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Cosmic microwave background (CMB) experiments, such as WMAP and Planck, measure intensity
anisotropies and build maps using a linearized formula for relating them to the temperature blackbody
fluctuations. However, this procedure also generates a signal in the maps in the form of y-type distortions
which is degenerate with the thermal Sunyaev Zel’dovich (tSZ) effect. These are small effects that arise at
second order in the temperature fluctuations not from primordial physics but from such a limitation of the
map-making procedure. They constitute a contaminant for measurements of our peculiar velocity, the tSZ
and primordial y-distortions. They can nevertheless be well modeled and accounted for. We show that the
distortions arise from a leakage of the CMB dipole into the y-channel which couples to all multipoles, mostly
affecting the range l≲ 400. This should be visible in Planck’s y-maps with an estimated signal-to-noise ratio
of about 12. We note however that such frequency-dependent terms carry no new information on the nature
of the CMB dipole. This implies that the real significance of Planck’s Doppler coupling measurements is
actually lower than reported by the collaboration. Finally, we quantify the level of contamination in tSZ and
primordial y-type distortions and show that it is above the sensitivity of proposed next-generation CMB
experiments.

DOI: 10.1103/PhysRevD.94.043006

I. INTRODUCTION

Both WMAP [1] and Planck [2] cosmic microwave
background (CMB) experiments measured photon intensity
anisotropy maps at different frequencies, which were then
combined to extract a pure blackbody spectrum, filtering
out other signals with different spectra. However such a
procedure has been carried out only at the linearized level
in temperature fluctuations δT=T, and in the present work
we show that at second order a y-type distortion in the
CMB is generated, not due to any primordial process but
due to this map-making procedure (for a review on y-type
distortions see, e.g., Ref. [3]). These distortions can (and
should) nevertheless be modelled and accounted for in
order to remove contaminations from the measured y-maps.
Even assuming the CMB to be a pure blackbody in its

rest frame, such fake spectral distortions are “generated”
dominantly by the CMB dipole, since it is by far the
largest CMB temperature fluctuation. Actually, all first-
order perturbation quantities in temperature generate
y-distortions in the usual map-making procedure at the
quadratic level. The largest such distortion (∼10−6) comes
of course from the dipole terms squared, which produce
quadrupole distortions in the y-maps, first discussed in
Ref. [4], and monopole distortions [5]. The second largest
(∼10−8), discussed in Ref. [6], consists in couplings
between different multipoles, that arise from cross-terms
containing the dipole and the other multipoles. The main
goal of this paper is to quantify such y-type couplings.
The dimensionless amplitude Δ1 of the CMB dipole was

measured by Planck to be ð1.2345� 0.0007Þ × 10−3 [7].

This value is understood to be mostly due to the velocity of
the observer, i.e., our peculiar velocity.
We note however a fraction of the dipole should be also

generated by the dipolar part of the large-scale gravitational
potential [8], at least to Oð1%Þ in a standard scenario.
Neglecting this and assuming our velocity to be the only
contribution to the CMB dipole, we get Δ1 ¼ β≡ v=c. A
boost has two effects on an image of the sky: Doppler
and aberration. While aberration only changes the arrival
direction of photons, Doppler affects the frequency spec-
trum in a direction-dependent way. The Doppler effect is
nontrivial even if a map is completely homogeneous in the
rest frame, inducing an order βl effect on a multipole l.
Since β ∼ 10−3 in practice this affects significantly only the
dipole, the quadrupole and the monopole; for the dipole it is
the dominant component, and for the quadrupole it is a
small but non-negligible correction [9,10]. Even though the
dipole is still a blackbody, it was pointed out originally in
Ref. [4] that the quadrupole has instead a y-type spectrum,
and it has been shown that the y-type nature of the
kinematic quadrupole alters and actually increases the
significance of anomalous quadrupole-octupole alignments
[9] and it could also affect the high frequency calibration of
the Planck experiment [10] (although see Ref. [11]).
The Doppler effect also induces a coupling between

different multipoles in nonhomogenous maps. For this
purpose we can decompose the CMB primordial temper-
ature in the rest frame as a monopole plus perturbations,
dependent on the n̂ direction, T ¼ T0 þ εδTðn̂Þ, where we
define ε≡ 10−5 and so δTðn̂Þ for large scales is of order
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unity. On such maps Doppler induces a l, l� 1 correlation
of order βε ∼ 10−8. Aberration induces a βε coupling
between l with l� n, which is not a simple function in
harmonic space [12], but the main effect in practice of
which is also a l, l� 1 correlation [13–16], which was
measured (together with Doppler) by Planck at 2.8σ [6]. As
wewill now show there is an additional l, l� 1 correlation
created by the map-making procedure which creates y-type
distortion of the blackbody spectrum and which also
shows up as a Doppler-like l, l� 1 correlation. Such
y-distortions were computed also in the context of moving
clusters by Ref. [17], for the quadrupole by Refs. [4,5,18],
for the superposition of two blackbodies by Ref. [5], and
as an enhancement of preexisting y-type distortions by
Ref. [19]. See also Refs. [6,13].

II. SIDE EFFECTS OF LINEARIZING
TEMPERATURE

In a given frame (which could be the CMB rest frame or
another boosted frame) an observer measures blackbody
photons with observed frequency ν with a specific intensity
(or spectral radiance):

IðνÞ ¼ h
c2

2ν3

e
hν

kBTðn̂Þ − 1
: ð1Þ

Here we decompose Tðn̂Þ ¼ T0 þ ΔTðn̂Þ. Following CMB
conventions, in what follows for simplicity we will refer to
specific intensity as just “intensity,” although technically
this latter term usually refers to the bolometric specific
intensity. Taylor expanding to first order we get

δIðν; n̂Þ ≈ h
c2

2ν4e
ν
ν0

T2
0ðe

ν
ν0 − 1Þ2

δTðn̂Þ≡ K
ΔTðn̂Þ
T0

; ð2Þ

with ν0 ≡ kBT0=h ¼ ð56.79� 0.01Þ GHz [20]. This
approximate equation is commonly used by the CMB
collaborations to define temperature as δIðν; n̂Þ=KðνÞ,
which, although not dependent on frequency, differs from
the real thermodynamic T. Following Ref. [9] we refer to
Lðn̂Þ≡ δIðν; n̂Þ=K as the linearized temperature.
We stress however that one should not stop the above

expansion at first order, because second-order terms are
non-negligible. Extending (2) to second order we get

Lðν; n̂Þ ¼ ΔTðn̂Þ
T0

þ
�
ΔTðn̂Þ
T0

�
2

QðνÞ; ð3Þ

where

QðνÞ≡ ν

2ν0
coth

�
ν

2ν0

�
: ð4Þ

The second-order term in (3) tells us that any first-order
perturbation would appear as second-order blackbody
distortions in the CMB [21]. In particular, this specific

frequency dependency is called a y-type distortion and is
degenerate with the thermal Sunyaev Zel’dovich (tSZ)
effect [4]. In what follows we quantify such effects for
Planck and future experiments. Of course such an effect
could be removed simply by solving Eq. (3) for the variable
ΔTðn̂Þ=T0. However, since this has not been done in the
WMAP or Planck map-making procedure, one should be
aware that when analyzing y-type maps part of the signal is
contaminated by this QðνÞ-dependent term. In the rest of
this manuscript we quantify such effects for Planck and
future experiments.
In an arbitrary reference frame the Doppler term of order

β contributes to the CMB dipole, the amplitudeΔ1 of which
is a sum of two terms, Δ1 ∼ εþ β, which can be much
larger than ε (on the Sun’s frame we have Δ1 ∼ 10−3).
Using μ ¼ Δ̂1 · n̂, where Δ̂1 is the direction of the dipole,
we can split ΔT=T ¼ Δ1μþ δT=T and rewrite (3) as

Lðν; n̂Þ ¼ μΔ1 þ ε
δT
T0

−
1

2
~β2 − με~β

δT
T0

þ ε ~β

�
δTab

T0

�

þ
��

μ2 −
1

3

�
Δ2

1 þ
1

3
Δ2

1 þ 2εΔ1μ
δT
T0

�
QðνÞ

þ Lhigher: ð5Þ

Above δT refers to first-order temperature anisotropies for
l ≥ 2, ðδTab=T0Þ refers to the aberration terms, and ~β
refers to the contributions due to our peculiar velocity
(although this quantity in reality contains also some terms
due to intrinsic cosmological perturbations, as discussed
below). We have kept only leading-order terms of order
εΔ1 · δT=T, so Lhigher stands for terms of orderΔ3

1 or higher
(i.e., including terms of order ε2). This expansion is in
agreement with Ref. [6].
Note that all second-order terms which are not propor-

tional to QðνÞ are in fact true temperature fluctuations
due to a boost, contained in the first term of Eq. (3). In
particular in the second line in the above equation the first
term is the frequency-dependent Doppler-quadrupole (DQ)
discussed in Ref. [4], and the second is a y-type monopole,
analyzed in Ref. [5]. In the original version of Ref. [4] it
was hoped the DQ could be used to measure our velocity,
but the authors later understood it could not disentangle the
Doppler contributions of order β from the intrinsic dipole
of order ϵ. From (3) and (5) this is clear; no matter what is
behind Δ1 the QðνÞ distortions are the same. The last term
in the second line is also generated by the map-making
procedure, so it carries no new information about β.

A. Terms affected by our peculiar velocity

The terms proportional to ~β in Eq. (5) are the ones
physically generated directly by a Lorentz boost due to our
peculiar velocity and not from a leakage of the total dipole.
We nevertheless use ~β instead of β because it can contain
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also a contribution due to second-order effects of an
intrinsic large-scale mode of the gravitational potential.
In fact, as discussed in more detail in Ref. [8], such a mode
produces both aberration and Doppler couplings. While the
aberration couplings can only be mimicked by a fine-tuned
gravitational potential Doppler couplings are naturally
produced in a way which is exactly degenerate with a
boost in the case of Gaussian initial conditions from
inflation, even in the absence of a peculiar velocity.
Nevertheless other primordial scenarios do not produce
such couplings, so measuring the Doppler couplings and
comparing them to the dipole and to aberration can tell us
both about the primordial universe and about our peculiar
velocity. The fourth term in Eq. (5) therefore contains the
physical effect of a genuine Doppler coupling due to our
velocity and can be used to measure β.
However one should not construct an estimator aimed at

measuring the sum of the fourth and last terms of Eq. (5)
because the latter does not necessarily come froma boost, and
so it may tell us nothing about the physical nature of the
dipole. Unfortunately this is precisely what was done in
Ref. [6], where theQðνÞ termswere also considered under the
name of boost factors. The collaboration was nevertheless
aware that part of the signal in their estimators would have
“arisen in the presence of any sufficiently large temperature
fluctuation” [6], but they did not conduct a separate analysis
removing the QðνÞ terms. As a consequence their measure-
ment has in reality slightly less significance than thevalue that
was quoted, because the estimator should not have been
multiplied by the boost factors if one wants a truly physically
independentmeasurement of our velocity. Instead the optimal
procedure is to remove the QðνÞ-dependent terms and then
measure the couplings.
Measuring the QðνÞ terms can serve only the purpose

of a cross-check, as we discuss below in Sec. III. Moreover,
in the case in which the analysis is carried directly on
component-separated CMB maps, the QðνÞ could have
already have been projected out, in which case no average
boost factor should be included. This is not the case for the
analysis in Ref. [6] using the CMB maps, because these
maps did not project out the tSZ signal, as we show below.
Clearly, theQðνÞ terms can also appear as contamination

on the tSZ measurements and of primordial y-distortions,
which rely on the same channel. We address all these issues
below in Sec. IV.

B. All-scale dipolar distortion

There are two terms proportional to QðνÞ in (5):

2QðνÞ μ
2Δ2

1

2
≡ yDQ; 2QðνÞμΔ1ε

δT
T0

≡ yDD: ð6Þ

The yDQðn̂Þ and yDDðn̂Þ correspond to conventional y-type
distortion maps. The former was thoroughly discussed in
Ref. [4]. The latter term we refer to as an all-scale dipolar

(or Doppler) distortion (DD), since it affects all multipoles
[5] and since the dipole is supposed to be mostly due to
Doppler. In this paper we stress that these dipolar dis-
tortions should be visible in Planck’s data, as discussed
below. We will elaborate the consequences of this term in
what follows; from (3) and (5) however we remind the
reader again that the DD are insensitive to the origin of the
dipole and thus, just like the Doppler quadrupole, it cannot
be used to measure our peculiar velocity independently of
the temperature dipole.
From the above equation the DD coefficients of the

yDDðn̂Þ-map can be written in multipole space as a function
of the aTlm [the harmonic coefficients of δTðn̂Þ=T0] as
[13,15,22],

aDDlm ¼ Δ1ðGl;maTl−1m þ Glþ1;maTlþ1mÞ; ð7Þ

with Gl;m ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þ=ð4l2 − 1Þ

p
.

As a consequence the aDDlm coefficients can be predicted
since the aTlm are known by the temperature maps. Note
also that the above equation assumes the dipole to be along
the ẑ axis, when making the harmonic decomposition; we
first discuss this simplified framework and then discuss the
general case.

III. DETECTING THE DD IN THE y-MAPS:
A CONSISTENCY CHECK

As stressed in the Introduction one could now perform a
consistency check, trying to detect the DD signal in the y-
maps. In other words one could measure Δ1 on such maps,
without using information from the measurement of the
usual blackbody dipole. For this purpose one can first
measure the aTlm (with l > 2) by building a map which
contains the pure blackbody signal, obtained combining in
a suitable way the different intensity channels of an
experiment (such as Planck), and in this way we can
compute the aDDlm coefficients using Eq. (7). Subsequently
we can build a second map of the signal proportional to
QðνÞ by using a different linear combination of the
frequency channels and look on this map for such expected
aDDlm . In this way we provide a consistency check which we
can rephrase as a measurement ofΔ1, which is the only free
parameter in aDDlm . Note that for this purpose we will treat
the tSZ effect, which has the same QðνÞ dependence, as a
noise. Instead in the next section we will do the opposite:
check what is the noise generated by the DD on tSZ maps.
Let us assume that the CMB is made of N different

signals, which can include cosmological signals as well as
foregrounds and noise, such that the linearized temperature
is L ¼ P

nαnLnðν; n̂Þ. For instance here the CMB black-
body signal LCMB would be only a function of n̂, flat in ν,
coming from the first line of Eq. (5):
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LCMB ≡ δTðn̂Þ
T0

þ μΔ1 −
1

2
~β2 − με ~β

δTðn̂Þ
T0

: ð8Þ

Given an experimentwhich has different channelsLðνkÞ, k ¼
1;…; K (for PlanckK ¼ 9) we can combine themwith some
weights wi and build arbitrary combinations (maps M):

M ¼
X

channel i

wiLðνiÞ: ð9Þ

To fix the weights we need to specify K constraints. If for
instancewewant to project out theCMBblackbody signalwe
can build amapwith

P
iwi ¼ 0, while if wewanted to project

out the y-type signal we should impose

Qeff ≡
X
i

wiQðνiÞ ¼ 0: ð10Þ

This was not done however in Planck CMB maps, as we
discuss in more detail in Appendix A.
In general, the procedure above can be used to project

out several linearly independent signals, as long as they can
be factorized as a frequency-dependent function times an
angular-dependent function. At most we can project out
K − 1 signals (one constraint is the overall normalization of
the map which has to be fixed). As already mentioned the
tSZ is also proportional to QðνÞ,

LtSZðν; n̂Þ ¼ ð2QðνÞ − 4ÞytSZðn̂Þ; ð11Þ
so that the DD is a linear combination of a pure CMB signal
and a pure tSZ signal.
We consider then a y-projected mapMyðn̂Þ, in which the

CMB and other foregrounds are projected out. Such maps
have been already constructed for Planck [21,23,24]. Their
harmonic coefficients are then a sum of three terms,

aylm ¼ atSZlm þ aDDlm þ nylm; ð12Þ
where nylm is a noise signal on such a map, with spectrum
Nyy

l ≡ hjnylmj2i. Note that at the level of the angular power
spectrum Cyy

l ≡P
mjaylmj2=ð2lþ 1Þ the DD gives only a

tinyΔ2
1 correction in full-sky maps, similar to what happens

in the CMBmaps [25], but it is clearly visible at the level of
the individual alm’s as follows.

1 As we said, since we are
focusing on a detection of the DD signal in the y-maps, we
treat here the tSZ signal as noise. Following Ref. [15] we
define

aDDlm ≡ Δ1âDDlm ð13Þ
and build a χ2 from which we compute the signal-to-noise
ratio. Since the DD affect both real and imaginary parts
of the temperature alm’s we can treat both these terms
independently and write

χ2 ¼
Xlmax

l¼3

Xl
m¼0

Re½āylm − Δ1âDDlm �2
σ2lð1þ δm0Þ=2

þ
Xlmax

l¼3

Xl
m¼1

Im½āylm − Δ1âDDlm �2
σ2l=2

; ð14Þ

where āylm are the measured harmonic coefficients of the
y-projected map and σ2l ¼ Nyy

l þ CtSZ
l in the case in which

we consider for simplicity a Gaussian tSZ. From this we
can estimate the signal-to-noise ratio directly as

�
S
N

�
2

¼
Xlmax

l¼3

Xl
m¼0

Re½aDDlm �2
σ2lð1þ δm0Þ=2

þ
Xlmax

l¼3

Xl
m¼1

Im½aDDlm �2
σ2l=2

¼
Xlmax

l¼3

Xl
m¼0

jaDDlm j2
σ2l

ð2 − δm0Þ: ð15Þ

The relative estimator can be built by minimizing the χ2,
which leads to

Δ̂1 ¼
Plmax

l¼3

Pl
m¼0 Re½āylm · âDD�lm �=ðσ2lð1þ δm0ÞÞPlmax

l¼3

P
l
m¼0 jâDDlm j2=ðσ2lð1þ δm0ÞÞ

: ð16Þ

Note also that we have omitted the quadrupole from this
sum, which would have an Oð ~βϵÞ coefficient that is not
predictable, since aT10 is not known, being dominated by the
velocity itself. Moreover we have already seen that the
quadrupole has an OðΔ2

1Þ term in Eq. (5), which we also
discuss separately below.
Equation (15) gives the exact DD signal-to-noise ratio

and is the one we used to compute our results. It is
nevertheless useful to consider the following simple
approximation for the total DD signal. The overall signal
contained in each l (after summing over m) can be
obtained by first noting, following Ref. [12], that the
average value over m’s of the Gl;m coefficients is roughly
0.39 and its root mean square is roughly 0.41. Now
hjaTl−1m þ aTlþ1mj2i≃ CTT

l−1 þ CTT
lþ1 ≃ 2CTT

l . Note also that
there are lþ 1 non-negative m’s for each l, but the m ≠ 0
terms count as double due to the ð2 − δm0Þ term in (15).
Substituting these approximations into (7) we arrive at the
following the average DD signal,

SDDðlÞ≡ 0.41Δ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ffiffiffiffiffiffiffiffiffiffi
2CTT

l

q
; ð17Þ

and thus

�
S
N

�
2 ≃Xlmax

l¼3

�
SDDðlÞ
σl

�
2

: ð18Þ

This approximation yields very similar results to the full
calculation and allows for a better understanding on the
dependence of the DD on the different multipoles.

1Alternatively one could look at two-point functions of the
form haylmaylþ1mi as in Refs. [12,14,15].
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An estimate for the tSZ spectrum can be taken from
Fig. 2 of Ref. [24] or from Fig. 17 of Ref. [21]. An estimate
for the Nyy

l noise for Planck can be taken from Fig. 5 of
Ref. [21], which relies on the tSZ-projected maps con-
structed using either. In Fig. 1 we combine these estimates,
together with an estimate of the total DD signal in each l as
per Eq. (17). Note that current experimental noise is still of
the same order of the best-fit tSZ templates but future
experiments such as COrE [26] will have noise levels well
below them (we assume here a resolution of 4 arc min and a
conservative 2 μK arc min noise level).
In Fig. 2 we depict the achievable precision δΔ1 in the

inferred value of the dipole by both Planck and COrE (or
COrE+, PRISM [3], PIXIE [27] or any full-sky experiment
with considerably smaller noise than the tSZ spectrum:
Nyy

l ≪ CtSZ
l ), using such a consistency check. Since in this

case the detection is only limited byCtSZ
l it depends directly

on its amplitude. We thus consider two cases: the best fit
and the 2σ lower bound amplitudes of the tSZ template as
given by Fig. 17 of Ref. [21].
We also have built ideal full-sky simulations of the TT

and of the y-maps, and we have added the DD effect to the
latter maps using Eq. (7), with a value of Δ1 as given by the
measured dipole. We have run the estimator in Eq. (16) on
300 simulations (for each case), and we plot in Fig. 2 the
standard deviation over the mean of the reconstructed value
for Δ1, as a cross-check of Eq. (15). Even for Planck the
significance is estimated to be very high, at around 12σ.
Note that for Planck there is almost no signal after l≳ 400
since the noise starts increasing very rapidly while the
signal slightly decreases, as can be seen from Fig. 1; for
COrE the situation is similar because, even if the noise is
negligible, the ratio between the tSZ contamination and the

DD signal increases for l≳ 400, and thus the signal-to-
noise grows slowly with lmax for lmax ≳ 400.
The extension of our estimators to the case of a generic

direction of the dipole Δ1 ≡ ðΔ1x;Δ1y;Δ1zÞ was derived to
first order in Eq. (6.1) of Ref. [22]. In this case, the χ2

depends linearly on the three components of the dipole, and
by minimization it is straightforward to obtain the estima-
tors Δ1x;Δ1y and Δ1z. The absolute uncertainty on each
single component is given by the exact same estimate of
Fig. 2, and this can also be translated on an uncertainty on
the direction angle by the simple relation δΔ1=Δ1 ¼ δθ, as
discussed already in Ref. [15].
We have also tested in depth whether the droppedOðΔ2

1Þ
terms could produce any bias to our estimator by including
them in the simulations described above. We got no
discernible bias on the inferred Δ1 nor any change in
the scatter (as illustrated by the red curves in Fig. 2). These
terms can thus be safely ignored here. For completeness

we give the coefficients of aDDð2Þlm derived assuming Δ1 ¼ β
and expanding Eq. (1) to Oðβ2Þ,

âDD ð2Þ
lm ¼ β2ðd0lmaTlm þ d−lma

T
l−2m þ dþlma

T
lþ2mÞ;

d0lm ¼ Pðν=ν0ÞðG2
l;m þ G2

lþ1;mÞ þ
1

2
−QðνÞ;

dþlm ¼ Pðν=ν0ÞGl−1;mGl;m;

d−lm ¼ Pðν=ν0ÞGlþ1;mGlþ2;m; ð19Þ

with PðxÞ ¼ ½2xþ x coshðxÞ − 2 sinhðxÞ�xex=ðex − 1Þ2.
Note that such tiny Oðβ2Þ effects exhibit a different
frequency dependence from the tSZ.

FIG. 1. Comparison of spectra between tSZ signal and Planck
MILCA and NILC noise. For the tSZ signal, we show both the
best-fit and the 2σ region allowed by present data [21]. In dashed
green we plot the approximate overall Doppler distortion signal
given by SDD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=ð2πÞp

[see Eq. (17)]. In dotted yellow
we show the noise of the proposed COrE satellite, which lies well
below the tSZ signal.

FIG. 2. Achievable precision for measuring the dipole ampli-
tude Δ1 with both Planck (top curve) and the proposed COrE
satellite (middle and bottom curves). For Planck we assume the
noise levels obtained with the MILCA component separation
method. For COrE we depict the signal corresponding to both the
best fit and the 2σ lowest value of CtSZ

l (see Fig. 1). The thin red
curves represent the average of 300 simulations used as cross-
check to Eq. (15). On the right side we show the precision on the
direction, using that (see Ref. [15]) δΔ1=Δ1 ¼ δθ (in radians).
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So far we have focused on the OðεΔ1Þ effects in Eq. (5).
Let us come back again to the DQ term in Eq. (5), which
was shown to be measurable in Ref. [4]. In principle this
can seen by Planck; different map-making techniques for
extracting the blackbody signal have in fact different
combinations of frequencies. Each map MðLÞ (SMICA,
NILC, SEVEM and Commander, in the case of Planck
[28]) has weights wL

i . Following Eq. (10) this leads to
different effective QL

eff terms for the different maps. So,
when subtracting any two of such maps Mð1Þ and Mð2Þ, a
quadrupole remainder should be observed proportional

to ΔQeff ≡Qð1Þ
eff −Qð2Þ

eff .
We stress here that such a remainder also contains a

signal which allows us to make a consistency check, giving
a measurement of Δ1, and in the next section we will
show how this can contaminate a tSZ map. The Planck
Collaboration is aware of this, but they have not conducted
such a check explicitly on the grounds that it would require
a better understanding of the quadrupole foregrounds [6].
We can estimate the signal-to-noise ratio of the DQ on a
temperature map as ðS=NÞDQ ¼ 2.725Qeffðβ2=2Þ=Nl¼2.
The most straightforward estimation is to use directly a

tSZ-projected map, for whichQeff ≡ 1 by construction. For
Planck we get that, according to Fig. 1, we can estimate it as
ðS=NÞDQ ≃ 17 (MILCA) or 16 (NILC).

IV. DD AS A CONTAMINATION TO TSZ
MEASUREMENTS AND PRIMORDIAL

y-DISTORTIONS

We now discuss how the DD can contaminate the
standard tSZ measurements. The DD effects are maximal
close to the dipole direction and its antipode. Figure 3
depicts both DD and tSZ maps in a region around the dipole
direction. The DD is expected to be just a small, ∼7% effect
which is added to the tSZ maps. This is well below Planck’s
instrumental noise, which is above the ∼50% level at all

scales. But it is above the expected COREþ noise levels
and should therefore be subtracted in the future. At the level
of the power spectrum the corrections are tiny, OðΔ2

1Þ,
because they mediate to zero in full sky. We also show in
the full-sky map the amplitude of the DQ in a y-map. Let
us also note here that such distortions, if not properly
accounted for, could in principle affect also measurements
of intrinsic spectral distortions. For instance PIXIE [27]
should measure with a sensitivity of 10−9 primordial y
distortions, which are expected to be produced at recombi-
nation at the 10−7 level.
When measuring such distortions in the monopole it is

certainly necessary to remove the QðνÞ monopole in
Eq. (5), which is Oð10−7Þ, as noted in Ref. [5].
However it is also relevant to remove the DD and DQ
distortions. In fact, when introducing a mask, any multipole
could leak into the monopole. Moreover one could be also
interested in adapting future experiments like PIXIE [27]
and PRISM [3] to measure directly spectral distortions
of l ≥ 1 multipoles (see Ref. [19] for the dipole). In this
case a removal of DD and DQ is necessary because it is
higher than the instrument sensitivity. Finally let us note
that in Ref. [5] y-distortions due to effects of order ε2 ≈
10−10–10−11 were also studied.
The presence of a mask enhances the leakages into the y-

channel. This is proportional to the asymmetry of the mask.
For the power spectrum there will be an OðΔ1Þ leakage
on the Cyy

l (similar to Ref. [29]), δCyy
l ≈ 2Δ1hcos θi×

ðCTT
l CtSZ

l Þ1=2, where h·i is an angular average over the
masked sky. Assuming a mask asymmetry of 10%, there
would be a 2% contamination at l ≤ 15, decreasing at
higher l. For small-sky experiments such as ACT
(hcos θi ¼ 0.51 [30,31]) the bias is larger, about 2% at
l ≈ 1000. For the maps, such a mask would also induce a
10−7 leak from the DQ and a 10−9 leak from the DD, which
could affect the measurements of the y-distortions in the
monopole. We stress however that such leakages can be

FIG. 3. Maps for comparison between the dipolar distortions and the tSZ. Left: the DQ leakage in the full sky, in galactic coordinates.
Middle: the DD leakage for a 40° × 40° region (in a Gnomonic projection) around the dipole direction, where the effect is largest. Right:
same as the middle panel for the simulated tSZ, according to the best-fit Planck CtSZ

l . As can be seen, even around the dipole the DD bias
is small, less than 7% (15%) assuming the current best-fit (2σ lower-limit) CtSZ

l . It can be ignored in Planck data but not in future
experiments like CORE+, PIXIE and PRISM, where it can be higher than the forecast noise.

ALESSIO NOTARI and MIGUEL QUARTIN PHYSICAL REVIEW D 94, 043006 (2016)

043006-6



easily avoided by the use of a symmetric mask, as proposed
in Ref. [22], or by subtraction using Eq. (7).

V. DISCUSSION

We have shown that, using a linearized formula for
extracting the temperature fluctuations from intensity, one
always also induces a leakage on the y-maps. Such a signal
is dominated by a leakage of the dipole, the amplitude of
which is Δ1 ≈ 10−3, and it contains in addition to the
known quadrupole (DQ) and monopole of order Δ2

1 also a
signal proportional to the blackbody temperature map times
a dipolar modulation of order Δ1 over the whole sky, which
comes from a cross-term between the dipole and the rest
of the map. Using the information from the temperature
blackbody map, we are able to predict precisely the latter
signal (which we called DD) at the level of the individual
aylm’s. As we have shown the DD should be present already
in Planck at about 12σ, and future experiments are only
limited by the degeneracy with the tSZ signal. Detecting
this type of signal constitutes a consistency check of the
map-making procedure. We also pointed out that the
measurement performed in Ref. [6] should have first
removed the y-type part of the signal, which is not carrying
information independent from the CMB dipole, and then
should have measured the blackbody Doppler couplings
which are truly induced by a boost. Applying such a
procedure will lead to a decrease in the signal-to-noise ratio
in the Doppler estimator.
Vice versa, we stress that all such signals should be

subtracted in order to see the tSZ signal or other physical
y-distortions in a clean way. We have shown that the DD
signal, which spans over all angular scales, is at most
between 7% and 15% of the tSZ signal close to the
direction of our dipole (see Fig. 3) and is less important
in regions which are far away from it. This may not be a
large contamination, but it is higher than the expected
instrumental noise levels in the next-generation CMB
experiments. For comparison the DQ is the largest dis-
tortion, but it only affects the l ¼ 2 mode.
Moreover such effects could contaminate measurements

of intrinsic spectral distortions in the CMB; while a
monopole and a DQ are known to give rise to a 10−7

signal we have pointed out that the DD gives rise to a non-
negligible 10−8 signal on all multipoles. Even if one
focuses on measuring only monopole distortions, also
the latter should be carefully subtracted in order to avoid
possible leakages due to partial sky coverage.
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APPENDIX: DD IN PLANCK MAPS

Planck maps were not built with the goal of removing the
dipolar distortions. In fact their CMB temperature maps do
not even project out the y-channel. This is probably due to
the fact that the tSZ was not a large foreground and thus not
removed in their different component separation tech-
niques. This can be explicitly seen for the SMICA maps.
In particular for SMICA 2013 and 2015 we computed
explicitly the sum Qeff ¼

P
iwiQðνiÞ of Eq. (10) using the

reported weights for all different multipoles. The result is in
Fig. 4. The weights were reconstructed from Refs. [32] and
[28]. Note that the result is different from zero at all scales,
meaning that there is a contamination due to the y-channel
and thus also due to the DD. For the other map-making
techniques used by Planck (NILC, SEVEM and
Commander) defining an effective Q for different scales
is not a straightforward task as they are not obtained
through a simple weighted sum in harmonic space.

FIG. 4. The weighted sum Qeff ≡P
iwiQðνiÞ of the y-channel

contribution to Planck SMICA 2013 and SMICA 2015 CMB
temperature maps. See also Sec. III.
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