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We show that the standard model vacuum can be stabilized if all particle propagators are nonminimally
coupled to gravity. This is due to a Higgs-background dependent redefinition of the standard model
fields: in terms of canonical variables and in the large Higgs field limit, the quantum fluctuations of the
redefined fields are suppressed by the Higgs background. Thus, in this regime, quantum corrections to the
tree-level electroweak potential are negligible. Finally, we show that in this framework the Higgs
boson can be responsible for inflation. Due to a numerical coincidence that originates from the
CMB data, inflation can happen if the Higgs boson mass, the top mass, and the QCD coupling lie in a
region of the parameter space approximately equivalent than the one allowing for electroweak vacuum
stability in the standard Model. We find some (small) regions in the standard model parameter space in
which the new interaction “rescues” the electroweak vacuum, which would not be stable in the standard
model.
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I. INTRODUCTION

The discovery of a light Higgs boson [1] represented the
last step toward the complete knowledge of the parameters
of the standard model (SM) of particle physics. The state-
of-the-art vacuum stability analyses of [2,3] (see also
references therein) showed that the experimentally mea-
sured SM parameters are such that the SM picture can be
consistently extrapolated all the way up to the Planck scale
Mp ¼ 2.435 × 1018 GeV (i.e. where the effect of gravity
can no be longer be neglected). However, if no new degrees
of freedom are advocated up to the Planck scale and the
effect of trans-Planckian physics is considered negligible,
absolute stability of SM vacuum is disfavored [3]: a global
minimum is likely to be developed at large field values,
rendering the electroweak (EW) vacuum metastable, even
though its lifetime is longer than the age of the universe.1

One may wonder whether the ultimate fate of the EW
vacuum is rescued by some stabilization mechanism that
might come into play at high (or even trans-Planckian)
energy scales. On the other hand, as discussed in [5], the
EW vacuum metastability could be the essential ingredient
in order to avoid the quantum instability of the de Sitter
solution that our Universe seems to approach.
A very intriguing coincidence would be that the SM

effective potential stays positive during inflation, so that
reheating can be accommodated within the SM [6]. An

even more interesting scenario is that the SM Higgs boson
itself acts as the inflaton. This can e.g. be achieved by
conformally coupling the Higgs boson to gravity as in the
so-called “Higgs Inflation” of [7]. However, in this case,
new (i.e. non-SM and nongravitational) degrees of freedom
inevitably participate to inflation, or at least, to the
transition from inflation to the EW vacuum [8] (see e.g.
[9] for a completion of the Higgs inflation of [7]).
If instead the Higgs boson is kinetically coupled to

curvature, as in the “new Higgs inflation” of [10], no new
degrees of freedom are necessary in the inflationary regime
[11]. In this paper we will consider an extension of such
scenario and analyze the effect of quantum corrections.
Specifically, we will introduce derivative interactions of the
curvature tensors to the kinetic terms of the SM fields,
uniquely chosen in such a way that no new degrees of
freedom are introduced. The feature of these new gravita-
tional interactions is to change the normalizations of the
SM fields in a way that depends on the value of the
background Higgs field and on a new parameter. At “small”
background Higgs field values the theory effectively
behaves just like the ordinary SM. On the contrary, at
“large” field values the normalization becomes non-
negligible, leading to an approximate decoupling of the
Higgs boson fluctuations. This will be the key ingredient in
order to (i) stabilize the SM effective potential and (ii) allow
the Higgs boson to inflate the primordial Universe.
We will see however that, given the current cosmological

and particle data, the choice of parameters that generate a
successful inflation almost coincide with the choice of
parameters that would anyway stabilize the EW vacuum in
the SM.
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1Additional effects due to the expansion of the universe could

enhance the EW vacuum decay probability, see [4].
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II. QUANTUM ANALYSIS

A. Higgs-gravity system

The model we are going to consider extends the one
proposed in [10] in the context of inflation, where the
Higgs-gravity sector is chosen to be (we use the “mostly
plus” signature)

L ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
M2

pR̄ −
�
ḡμν −

Ḡμν

M2

�
DμH†DνH

− VðH†HÞ
�

ð1Þ

where R̄ and Ḡμν are respectively the Ricci scalar (gravity
in vacuum is not modified) and the Einstein tensor, H
denotes the complex Higgs doublet, Dμ is the standard
covariant derivative [under spacetime and SUð2Þ ×Uð1ÞY],
and the potential is VðH†HÞ≃ λðH†HÞ2 (up to a cosmo-
logical constant term and the quadratic term, which is
negligible in the region we are interested in).
The canonical momentum conjugated to the Higgs

doublet is (on a spacelike hypersurface)

πH ≡ δL

δ _H
¼ −2

ffiffiffiffiffiffi
−g

p �
gμν −

Gμν

M2

�
nμ∂νH; ð2Þ

where nμ is an arbitrary timelike unit four-vector with zero
vorticity. Because in this system the Higgs boson is
noncanonical, imposing the standard equal time commu-
tation rules one has [12]

½HðxÞ†; _HðyÞ� ¼ 1

2
iℏ

δð3Þðx − yÞ
N

; ð3Þ

where

N ≡ −
ffiffiffiffiffiffi
−g

p �
gtt −

Gtt

M2

�
ð4Þ

in some coordinates adapted to nμ. While it might be
possible to work with the noncanonical Higgs boson with
commutations rules (3) (see e.g. [12] for the Higgs inflation
case of [7]) we will instead work with canonical fields
following the approach of [13].
In order to canonicalize the Higgs boson (and later on

also the fermions and vectors of the theory) we use the
following result: defining a new metric

gαβ ¼ ḡαβ þ ϵαβ; ð5Þ

for small ϵαβ we have the perturbative expansion

Z
d4x

ffiffiffiffiffiffi
−g

p
R ¼

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄þ δ½ ffiffiffiffiffiffi−gp

R�
δgαβ

����
g¼ḡ

ϵαβ þOðϵ2Þ

¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
R̄ − Ḡαβϵαβ þOðϵ2Þ; ð6Þ

where the second term in the last equality comes from the
standard variation of the Einstein-Hilbert action. We thus
see that, if we choose the disformal metric [14,15]

gαβ ¼ ḡαβ −
DαH†DβH

M2M2
p

; ð7Þ

and truncate at first order in the covariant derivatives, the
nonminimal derivative coupling in (1) cancels against
the second term in (6). However, the potential term
“remembers” the original Lagrangian, as we shall show.
The determinant of the metric is expanded in an

analogous manner as

ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
−ḡ

p ð1þ ϵαα þOðϵ2ÞÞ; ð8Þ

where indices are contracted with ḡαβ. Plugging in our
choice for ϵαβ and inverting in favor of

ffiffiffiffiffiffi
−ḡ

p
we then have

VðHH†Þ ffiffiffiffiffiffi
−ḡ

p

¼ VðHH†Þ ffiffiffiffiffiffi
−g

p �
1þDαHDαH†

M2M2
p

þ higher-covariant-derivatives interactions

�
: ð9Þ

Summarizing, in terms of the disformal metric (7) and at
first order in the covariant derivatives, the Lagrangian (1)
reads

L≃
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

pR

−
�
1þ ðH†HÞ2

4Λ4

�
DμH†DμH − VðH†HÞ

�
; ð10Þ

where Λ≡ Λtλ
−1=4 at the classical level and Λt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
MMp

p
.

In (10), nonrenormalizable interactions of the vector fields
with the Higgs boson and higher-derivative interactions are
neglected while all the self-interactions of the Higgs are
kept, including the nonrenormalizable ones (up to two-
derivatives) As we will discuss later on, the nonrenorma-
lizable self-interactions of the Higgs boson, after canonical
normalization in a nontrivial Higgs background field, will
be truncated at the renormalizable level. This is consistent
with our approximation of neglecting all nonrenormaliz-
able interactions that are suppressed by a large Higgs boson
background (as we shall consider). Finally, note that the
disformal transformation (7), when applied to the other SM
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fields, will, again, only introduce higher-(covariant)-
derivative interactions.
The theory (10), seems to lose tree-level perturbative

unitarity when the potential reaches the transition value Λ4
t

[11]. However, perturbative unitarity is actually not lost.
Indeed, at the same scale a non-negligible gravitational
background is generated, leading to a kinetic mixing
between the graviton and the Higgs boson [11]. Upon
diagonalization of the Higgs-graviton system, one discov-
ers that the unitarity violation scale is actually background
dependent. Specifically, for a background in the zero-
momentum limit but for large field values (corresponding
to large occupation number), one finds that the scale of
perturbative unitarity violation rises from Λt to ∼Mp during
inflation [11,14,16].2,3 In the spirit of effective field theory
one could also include in the diagonalized system all
possible higher-dimensional operators suppressed by the
background dependent cutoff that are compatible with its
symmetries. However, as we shall be only interested in
background Higgs field values always far below the cutoff,
we will consistently neglect all of them.4

The effect of (7) is to “integrate out” the background
transverse graviton by the use of the tree-level Einstein
equations. Neglecting Planck-scale suppressed longitudinal
graviton fluctuations we are only left with a source
generated by a large number of background transverse
gravitons (Coulomb-type field strength), while transverse
graviton fluctuations are gauged away by diffeomorphisms
[11], just as it would be for the electromagnetic field
coupled to a source. Specifically, in the zero-momentum
limit (neglecting all the other SM fields), and by using the
classical Einstein equations

Ḡμν ¼
Tμν

M2
p

⟶
p→0

−
V
M2

p
gμν; ð11Þ

where all momenta are collectively denoted by “p”, we
have

N ⟶
p→0

1þ V
Λ4
t
: ð12Þ

Far below the scale Λ (small background field) N ≃ 1 and
the Higgs-gravity system is well approximated by the SM.

Far above Λ (large background field) N ≃ ðH†HÞ2
4Λ4 . In the

latter case one has to consider field redefinitions in order to
make the commutator (3) canonical and to be able to
calculate quantum corrections to the system in the
usual way.

B. Gauge-fermions-gravity sector

Here we will extend the original model of [10] by
democratically coupling to gravity all the SM kinetic terms5

and by using a common suppression scale. As for the
fermions, the only nonminimal kinetic interaction that does
not introduce new degrees of freedom is again the term
appearing in (1) [20]. Thus, we choose the coupling of the
SM fermions (collectively called ψ) to be6

Lψ
kin ¼ −

�
gαβ −

Gαβ

M2

�
ψ̄γαDβψ : ð13Þ

Analogously, there is only a nonminimal kinetic inter-
action to gravity for the gauge fields that does not introduce
new degrees of freedom (see e.g. [20] and references
therein):

LA
kin ¼ −

1

4

�
gαμgβν þH†H

Λ2
t

��Rμναβ

M2

�
TrFαβFμν; ð14Þ

where we collectively called A the gauge vectors, F denotes
their field strengths, and ��Rμναβ is the double-dual
Riemann tensor. Actually, the above interaction was shown
in [11] to be necessary in order to avoid trans-Planckian
gauge vector masses during inflation.7

We will now follow the discussion of [13] and use the
formalism of the nonlinear realization of symmetry break-
ing. With a slight abuse of notation, we now parametrize
H ¼ hffiffi

2
p U, where U ¼ exp ½iπaτa� and πa are the nonca-

nonical Goldstone bosons. Similarly to the previous case,
in the zero-momentum limit, we have that

�
gαμgβν þH†H

Λ2
t

��Rμναβ

M2

�
TrFαβFμν →

p→0

�
1þ h2V

Λ6
t

�
TrF2

≡N ATrF2: ð15Þ
2Note that this background coincides with a de Sitter spacetime

which is approximately a Friedman-Robertson-Walker inflating
spacetime.

3While preparing this paper the authors in [17], by studying 2
by 2 scatterings but considering only cubic interactions, found
that the perturbative unitarity violating scale might be below Mp
but still well above the inflationary scales. However, as the
authors themselves admit, this result cannot be trusted until the
quartic vertex is also included in the analysis.

4The assumption here is that there is a UV complete theory
with a nontrivial vacuum of which (1) is the low energy effective
field theory. In addition, the theory (1) may be non-Wilsonian and
self-unitarize [18]. In this case there are no extra operators to be
added, unless generated by loops.

5It is also interesting to point out that a nonminimally coupled
axion to gravity can account for the missing dark matter, even for
high inflationary energy scales without producing dangerous
isocurvature perturbations [19].

6Note that if fermions are supersymmetric partners of a
nonminimally kinetically coupled scalar, they must have the
coupling (13) [21].

7Note that in [11] the scale suppressing the Higgs boson was
ΛM. Here we prefer to use instead Λt to have the transition to the
nonminimally coupled system at the same point for all fields.
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As before we will use the approximation N A ≃ 1 for V ≪
Λ4
t and N A ≃ h2V

Λ6
t
for V ≫ Λ4

t . Thus, at small background

field values, the full system is approximately the SM. In the
next section we will consider the large field limit of this
system.

C. The large Higgs-background limit

The canonically normalized Higgs boson χ is

χ ¼
Z ffiffiffiffiffi

N
p

dh; ð16Þ

which at large field values (V ≫ Λ4
t ) is approximated by

χ ≃
ffiffiffi
λ

p

6

h3

Λ2
t
: ð17Þ

The canonical Goldstone bosons will then be πacan ≃ 3χπa.
The canonically normalized fermions ψ can and vectors Acan
will instead be

ψ can ≃
ffiffiffi
λ

p
h2

2Λ2
t
ψ

Acan ≃
ffiffiffi
λ

p
h3

2Λ3
t
A: ð18Þ

In terms of these fields it is straightforward to derive an
approximation of our Lagrangian in the large field limit. We
work in the chiral representation for the Higgs field (see a
similar discussion in [13]) and neglect all the higher-
derivative operators and the operators suppressed by the
inverse power of the Higgs background. We obtain (for
simplicity we drop the subscript “ can” unless otherwise
specified):

Lchiral ¼ −
1

2
ð∂χÞ2 − 1

g2
H1 −

1

g02
H2 − LW=Z þ LY − UðχÞ;

ð19Þ

where

H1 ¼
1

2
TrW2

μν; H2 ¼
1

4
B2
μν

LW=Z ¼ Λ2
t

4
TrV2

μ; LY ¼ −ψ̄L;RDψL;R; ð20Þ

and, still for large h,

Vμ ¼ iWμ − iUBY
μU†;

Wμ ¼ 2Wa
μτ

a; Wμν ¼ 2∂ ½μWν� þ i½Wμ;Wν�;
BY
μ ¼ BμT3; Bμν ¼ 2∂ ½μBν�: ð21Þ

It might seem puzzling to see no Yukawa interaction in
(20). However, in the high energy limit, the quarks
decouple from the Higgs. In fact, thanks to the canonical
normalization of the Goldstone bosons and the quarks, the
Yukawa coupling is suppressed by the large Higgs field:
e.g. once the normalization of the fermions is taken into

account the Yukawa coupling reads yQ
2
ffiffi
2

p
Λ4

h2 Q̄LUQR.
A similar argument shows that no kinetic term for the
Goldstone bosons enters in Vμ. Therefore for large h, the
quarks decouple from the Higgs, as well as the gauge
vectors, as it is clear from (20). In other words, the Higgs
boson is decoupled from the other fields. Conversely to the
small field limit, where the masses of the W=Z bosons are
proportional to the background, here their masses saturate
at Λt.
The tree-level Higgs potential in terms of χ, at large field

values, is simply

UðχÞ≡ VðhðχÞÞ ¼ λ
hðχÞ4
4

≃ ðm2χÞ4=3: ð22Þ

where m ¼ ð9=2Þ1=4Λtλ
1=8 ¼ ð9=2Þ1=4Λλ3=8.

To calculate the one loop effective Coleman-Weinberg
potential [22], we need to know the (field dependent) mass
of χ. It is a trivial computation to see that, for large Higgs
background field, m2

χ ¼ d2U
dχ2 ∝

Λ2

h2 and thus, under our

approximations, will be taken to vanish. In addition,
expanding the potential (22) around the background χ0,
i.e. χ ¼ χ0 þ δχ it is clear that the only nonvanishing term
is a tadpole and therefore all beta functions associated to the
self-Higgs interactions are (approximately) trivial. Thus,
the effective potential above the scale Λ will be well
approximated by its tree-level form and the scale m
will not (approximately) run. More precisely, loop effects
will be suppressed by the large Higgs boson background.

D. Matching and EW vacuum stabilization

Far below the scale Λ (which we refer to as “region I”),
we can neglect gravity and approximate the whole
system with the SM. In this regime, we can calculate the
effective potential with the standard techniques, although
in a gauge dependent way (for a recent discussion see e.g.
[23] and references therein). Far from the EW vacuum,
the SM effective potential can be recast in the form
VeffðhÞ ¼ λeffðhÞh4=4, where λeffðhÞ is the effective quartic
coupling and its two-loop expression can be found in [3].
Instead, far above Λ (“region II”), the canonical Higgs
boson is approximately decoupled and thus we can ignore
any gauge-dependence. In this region, as we have just
showed, the effective potential is well approximated by its
tree-level form, parametrized by a background independent
value of m.
Assuming for a moment a sudden transition between

the regions I and II at h� ¼
ffiffiffi
2

p
Λ (corresponding to
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χ� ≃ 0.47Λ), the net effect is that the gauge dependent
λeffðhÞ sharply converges to the (gauge-independent) run-
ning coupling λð ffiffiffi

2
p

ΛÞ (we have implicitly made the usual
choice μ ¼ h for the renormalization scale and used the fact
that Λ depends weakly on the background Higgs value, as
we shall see shortly).
Obviously, the transition between the two regions is not

sharp. However, since the N factor changes with h4, it is
reasonable to assume that the width of the transition region
is Oð1Þ GeV. Above roughly 105 GeV the change of the
Higgs quartic coupling λðhÞ is very mild in a generic range
Δh ∼Oð1Þ GeV [3]. Thus we expect the same to happen in
the transition region and this will be our working
assumption. In other words, we expect that a sharp
transition between region I and II is not going to be a
bad approximation.
The question still to be answered is whether the scale Λ

varies with the background field value. For ðH†HÞ2
4Λ4 ≪ 1, the

term ðH†HÞ2
4Λ4 DμH†DμH can be considered as a self-

interaction for the field H. It is then an easy exercise to
see that, in this regime, the scale Λ runs very weakly with
the renormalization scale μ: the only diagram (at one-loop)
generating the running of Λ is the one involving the quartic
Higgs coupling and the running turn out to be d lnΛ

d ln μ ¼ 3
4π2

λ.
As λ is small and runs to even smaller values in the region
we are interested in, we can safely neglect the running of Λ
in our analysis.8 A similar analysis also reveals that the
scales appearing in (13) and (14) run weakly.
In the small background field regime (h ≪ Λ), the first

non-SM interaction in terms of H is of quartic-Galileon
type [25]. Schematically, this is 1

Λ6
M
∂H†∂H∂2H†∂2H,

where ΛM ¼ ðM2MPÞ1=3 is the scale at which perturbative
unitarity is violated at large momenta. Note that, at high
momentum (but still at small field values), the Higgs boson
is approximately invariant under Galilean transformations.
We assume here that the UV completion of the theory at
high momentum is still invariant under this approximate
symmetry, therefore it must involve only derivative oper-
ators that would not spoil the low-momentum analysis.9

Because of null results in the search of non-SM phenomena
in collider experiments at large momenta, we will constrain
ΛM to be above Oð1Þ TeV. This implies Λ≳ 107 GeV.
The scale m we are interested in is then finally

m ¼ ð9=2Þ1=4Λλ3=8� ð23Þ

where the value of the running λ at the transition point,
λ� ≡ λðh�Þ, can be calculated at three-loop accuracy fol-
lowing [2,3,27].
The running of λ is mainly affected by the strong and

Yukawa interactions. Therefore, in our analysis we keep as
free parameters (within a few standard deviations from the
current average values) the Higgs boson pole mass (mh),
the QCD coupling αs evaluated at the Z boson mass, and
the top quark pole mass (mt). The latest world average
values are: αs ¼ 0.1185� 0.0006, mh ¼ ð125.09�
0.24Þ GeV and mt ¼ ð173.34� 0.76Þ GeV [28]. Notice
that the top quark pole mass suffers from an irreducible
nonperturbative uncertainty of the order of �ΛQCD ≃
�0.3 GeV (see e.g. [2,3]). Furthermore, the relation
between the top quark mass that is reconstructed at
hadronic colliders, using Monte Carlo simulations, with
its pole mass involves further subtleties, see e.g. [29,30]
and references therein. For simplicity, we approximate the
top quark pole mass of [30], corresponding to the exper-
imental world average, with mt ¼ ð173.39� 1.05Þ GeV.
To summarize, in this paper we use the following values

αs ¼ 0.1185� 0.0006;

mh ¼ ð125.09� 0.24Þ GeV;
mt ¼ ð173.39� 1.05Þ GeV: ð24Þ

As already mentioned in the introduction, with these values
for the input parameters, SM vacuum stability is disfa-
vored: the SM effective potential develops a global mini-
mum at large field values and the EW vacuum turns out to
be metastable. This can be avoided in our framework,
provided the transition happens before the scale h0 at which
the running coupling vanishes ðλðh0Þ ¼ 0). Together with
our lower bound on Λ, the EW vacuum is stabilized if

107 GeV≲ Λ ¼ h�ffiffiffi
2

p ≪
h0ffiffiffi
2

p : ð25Þ

For the central values we find h0 ≃ 6 × 109 GeV and
therefore a value for Λ can be accommodated such that
the above equation is satisfied and stability recovered.

III. THE HIGGS BOSON AS INFLATON

Thanks to the gravitational enhanced friction mechanism
[10,15,16], far above the scale Λ, if λ� is positive, the Higgs
boson rolls very slow down its own potential generating an
almost de Sitter phase (inflation). This happens because the
nonminimal coupling of the Higgs boson’s kinetic term to
the Einstein tensor increases the general relativistic kinetic
energy loss (Hubble friction) of the Higgs boson to gravity.
The cosmic microwave background radiation (CMB),

very precisely observed by the ESA Planck satellite experi-
ments [31], is described by the amplitude of the power
spectrum [16,32]

8Note that in absence of a potential term the scaleM would still
enter via the higher-derivative operators (that we neglected here).
Nevertheless, its running would be forbidden by a nonrenorm-
alization theorem [24].

9As an alternative approach, one could remove all interactions
suppressed by ΛM by subtracting a covariant Galileon component
(see [26] for the definition) in the original Lagrangian (1) so that
the scale ΛM is removed from the theory.
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P ≃ H2

8π2ϵM2
p
≃ 2 × 10−9; ð26Þ

the spectral index

ns ¼ 1 − 5ϵ; ð27Þ

and the tensor to scalar ratio

r ¼ 16ϵ: ð28Þ

In the high friction regime in which VðhðχÞÞ ≫ Λ4
t

(precisely the regime in which quantum corrections are
under control) we have [16] (see [11] for full nonapprox-
imate formulas)

ϵ ¼ 8

3

M2

H2

M2
p

h2I
; ð29Þ

where the Hubble constant is H2 ¼ V
3M2

p
and hI is the Higgs

background value during inflation.
During inflation the Universe expands eN times. In order

to have a successful inflation, inflation should last between
50 to 60 e-foldings. The relation of the number of
e-foldings (N) with the slow-roll parameter ϵ is [11]

N ¼ 1

3

�
1

ϵ
− 1

�
: ð30Þ

Once the number of e-foldings is fixed, ns and r are
uniquely determined. For N ranging from 50 to 60 we have

ns ¼
�
0.966 if N ¼ 50

0.972 if N ¼ 60
;

r ¼
�
0.106 if N ¼ 50

0.088 if N ¼ 60
; ð31Þ

which are completely independent of λ�.
The values in (31) fit within one sigma the latest Planck

data analysis [31]. Note that, if we were not in the high
friction limit we could have had higher values for r, as
shown in [11].10

Although, as we said, the cosmological parameters are
independent of λ�, this is not true for the scale M and the
Higgs boson background value during inflation (hI).
However, in the high friction limit, the constant m entering

the potential (22) is completely fixed by the CMB. It is easy
to find that

m≃ 5.38 × 1015

ð1þ NÞ5=8 GeV: ð32Þ

Similarly, the value of the canonically normalized Higgs
field during inflation is

χI ≃ 3.96 × 1018 GeV
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
: ð33Þ

This is what we expect: in chaotic inflation the value of the
canonical inflaton must be trans-Planckian.
A last condition we have to impose is that inflation

happens above the transition scale, i.e. that

χI ≫ χ�: ð34Þ

As we discussed, χ� ≃ 0.47Λ. Therefore, (34) is satisfied
provided Λ ≪ Mp, which is actually a consistency con-
dition in quantum gravity [34].

A. EW vacuum stability and inflation

If we restrict ourselves to the range 50 ≤ N ≤ 60, our
equations are only weakly dependent on N. Therefore,
within our working precision, we can safely fix N ¼ 51,
which corresponds to the central value of the spectral index
observed by Planck [31], ns ¼ 0.968. From (32) we have

m≃ 4.55 × 1014 GeV: ð35Þ

Note that in the SM λ is small at the EW scale, decreases
quite rapidly but then varies very slowly with the running
scale. Since m ¼ ð9=2Þ1=4Λλ3=8� , one expects, when the
conditions for inflation and EW vacuum stabilization are
met, Λt not to differ from m (and h�) by more than 1–2
orders of magnitude (and indeed we checked that this is
the case).
We have performed scans of the experimentally allowed

region in the ðmh;mt; αsÞ parameter space [see (24)] in
order to assess whether it is possible to achieve simulta-
neously (i) successful inflation and (ii) EW vacuum
stabilization. In each of our scans we have fixed one of
the three parameters to the central value of its latest
determination and we have varied the remaining two within
the corresponding 3σ regions, i.e. the most interesting from
a phenomenological point of view. For each point we have
checked whether or not the condition (35) can be satisfied
for some Λ allowed by the constraint (25). We have
repeated the same scan considering �1; 2; 3σ variations
of the parameter that we fix.
In Fig. 1 we show our results for the scans in which either

αs or mh are kept fixed. The left panels displays (in purple)
the upper boundary of the allowed region in the ðmh;mtÞ
plane for several choices of αs. The thick solid line

10While replying to the Referee’s comments, the new BICEP2/
KECK analysis appeared in [33] claiming an upper bound for
r < 0.07 at 2-sigma level. We note that this can be achieved in our
model for N ≃ 75 while still being within 2-sigma level from the
central value of ns from Planck. However, as already discussed,
since our analysis is weakly dependent in N, we will, for
simplicity, only consider the value of N compatible with the
central value of ns obtained by Planck.
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corresponds to the central value αs ¼ 0.1185. The dot-
dashed lines represent choices that are larger than the
central value by 1; 2; 3σ (in order of decreasing thickness
from the solid line). Analogously, the dotted lines are the
results we obtain with αs smaller by 1; 2; 3σ than the central
value. We also show, for convenience, the 68%, 95% and
99% probability regions for the parameters on the axes,
assuming them to be independent Gaussian variables with
mean and standard deviation as given in (24). Close to each
line, the stability bound in the SM, from [3], is displayed in
dotted green lines for the same value of the fixed parameter.
Analogous comments apply to the right panel, in which we
show the boundary lines in the ðαs; mhÞ plane obtained after
having fixed the Higgs boson mass.
From both plots we see that the condition for successful

inflation (and EW vacuum stability) is relatively close to
that for absolute stability in the SM. This can be understood
as a consequence of our requirements from cosmology, that
eventually fix the numerical value of m to Oð1014Þ GeV,
and of the beta-functions of the SM. For parameters that
favor stability of the SM vacuum, the running of the Higgs
quartic coupling in the SM is such that λ and λeff do not
considerably differ. The requirement (for inflation) that λ is
positive (and large enough) in order to allow (23) and (35)
to be satisfied, turns out to be, due to the SM running,
essentially equivalent to requiring λ (and therefore λeff ) to
be always positive. To be more precise, one sees from the
left panel that the two bounds are basically parallel in the

ðmh;mtÞ plane and that a slight crossing happens as αs is
varied (see also the right panel). For the central value the
two bounds overlap; for smaller αs the region that allows
inflation is contained in the one that allows SM vacuum
stability; for larger αs the noncanonical kinetic interaction
“rescues” the EW vacuum, which would be metastable in
the SM, and allows for successful inflation from the Higgs
sector.
We do not show the analogous plot of the scan in the

ðmh; αsÞ plane, but we briefly comment on the results.
Consistently with what one would expect, having a some-
how light top quark is necessary in order to satisfy our
constraints. What we find is that unless we choose mt at
least roughly 1.5 standard deviations below its average
value, it is not possible to have inflation and vacuum
stabilization. On the other hand, for a light top quark the
criteria are mildly dependent on mh and αs: for mt ¼
171.29 GeV most of the upper-right corner is allowed,
while for mt ¼ 170.24 GeV the allowed region covers
essentially the whole parameter space we analyzed.
As final remark, the viability of our scenario strongly

relies on the top quark pole mass being smaller than the
current world average. While the Higgs boson pole mass is
measured with a remarkable precision at the LHC and can
be approximately considered as a given parameter, a direct
precise measurement of the top quark pole mass suffers
from considerable theoretical uncertainties and this fact
still provides some room for speculations. One could
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FIG. 1. The left (right) panel displays (in purple) the upper boundary of the allowed region in the ðmh;mtÞ ðαs; mhÞ plane for several
choices of αs (mh). The thick solid lines correspond to the central value of the fixed parameter; the dot-dashed lines (with decreasing
thickness from the thick line) represent choices that are larger than the central value by (respectively) 1; 2; 3σ; the dotted lines represent
choices that are smaller than the central value by (respectively) 1; 2; 3σ. The dotted green lines show the stability bound in the SM (taken
from [3]) corresponding to the closest purple curve. The gray ellipses are the 68%, 95% and 99% probability regions for the parameters
on the axes. See the text for more details.
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alternatively use the M̄S top mass as an input parameter for
the analysis, bypassing in principle all the issues with the
pole mass, but the precision of its current experimental
determination is not such that any conclusive statement can
be made (see e.g. [2,35] for a discussion in the context of
the SM vacuum stability bound).

IV. CONCLUSIONS

If the SM has a nonminimal kinetic coupling to gravity in
a way that no new degrees of freedom are added, we
showed that the EW vacuum can be stabilized even for the
central values of the SM parameters (which, within the sole
SM would imply a metastable EW vacuum).
In this scenario, the Higgs boson can be considered as

responsible for cosmic inflation (as already shown at the
classical level in [10]). We showed that, within two
standard deviations from the current central values of the
most relevant SM parameters (mh, mt and αs), there exist
points such that (i) the EW vacuum is stabilized due to an
approximate decoupling of the Higgs field at large back-
ground field values and (ii) inflation is achieved in
compatibility with current data [31].
In general, the allowed parameter space turns out to be

essentially similar to the one that allows for SM vacuum

stability due to a numerical coincidence, i.e. the fact that
cosmological data set the scale at which the new interaction
becomes relevant to a large value of Oð1014−16Þ. More
precisely we observe that for given αs the corresponding
boundary lines are parallel in the ðmh;mtÞ plane, while
variations of αs generate a slight crossing: as the QCD
coupling increases with respect to its current central value,
the region we find becomes somehow larger than the SM
vacuum stability region, signaling that the new interactions
“rescues” the EW vacuum.
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