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A nonlocal interface equation is derived for two-phase fluid flow, with arbitrary wettability and
viscosity contrast, c � ��1 ��2�=��1 ��2�, in a model porous medium defined as a Hele-Shaw cell
with random gap b0 � �b. Fluctuations of both capillary and viscous pressure are explicitly related to
the microscopic quenched disorder, yielding conserved, nonconserved, and power-law correlated noise
terms. Two length scales are identified that control the possible scaling regimes and which scale with
capillary number Ca as ‘1 � b0�cCa�

�1=2 and ‘2 � b0Ca
�1. Exponents for forced fluid invasion are

obtained from numerical simulation and compared with recent experiments.
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possible on the microscopic scale [6,7]. will satisfy
The displacement of a fluid by another in a porous me-
dium is a problem of fundamental interest in nonequili-
brium physics as a paradigm of interface dynamics in
disordered media [1,2]. Experiments on bead packs in
Hele-Shaw cells [3], in particular, have stimulated con-
siderable theoretical efforts, but the problem has consis-
tently revealed itself to be rather elusive [1,2]. More
recently, a new surge of interest has arisen with the recog-
nition of the inherently nonlocal character of the problem
as a key ingredient [4,5] and the realization of a new
series of experiments in Hele-Shaw cells with random gap
[6–8] and with roughened glass plates [9]. Roughening
exponents of the proposed nonlocal equations have been
explored by means of Flory-type scaling arguments [4]
and phase field simulations [5,6]. While the specific prop-
erties of noise are known to be crucial to determine the
universal aspects of interface roughening, fluctuations are
usually modeled at a phenomenological level and include
only local capillary effects. Noise related to the non-
Laplacian viscous pressure due to quenched disorder in
the permeability has been so far neglected. While this
may be justified for imbibition experiments [5] or, in gen-
eral, situations close to pinning [10,11], the case of forced
fluid invasion does require a quantitative assessment of
this point. In addition, it would be desirable to have a uni-
fied formulation for general conditions of viscosity con-
trast c � ��1 ��2�=��1 ��2� and wettability given the
rich variety of phenomena that the experimental evidence
has unveiled as a function of those parameters [2].

Here we address the general problem of fluid displace-
ment in a Hele-Shaw cell with random gap, as a simple
model of a porous medium. This model system has the
great advantage that no coarse-graining procedure must
be invoked in the theoretical formulation, thus allowing
us to derive ab initio a general and complete interface
equation, quantitatively accurate, with explicit depen-
dence on ‘‘bare’’ parameters, and including all noise
sources. On the experimental side, the system is also
appealing since a direct control of the disorder is locally
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From our microscopic derivation we will get a complete
description of fluctuations containing the three basic
physical effects of a porous matrix on the interface mo-
tion, namely, local variations of (i) capillary pressure,
(ii) permeability, and (iii) available volume. Different but
not independent noise terms must thus be generated
through distinct physical mechanisms from the unique
source of randomness. Fluctuating capillary pressure can
be directly related to gap variations �b � b� b0, where
b0 is the mean value, in terms of the Laplace condition for
the pressure jump across the interface

p2 � p1 � �
�
	�

2 cos

b0 � �b

�
; (1)

where 	 is the curvature in the cell plane, � is surface
tension, and 
 is the contact angle, cos
 � 1 meaning
perfect wetting of the invading fluid 1. The effect of
viscous pressure fluctuations, however, is far less obvious
due to the inherently nonlocal character of the interplay
of (ii) and (iii) in the response of the fluid flow to gap
fluctuations. We base our analysis on the assumption that,
for sufficiently smooth gap variation (i.e., jrbj 	 1),
Darcy’s law for a Hele-Shaw cell [12] holds locally as

v � �

b0 � �b�x; y��2

12�
rp: (2)

In a capillary tube of lateral size b at fixed injection
pressure, from Darcy’s law a relative velocity fluctuation
scales as �v=v� 2�b=b (larger permeability implies less
resistance to flow) while at fixed flow injection it is
exactly the opposite, �v=v��2�b=b (mass conserva-
tion slows down the flow if there is more volume avail-
able). In an actual disordered medium, the solution of the
whole pressure field will thus be required to sort out the
effective flow conditions at each location. A direct con-
sequence of (iii) is that the 2D effective flow must give
rise in general to a nonconserved interface equation,
precisely to account for volume conservation in 3D. In
our case, 3D incompressibility implies that the 2D flow
 2003 The American Physical Society 144504-1
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r � �bv� � 0; (3)

where the gap acts effectively as a variable density.
Equations (2) and (3) imply that the pressure field is

non-Laplacian. In order to obtain a closed bulk equation
which we can project onto the interface degrees of free-
dom, we treat the pressure perturbatively in jrbj. We thus
split the pressure field as p � p0 � �p and keep only the
order jrbj in �p to obtain

r2p0 � 0; (4a)

r2�p�
3rb
b

rp0 � 0; (4b)

where we have neglected higher orders consistently with
the fact that they have also been omitted in assuming
local Darcy flow. The lowest order Eq. (4a) can be solved
as the unperturbed problem [12,13] with the modified
boundary condition Eq. (1) which contains all capillary
effects, with a simpler boundary condition for the Poisson
equation (4b). For c � 1, this is �p � 0 and yields, in
terms of the Laplace Green’s function,Z

int
dsG
x� x�s�; y� y�s��

@�p
@n

� �
Z
dx0dy0G�x� x0; y� y0�

3rb
b

rp0: (5)

The free-boundary problem is thus defined by Eq. (2)
specified at the interface, with p � p0 � �p, and the
boundary conditions at infinity. Here we focus on the
case of forced fluid invasion, where a fixed velocity V is
imposed at infinity and �1 � �2. We introduce the di-
mensionless quenched noise ��x; y� in the gap spacing b as
b2 � b20
1� ��x; y��. Noise originated, respectively, from
�b in Eq. (1), from �b in Eq. (2), and from �p in Eq. (4b)
will be called, respectively, capillary, permeability, and
bulk noises.

Concerning the scaling properties of the interface, we
are interested in the lowest order approximation on the
interface deviation from planarity that is relevant in a
renormalization group (RG) sense. Our result for the
interface equation for the Fourier transform of the inter-
facial height ĥh�k� for two-fluid displacement under con-
stant injection velocity V takes the form

1

V
@ĥh�k�
@t

� ��k� � cjkj
1� �‘1k�
2�ĥh�k� �N h�k�

�
1

2
�1� ‘2jkj��̂�h�k� � �̂�LR�k; t�; (6)

where the lengths ‘1 and ‘2 are defined in terms of the
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capillary number Ca � 12��1 ��2�V=� as ‘1 �
b0�cCa�

�1=2 and ‘2 � 2b0 cos
Ca
�1, and where N h�k�

denotes the leading (quadratic) nonlinearities

N h�k� � �c2jkj
Z 1

�1
dq
1� S�kq��jqj
1� �‘1q�

2�

� ĥh�k� q�ĥh�q�; (7)

where S is the sign function. �̂�h�k� is the Fourier trans-
form of �
x; h�x�� and the term �̂�LR�k; t� is a long-ranged
correlated noise of the form

�̂�LR�k; t� �
1

�1 ��2

�1�̂�

��k; t� ��2�̂�
��k; t��; (8)

with

�̂���k; t� � jkj
Z
dxdy��x; y� Vt�e�ikx�yjkj���y�; (9)

where � is the step function.
Note that the long-ranged term �̂�LR�k; t� enters effec-

tively as an annealed (explicitly time-dependent) noise
(see discussion below). Equations (6)–(9) constitute our
central result. Note also that in this formulation we have
assumed weak noise so that multiplicative noise terms of
order h� or nonlinear in � have been neglected [14].

The linear deterministic part of Eq. (6) is well
known and can be found, for instance, in Refs. [4,12,13].
The complete set of deterministic nonlinearities can be
obtained systematically using the weakly nonlinear ex-
pansion developed in Ref. [13]. Transforming Eq. (7) back
to the real space, it is found [13] that quadratic non-
linearities include both nonlocal and local terms. The
local terms (in real space) were also considered in
Ref. [4] and include the familiar �rh�2 term.

The capillary fluctuations give rise to the conserved
(area-preserving) noise term proportional to jkj�̂�h. This
contribution is associated to the second term in Eq. (1)
and is generated adding the noise term to the curvature 	
and then linearizing, following the scheme used in
Ref. [12] or [13]. The bulk noise defined as �v� �
��b20=12���@�p=@n� takes the form

c�v�v��k� � 3V
2


��̂�h�k� � �̂�LR�k; t��; (10)

as shown below. The �̂�h term of Eq. (10) adds to the trivial
lowest order contribution of permeability noise of the
form V�̂�h�k� and results in the nonconserved noise term
present in the interface Eq. (6).

We now proceed to sketch the derivation of the bulk
noise. For simplicity, we consider the one-sided case
(c � 1) [16]. Neglecting orders �@xh, Eq. (5) reads
�2

3

Z 1

�1
dx0 ln
�x� x0�2 � �h�x� � h�x0��2��v��x

0� �
Z 1

�1
dx0

�
ln
�x� x0�2 � �h�x� � h�x0��2���x0; h�x0��

�
Z h�x0�

�1
dy0

2�h�x0� � y0�

�x� x0�2 � �h�x� � y0�2
��x0; y0�

�
; (11)

where the integral on y of the right-hand side of Eq. (5) has been integrated by parts and it has been assumed that the
noise vanishes at infinity, ��x; y! �1� � 0. It has also been applied that �rb=b�rp0 ’ ��6�=b20��@�=@y�V and that
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the Green function for the Laplace equation for infinite space has the form G�x; y� � ��4���1 ln
x2 � y2�. With the
change y � y0 � Vt, and to lowest order in the interface deviation h� Vt with respect to the mean interface position,
that is, considering h� Vt ’ 0 except in the rapidly varying function ��x; h�, Eq. (11) then reads

Z 1

�1
dx0 lnjx� x0j�v��x0� � �

3

2

Z 1

�1
dx0

�
lnjx� x0j��x0; h� �

Z 0

�1
dy

�y

�x� x0�2 � y2
��x0; y� Vt�

�
: (12)
To solve explicitly the above equation we Fourier
transform it and use [17] F 
lnjxj��k�����1jkj�1�
2�� � ln2����k�, where  is Euler’s constant. Using this
expression, Eq. (11) is obtained (for c�1, i.e., �2�0).

The quenched noise will be typically correlated on a
microscopic scale a. For ka	 1, � is effectively white. If
h��x; y���x0; y0�i � ���x� x0���y� y0�, then we have

h�̂�LR�k; t��̂�LR�k0; t0�i �
�

2�
jkj��k� k0�e�jkjVjt�t0j; (13)

so �̂�LR scales as jkj1=2 and introduces long-range mem-
ory. Accordingly, low-k behavior is dominated by the
local part of bulk noise. This implies that 3D conserva-
tion overcomes permeability at low k, giving rise to an
overall nonconserved noise with the same sign as the
capillary noise. Although direct computation of both
terms in the bulk noise shows that the local part is
typically larger, it is unclear to what extent neglecting
the long-range term may miss important details of local
interface pinning which may eventually affect the scal-
ing. Furthermore, for ka� 1, both local and nonlocal
parts of the bulk noise are comparable but then the
annealing approximation may not be justified, and one
must rely on Eq. (11). The local and nonlocal contribu-
tions to bulk noise may be of the same order in other
situations. For instance, persistent noise � � ��x� yields
�v� � 0, with nonconserved and conserved noises oppos-
ing each other.

One of the salient features of Eq. (6) is that the problem
has two characteristic length scales. ‘1 controls the well-
known crossover between (deterministic) capillary and
viscous forces [5]. The second length ‘2 is a newly iden-
tified one which defines a crossover between conserved
and nonconserved noise. For general viscosities and wet-
ting conditions, the two length scales are arbitrary and
define a variety of possible scaling regimes and cross-
overs depending on their relative size. Experiments of a
wetting fluid invading an inviscid one ( cos
 � 1, c � 1)
typically have ‘2 � ‘1. Concerning the nonlinearities,
power counting arguments predict that quadratic terms
are relevant in the RG sense only if the viscous term cjkj
is absent, that is, for jkj‘1 � 1. This capillary-dominated
regime will always be observed at large k and short times
provided ‘2 � ‘1. A crossover to the viscous-dominated
regime will eventually occur for jkj‘1 � 1 and then the
quadratic nonlinearities do become irrelevant. A second
crossover within the viscous regime, from conserved to
nonconserved noise, will occur for jkj‘2 � 1.

Experiments of random-gap cells [8], and presumably
other forced fluid invasion experiments [3], operate at
144504-3
‘2 � ‘1. From Eq. (6), the relevant equation in this
capillary regime reduces to

1

V
@ĥh�k�
@t

� ��k� � jkj
�
�~‘‘1k�2ĥh�k� �

1

2
‘2�̂�h�k�

�
; (14)

with ~‘‘1 � b0Ca�1=2. Nonlinear terms and the nonlocal
part of bulk noise have also been neglected on the basis of
direct numerical computation. In fact, the knowledge of
the bare coefficients of nonlinear and noise terms has al-
lowed us to assess the quantitative importance of both
contributions. While the nonlocal noise term remains
negligible (except for large k), the effect of nonlineari-
ties, although RG-relevant, remained also negligible for
times within the duration of the capillary regime. Since
the quadratic nonlinearities in Eq. (6) vanish exactly for
c � 0, we may refer to the growth described by Eq. (14)
as the universality class of ‘‘symmetric fluid inva-
sion’’ (SFI).

We now study the SFI scaling by numerical simulation
of Eq. (14). The quantities of interest concerning the
scaling properties are the root mean square of the inter-
face height fluctuations, W, and the structure factor
S�k; t�. The width grows with time as W�t� � t$ before
saturation, and the saturation width scales with system
size L as Wsat � L%. The roughness exponent % can also
be obtained from the relation S�k; t� � k�1�2% for long
times. For further reference, we provide the scaling ex-
ponents of Eq. (14) for two cases that are exactly solvable
[15], namely, for persistent noise � � ��x� and annealed
noise � � ��x; t� which, assuming � correlations, give
respectively % � 3=2; $ � 1=2 and % � 0; $ � 0.

Typical results for Eq. (14) are shown in Fig. 1. We
choose V � 1, a � 0:0625, ‘1 � 50, and ‘2 � 3000,
which satisfy the criterion a	 ‘1 	 ‘2. For these val-
ues, we have obtained a roughness exponent % � 1:2�
0:05 (very close to the value % � 1:25 reported in
Ref. [5]) and a growth exponent $ � 0:68� 0:02. The
scaling of the height-height correlation function has been
found to be fully consistent with %loc � 1, as expected
from the superrough value of % > 1. Note that the scaling
of the power spectrum S�k; t� at large k corresponds to the
case of persistent noise, % � 3=2: short segments of the
interface ‘‘feel’’ effectively a persistent noise for short
times.

Increasing by an order of magnitude the value of V with
the corresponding variation of ‘1 and ‘2 does modify the
scaling behavior: for low values of k the scaling of S�k; t�
yields % ’ 0, the value obtained for annealed noise, while
144504-3
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FIG. 1. Structure factor for a system with L � 256. The data
are for t � 0:5 (lower curve) to t � 12:0, and time interval
�t � 0:5. The straight line with slope �3:3 (% � 1:2) is a fit,
and the other straight line has slope �4 (% � 3=2).
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for larger k the observed scaling is essentially the same as
in Fig. 1. Hence, the noise acting on the interface at low k
for large V is effectively annealed. The value of the
exponent $ is observed to decrease with increasing V,
consistent with the trend towards an effective annealed
noise, for which $ � 0. On the other hand, if V is de-
creased by an order of magnitude, the scaling observed in
Fig. 1 is essentially unchanged.

The values of Ca and V we have used are of similar
magnitude to the ones of the experimental work of
Soriano et al. [8]. They studied forced fluid invasion in
Hele-Shaw cells with variable gap, and therefore our
interface Eq. (6) should describe their results except,
maybe, for effects related to the sharpness of edges (gap
discontinuities), excluded in our derivation. According
to our analysis, their experimental parameters belong to
the capillary regime Eq. (14) of Eq. (6). The exponents
reported in Ref. [8] for large injection rates are % ’ 0
for small k and % ’ 1:3 for large k are fully consistent
with our results for large V. However, this is not the case
for small values of V. This discrepancy can clearly be
attributed to the sharp-edge anchoring effects mentioned
above.

In summary, we have derived a general interface equa-
tion for a random Hele-Shaw cell, including all nonlocal
effects and long-range correlations in the noise terms.
The explicit knowledge of all contributions originated
from the gap randomness, including all coefficients in
terms of known physical parameters, has revealed crucial
144504-4
for a quantitative assessment of the different effects in
distinct regimes. In particular, we have identified a uni-
versality class which is relevant to existing experiments
and obtained explicit values for exponents. We expect that
the physical insights and the predictive power of the
theoretical framework here presented may be useful to
reinterpret data and design new experiments, in particu-
lar, in the yet unexplored ranges of parameters such as
viscosity contrast.
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