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Within the Tsallis thermodynamics framework, and using scaling properties of the entropy, we derive
a generalization of the Gibbs-Duhem equation. The analysis suggests a transformation of variables that
allows standard thermodynamics to be recovered. Moreover, we also generalize Einstein’s formula for
the probability of a fluctuation to occur by means of the maximum statistical entropy method. The use
of the proposed transformation of variables also shows that fluctuations within Tsallis statistics can be
mapped to those of standard statistical mechanics.

DOI: 10.1103/PhysRevLett.88.020601 PACS numbers: 05.70.Ln, 05.20.Gg, 05.40.–a
During the past few years there has been a great deal of
interest in studying nonextensive thermodynamics [1–3].
This results from the assumption of nonadditive statistical
entropies and the maximum statistical entropy principle,
following the information theory formulation of statistical
mechanics proposed by Jaynes [4]. Indeed, besides its rele-
vance in many nonequilibrium problems, nonextensivity
is of interest for systems of particles which show long-
range interactions [5], as occurs in a number of ferroic ma-
terials [6] such as ferromagnetic, ferroelastic, ferroelectric
solids, and astrophysical systems [7]. Within this frame-
work, the Tsallis statistical entropy [8] has proven to be
the only nonadditive generalization of Gibbs-Shannon en-
tropy which satisfies the following properties: (i) positiv-
ity (it takes zero value for absolute certainty), increasing
monotonously with increasing uncertainty, and (ii) con-
cavity. However, many fundamental features regarding
the connection between the formulation of statistical me-
chanics and thermodynamics remain unclear. For instance,
the identification of adequate generalized thermodynamic
forces and the computation of statistical fluctuations are
still controversial [9]. In this Letter we clarify such prob-
lems and provide robust arguments showing the equiva-
lence of the present formulations of nonextensive Tsallis
thermodynamics with the standard extensive equilibrium
formulation.

Within the Tsallis formalism, the lack of information
associated with any probability distribution �p�i�� defined
on a set of microstates V � �i� [10] is given by

SV����p�i����� � 2
X

i[V

�p�i��q lnqp�i� , (1)

where the parameter q, determining the degree of nonex-
tensivity, is positive in order to ensure the concavity of S .
The q-logarithmic function is defined as lnqf � � f12q 2
1���1 2 q�. In the q ! 1 limit, Eq. (1) reduces to the
Gibbs-Shannon entropy S � 2

P
i p�i� lnp�i�. In order

to simplify the notation, we will indicate the set V only
when necessary. The novelty of the statistical entropy
(1) is that it does not satisfy additivity. Instead, for two
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systems A and B described by independent probability
distributions,

S �A 1 B� � S �A� 1 S �B� 1 �1 2 q�S �A�S �B� . (2)

For a given physical system the equilibrium probabil-
ity distribution �p��i�� corresponds to the distribution
that maximizes S under the normalization condition
�
P

i[V p�i� � 1� and the relevant constraints imposed by
the available statistical information on the system. The
thermodynamic equilibrium entropy is then identified with
kS �, where S � � S ����p��i����� and k is the Boltzmann con-
stant. In the case of an isolated (microcanonical) system
no statistical information is available, and maximization
of (1) leads to the equiprobability distribution on V.
Difficulties arise when trying to study nonisolated systems
for which some constants of motion Xa�i� in the isolated
system, such as the energy, volume, magnetization, num-
ber of particles, etc., become fixed only on average ��Xa	�.
The index a extends over the number of such controlled
observables of the nonisolated system. It is worth noting
that a crucial property of such observables, required by
the foundations of thermodynamics [11], is that they are
additive, i.e., for two independent systems A and B,

�Xa�A 1 B�	 � �Xa�A�	 1 �Xa�B�	 . (3)

Within the Jaynes scheme, imposing knowledge of the
statistical information (i.e., the controlled average values
�Xa	) on the maximization procedure leads to the stan-
dard, canonical, grand-canonical, etc., ensembles. Two
different strategies can be adopted when using the Tsallis
statistical entropy [9].

(i) Unbiased averaging.— When the average quantities
of the microscopic properties are defined in the standard
way �Xa	 �

P
i[V p�i�Xa�i�, the Legendre structure of

standard thermodynamics is not recovered [9]; i.e., in
equilibrium, the partition function cannot be related to a
Legendre transformation of the entropy. For this reason
this scheme has not been studied very much.

(ii) Biased averaging.—A Legendre structure is recov-
ered if averages are defined as �Xa	q �

P
i[V Pq�i�Xa�i�,
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where the averages are performed using the so-called
q-scort probabilities: Pq�i� � �p�i��q�

P
i[V �p�i��q .

After maximization, when this choice is used, one
recovers a fundamental thermodynamic identity which
reads

dS � �
X
a

yad�Xa	q , (4)

where ya correspond to the Lagrange parameters nec-
essary for keeping the average constraints �Xa	q when
performing the maximization of the statistical entropy.
The physical meaning of the parameters ya is, at present,
still controversial, and the parameters are not necessarily
those that control mutual equilibrium between thermody-
namic systems (physical temperature, pressure, magnetic
field, . . .). Besides, the equilibrium statistical entropy can
be expressed, in any statistical ensemble, as S � � lnqZq,
where Zq plays the role of the partition function and can
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be written as

Zq �
X

i[V

e
2

P
a

yaF�Xa�i��
q (5)

with F�X� � �X 2 �X	q��
P

i[V �p�i��q . The q exponen-

tial function is the inverse of lnq and is defined as e
f
q �

�1 1 �1 2 q�f�1��12q�. This definition makes sense only
for 1 1 �1 2 q�f . 0 and, in practice, this means that
within this biased scheme only the range 0 , q # 1 has
a physical meaning [12,13].

It is worth noting that a third “averaging” procedure,
consisting of using the above proposed biased averaging
without normalization, has been proposed [9] to be equiva-
lent (after suitable redefinition of the Lagrange multipliers)
to this normalized biased averaging strategy.

At this point it is convenient to analyze the scaling prop-
erties of the nonextensive statistical entropy S satisfying
the property (2). By recursively applying Eq. (2) to l iden-
tical systems, one obtains
S �lA� �

µ
l

1

∂
S �A� 1

µ
l

2

∂
�1 2 q�S �A�2 1 · · · 1

µ
l

l

∂
�1 2 q�l21S �A�l, (6)
which can be easily expressed in the compact form:

S �lA� �
1

1 2 q
��1 1 �1 2 q�S �A��l 2 1� . (7)

Of course, for q ! 1 the usual scaling for extensive sys-
tems is recovered.

Let us now concentrate on the analysis of the biased
scheme, and consider the statistical entropy S � of the
equilibrium states as a function of the set of extensive
quantities �Xa	q. Under the assumption that expression
(2) [and therefore (7)] can be applied to the equilibrium
distributions and thus to S �, we can substitute S ��A� by
S ����Xa	q��. Differentiating the expression (7) with re-
spect to l and taking l � 1 we obtainX

a

�Xa	qya �
1

1 2 q
�1 1 �1 2 q�S ��

3 ln�1 1 �1 2 q�S �� . (8)

Equation (8) represents a generalization of Euler’s theorem
for the Tsallis nonextensive entropy. By differentiating (8)
and using the thermodynamic identity (4), we deduce thatX

a

�Xa	qdya � ln�1 1 �1 2 q�S ��dS � (9)

which corresponds to the Gibbs-Duhem equation for non-
extensive systems. It indicates that the Lagrange parame-
ters ya are not intensive variables, except for q � 1.

The equation obtained suggests a transformation of
variables that keeps the structure of the thermodynamic
identity and allows one to recover the standard Gibbs-
Duhem equation. Indeed, by defining

Ŝ � �
Z dS �

1 1 �1 2 q�S �
�

ln�1 1 �1 2 q�S ��
1 2 q

(10)

and
ŷa �
ya

1 1 �1 2 q�S �
, (11)

expressions (4) and (8) can be rewritten in the form

dŜ � �
X
a

ŷad�Xa	q , (12)

X
a

�Xa	qdŷa � 0 . (13)

Therefore, Ŝ � is an extensive statistical entropy [satisfying
Ŝ ��lA� � lŜ ��A�] and ŷa are the conjugated intensive
variables of �Xa	q. It should also be noted that the con-
dition q # 1 (necessary for the transformation to be well
defined) ensures that S � and Ŝ � have the same concavity
(thus the same maxima and minima).

The above transformation of variables (10) and (11) has
partially been suggested by different authors during re-
cent years. Tsallis has already shown the extensive prop-
erties of Ŝ � [8], which in fact had been proposed several
years before by Rényi [14]. The intensive character of the
variables ŷa was recently pointed out by Abe et al. [12],
who showed that such variables control the mutual equi-
librium between thermodynamic systems. Finally, the fact
that standard thermodynamics is fully recovered after the
transformation of variables proposed above has also been
implicitly suggested by Toral [13] within the framework of
the microcanonical ensemble.

Another aspect which is still under debate refers to the
calculation of statistical fluctuations within Tsallis statis-
tics. The computation of the variances of extensive quanti-
ties �X2

a	 has not been clearly solved [15] not only within
the unbiased averaging scheme, but also using biased aver-
aging. Here we provide a method of computation of fluc-
tuations which is based on a generalization of Einstein’s
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fluctuation formula and is independent of the averaging
scheme. Moreover, for the case of biased averaging, the
use of the transformation of variables proposed above al-
lows standard thermodynamic fluctuations to be recovered.
The method has been recently proposed for the study of
fluctuations in standard extensive statistics [16,17].

In order to compute fluctuations within a very gen-
eral framework we must study how the distribution p��i�
changes under virtual displacements. Such displacements
can be understood as a consequence of an internal con-
straint which causes the deviation of the system from the
equilibrium state, or as a consequence of contact with an
external bath which allows changes in parameters which
would be constant under total isolation. Let us consider
that such a displacement can be characterized by a mul-
tidimensional parameter k which takes values on a con-
tinuous set R and vanishes at equilibrium. We define the
set of functions �p��i jk�� as the displaced (conditional)
probability distributions for a given k obtained after maxi-
mization of (1). Note that p��i j 0� � p��i�.

The key point for characterizing fluctuations is to con-
sider the joint probability distribution p�i, k� defined on
the enlarged set V 3 R. This means that we are assum-
ing that k is a fluctuating variable and that the system is
described by simultaneously specifying i and k. The prob-
lem now is to determine p�i, k�. Using the same philoso-
phy used for the determination of equilibrium distributions
p��i jk�, we propose to generalize the maximum statisti-
cal entropy principle to the determination of p��i, k� on
V 3 R. This means maximizing

SV3R����p�i, k����� � 2
Z
R

X
i[V

�p�i, k��q lnqp�i, k� dk ,

(14)

where we have assumed that the measure of the lack of in-
formation on V 3 R is also given by Tsallis entropy [18].

Taking into account the mathematical definition of the
conditional probability p�i, k� � p�k�p��i jk� and us-
ing the standard property lnqfg � lnqf 1 lnqg 1 �1 2

q� lnqf lnqg and the normalization condition for p��i j k�,
Eq. (14) can be written as

SV3R �
Z
R

�p�k��qS
�
V �k� 1 SR����p�k����� , (15)

where S
�
V�k� � SV����p��i jk����� is nothing more than the

thermodynamic entropy of the virtually displaced system.
Therefore, the problem of determining the distribution of
fluctuations reduces to the maximization of the functional
(15) with respect to p�k� under the normalization condi-
tion

R
R p�k� dk � 1. This yields

p��k� �
e
S ��k�
qR

R e
S ��k�
q dk

. (16)

Since the eq function converges to the standard exponen-
tial function in the limit q ! 1, the above equation just re-
duces to the well-known Einstein formula in the extensive
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limit. This probability distribution for fluctuations p��k�
is, therefore, the most probable (or the least biased) distri-
bution of the fluctuating parameter k. Also note that for-
mula (16) can be deduced in a nonrigorous way (as done in
many statistical mechanics textbooks in the case of exten-
sive statistics) by inversion of the generalized Boltzmann
formula for the microcanonical ensemble: S � � lnqW ,
where W is the number of states in V.

Taking into account the fact that S ��k� is maximum at
k � 0 we can expand it in powers of k as

S ��k� � S ��0� 1
1
2

µ
≠2S �

≠k2

∂
k2 1 . . . (17)

with �≠2S ��≠k2� , 0. Substituting in (16), we find that
small k fluctuations are Gaussian distributed according to

p��k� 
 exp

(
2

1
2

2� ≠2S �

≠k2 �
1 1 �1 2 q�S ��0�

k2

)
. (18)

This formula, as well as (16), is independent of the dif-
ferent averaging procedures explained in the introduction.
It shows that the probability distribution for fluctuations
of measurable quantities depends on q as well as on the
entropy of the reference equilibrium state around which
fluctuations take place.

In order to compute the variance �k2	 the two averaging
schemes discussed above can be considered. Nevertheless,
if k is a macroscopic quantity, the unbiased scheme seems
more appropriate. The two choices yield very similar re-
sults in the limit of small fluctuations. If we use unbiased
averaging, the variance is given by

�k2	 � 2�1 1 �1 2 q�S ��0��
µ

≠2S �

≠k2

∂21

, (19)

whereas in the case when we use the biased averaging pro-
cedure, one gets the same result, but it is divided by q
(the q-scort probability of a Gaussian distribution is also
Gaussian). It is worth noting this within the two interpre-
tations, as q , 1 fluctuations are larger than those corre-
sponding to the extensive case q � 1.

It is also interesting to note that the transformation of
variables (10) and (11) suggested in the previous section
allows standard thermodynamics to be recovered within
the biased scheme, and can be used to rewrite Eq. (16) in
terms of Ŝ �. Using the fact that S � and Ŝ � have the same
concavity, a straightforward calculation yields

p��k� �
eŜ ��k�R

R eŜ ��k� dk
(20)

which is the standard Einstein formula, and the variance
transforms into

�k2	 �

µ
≠2Ŝ �

≠k2

∂21

. (21)

Therefore the transformation of variables allows not
only standard thermodynamics to be recovered but also
allows the same statistical fluctuations. For instance, a
simple calculation for the energy fluctuations DE from
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this expression gives

�DE2	 � 2

µ
≠E

≠b̂

∂
, (22)

where b̂ � b��1 1 �1 2 q�S �� is the intensive physical
inverse temperature, and b is the Lagrange parameter as-
sociated with �E	q.

In summary, we propose that Tsallis statistics, within
the biased averaging scheme, can be mapped into standard
thermodynamics. This is done by a suitable transforma-
tion of variables, which appears after the derivation of
the generalized Gibbs-Duhem equation resulting from the
scaling properties of Tsallis entropy. The intensive gen-
eralized forces in such a framework arise naturally from
the transformation of variables. In addition, the standard
equilibrium fluctuation-dissipation theorem is also re-
covered. This indicates that, besides the thermodynamic
equivalence, statistical fluctuations also behave according
to standard statistical mechanics. Moreover, this ensures
the equivalence of the equilibrium response functions.
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