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1 Introduction

Studying the response of quantum field theories to the presence of external probes is an

interesting way to understand these theories better. However, for generic quantum field

theories it is prohibitively hard to obtain exact results. The situation improves for theories

with additional symmetries, like conformal invariance and/or supersymmetry. In partic-

ular, in conformal field theories, for simple enough questions, the additional symmetry

disentangles the space-time dependence from the coupling dependence, and the full an-

swer is given in terms of some unknown coefficients that possibly depend on the marginal

couplings of the CFT [1]. In these cases, to actually compute these coefficients, one must

resort to other techniques to determine them, like perturbation theory, the AdS/CFT cor-

respondence, integrability or supersymmetric localization.

Besides their intrinsic interest, a comparatively less explored but potentially far-

reaching application of the study of probes in conformal field theories is as useful diagnostics

to characterize their holographic duals [2–4].

In this note we are going to focus on the study of probes in the fundamental repre-

sentation of four dimensional N = 2 conformal gauge theories. The main reason to limit

ourselves to this small family of conformal field theories is to take full advantage of the

technique of supersymmetric localization [5]. There have been already many works de-

voted to the use of supersymmetric localization to study probes of these theories (see [6]

for a review). The main novelties of the present work are the derivation of a single integral

equation that governs the eigenvalue density of all these SCFT, in the saddle-point approx-

imation, and the study of correlators of Wilson loops with local operators. Let’s comment

on these two points in some detail.

The matrix models that compute the partition functions of all these superconformal

theories can’t be solved exactly at finite N (except for the case of N = 4 theories). We
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resort to study their partition functions in the saddle-point approximation, by introducing

eigenvalue densities ρ(x) for each of them. As a first result, we notice that we can write

the integral equation for the eigenvalue densities of all these theories in a unified way

ˆ µ

−µ
dyρ(y)

(
1

x− y
− νK(x− y)

)
=

8π2

λ
x− νK(x) , (1.1)

where K(x) is a function to be defined below and the parameter ν counts what fraction

of the matter multiplets transforms in the fundamental representation of the gauge group.

Roughly speaking, the large N limit washes out many finite N details about the gauge

groups and the relevant representations, and the only possible contributions of hypermulti-

plets in the fundamental representation to the matter content of the theory are ν = 0, 1
2 , 1.

Even before we attempt to solve equation (1.1), it is apparent that the resulting eigen-

value density presents two qualitatively different behaviors, for ν = 0 and ν > 0. This

was already realized in [2], where the cases ν = 0, 1 were compared. As argued in [2],

the physical reason for the qualitatively different behavior are the screening properties of

matter in the fundamental representation.

It is also worth pointing out that this sharply different behavior has a reflection on

the possible holographic duals of these field theories. It was argued in [7] that a necessary

condition for a 4d CFT to have a holographic dual described by a gravitational action with

a sensible higher derivative expansion is that at large N their central charges satisfy

c, a� 1,
|c− a|
c
� 1 . (1.2)

As it turns out, among the N = 2 SCFTs considered here, only theories with ν = 0 (i.e.

the number of hypermultiplets in the fundamental representation does not scale with N)

satisfy this constraint. So we observe a correlation between having a Wigner eigenvalue

density and potentially having a holographic dual with a sensible derivative expansion.

Turning to the solution of eq. (1.1), in the limit of strictly infinite ’t Hooft coupling,

λ = g2
YMN , we find an analytic expression for the eigenvalue density, slightly generalizing

the result in [3]. For strong but finite ’t Hooft coupling, we can’t solve analytically the

saddle point equation, so we must resort to some approximation. We do so by following a

couple of methods already present in the literature [3, 8].

Once we have found the eigenvalue density for generic ν, we put this result to use by

computing various correlation functions involving circular Wilson loops in the fundamental

representation. The qualitatively different behavior mentioned above is manifested here as

follows: for ν = 0 theories like N = 4 SYM, the vev grows exponentially in
√
λ [9], while

for ν = 1 theories, like N = 2 SQCD, it grows with a power law, 〈W 〉 ∼ λ3 [3] . One can

then anticipate that for theories with ν = 1/2, the vev of the circular Wilson loop should

present a growth in between ν = 0 and ν = 1. Indeed, we obtain

〈W 〉ν= 1
2
∼ λ5 . (1.3)

We then compute the two-point function of this Wilson loop with local operators. More

specifically, we compute the normalized two-point function of the straight Wilson line with
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the Lagrangian density, and then with the stress-energy tensor. Conformal invariance fixes

these normalized two-point functions up to a single coefficient each. In N = 4 SYM, the

coefficients are essentially the same [10], since the Lagrangian density and the stress-energy

tensor belong to the same supermultiplet. This is no longer the case for N = 2 SCFTs, so

it is interesting to obtain and compare the behavior of these coefficients. We find that for

these two-point functions the ν 6= 0 dependence enters through an angle θ defined by

cos θ = 1− ν . (1.4)

For instance, the coefficient in the two-point function of the straight Wilson line with the

Lagrangian density is given by a constant in the large N, large λ limit

〈L(x)W 〉
〈W 〉

=
fW
|~x|4

, fW =
1

8π2

(
2π

θ
− 1

)
. (1.5)

Recently, it has been conjectured in [11] that for N = 2 SCFTs, one can compute the

normalized two-point function of the straight Wilson line with the stress-energy tensor from

the vev of the Wilson loop in a squashed four-sphere, S4
b . Granting that this conjecture is

correct, this two-point function displays a logarithmic dependence on the coupling

〈T00(x)W 〉
〈W 〉

=
hW
|~x|4

, hW =
1

6πθ
lnλ . (1.6)

Furthermore, based on [12] it was also conjectured in [11] that the Bremsstrahlung func-

tion [13] of this Wilson loop for any N = 2 SCFT is given by essentially the same coefficient

above,

B = 3hW =
1

2πθ
lnλ . (1.7)

Finally, using the general expression derived in [12], we also compute the change in en-

tanglement entropy of a spherical region of the vacuum state, due the presence of these

probes. It is given by

S =

(
2π

3θ
− 1

)
lnλ . (1.8)

These results are to be contrasted with the well-known corresponding results for N = 4

SYM. In this case, all these coefficients are essentially the same due to the extra amount of

supersymmetry, B = 3hW = 4fW , and can be computed exactly [10, 13] for various gauge

groups and representations [14, 15]. In the large N, large λ regime, they scale as
√
λ. Our

results further exemplify to what extent the properties of probes of N = 4 SYM are not

generic among N = 2 theories [2, 3, 16].

As possible extensions of this work, our results could be generalized to Wilson loops in

higher rank representations. It might be also interesting to compute subleading corrections

to the results obtained here. Finally, while we carry out this analysis for Lagrangian theories

for which ν can only take the values ν = 0, 1
2 , 1, an interesting question is whether there are

non-Lagrangian N = 2 SCFTs whose correlators are captured by the expressions presented

here, for other values of ν.
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The present paper is organized as follows: in section 2 we introduce the superconformal

theories that we are going to study, we recall the matrix model that computes their partition

function, and derive their eigenvalue density in the large N, large λ regime. In section 3

we use this eigenvalue density to compute various correlation functions related to heavy

probes coupled to these theories.

Note added. As this paper was being typed, we learned of upcoming work [17] that

studies similar matters for quiver N = 2 SCFTs. In that work, the regime when one of

the gauge couplings is strong while the other ones tend to zero is not considered, so there

is no immediate overlap with the present paper.

2 Saddle-point equation for 4d N = 2 SCFTs

In this section we present the N = 2 superconformal field theories (SCFTs) that we are

going to study and recall the matrix model that computes their partition functions. We

then derive the saddle-point equation for these matrix models, and solve them in the large

N, large λ limit, to obtain their eigenvalue densities.

Let’s start by recalling how to obtain all 4d N = 2 SCFTs theories, with a single gauge

group, and a marginal coupling. With N = 2 supersymmetry the β-function is exactly

zero if and only if the one-loop contribution is zero [18]. Since we are interested in SCFTs

that admit a large N limit, we restrict to classical (i.e. non-exceptional) gauge groups and

matter content in representations with up to two indices: fundamental, 2-symmetric, 2-

antisymmetric and adjoint. The complete list of such theories is well-known [19], and we

present it in table 1, together with their central charges.

A quantity that will turn out to be relevant in what follows is

ν ≡ lim
N→∞

nf
2N

(2.1)

which counts what fraction of the matter in these theories belongs to the fundamental

representation in the large N limit. For these theories, we observe in table 1 that ν can

only take the values ν = 0, 1/2, 1.

2.1 Partition function

Due to supersymmetric localization, the partition function of these theories on S4 reduces

to an integral over the Lie algebra g of the gauge group [5]

ZS4 =
1

vol(G)

ˆ
g
[da]e

− 8π2r2

g2
YM

(a,a)
Z1−loop(ra)|Zinst(ia, r−1, r−1, q)|2 , (2.2)

where ( , ) denotes the bilinear form obtained from tracing the product in the fundamental

representation and r is the radius of S4. This formula can be rewritten in terms of an

integral over the Cartan subalgebra whose integration measure is given by a Faddeev-

Popov determinant of the form

∆2(a) =
∏

α∈roots(g)

(α · a)2 . (2.3)
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SU(N)

(nadj , nf , nS2 , nA2) c a δ ≡ (c− a)/c ν

(1, 0, 0, 0) 1
4N

2 − 1
4

1
4N

2 − 1
4 0 0

(0, 0, 1, 1) 1
4N

2 − 1
6

1
4N

2 − 5
24

1
6N2 +O(N−4) 0

(0, 4, 0, 2) 1
4N(N + 1)− 1

6
1
4N(N + 1

2)− 5
24

1
2N +O(N−2) 0

(0, 2N, 0, 0) 1
3N

2 − 1
6

7
24N

2 − 5
24

1
8 +O(N−2) 1

(0, N + 2, 0, 1) 7
24N

2 + 1
8N −

1
6

13
48N

2 + 1
16N −

5
24

1
14 +O(N−1) 1

2

(0, N − 2, 1, 0) 7
24N

2 − 1
8N −

1
6

13
48N

2 − 1
16N −

5
24

1
14 +O(N−1) 1

2

SO(2N)

(nadj , nf , nS2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 − 1
4N

1
2N

2 − 1
4N 0 0

(0, 2N − 2, 0) 2
3N

2 − 1
2N

7
12N

2 − 3
8N

1
8 −

3
32N +O(N−2) 1

SO(2N + 1)

(nadj , nf , nS2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 + 1
4N

1
2N

2 + 1
4N 0 0

(0, 2N − 1, 0) 2
3N

2 + 1
6N −

1
12

7
12N

2 + 5
24N −

1
24

1
8 −

3
32N +O(N−2) 1

Sp(2N)

(nadj , nf , nA2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 + 1
4N

1
2N

2 + 1
4N 0 0

(0, 4, 1) 1
2N

2 + 3
4N −

1
12

1
2N

2 + 1
2N −

1
24

1
2N +O(N−2) 0

(0, 2N + 2, 0) 2
3N

2 + 1
2N

7
12N

2 + 3
8N

1
8 + 3

32N +O(N−2) 1

Table 1. List of 4d N = 2 SCFT families admitting a large N limit for each classical simple

Lie algebra.

In this gauge the factor Z1−loop(ra) is a certain infinite dimensional product, which appears

as a 1-loop determinant in the localization computation. For an N = 2 theory with massless

hypermultiplets in any G-representation R, the 1-loop determinant is [5]

ZN=2,W
1−loop (ra) =

∏
α∈roots(g)H(α · ar)∏

w∈weights(R)H(w · ar)
, (2.4)

where H(x) is given by

H (x) =
∞∏
n=1

((
1 +

x2

n2

)n
e−x

2/n

)
. (2.5)
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Formula (2.4) literally holds if the divergent factors are the same in the one-loop determi-

nants for the vector and hypermultiplets. This happens for representations W such that∑
α

(α · a)2 =
∑
w

(w · a)2 ; a ∈ g

that is if the β-function vanishes and the N = 2 theory is superconformal.

The factor Zinst(ia, ε1, ε2, q) is the Nekrasov’s instanton partition function of the gauge

theory in the Ω-background on R4 [20]. For N = 4 all instanton corrections vanish

(Zinst = 1). As is customary, we will assume that their contribution is negligible in the

large N limit.

We now proceed to derive the saddle-point equation for these matrix models. Fol-

lowing the standard procedure, we bring the Faddeev-Popov and one-loop factors to the

exponent. In the large N limit, we can pass to a continuum version. To do so, introduce

the eigenvalue density

ρ(x) =
1

N

∑
i

δ(x− rai) , (2.6)

defined in the interval Γ = [−µ, µ] and unit normalized. It is convenient to introduce

K(x) = −d logH(x)

d x
. (2.7)

Since H(x) is an even function under x → −x, K(x) is odd. It is straightforward to

write down an integral equation for the eigenvalue density for each N=2 SCFT. We are

now going to argue that all these integral equations can be written in a unified fashion.

Let’s first consider SCFTs with gauge group SU(N), and for concreteness let’s illustrate the

argument with the specific example of the SCFT with a hypermultiplet in the antisymmetric

representation and N + 2 hypermultiplets in the fundamental one. The integral equation

for the eigenvalue density is

ˆ µ

−µ
dyρ(y)

(
1

x− y
−K(x− y) +

1

2
K(x+ y)

)
=

8π2

λ
x− 1

2
K(x) . (2.8)

The terms inside the parenthesis in the integral come respectively from the Faddeev-Popov

determinant, the vector multiplet contribution and the hypermultiplet in the antisymmet-

ric representation. The K(x) term on the r.h.s. corresponds to the hypermultiplets in

the fundamental representation. Combining this equation with the one that we obtain

by changing x → −x, y → −y, we learn that the eigenvalue density is even. Then, by

combining this equation with the one we obtain by changing x→ −x we learn that under

the integral K(x+ y) can be replaced by K(x− y). The same argument goes through for

all the other SCFTs with gauge group SU(N), and we learn that their integral equations

can be written in a compact way in terms of ν

ˆ µ

−µ
dyρ(y)

(
1

x− y
− νK(x− y)

)
=

8π2

λ
x− νK(x) . (2.9)
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The discussion can be easily generalized to SCFTs with other classical gauge groups. For

G = SO(2N) the Faddeev-Popov determinant is

∆2(a) =
N∏
i<j

|a2
i − a2

j |2 , (2.10)

so its contribution to the integral equation is naively different from the case of SU(N).

However

ˆ µ

−µ
dyρ(y)

2x

x2 − y2
=

ˆ µ

−µ
dyρ(y)

2

x− y
−
���

���
���

��
��:0ˆ µ

−µ
dyρ(y)

2y

(x− y)(x+ y)
, (2.11)

so it turns out to give the same kernel as SU(N), except for a factor of two. A factor of

two will be generated as well in the term with λ−1 because the trace in the fundamental

representation includes both ±ai weights for SO(2N). Finally, the Faddeev-Popov deter-

minants of SO(2N + 1), Sp(2N) present further additional terms, but their contribution is

subleading in the large N limit. The upshot of this analysis is that for all these SCFTs,

the singular integral equation that determines the eigenvalue distribution is

ˆ µ

−µ
dyρ(y)

(
1

x− y
− νK(x− y)

)
=

8π2

λ
x− νK(x) , (2.12)

For ν = 0 this is of course the integral equation for the Wigner distribution, while for

ν = 1 this equation was derived in [3] for the particular case of N = 2 SQCD.

Before we proceed, let’s pause to comment on the holographic implications of this

result. A very interesting question is what 4d CFTs admit a holographic dual with a

sensible gravitational description in at least some regime of parameters, see [7, 21–23] for

generic discussions and [24–28] for works focused on N = 2 CFTs. In this regard, it is

possible to find necessary conditions in terms of the central charges of the 4d CFT. If

one requires that the gravitational dual is described by an action with two derivatives (i.e.

Einstein -Hilbert in the gravitational sector) then in the large N limit the central charges

must satisfy [21]

c, a� 1 , c− a = 0 +O(1/N) . (2.13)

If one relaxes the requirement that the gravitational action involves just two derivatives,

and requires only a sensible higher derivative expansion, the constraint on the large N value

of the central charges is weakened to [7]

c, a� 1 ,
|c− a|
c
� 1 . (2.14)

Going through the list of theories considered here, we observe that this condition is satisfied

precisely by the ν = 0 theories. It seems that having a Wigner eigenvalue density is

necessary to have a gravitational description with a sensible higher derivative expansion.

After this holographic interlude, we come back to the task of solving the saddle-point

equation (2.12).

– 7 –
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2.2 Infinite coupling limit

In the strict limit 1
λ = 0, µ→∞ and equation (2.12) reduces to

ˆ ∞
−∞

dyρ(y)

(
1

x− y
− νK(x− y)

)
= −νK(x) . (2.15)

This equation can be solved analytically for ν 6= 0. Taking its Fourier transform we arrive at

ρ̂∞(p) =
1

1 + 2
ν sinh2 p

2

, (2.16)

which implies

ρ∞(x) =
1√

2
ν − 1

sinh ((π − θ)x)

sinhπx
, (2.17)

with

θ = cos−1(1− ν) . (2.18)

This result is just a slight generalization of the ν = 1 case, already obtained in [3].

2.3 Strong coupling

At finite coupling, we are not aware of a technique that allows to solve the saddle-point

equation, (2.12). For finite but strong ’t Hooft coupling, λ� 1, there are a couple of works

in the literature using different approximations to solve this equation. We will follow [3]

and also briefly comment on the approximation used in [8].

The first approach to solve approximately the saddle point equation (2.12) will closely

follow [3], and it is based in the Wiener-Hopf method. Our computations will only differ

in the treatment of the zero-momentum mode.

Given the integral equation (2.12), one might be tempted to solve it via a Fourier

transform, after extending the definition of ρ(x) to be zero outside its support, [−µ, µ].

This idea cannot be implemented to (2.12) as it stands, since the Fourier transforms of

K(x) and x are divergent. To arrive at an equation amenable to be Fourier transformed,

we follow [3] and make use of the integral operator

P−1
x→z [f (x)] = − 1

π2

 µ

−µ

dx

z − x

√
µ2 − z2

µ2 − x2
f (x) (2.19)

which inverts the principal part integral operator in the following regard:

P−1
x→z

[ µ

−µ
dy

ρ (y)

x− y

]
= ρ (z) ; z ∈ [−µ, µ] (2.20)

Its action onto (2.12) leads to

ρ (z)− 8π

λ

√
µ2 − z2 − ν

ˆ µ

−µ
dyρ (y) (f (y, z)− f (0, z)) = 0; z ∈ [−µ, µ] (2.21)

f (y, z) ≡ P−1
x→z [K (x− y)] (2.22)

– 8 –
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The kernel does not only depend on the difference z−y anymore, so the use of Fourier trans-

formation would lead now to more involved integral expressions. We observe nonetheless

that by virtue of the symmetry y ↔ −y the result (2.21) will remain valid if we use

f̂ (y, z) ≡ P−1
x→z

[ ∞
−∞

ω coth (πω)

x− y − ω

]
= (z − y) coth (π (z − y)) + δf̂ (y, z) (2.23)

in place of f (y, z). The advantage in this replacement is that the Fourier transform of the

term δf̂ (y, z) can be argued to be small, and therefore subdominant in the saddle point

equation. This endows us with the possibility of solving the equation iteratively, using at

each step the distribution obtained in the previous iteration to improve the estimate on

the term that contains δf̂ . For our purposes the first step of the algorithm suffices, where

this subleading term is fully neglected.

Once we have reformulated the original equation in this fashion, we are finally ready to

apply the Wiener-Hopf method. The first step is to extend the definition of the eigenvalue

density ρ(y), outside the interval [−µ, µ], by defining ρ(y) = 0 outside this interval. This

is compatible with analytic methods for ρ(y) as long as it is understood that ρ(y) admits

a branch cut outside the domain of integration and we are taking the ill-defined values on

it as

ρ (|x| > µ) =
1

2
lim
ε→0

(ρ (x+ iε) + ρ (x− iε))) (2.24)

Provided that we take the Fourier transform of the eigenvalue density with this prescription,

we obtain

ˆ ∞
−∞

e−ipz

(
ρ̂(p)

(
1 +

ν

2 sinh2 p
2

)
− F (p)

)
= 0; z ∈ [−µ, µ] (2.25)

ˆ ∞
−∞

e−ipz ρ̂ (p) = 0; z 6∈ [−µ, µ] (2.26)

F (p) ≡ 8π2µ
J1 (µp)

λp
+

ν

2 sinh2 p
2

+ . . . (2.27)

where the dots make reference to the terms coming from δf̂ that we are neglecting. The

general solution for the Fourier transform of the eigenvalue density should consequently be

of the form

ρ̂(p)

(
1 +

ν

2 sinh2 p
2

)
= F (p)− χ− (p)− χ+ (p) , (2.28)

where the functions χ± in the position space are nonvanishing in the real line only on one

side of |x| > µ each. Their exact expressions can be determined from analiticity constraints

in momentum space.

In order to impose those constraints we should pause our calculation for a moment to

focus on the analytic structure of

1 +
ν

2 sinh2 p
2

. (2.29)
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This function does have double poles at p = 2πni and simple zeroes at p = 2πni± θ with

θ defined in eq. (2.18). The following splitting will turn out to be very convenient:

1 +
ν

2 sinh2 p
2

≡ 1

G+ (p)G− (p)
(2.30)

G+ (p) ≡
p2Γ

(
1 + θ−ip

2π

)
Γ
(

1− θ+ip
2π

)
(p+ iθ) Γ2

(
1− ip

2π

) (2.31)

because the constructions

C+ =
ρ̂ (p) e−ipµ

G− (p)
; C− =

p2ρ̂ (p) eipµ

G+ (p)
; (2.32)

are either totally annihilated or left invariant by the action of
´∞
−∞ (2πi)−1 (p− p0 ± iε)−1

operators. We can straightforwardly read expressions for χ± from these projections. We

obtain

ρ̂ (p) =
2 sinh2 p

2

2 sinh2 p
2 + ν

F (p)− eipµ

G+ (p)

∑
α ∈poles G+

e−iαµF (α)Rα
p− α

+O
(
e−ipµ

)
(2.33)

Rα ≡ Res (G+, α) (2.34)

The expression we have obtained for ρ̂ is only useful to obtain ρ (x) at x � −µ, but

this covers our needs in this case because of the x ↔ −x symmetry. The normalization

condition can be applied as

1 = 2

ˆ ∞
0

dxρ (x) = lim
ε→0

1

iπ

ˆ ∞
−∞

dp
ρ̂ (p)

p− iε
(2.35)

The expression for ρ̂ (p) in (2.33) is the sum of two terms. The first term integrates to 1

in (2.35), so the normalization condition (2.35) implies that the integral of the second term

of ρ̂ (p) has to vanish. The integral over this second term can be carried out exactly, and

the normalization condition implies the following relation

0 =
∑

α ∈ poles G+

β ∈ poles G−

e−i(α−β)µF (α)RαR̃β
β − α

(2.36)

Rα ≡ Res (G+, α) ; R̃β ≡ Res (G−, β) (2.37)

Observe that F (α) has an exponential contribution that makes all α poles equally im-

portant, but the sum in β will be dominated by the pole at β = iθ. Keeping only this

dominant contribution and using asymptotic expressions for the Bessel functions in F (p)

we obtain an equation for the dependence µ (λ), which at large λ can be summarized as

θµ = lnλ− 1

2
lnµ+O (1) (2.38)
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The expression for the eigenvalue density (in momentum space), eq. (2.33) together with

the normalization (2.38) are the main result of this section.

Before we put these results to work, let’s briefly comment on a different approxima-

tion to solve the saddle-point eq. (2.12). In [8], Bourgine solved (2.12) by truncating the

expansion of K(x) and keeping only the first terms in a large x expansion,

K(x)→ Ksc(x) = 2x ln |x|+ 2γx+
1

6x
(2.39)

This truncation simplifies the computation enormously, compared with the method we

just described. As explained in [8], when computing the vev of the Wilson loop, it works

remarkably well in capturing the exponent, but not so well with the prefactor. For the

sake of comparison, the expressions work out to be the same, with the replacement

θB =

√
2ν

1− ν
6

(2.40)

Remarkably, this expression differs from θ = cos−1(1 − ν) in less than 1,8% in the range

0 ≤ ν ≤ 1. Presumably, keeping further terms in the large x expansion of K(x) would

improve the agreement between these two methods. Nevertheless, we will stick to the

results obtained by the first method, since they capture exactly the exponent in the power

law dependence of 〈W 〉.

3 Results

In this section we put to use the eigenvalue densities found in the previous section, by

computing various quantities that characterize the heavy probe. We first compute the

vacuum expectation value of the Wilson loop itself; we then compute the normalized two-

point function of the Wilson loop and the Lagrangian density, and similarly the normalized

two-point function of the Wilson loop and the stress-energy tensor. From this last result we

deduce the Bremsstrahlung function and the entanglement entropy associated to the probe.

3.1 Circular Wilson loop

We start by computing the vev of a 1/2-BPS circular Wilson loop. In his seminal paper [5],

Pestun showed that due to localization, the path integral reduces to a matrix model. In

the saddle-point approximation, the integral boils down to a rather simple expression in

terms of the eigenvalue density,

〈W 〉 =

ˆ
Γ
e2πxρ(x)dx . (3.1)

When ν = 0, the eigenvalue density follows the semi-circle law, and the vev of the Wilson

loop displays exponential growth [9, 29]

ρG(x;λ) =
4

λ

√
λ− (2πx)2 ; 〈W (C)〉 =

2√
λ
I1(
√
λ) ∼ e

√
λ

(λ)3/4
(3.2)
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On the other hand, for any given ν 6= 0, we obtain that the vev of the circular Wilson loop

displays a power law dependence on λ

θµ(λ) +
1

2
lnµ(λ) ∼ log(λ) ; 〈W (C)〉 ∼

√
µ(λ)

λ
e2πµ(λ) ∼

(
λ√

log(λ)

) 2π
θ
−1

(3.3)

For ν = 1 we have θ = π
2 and we recover the known result, 〈W 〉ν=1 ∼ λ3 [3]. For the other

value of ν realized by Lagrangian theories, ν = 1/2 we have θ = π
3 and we obtain

〈W 〉ν=1/2 ∼ λ
5 . (3.4)

It is amusing that for the two values of ν realized by large N Lagrangian N = 2 CFTs,

ν = 1/2 and ν = 1, the exponent in the power law dependence of 〈W 〉 happens to be given

by integers. We don’t know if there is any deeper reason behind this observation.

3.2 Two-point function of the Lagrangian density and the Wilson loop

We now want to compute the normalized two-point function of the 1/2 BPS Wilson loop

and the Lagrangian density. We will first derive a general expression for such two-point

function, valid for any Lagrangian CFT, and then evaluate it for the theories at hand.

Consider any CFT that can be written in terms of a Lagrangian density. The La-

grangian density is a scalar operator with scaling dimension ∆ = 4. Conformal invariance

fixes the normalized two-point function with a straight Wilson line to be

〈L(x)W 〉
〈W 〉

=
fW (gi)

|~x|4
(3.5)

where the coefficient fW (gi) is a function of the possible marginal couplings of the theory.

For any Euclidean CFT, a conformal transformation maps the straight Wilson line

to a circular one. It is well-known that there is a conformal anomaly associated with this

mapping, and the vacuum expectation values of these two operators do not coincide [29, 30].

Nevertheless, the contribution of this anomaly is localized on the Wilson line, so it is

reasonable to expect that it cancels in a normalized two-point function like the one above,

and the same coefficient f also appears in a similarly normalized two-point function with the

circular Wilson loop. This expectation is borne out by explicit computations [10, 31–33].

We are going to write an expression for fW in terms of the vev of the circular Wilson

loop. To do so, we are going to assume that by field redefinitions we can write the action

in such a way that the gauge coupling appears only as an overall factor. The vev of the

Wilson loop is

〈W 〉 =

´
DφWe

− 1
g2

´
d4xL

´
Dφe−

1
g2

´
d4xL

, (3.6)

and we have

g2∂g2 ln 〈W 〉 = − 1

g2

ˆ
d4x
〈L(x)W 〉
〈W 〉

. (3.7)
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This gives us a relation in terms of the integrated two-point function. To proceed we have

to do the integral in the numerator, which is divergent. A convenient regularization was

used in [12]. It consists of mapping the space to S1 ×H3,

ds2 = dτ2 + dρ2 + sinh2ρ
(
dθ2 + sin2 θdφ2

)
(3.8)

and introduce a short distance cut-off ρc for the coordinate ρ. The divergence appears then

as a pole 1/ρc, which is discarded. Following this procedure we arrive at

fW =
1

8π2
g2∂g2 ln 〈W 〉 (3.9)

This expression is valid for any Lagrangian 4d CFT, supersymmetric or not. As a

check, for N = 4 SYM, this relation coincides, up to a number, with the expression found

for the Bremsstrahlung coefficient in [13],

4fN=4
W = BN=4 , (3.10)

and these coefficients must indeed be related in this way, since on the one hand, in N = 4,

the lagrangian density and the stress-energy tensor are in the same supermultiplet, and on

the other hand, for N = 4 theories, the Bremsstrahlung function is related to the two-point

function of the stress-energy tensor and the Wilson loop [10, 12].

Having derived a general formula for this coefficient, we can now use the results just

derived for 〈W 〉 to obtain this coefficient for N = 2 SCFTs, in the large N, large λ regime.

For theories with ν = 0, we reproduce the known result [34],

fW =

√
λ

16π2
. (3.11)

For theories with ν 6= 0, we find that at large λ and large N, the leading term in f(λ)

is independent of λ

fW =
1

8π2

(
2π

θ
− 1

)
. (3.12)

In our derivation, this result follows immediately from the fact that the Wilson loop grows

only as a power law for large λ. Nevertheless, we find it quite remarkable. From its

definition (3.5) we can interpret this coefficient as giving the strength of the fields sourced

by a static probe; our computation implies that for superconformal theories with matter in

the fundamental representation, this strength reaches a limiting value in the large N, large

λ limit.

3.3 Two-point function of the stress-energy tensor and the Wilson loop

We move now to the computation of a similarly normalized two-point function, that of

the stress-energy tensor and the Wilson loop. Again, for a straight Wilson line, conformal

invariance fixes this two-point function up to a coefficient [1],

〈T00W 〉
〈W 〉

=
hW (gi)

|~x|4
. (3.13)
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It was recently conjectured [11] that for N = 2 SCFTs, this coefficient can be related to

the vev of a circular Wilson loop in a squashed four-sphere S4
b [35, 36], since varying the

squashing parameter will insert the stress-energy tensor,

hW =
1

12π2
∂b ln 〈Wb〉|b=1 . (3.14)

Furthermore, it was argued in [11] that this computation can be carried out by just

inserting Wb in the matrix model for S4,

〈Wb〉 =

ˆ
dx e2πbxρ(x) . (3.15)

which is a computation we can readily perform using the results derived in the previous

section. For ν = 0 we have 〈Wb〉 = eb
√
λ so applying eq. (3.14) we arrive at

hW =

√
λ

12π2
, (3.16)

a result that can be alternatively obtained by a supergravity computation [37].

For ν 6= 0 theories, it is more convenient to compute 〈Wb〉 directly in momentum space

using

〈Wb〉 = ρ̂ (−2πbi) . (3.17)

Keeping the relevant term in the asymptotic λ� 1 limit and plugging (2.38) into the result

we conclude that

ln 〈W 〉b ∼ lnλ

(
2πb

θ
− 1

)
+O

(
(1− b)2 ,

lnµ

2

)
(3.18)

so we arrive at

hW =
1

6πθ
lnλ . (3.19)

Again, the result for any ν 6= 0 differs parametrically from the known result of ν = 0

theories, which displays the ubiquitous
√
λ dependence, as in eq. (3.16). Notice also that

for generic N = 2 theories, the λ dependence of the two coefficients just considered is

different. This should not come as a surprise, since for N = 2 theories (unlike what

happens in N = 4 SYM) the Lagrangian density and the stress-energy tensor don’t belong

to the same supermultiplet.

As a bonus, the computation of hW immediately gives us two other interesting quan-

tities. The first one is the Bremsstrahlung function of the corresponding probes. For any

4d CFT, the Bremsstrahlung coefficient can be defined [13] as the coefficient that appears

in the formula for the energy loss of an accelerated probe,

E = 2πB

ˆ
dt a2 . (3.20)

It also captures the momentum fluctuations of the accelerated probe [38]. Intuitively, it

seems natural that the two-point function of the stress-energy tensor would capture the

energy loss of the probe. However, the details are subtle and there is no simple universal
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relation for B and hW [12], valid for all four-dimensional CFTs. Nevertheless, for probes

of N = 2 SCFTs it is conjectured [11, 12] that

B = 3hW . (3.21)

and granting that this conjectured relation is true, we conclude that

B =
1

2πθ
lnλ . (3.22)

Another interesting outcome of this result is the following. It has been argued in [39, 40]

(see also [41]) that a certain class of observables of planar N = 2 superconformal gauge

theories can be obtained from the corresponding result of planar N = 4 SYM, by means

of replacing the N = 4 coupling by a single function, universal for a given N=2 SCFT.

Comparing the results we have obtained for 〈W 〉 and B for N=4 and N=2 theories, we

observe that the putative universal functions we derive from these two computations agree

in the parametric dependence on λ, but disagree in the numeric coefficient.

Finally, we can use our result for hW to compute the additional entanglement entropy

of a spherical region when we add a external probe to the vacuum of the theory. According

to [12] it is given by

S = ln 〈W 〉 − 8π2hW , (3.23)

so for the probes we are considering we have

S =

(
2π

3θ
− 1

)
lnλ . (3.24)
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