
VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002

012003-1
New Predictions for Inclusive Heavy-Quarkonium P-Wave Decays

Nora Brambilla,1 Dolors Eiras,2 Antonio Pineda,3 Joan Soto,2 and Antonio Vairo4

1INFN and Dipartimento di Fisica dell’Università di Milano, via Celoria 16, 20133 Milan, Italy
2Departamento d’Estructura i Constituents de la Matèria and IFAE, U. Barcelona, Diagonal 647,

E-08028 Barcelona, Catalonia, Spain
3Institut für Theoretische Teilchenphysik, U. Karlsruhe, D-76128 Karlsruhe, Germany

4Theory Division CERN, 1211 Geneva 23, Switzerland
(Received 17 September 2001; published 17 December 2001)

We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be writ-
ten in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants
once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory
where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new
set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different
principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of
the decay widths of bottomonium P-wave states from charmonium data.
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Inclusive P-wave decays to light hadrons have proved to
be an optimal testing ground of our understanding of heavy
quarkonia. The use of nonrelativistic quantum chromody-
namics (NRQCD) [1,2] allowed a description of these de-
cays in terms of expectation values of some 4-heavy-quark
operators at a quantum-field level in a systematic way. Be-
sides the so-called color-singlet operators, for which their
expectation values could be related to wave functions in an
intuitive way, there were also color-octet operators. The
latter were decisive in solving the infrared sensitivity of
earlier calculations [3]. It has been thought so far that
these color-octet expectation values could not be related to
a Schrödinger-like formulation in any way.

We show in this Letter that it is not so. For certain
states, the expectation values of color-octet operators can
also be written in terms of wave functions and additional
bound-state-independent nonperturbative parameters. We
will focus on the operators relevant to P-wave decays into
light hadrons, but it should become apparent that this is a
general feature.

The line of developments that has led us to this result is
the following. It was pointed out in Ref. [4] that NRQCD
still contains dynamical scales, which are not relevant to
the kinematical situation of the lower-lying states in heavy
quarkonium (energy scales larger than the ultrasoft scale,
my2, with y being the relative velocity of the heavy quark
and m being its mass). Hence, further simplifications oc-
cur if we integrate them out. We call potential NRQCD
(pNRQCD) the resulting effective field theory [as in [5];
note that in [6], in the situation LQCD ¿ my2, the ef-
fective field theory (EFT) was called pNRQCD0]. When
the typical scale of nonperturbative physics, say, LQCD, is
smaller than the soft scale my, and larger than the ultrasoft
scale my2, the soft scale can be integrated out perturba-
tively. This leads to an intermediate EFT that also con-
tains, besides the singlet, octet fields and ultrasoft gluons
as dynamical degrees of freedom [4,6]. These are even-
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tually integrated out by the (nonperturbative) matching to
pNRQCD [6]. When LQCD is of the order of the soft scale,
the (nonperturbative) matching to pNRQCD has to be done
in one single step. This framework has been developed in
a systematic way in Ref. [5].

In this Letter we will compute the inclusive P-wave de-
cay widths into light hadrons at leading order for LQCD ¿

my2 by using pNRQCD. In this situation the singlet is the
only dynamical field in pNRQCD (Goldstone bosons are
also present, but they play a negligible role in this analy-
sis and will be ignored), if hybrids and other degrees of
freedom associated with heavy-light meson pair thresh-
old production develop a mass gap of O �LQCD�, as we
will assume in what follows [5,6], or if they play a minor
role in the heavy-quarkonium dynamics. Therefore, the
pNRQCD Lagrangian reads [5,6]

LpNRQCD � Tr �Sy�i≠0 2 h�S� , (1)

where h is the pNRQCD Hamiltonian, to be determined
by matching the EFT to NRQCD. The total decay width
of the singlet heavy-quarkonium state is then given by

G � 22 Im�n, L, S, Jjhjn, L, S, J � , (2)

where jn, L, S, J� are the eigenstates of the Hamiltonian
h. The imaginary parts are inherited from the 4-heavy-
fermion NRQCD Wilson coefficients and, for P-wave de-
cays, first appear as local (deltalike) O �1�m4� potentials in
the pNRQCD Lagrangian. The relevant structure reads [we
shall concentrate on potentials, which inherit imaginary
parts from the NRQCD operators and which contribute to
P-wave states at first order in quantum-mechanical pertur-
bation theory (QMPT)]

22 ImhjP wave � FSJT
ij

SJ
=i

rd�3��r�=j
r

m4 , (3)

where T
ij

SJ corresponds to the spin and total angular
momentum wave-function projectors. What is now left
is to compute FSJ , i.e., to perform the matching between
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NRQCD and pNRQCD. For the situation (A) where
my ¿ LQCD ¿ my2, by taking the results of [6], and
for the more general situation (B) where LQCD & my, by
using the formalism of Ref. [5], we obtain

FSJ � 22Nc Imf1�2S11PJ� 2
4TF

9Nc
E Imf8�2S11SS� ,

(4)

where f1�2S11LJ� and f8�2S11LJ � are the short-distance
Wilson coefficients of NRQCD, as defined in Ref. [2], and

E � TF

Z `

0
dt t3�gEa�t, 0�Fab�t, 0; 0�gEb �t, 0�� .

(5)

(A) P-wave potentials for my ¿ LQCD ¿ my2.— In
this case the matching from NRQCD to pNRQCD at the
scale LQCD can be done in two steps. In the first step,
which can be done perturbatively, we integrate out the scale
my and end up with an EFT, which contains singlet (S)
and octet (O) fields as dynamical degrees of freedom. At
the next-to-leading order in the multipole expansion the
Lagrangian reads [4,6]

L � Tr �Sy�i≠0 2 hs�S 1 Oy�iD0 2 ho�O�

1 Tr

Ω
Oyr ? gES 1 H.c. 1

Oyr ? gEO

2

1
OyOr ? gE

2

æ
2

1
4

Fa
mnFmna, (6)

where hs and ho have to be determined by matching to
NRQCD. They read as follows:

hs � 2
=2

r

m
1 Vs�r� 1 . . .

1 Ncf1�2S11PJ �T ij
SJ

=i
rd�3��r�=j

r

m4 1 . . . ,

ho � 2
=2

r

m
1 Vo�r� 1 . . .

(7)

1 TFf8�2S11SS�TS
d�3��r�

m2
1 . . . ,

neglecting center-of-mass recoil terms; TS corresponds
to the total spin projector. Beyond O �1�m�0 we have
displayed only the terms that are relevant to our calcu-
lation. In the second step we integrate out (nonperturba-
tively) the gluons and the octet field, ending up with the
pNRQCD Lagrangian (1). The Hamiltonian h has to be
determined by matching the two effective field theories. It
reads h � hs 1 dhs, with (at leading nonvanishing order
in the multipole expansion)
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dhs � 2 i
TF

Nc

Z `

0
dt eihs�t�2��r ? gEa�t, 0�

3 e2ihotFab�t, 0; 0�gEb�0, 0� ? r�eihs�t�2�, (8)

where consistency with LQCD ¿ my2 requires an expan-
sion of the exponentials of ho and hs. By taking into
account the fact that we are interested in P-wave states,
only the perturbation that puts one ho to each side of the
O �1�m2� S-wave potential survives at leading order. The
final result reads

ImdhsjP wave �
2TF

9Nc
E

=rd�3��r�=r

m4 TS Imf8�2S11SS�

(9)

which plugged into Eq. (3), gives Eq. (4). This shows how
a color-octet operator in NRQCD becomes a color-octet
potential in the EFT of Eq. (6) and, eventually, contributes
to a color-singlet potential in pNRQCD, which is one of
our main points.

(B) P-wave potentials for LQCD & my.— In the case
LQCD & my the matching from NRQCD to pNRQCD at
the scale LQCD has to be done directly, since no other
relevant scales are supposed to lie between m and my.
The only dynamical degree of freedom of pNRQCD is
the heavy-quarkonium singlet field S. The Lagrangian has
been written in (1). The Hamiltonian h is obtained by
matching (nonperturbatively) to NRQCD, order by order
in 1�m, within a Hamiltonian formalism [5]. In this Letter
we sketch only the main steps of the derivation. In short,
we can formally expand the NRQCD Hamiltonian in 1�m:

HNRQCD � H
�0�
NRQCD 1

1
m

H
�1�
NRQCD 1 . . . . (10)

The eigenstates of the heavy quark-antiquark sector can be
labeled as

jg; x1, x2� � jg; x1, x2��0� 1
1
m

jg; x1,x2��1� 1 . . . ,

where g labels the color-related degrees of freedom (we do
not explicitly display spin labels for simplicity). Assuming
a mass gap of O �LQCD� much larger than my2, all the
excitations �g fi 0� decouple and the ground state �g �
0� corresponds to the singlet state. Therefore, the matching
condition reads

�0; x1, x2jHj0; x0
1, x0

2�

� h�x1, x2, =x1 , =x2 �d
�3��x1 2 x0

1�d�3��x2 2 x0
2� . (11)

Up to O �1�m4� the imaginary contributions are carried
only by the Wilson coefficients of the dimension-6 and
dimension-8 4-heavy-fermion operators in NRQCD.
Since we are interested only in Eq. (3), a huge simplifica-
tion occurs and only two contributions survive. From the
dimension-8 operators we obtain
012003-2
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Imdhd�3��x1 2 x0
1�d�3��x2 2 x0

2�

�
1

m4 Im�0��0; x1, x2jH
�4�
NRQCDj0; x0

1, x0
2��0�jP wave

� NcT
ij

SJ Imf1�2S11PJ�
=i

rd�3��r�=j
r

m4

3 d�3��x1 2 x0
1�d�3��x2 2 x0

2� . (12)

On the other hand, we also have contributions from the
iteration of lower-order 1�m corrections to the NRQCD
Hamiltonian with the dimension-6 4-heavy-fermion opera-
tors. The only term that contributes to Eq. (3) is

Imdhd�3��x1 2 x0
1�d�3��x2 2 x0

2�

�
1

m4 Im�1��0; x1, x2jH
�2�
NRQCDj0; x0

1, x0
2��1�jP wave .

(13)

The explicit computation of the right-hand side of Eq. (13)
gives (as far as the P-wave contribution is concerned)
Eq. (9). Therefore, the sum of the contributions from
Eqs. (12) and (13) coincides with Eq. (3), after the replace-
ments (4) and (5).

We can now obtain the decay widths by using Eq. (3).
At first order in QMPT, we obtain

G�xS
QJ�nP� ! LH� �

∑
3Nc

p
Imf1�2S11PJ� 1

2TF

3pNc

3 Imf8�2S11SS �E
∏
jR0

Qn1�0�j2

m4
,

(14)

where x
1
QJ�nP� :� xQJ�nP�, x

0
QJ �nP� :� hQ�nP� �Q �

b, c�, n is the principal quantum number, and RQn1�r�
is the radial wave function at leading order. Comparing
with the standard NRQCD formula, where spin symmetry
has already been used, we have

�hQ�nP�jO8�1S0� jhQ �nP�� �m� �
jR0

Qn1�0�j2

3pNcm2
TF E�m� .

(15)

The information gained with this formula is that all
nonperturbative flavor and principal quantum number
dependence are encoded in the wave function, as in the
color-singlet operators. The additional nonperturbative
parameter E�m� is universal: it depends only on the
light degrees of freedom of QCD. This implies that the
following relation between decay widths is also universal:
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E�m� � 2
9N2

c

2TF

3

Imf1�2S11PJ� 2 Imf1�2S011PJ 0� G�xS
QJ �nP�!LH	

G�xS0

QJ0 �nP�!LH	

Imf8�2S11SS� 2 Imf8�2S 011SS 0 � G�xS
QJ�nP�!LH	

G�xS0

QJ0 �nP�!LH	

.

(16)

It is interesting to notice that the UV behavior of E has
the logarithmic divergence

E�m� 
 12NcCF
as

p
lnm , (17)

which matches exactly the IR log of the O �as� correc-
tion of Imf1�2S11PJ�, and hence the cancellation originally
observed in [1] is fulfilled. One could then consider the
leading log (LL) renormalization group improvement of E
by using the results of Ref. [2] for the running of the octet-
matrix element. One obtains (b0 � 11CA�3 2 4nfTF�3):

E�m� � E�m0� 1
24NcCF

b0
ln

as�m0�
as�m�

. (18)

Let us apply the above results to actual quarkonium, un-
der the assumption that our framework, discussed in the
text preceding Eq. (1), provides a reasonable description
for the P-wave states observed in nature. The numerical
extraction of E is a delicate task, since several of the Wil-
son coefficients (see Ref. [7] for a full list of them) have
large next-to-leading order contributions, which may spoil
the convergence of the perturbative series. This problem is
not specific to our formalism, but belongs to the standard
formulation of NRQCD. Here, in order to give an estimate,
we use only those data that provide more stable results in
going from the leading to the next-to-leading order (NLO),
more precisely the average of Eq. (16) for �J, S� � �1, 1�,
�J 0, S0� � �0, 1� and �J,S� � �1, 1�, �J 0, S0� � �2, 1�. The
experimental data were taken from [8] and updated accord-
ing to [9,10]. Our final value reads

E�1 GeV� � 5.313.5
22.2�expt.� , (19)

where we have used the NLO results for the Wilson coeffi-
cients with a LL improvement. The errors refer only to the
experimental uncertainties of the decay widths. Theoreti-
cal uncertainties mainly come from subleading operators
in the power counting [O �y� suppressed] and subleading
terms in the perturbative expansion of the Wilson coeffi-
cients [O �as� suppressed], whose bad convergence may
affect Eq. (19) considerably. We feel, therefore, that fur-
ther studies, maybe along the lines of Ref. [11], are needed
before a complete numerical analysis, including theoretical
uncertainties, can be done. In any case, the above equation
is compatible with the values that are usually assigned to
the NRQCD octet and singlet matrix elements [e.g., from
the fit of [12], one obtains E�1 GeV� � 3.613.6

22.9�expt.�].
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The above equation is also compatible with the charmo-
nium (quenched) lattice data of [13], whereas, if the run-
ning (18) is taken into account, bottomonium lattice data,
quenched [13] and unquenched [14], appear to give a
lower value. Note that, in the language of Refs. [13,14],
Eq. (15) reads E�m� � 81m2

b,cH8�m��H1jb,c, which im-
plies H8�m��H1jb 3 H1�H8�m�jc � m2

c�m2
b . For all

quarkonium states that satisfy our assumptions this equal-
ity must be fulfilled by lattice results for any number
of light fermions and for any value of the heavy-quark
masses.

By using the estimate (19), we can also predict the ratios
of the decay widths for the n � 1, 2 P-wave bottomonium
states. We obtain

G�x1
b1�1P�	

G�x1
b2�1P�	

�
G�x1

b1�2P�	
G�x1

b2�2P�	
� 0.5010.06

20.04 , (20)

where only the errors inherited from Eq. (19) have been
included. For what concerns theoretical uncertainties, the
comments after Eq. (19) apply also here (with a better
behavior of the perturbative series). Note that the first
equality holds independently from Eq. (19) and from the
use of charmonium data and, hence, provides a more robust
prediction. The remaining ratios of the decay widths can
be obtained by using spin symmetry. Notice also that,
although no model-independent predictions can be made
for the decay widths (they depend on the wave function at
the origin, which is flavor and state dependent), our results
allow any model that gives a definite value to R0

Qn1�0� to
make definite predictions.

In conclusion, we have exploited the fact that NRQCD
still contains irrelevant degrees of freedom for certain
heavy quarkonium states, which can be integrated out in
order to constrain the form of the matrix elements of
color-octet operators. We have focused on the operators
relevant to P-wave decays, which allowed us to produce
concrete, new, rigorous results. However, it should be clear
from the structure of the pNRQCD Lagrangian itself that
similar results can be obtained for matrix elements of any
color-octet operator.
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