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Dynamics of Turing Patterns under Spatiotemporal Forcing
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We study, both theoretically and experimentally, the dynamical response of Turing patterns to a
spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that
from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including
temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make
contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)] and generalize them. The
stability diagram for the different propagating modes in the Lengyel-Epstein model is determined
numerically. Direct observations of the predicted solutions in experiments carried out with light
modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.
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limiting cases, namely, a traveling pattern locked to the of a pseudospectral method with a linear-implicit time
The study of pattern dynamics under external forcing
provides a powerful tool to deeply probe their inherently
nonlinear mechanisms under nonequilibrium conditions.
A great deal of attention has been focused on reso-
nances or locking of spatially structured states, either
stationary or oscillatory, under temporal (spatially uni-
form) [1–5] or spatial (steady) modulations [6–10]. Steady
patterns in reaction-diffusion systems typically arise
from the celebrated Turing mechanism [11,12]. Accord-
ing to it, inhomogeneous distributions of chemical
concentrations self-organize spontaneously out of a non-
structured medium as a result of a competition between
autocatalytic reaction steps and the differential diffusivi-
ties of an activator (smaller) and an inhibitor (larger
diffusion) species. Turing patterns are endowed with an
intrinsic wavelength, depending only on the kinetic and
diffusion parameters, but lack an intrinsic frequency, in
contrast to oscillatory chemical systems [12]. Genuine
Turing patterns were first observed in quasi-two-
dimensional gel reactors (preloaded with appropriate
chemical indicators) in the chlorite-iodide-malonic acid
[13] and the chlorine dioxide-iodine-malonic acid
(CDIMA) [14] reactions and appear as patterned distri-
butions of iodide. The CDIMA reaction has the interest-
ing feature of being photosensitive [15].

It thus seems timely to search for generic behavior in
the unexplored perspective of spatiotemporal forcing of
pattern forming systems. Specifically, we aim at studying
the dynamical response of photosensitive Turing patterns
to the simplest external spatiotemporal forcing consisting
of a traveling-wave modulation of the control parameter
associated with the illumination. Through the mechanism
of pure spatial resonance an external frequency will thus
be imposed in an otherwise nonoscillatory system. As a
consequence, new nontrivial dynamical modes are ex-
pected to arise which allow one to connect the two trivial
0031-9007=03=90(12)=128301(4)$20.00 
forcing at low velocities and a standing pattern resulting
from the time averaging of the forcing at large velocities.
Analytical and numerical results will be reported featur-
ing the simplest of these spatiotemporal behaviors.
Experiments conducted with the CDIMA reaction are
also provided which fully confirm our theoretical predic-
tions. Beyond the particular chemical context that moti-
vates our study, such solutions, and the conditions of their
appearance, are sufficiently generic to be applicable to a
rather general class of pattern forming systems including,
for instance, Rayleigh-Bénard convection. In a sense, our
study may be viewed as a development of the work of
Coullet [7,16] on commensurate-incommensurate transi-
tions in nonequilibrium (spatially) forced systems.

The experimental system under study is modeled
within the Lengyel-Epstein scheme [14], once modified
to include the effect of illumination, as [15]
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Here u and v are the dimensionless concentrations of two
of the chemical species; a, c, 
, and d denote dimension-
less parameters of the chemical system. The effect of
external illumination is introduced through the � terms.
This contribution can be decomposed into the mean
value �0 and a modulation part: ��x; t� � �0 �

 cos�kfx�!t�. For purely homogeneous illumination,

 � 0, the equations admit a solution which in the follow-
ing is referred to as a base state: u0 � �a� 5�0�=�5c�,
v0 � a�1� u20�=�5u0�.

All our numerical results are obtained through in-
tegration of the model reaction-diffusion equations [(1)
and (2)] with periodic boundary conditions by means
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stepping. From here on we fix the parameters to the
following: a � 16, c � 0:6, d � 1:07, 
 � 301. These
values were chosen to reproduce the experimental con-
ditions referred to below. The large 
 value, correspond-
ing to a strong diffusion contrast between the two species,
guarantees that we are far from the oscillatory regime of
this chemical system. Consequently, only the Turing bi-
furcation will play a role. The remaining parameters
concern the forcing term. One of them, �0, will serve as
the parameter to locate the position of the Turing bifur-
cation in the homogeneous problem. For the given pa-
rameters it occurs at �0 � 2:3 (the base state being
unstable to Turing patterns below �0 � 2:3) and the
critical wave number is kc � 1:07.

We begin our analysis with the case of exact 1:1 spatial
resonance kc � kf. Choosing the length L of the periodic
domain to be 10�, where � � 2�=kc is the critical wave-
length at instability, we fix L � 58:72 and the amplitude

 � 0:1.

As is known from the analysis of time-independent
forcing, the spatial 1:1 resonance yields an imperfect
bifurcation to Turing patterns [7]. Accordingly, the base
state ceases to be a stationary solution and is modified
into a nonhomogeneous state for every value of the bi-
furcation parameter�0. For�0 in the stable region (above
2.3) this state is a traveling wave (TW). The TW locks to
the forcing wave, adopting the same wave number and
frequency, with only a constant phase difference. This is
the trivial state to be expected for slow driving. For large
! the amplitude of the TW approaches 0. The TW’s exist
to the right of the solid curve in Fig. 1.

Crossing the solid curve in Fig. 1 the TW state under-
goes a first instability into a state with temporally modu-
lated amplitude [modulated traveling waves (MTW),
triangles in Fig. 1]. This is the signature of a Hopf bifur-
cation which introduces a new frequency fH [see
Fig. 2(a)]. Note that the modulation of the amplitude
occurs uniformly in the entire system. We found that for
2.05 2.1 2.15 2.2 2.25 2.3
φ 0

1

2

3

4

5

ω 

FIG. 1. Type of attractor for different values of ! and average
illumination �0: boxes correspond to TW solutions, triangles to
modulated traveling waves (MTW) solutions (see text). The
vertical line shows the position of the instability for homoge-
neous forcing.
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large ! the Hopf frequency converges to the frequency !
of the forcing wave.

The solutions and the transition described above can be
rationalized in terms of an amplitude equation. Following
standard envelope techniques near threshold [7,17], and
with the forcing being invariant under the transformation
t! t� T, x! x�!T=kf, for sufficiently small 
 and
!, the slowly varying modulations of the traveling mode,
in the case of perfect 1:1 resonance (kf � kc), will be
given by the amplitude equation

_AA � �A� jAj2A� 
 exp��i!t� � @2A=@x2: (3)

Using polar coordinates, A � R expi�, we look for
homogeneous solutions with � � �0 �!t. As in the
steady case for 
 � 0 there is a nonzero solution for every
�, the dimensionless distance to threshold. Its amplitude
approaches 0 with increasing ! in accordance with our
observations for the Lengyel-Epstein model. �0 is the
phase shift between the forcing wave and the resulting
pattern.

We further determine the stability of this solution with
respect to homogeneous perturbations. Directly from the
amplitude equation,

_RR � �R� R3 � 
cos� ��0�; (4)
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R
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where we have defined  � ��!t��0. Linearization
about the locked solution ( � 0, R � Q � const) yields
the following eigenvalues: � � �� 2Q2 	

����������������������
�Q4 �!2�

p
.

Corresponding to Fig. 1, for large !, the marginal curve
approaches the line � � 0, and the imaginary part of the
eigenvalue converges to the driving frequency, as also
observed numerically above [18].

We now address the more generic case of inexact 1:1
resonance [19], introducing a slight wave number misfit,
kf � kc. To allow for a continuous variation of the misfit
in a finite system, we will fix the integer wave number
(n � kL=2�) of the forcing to n � 10 and change
smoothly the length L of the periodic domain. For ex-
ample, for L � 65 the tenth wave number corresponds to
kf � 0:97. Figure 3 depicts the complex behavior that was
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FIG. 2. (a) Space-time plots of the u component of the modu-
lated traveling wave solution for ! � 0:5 and �0 � 2:11 and
(b) for the soliton (SOW) solution for ! � 5, �0 � 2:25, and
kf � 0:9.
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found changing kf from 0.9 to 1.26 (L � 70; . . . ; 50).
The average illumination �0 was fixed to 2.25 during
all of the simulations. For the purely homogeneous forc-
ing (i.e., �0 � 0) this value corresponds to a slightly
unstable base state.

In Fig. 3 the stability domain in ! and kf is given for
four different states. The TW state, the solution locked to
the forcing, is the only stable solution for approximately
! � 1. Above a roughly horizontal transition curve close
to ! � 1:1 the TW states are unstable. For kf � kc and
close to this point the transition occurs at ! � 1:15
(cf. Fig. 1) and results in the MTW.

The domain of stability of the MTW is given by the
solid curve in Fig. 3. Outside of this domain the attractors
are either the TW state or one of two different new
localized states which we call soliton waves (SOW)
[20]. A typical space-time plot is shown in Fig. 2(b).
Spatial plots of these states show that they resemble the
solitonlike solutions for the case of nontraveling forcing
[7], but they exhibit the following new properties: the
soliton, i.e., the localized suppression of the amplitude
moves relatively to the underlying traveling pattern with a
relative velocity which may be positive or negative.
Furthermore, as the soliton travels along the pattern,
the phase of the background pattern moves in either
direction. In our case the integer wave number of the
background pattern is either n � 9 or n � 11 and the
corresponding states are represented in Fig. 3 with circles
and diamonds, respectively.

Beyond the range of forcing wave numbers shown in
Fig. 3 there exist further soliton states in accordance with
the prediction for nontraveling forcing [7]. Here we de-
scribe only the two states that are adjacent to the MTW
state in Fig. 3. The states represented by diamonds (re-
spectively, circles) carry a soliton that moves to the right
(respectively, left). The approximate range of stability for
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FIG. 3. Phase diagram in the space of ! (vertical line) and kf
(horizontal line): filled square, TW; filled triangle, MTW (see
text for notation); diamond, soliton state with wavelength
L=11; circle, soliton state with wavelength L=9. We have
chosen �0 � 2:25. The value kf � kc (L � 58:72) corresponds
to the dashed vertical line showing the position of the perfect
1:1 resonance. Solid, dashed, and dotted lines are approximate
stability boundaries of MTW and the two SOW states.
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these states is given by the dashed curve (respectively,
dotted curve).

Note that the stability domains of the soliton states
and the MTW state overlap. Remarkably, at sufficiently
large ! the soliton states are even stable for kf � kc, i.e.,
exact 1:1 resonance. This contrasts to the case of static
forcing [7] where only the presence of a misfit can lead to
solitons.

The above localized states (SOW) can be described as
quasiperiodic in the sense that their behavior can be
reproduced as superposition of two modes, namely, the
forcing (traveling) mode with wavelength L=10 and an
adjacent mode with wavelength L=9 or L=11, typically
the closer one to the characteristic wavelength of the
Turing instability. The excited Turing mode is standing
so that the superposition of both yields a localized enve-
lope (soliton) moving to the right (L=11) or to the left
(L=9). Furthermore, one finds the velocity of the soliton
to be proportional to the quotient of ! and the difference
of the wave numbers of the two modes, which agrees with
numerical results of the full problem.

Note that the phase diagram depicted in Fig. 3 exhibits
large regions of multistability, with the corresponding
hysteresis. It is worth remarking that the stability bounda-
ries here reported may well be affected by finite-size
effects, since possible long wavelength, phase instabili-
ties may be prevented by the finite-size of our simulations.
A full envelope and phase-diffusion description of this
scenario in an infinite system deserves a detailed study
and will be addressed elsewhere.

A link between the SOW’s and the solitons for steady
forcing is apparent for smaller 
. We decreased the value
of 
 to 0.003 and determined the domain of stability for
the soliton 11 state for ! values close to 0 (Fig. 4). It
appears that even for vanishing ! the soliton states
persist and the domain of stability forms a ‘‘tongue’’
with a finite range at ! � 0. For larger 
 and ! � 0 the
SOW’s do not exist since the driving term dominates the
equations and forces a homogeneous pattern. Therefore it
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FIG. 4. ‘‘Tongue’’ of soliton states as a function of ! for small

. The dashed line approximates the boundary of the soliton
tongue with n � 11 as it approaches the ! � 0 line (spatial
forcing of Ref. [7]). Here we have used 
 � 0:003.

128301-3



FIG. 5. (a) Experimental space-time plots for the modulated
traveling wave solution and (b) for the soliton (SOW) solution.
The dashed line in (b) is a guide to the eye. The input concen-
trations of reagents are 0.45 mM I2, 0.078 mM ClO2, 10 mM
H2SO4, 1.2 mM malonic acid, and 10 mM polyvinyl alcohol
with a residence time in the reactor of 250 s. With these
parameters the system spontaneously yields stripe patterns
with a wavelength of 0.54 mm. (Experimental parameters:
v � 0:13 mm=h for both cases; the imposed wavelength is
1.1 times the spontaneous one in the case of the soliton solu-
tion case.)
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seems that the relative suppression of the forcing term by
an effective time averaging due to a fast traveling forcing
may account for the existence of soliton states for larger 
.

To prove the feasibility of controlled spatiotemporal
forcing and to check the validity and robustness of our
predictions in a real system undergoing a Turing insta-
bility, we have carried out experiments on the (photo-
sensitive) CDIMA chemical reaction, using the
projection of traveling light patterns as the controlled
forcing. Experiments were performed in a thermostatized
continuously fed unstirred one-feeding-chamber reactor
at �4	 0:5� �C. Structures appear in an agarose gel layer
(2% agarose, thickness 0.3 mm, diameter 20 mm). The
gel layer was separated from the feeding chamber by an
Anapore membrane (Whatman, pore size 0.2 mm) and a
nitrocellulose membrane (Schleicher & Schnell, pore size
0.45 mm). Under the chosen set of reagent concentrations
(see the caption of Fig. 5), the system at dark spontane-
ously yields disordered stripe patterns with a wavelength
of 0.54 mm. In a typical experiment, parallel light stripes
with a characteristic wavelength of precisely 0.54 mm
were focused on the gel layer and were moved in the
horizontal direction with well-controlled and constant
velocity v. For very small values, trivial traveling stripes,
following adiabatically the imposed pattern, were found,
as expected. As the passing velocity was increased they
readily transformed into the modulated striped mode, as
predicted by the theory (see Fig. 5(a)). Furthermore,
when considering a slight misfit (see the caption of
Fig. 5), a localized structure was observed, propagating
in the opposite direction to that of the stripes [see
Fig. 5(b)]. This again constitutes a neat confirmation of
our theoretical findings. Further experiments are pres-
ently being conducted to look for other modes of dynami-
cal responses to such a spatiotemporal modulation and
will be published elsewhere.
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We have described a generic mechanism to induce new
pattern dynamics through spatial resonance. The phe-
nomenon is claimed to be generic for systems undergoing
a Turing instability. For instance we have already ob-
served the same type of response in the 1D Swift-
Hohenberg equation. Within the framework of chemical
Turing patterns, the consideration of the 2D case is read-
ily accessible and points to even richer phenomena.
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Zhabotinsky, and I. R. Epstein, Phys. Rev. Lett. 83,
2950 (1999); M. Dolnik, A. M. Zhabotinsky, and I. R.
Epstein, Phys. Rev. E 63, 026101 (2001).

[6] M. Lowe, J. Gollub, and J. L. Lubensky, Phys. Rev. Lett.
51, 786 (1983); M. Lowe and J. Gollub, Phys. Rev. A 31,
3893 (1985).

[7] P. Coullet, Phys. Rev. Lett. 56, 724 (1986).
[8] P. Coullet and D. Walgraef, Europhys. Lett. 10, 525

(1989).
[9] J. P. Voroney, A. T. Lawniczak, and R. Kapral, Physica

(Amsterdam) 99D, 303 (1996).
[10] M. Dolnik, I. Berenstein, A. M. Zhabotinsky, and I. R.

Epstein, Phys. Rev. Lett. 87, 238301 (2001).
[11] A. M. Turing, Philos. Trans. R. Soc. London B 237, 37

(1952).
[12] Chemical Waves and Patterns, edited by R. Kapral and

K. Showalter (Kluwer Academic Publishers, Dordrecht,
1995).

[13] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper,
Phys. Rev. Lett. 64, 2953 (1990); Q. Ouyang and H. L.
Swinney, Nature (London) 352, 610 (1991).

[14] I. Lengyel and I. R. Epstein, Science 251, 650 (1991).
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