand, when the corrugation of the potential is
considered through the 3DM model, the droplet evaporation
process becomes faster. At t = 20 ps (i.e., after the impact),
the fraction of evaporated He atoms is about 10% larger in
the 3DM case. This minor difference could be rationalized
by the presence of more steeply repulsive potential regions
(i.e., where the protruding oxygen atoms are located) when
the droplet is expanded along the (xy) plane (see also the snap-
shot at t = 16 ps in Fig. 7). The fraction of evaporated He
atoms scales as 1/t3 and its asymptotic value is above 0.97,
whatever the potential model be. Overall, our CT calculations
indicate that the collision dynamics is mainly governed by the
repulsive part of the He−TiO2 PES.

Let us see how these results compare with those ob-
tained with the TDDFT method. As can be seen by contrasting
Figs. 6 and 7, the snapshots reveal a similar global picture up
to t = 16 ps: the compression (extension) of the cluster along
the symmetry z axis (xy plane) arising from the attraction with
the TiO2(110) surface. At very close distances to the surface,
however, the picture changes very significantly (snapshots at
t = 22 ps): while the TDDFT method discloses the spreading
of the helium droplet, forming a thin film above the substrate
with a relatively low fraction (∼30%) expelled backwards,
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FIG. 7. Snapshots showing the classical dynamics evolution of a 4He300
cluster at impact with the TiO2(110)-(1×1) surface. The TiO2(110) surface
is located at 25 Å from the helium cluster center-of-mass where the origin
of the reference system is located. The panels correspond to times t = 0, 8,
16, and 22 ps. Red arrows indicate the velocity vector of the helium atoms
with −1.5 < z < 1.5 Å (those marked with dark-gray colored spheres). The
spherical helium atom surfaces with van der Waals radii were added to fa-
cilitate the visualization. See also the MD movie presented as supplementary
material.41

CT calculations predict the splashing of the droplet and
evaporation of the helium atoms at impact. Once again, this
result highlights that the collision process, at the high velocity
of the droplet in the experimental measurements, is very sen-
sitive to the repulsive region of the He−TiO2 interaction: the
short-range He−He correlations, which are phenomenologi-
cally accounted for within the TDDFT method, play a crucial
role in keeping the helium atoms together during the impact
with the substrate (i.e., “surviving” to the repulsive part of the
He-surface interaction). As mentioned above, our dynamics
calculations have been accomplished assuming a (rigid) sur-
face at T = 0. Molecular dynamics simulations considering
a thermal vibrating surface could result in a larger degree of
spreading of the helium droplet than that obtained from our
CT calculations.

IV. SUMMARY AND CONCLUDING REMARKS

As a first step towards a microscopic description of he-
lium droplet mediated deposition of catalytic species on sur-

faces, we studied the collision of a helium droplet with the
TiO2(110)-(1×1) surface where the He-surface interaction
was computed from first principles. Based on a previous
study,27 we adopted a periodic DFT-PBE approach to perform
the electronic structure calculations on a three-dimensional
grid. Consistently, a time-dependent DFT approach, which
was previously developed and proved to study different dy-
namical process in helium droplets,20 has been chosen to de-
scribe the helium nuclear motion.

The first part of this work has been devoted to pro-
viding and analyzing analytical functional forms for the
He−TiO2(110)-(1×1) PES by fitting the calculated DFT-
PBE interaction energies. Being aware of the necessity (and
lacking) of this analytical PES both to carry out model
calculations of helium atom diffraction and to interpret
the corresponding experimental patterns, we analyzed two
model He-surface potentials used in this context: the HCW
and the CM potential models. Whereas the results obtained
with the HCW potential model are useful in providing the
structural corrugation of the surface, no information on
selective-adsorption resonances can be obtained. On the other
hand, the well region of the laterally averaged He-surface and
supported bound states is properly described within the CM
potential model, but it is unable to provide fine details of the
potential as the evidenced anti-corrugation and its change of
sign to corrugation at close He-surface distances. Moreover,
the third-order potential Fourier coefficients are found to
invert the signs of those numerically calculated from the DFT-
PBE energies. Finally, we propose a 3DM potential model
for several reasons. First, it is able to reproduce the potential
anti-corrugation. Second, the imprecision of the electronic
structure calculations is smoothed out. Third, the convergence
rate of the Fourier series coefficients to zero as |G| increases is
faster. The laterally averaged potential was further corrected
by adding a damped −C3/z3 term. Next, the additive pairwise
model for the HeN-TiO2(110) potential was proved for N = 2,
demonstrating its accuracy as long as the interatomic He−He
distances are within the effective range in liquid helium.

The second part of this paper has been focused on the
outcome of TDDFT calculations for the evolution of a 4He300

cluster upon collision with the TiO2(110) surface at T = 0.
Our TDDFT results predict a fast spreading (a few tens of pi-
coseconds) of the helium droplet on the substrate, with the
sticking probability at ∼70%. In contrast, classical dynam-
ics results show the splashing of the helium cluster at impact,
with the trapping probability below 0.03 irrespective of the
potential model considered. Additional correction of the po-
tential with a −C3/z3 long-range tail is proved to attain a mi-
nor influence on the dynamics: due to the high velocity of the
helium droplet (200 m/s from Ref. 7) the collision process
is mainly driven by the repulsive part of the He−TiO2(110)
PES. Therefore, short-range correlation effects, which are
accounted for in the TDDFT formulation, play a key role
in keeping the helium atoms together during the impact. Al-
together, our dynamics calculations therefore highlight the
importance of using a quantum-mechanical formulation to
characterize accurately the dynamical evolution of the helium
density in the collision with a prototype metal-oxide surface
at T = 0. This work thus provides the basis for a further
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theoretical study of helium mediated deposition of catalytic
species, which has been monitored experimentally.7 This is-
sue will be addressed in the second paper of this series.
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