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We propose an exact formula for the energy radiated by an accelerating quark inN ¼ 2 superconformal
theories in four dimensions. This formula reproduces the known bremsstrahlung function for N ¼ 4

theories and provides a prediction for all the perturbative and instanton corrections in N ¼ 2 theories. We
perform a perturbative check of our proposal up to three loops.
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Introduction and review.—Many interesting questions in
quantum field theory revolve around the behavior of
external probes coupled to the theory. In particular, if a
heavy particle moves with some proper acceleration a in
the vacuum of a gauge theory, it radiates energy propor-
tional to the proper acceleration squared:

E ¼ 2πB
Z

dta2: ð1Þ

The well-known result (Larmor’s formula) for a particle of
charge e in Maxwell’s theory is

B ¼ e2

12π2
: ð2Þ

A convenient way to describe a charged heavy probe is
by a Wilson operator. It is labeled by the representation R
of the gauge group and worldline C. To discuss energy loss,
start with a probe at rest that receives a sudden kick,
continuing thereafter at a constant speed. The worldline
thus has a cusp, and the vacuum expectation value of the
Wilson operator develops a logarithmic divergence that
depends on the boost parameter φ:

hWφi ∼ e−ΓcuspðφÞ logðΛUV=ΛIRÞ; ð3Þ

where ΛUV and ΛIR represent UV and IR cutoff scales,
respectively [1]. The quantity ΓcuspðφÞ is the cusp anoma-
lous dimension, and it enters a number of questions, like the
IR divergences in the scattering of massive particles. It has
been computed to three loops in QCD [2] and in N ¼ 4
super Yang-Mills (SYM) theory [3] and to four loops in
planar N ¼ 4 [4].
While obtaining the full expression for ΓcuspðφÞ in any

interacting gauge theory appears to be a daunting task,
various limits of this function are more accessible and
already encode interesting physics. In what follows, we will
limit the discussion to conformal field theories, although
some of the results are more general. In the limit of very
large boosts, ΓcuspðφÞ is linear in the boost parameter [5,6]:

ΓcuspðφÞ ∼ Γ∞
cuspφ ð4Þ

and characterizes the IR divergences of massless particles.
On the other hand, in the limit of very small boosts we have

ΓcuspðφÞ ¼ Bφ2 þOðφ4Þ: ð5Þ
The coefficient B was dubbed the bremsstrahlung function
in Ref. [7]. For conformal field theories it determines the
energy radiated by an accelerating quark [7], as in (1), and
its momentum diffusion coefficient [8].
Let us now discuss the Wilson line corresponding to a

probe moving at constant proper acceleration. We can
measure the energy density by studying the two-point
function of the stress-energy tensor and this Wilson line. In
conformal field theories, this is related by a conformal
transformation to the two-point function of the stress-
energy tensor and a straight Wilson line:

hTμνðxÞiW ≡ hWTμνðxÞi
hWi : ð6Þ

Its x dependence is determined by conformal invariance, up
to a single coefficient hW [9–11]:

hT00ðxÞiW ¼ hW
r4

; ð7Þ

where r is the distance from the line. There is no simple
general relation between B and hW [12].
The main subject of this Letter is the computation of

B in N ¼ 2 superconformal field theories (SCFTs).
We first review the case of the maximally supersymmetric
N ¼ 4 SCFT.
Review of N ¼ 4.—The massive probe is described by

the Wilson loop in a representation R of the gauge group

WR ¼ 1

dimR
trRP exp

�
i
Z

ðAμdxμ þ iΦiθ
idsÞ

�
: ð8Þ

Here, Aμ and Φi, i ¼ 1;…; 6, are the gauge fields and
scalars, respectively, of the N ¼ 4 vector multiplet, θi is
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some unit vector in R6, and P is the path ordering operator.
When the contour is a straight line and θi is constant,WR is
1=2 Bogomol’nyi-Prasad-Sommerfeld (BPS). Another 1=2
BPS configuration is given by a circular Wilson loop with
constant θi. The two configurations are formally related by
a conformal transformation.
For the straight line we have hWi ¼ 1. The transforma-

tion that relates the straight and circular Wilson loops turns
out to be anomalous [13]. It was conjectured in [13,14] and
later proved in [15] that the expectation value of the circular
Wilson loop is given by a Gaussian matrix integral over the
Lie algebra

hWi ¼
R
daTre−2πae−ð8π2N=λÞTrða2ÞR

dae−ð8π2N=λÞTrða2Þ ; ð9Þ

where λ ¼ g2N is the ’t Hooft coupling, with g the usual
Yang-Mills coupling.
According to Ref. [7], forN ¼ 4UðNÞ SYM theory this

vacuum expectation value determines the bremsstrahlung
function through

B ¼ 1

2π2
λ∂λ lnhWi: ð10Þ

In the ’t Hooft limit and at large λ, this agrees with the
replacement rule e2=3↔

ffiffiffi
λ

p
found via the AdS=CFT

correspondence [16,17].
On the other hand, the coefficient hWðλÞ in (7) was

computed in [18], obtaining a result proportional to B. This
relation was clarified in [12], who argued for N ¼ 4
theories that

B ¼ 3hW: ð11Þ
The argument relies on the existence of a dimension-two
scalar operator in the supermultiplet of the energy-
momentum tensor.
Some basics of N ¼ 2.—Let us now consider N ¼ 2

SCFTs in four dimensions. We can define the following
Wilson loop:

WR ¼ 1

dimR
trRP exp

�
i
I

ðAμdxμ þ iΦdsÞ
�
; ð12Þ

with Φ one of the scalars in theN ¼ 2 vector multiplet. As
before, if the contour is straight or circular, the Wilson loop
is 1=2 BPS. If we introduce a cusp, then we can infer the
bremsstrahlung coefficient according to (5).
The expectation value of the circular Wilson loop in

N ¼ 2 SCFTs can be obtained via localization [15] on S4.
It is also useful to review what happens when the Wilson
loop is placed on the ellipsoid:

x20
r2

þ x21 þ x22
l2

þ x23 þ x24
~l2

¼ 1: ð13Þ

In SCFTs, the expectation value of the Wilson loop is a
function of the dimensionless squashing parameter

b≡
�
l
~l

�
1=2

: ð14Þ

There are two supersymmetric Wilson loops on the
ellipsoid. They transform into each other under l↔ ~l
and approach the 1=2 BPS Wilson loop considered by
Pestun in the round S4 limit l ¼ ~l ¼ r. According to
Ref. [19] (see also [20,21]), the vacuum expectation value
of one of them is

hWbi¼
R
daTre−2πbae−ð8π2=g2ÞTrða2ÞZ1-loopða;bÞjZinstða;bÞj2R

dae−ð8π2=g2ÞTrða2ÞZ1-loopða;bÞjZinstða;bÞj2
;

ð15Þ
while the second Wilson loop is obtained by replacing
Tre−2πba by Tre−2πb

−1a. The integration in (15) is over the
Lie algebra. Zinst is Nekrasov’s instanton partition function
[22], with the equivariant parameters identified as

l ¼ ϵ−11 ; ~l ¼ ϵ−12 ; ð16Þ
thus, b≡ ðϵ2=ϵ1Þ1=2. The expression for the one-loop
determinant, Z1-loop, can be found in Ref. [19] (see
also [23]).
Consider now the normalized two-point function of the

stress-energy tensor with a straight Wilson line (6) in an
N ¼ 2 SCFT. It is some function of the marginal coupling
constants (7), hWðgiÞ. The stress-energy tensor belongs to a
short representation of the N ¼ 2 superconformal
group [24] that always contains a scalar of dimension
two, O2 [24]. Because the Wilson loop is BPS, there is a
relation between hWTμνðxÞi and hWO2ðxÞi. If we define
hO2ðxÞiW ¼ ðC=r2Þ, then hWðgiÞ ¼ 8

3
CðgiÞ. The derivation

of this relation follows the same steps as in N ¼ 4
theories [10].
Two conjectures.—Because the relation between

hWTμνðxÞi and hWO2ðxÞi exists in any N ¼ 2 theory,
one can imagine, as in [12], improving the energy-
momentum tensor in such a way that the leading singularity
near the Wilson line is removed.
Therefore, we suggest that the bremsstrahlung coeffi-

cient in N ¼ 2 theories can be inferred from hW as in (11):

B ¼ 3hW: ð17Þ
In general, N ¼ 2 theories contain many exactly mar-

ginal operators, and one should not expect a formula
analogous to (10), because these exactly marginal operators
are unrelated to insertions of the energy-momentum tensor.
Instead, we conjecture that the coefficient hW and therefore
the bremsstrahlung function for N ¼ 2 SCFTs is given by

B ¼ 3hW ¼ 1

4π2
∂b lnhWbijb¼1: ð18Þ

The proposal hW ¼ ð1=12π2Þ∂b lnhWbijb¼1 is motivated
by the fact that an infinitesimal equivariant deformation of
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S4 corresponds to an insertion of an integrated energy-
momentum supermultiplet [25].
In the absence of the Wilson loop, the background (13) is

invariant under ϵ1↔ϵ2, and therefore the Wilson loop
insertion Tre−2πba in Eq. (15) is the only factor in the
integrand that contains a term linear in b − 1. Therefore,
hWbi in (18) can be computed using the one-loop deter-
minant and instanton factors of the round S4 matrix model.
It is worth pointing out that, for planar N ¼ 2 super-

conformal gauge theories, there is an interesting proposal
[27,28] to obtain Γ∞

cusp from the corresponding quantity in
planar N ¼ 4 SYM theory, by applying a substitution rule
for the coupling. It would be interesting to see if that
procedure also generalizes for the coefficient B.
Tests of the conjectures.—In the rest of the Letter, we

provide some checks of the conjecture (18). For N ¼ 4
theories, we show that (18) is equivalent to (10). ForN ¼ 2
SCFTs, (18) predicts a deviation from the N ¼ 4 result
starting at the g6 order in perturbation theory. Indeed, we
find that conformal invariance ensures that the one- and
two-loop contributions to hW and Γcusp are independent of
the matter content. For SUð2Þ with four fundamental
hypermultiplets, we compute the g6 correction to Γcusp
and we find agreement with (18). In addition, we show [for
SUðNÞ with 2N fundamental hypermultiplets] that the
right-hand side of (18) is positive, as required by the
interpretation of B as the energy radiated by a quark. For
N ¼ 4 SYM theory, B and hW can be computed holo-
graphically [16,17,29], and the explicit leading-order
results satisfy the conjecture (17). These holographic
computations immediately extend to N ¼ 2 SCFTs that
are orbifolds of N ¼ 4 SYM theory, providing additional
evidence in favor of the conjecture.
N ¼ 4.—ForN ¼ 4U(N) SYM theory, it was proven in

Ref. [7] that

B ¼ 1

2π2
λ∂λ lnhWi: ð19Þ

Let us check that this is in agreement with our conjecture
(18). The localization formula gives

hWbi ¼
R
daTre−2πbae−ð8π2N=λÞTrða2ÞR

dae−ð8π2N=λÞTrða2Þ þO(ðb − 1Þ2):

ð20Þ
The rescaling of the integration variable a ¼ ffiffiffi

λ
p

~a makes it
manifest that hWbi is a function of a single variable b

ffiffiffi
λ

p
:

hWbi ¼
R
d ~aTre−2πb

ffiffi
λ

p
~ae−8π

2NTrð ~a2ÞR
d ~ae−8π

2NTrð ~a2Þ þO(ðb − 1Þ2): ð21Þ

Thus, the conjectured formula (18) follows.
Free N ¼ 2 Uð1Þ theory.—The simplest N ¼ 2 SCFT

is the free Abelian N ¼ 2 gauge theory. From the field
theory side, the value of hW is the same as for the free

Abelian N ¼ 4 SYM theory. In the matrix model compu-
tation, the instanton contribution is now different from the
identity [15], but, since it is moduli independent, it pulls out
of the integrals and cancels out. Therefore, our conjecture
(18) applies.
B and hW to two-loop order.—We now study nontrivial,

perturbative, N ¼ 2 SCFTs. The vanishing of the β
function implies that if we have nR hypermultiplets in
the representation R of the gauge group, then

CðAdjÞ ¼
X
R

nRCðRÞ: ð22Þ

As already noted in Ref. [15], this implies that the one-loop
determinant in (15) has no Oða2Þ term:

Z1-loopðaÞ ¼ 1þOða4Þ: ð23Þ
As a consequence, for N ¼ 2 SCFTs, the perturbative
expansion of hWi starts depending on the matter content of
the theory at the order of g6. If the conjectured formula (18)
is correct, the same thus must be true for the coefficients B
and hW .
We begin by considering hW , which is given by

hO2ðxÞWi, where O2ðxÞ is the superconformal primary
in the supermultiplet of TμνðxÞ. The strategy, as in
Ref. [30], is to focus on the diagrams where the hyper-
multiplets enter and argue that by virtue of (22) the result
does not depend on the matter content. At the order of g2

the hypermultiplets do not enter the computation, so the
claim readily follows. At the order of g4, hypermultiplets
appear only in the diagrams shown in Fig. 1. For each one
of these diagrams, the dependence on fnRg is through the
combination

P
RnRCðRÞ. Because of (22), this is inde-

pendent of the matter content.
For the diagrams contributing to the cusped Wilson line

Γcusp up to the order of g4 (see also [31]), we find the
following: At order g2, the diagrams that contribute do not
involve the hypermultiplets [Fig. 2(a)]. At the order of g4,
hypermultiplets enter in the one-loop correction of thevector

FIG. 1. Contributions to hO2ðxÞWi that include hypermultiplet
fields. Gauge fields are denoted with a wiggly line, vector
multiplet scalars are denoted with a double line, and hyper-
multiplet fields are denoted with a plain line (with an arrow for
fermions and without an arrow for scalars).
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multiplet scalar and vector field propagators [Fig. 2(b)]
through the factor

P
RnRCðRÞ, which is equal to CðAdjÞ

for conformal theories. Thus, forN ¼ 2 SCFTs, B does not
depend on the matter content up to the order of g4.
Since our proposal (18) gives the correct result for

N ¼ 4, it follows that the conjectured formula (18) is
correct up to the order of g4 in all N ¼ 2 SCFTs.
Cusp anomalous dimension to three-loop order.—At the

order of g6, hypermultiplets appear in diagrams of two
types: two-loop correction to the scalar and gauge field
propagator [Fig. 2(c)] and one-loop correction to the vertex
of three bosonic fields from the vector multiplet [Fig. 2(d)].
We will restrict to the case of the SUð2Þ gauge group, and
we will compare the theory with four fundamental hyper-
multiplets (N ¼ 2 SQCD) to the one with one adjoint
hypermultipet (N ¼ 4). The one-loop correction for the
vertex is the same for the two theories [30]. The dia-
grammatic differences between the two-loop correction to
the propagators in the two theories were calculated in
Ref. [30]. The two-loop propagator Dð2Þðx; yÞ of the gauge
field or vector multiplet scalar satisfies

Dð2Þðx; yÞN¼4 −Dð2Þðx; yÞN¼2 ¼
15

64π4
ζð3Þg4Dð0Þðx; yÞ:

ð24Þ
This leads to

hWφiN¼4
− hWφiN¼2

¼ 15

64π4
ζð3Þg4hWφiN¼4

þOðg8Þ:
ð25Þ

Thus,

BN¼4 − BN¼2 ¼
15

64π4
ζð3Þg4BN¼4 þOðg8Þ

¼ 45

2048π6
ζð3Þg6 þOðg8Þ; ð26Þ

where we have used BN¼4 ¼ ð3=32π2Þg2 þOðg4Þ for a
probe in the fundamental representation.

To compare this with our conjecture, we use the
localization result for the expectation value of a Wilson
loop (on the ellipsoid) in the fundamental representation:

hWbiN¼4 − hWbiN¼2 ¼
45

1024π4
ζð3Þg6b2 þOðg8Þ: ð27Þ

Thus, according to our conjecture,

BN¼4−BN¼2¼
1

4π2
∂bðhWbiN¼4−hWbiN¼2Þjb¼1þOðg8Þ

¼ 45

2048π6
ζð3Þg6þOðg8Þ: ð28Þ

This agreement is encouraging. Note that Eq. (18) contains
two independently motivated conjectures, relating hW to
two a priori different quantities. We regard the order of g6

match of these two quantities as evidence in favor of both
conjectures, since the chain of reasoning relating them
goes through hW . It would be nice to perform explicit
higher-order computations of hW and test the two conjec-
tures directly.
Positivity.—Since B is by definition positive, the

consistency of our proposal requires that the right-hand
side of (18) be positive.
Let us check this claim for the case of SUðNÞ with

Nf ¼ 2N. The derivative of the Wilson loop insertion,

fðb; aÞ≡ ∂bTre−2πba ¼ Tr(ð−2πaÞe−2πab); ð29Þ
is positive at b ¼ 1, since

∂bfðb; aÞ ¼ Tr(ð−2πaÞ2e−2πab) > 0 ð30Þ
due to the Hermiticity of a. Therefore,

fð1; aÞ > fð0; aÞ ¼ −2πTrðaÞ ¼ 0: ð31Þ
Since the classical, one-loop, and instanton contributions

are also positive,

∂b lnhWbijb¼1 > 0: ð32Þ

Additional implications and open questions.—We end
this Letter by pointing out two additional implications of
the formula we have conjectured (18), and we suggest some
open questions.
The first implication concerns the entanglement entropy

due to a probe. For any 4d CFT in its vacuum state, the
additional entanglement entropy of a spherical region due
to the presence of a heavy probe located at its center is
given by [12]

S ¼ loghWi − 8π2hW: ð33Þ
Our conjecture (18) then implies that the additional
entanglement due to a heavy quark inN ¼ 2 SCFTs is [32]

FIG. 2. Some of the Feynman diagrams that contribute to hWφi.
A wiggly line denotes vector multiplet fields (scalars or vectors),
and a plain line denotes hypermultiplet fields (scalars or fermions):
(a) One-loop diagrams. (b) Two-loop diagrams that involve
hypermultiplet fields. (c),(d) The three-loop diagrams that involve
hypermultiplet fields include the two-loop correction to the
propagator of the vector multiplet bosonic fields and the one-loop
correction to the vertex of three vector multiplet bosonic fields.
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S ¼
�
1 −

2

3
∂b

�
loghWbijb¼1: ð34Þ

The second implication concerns transcendentality in
the perturbative expansion of B for N ¼ 2 SCFTs. In
N ¼ 4 SYM theory, Γ∞

cusp satisfies the rule of maximal
transcendentality [33]: When expanded in powers of g=π,
the coefficient of ðg=πÞ2n has transcendentality 2n − 2. It
follows from (10) that BN¼4 satisfies the same rule [7].
Additionally, for N ¼ 2 SCFTs, the conjecture (18)
implies that, to each order in perturbation theory, the
leading transcendentality terms in the bremsstrahlung
function are given by the N ¼ 4 result.
Finally, let us mention three open questions. One

obvious question is further perturbative checks of (18):
It would be nice to consider order of g6 computations for
general gauge groups. A second question is to find a
nontrivial check for the nonperturbative corrections to
ΓcuspðφÞ entailed by (18). An additional question is to
understand better the relation between derivatives with
respect to the equivariant parameters and insertions of the
energy-momentum supermultiplet. The relation may be
nontrivial, for instance, due to the anomaly discussed
in Ref. [34].
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