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Resum

Les pinces òptiques són una eina que permet la manipulació d’objectes de mida
micromètrica mitjançant llum làser. En no ser necessari el contacte mecànic directe
sobre una mostra, els dóna la caracteŕıstica de ser una eina no invasiva, fet que
obre moltes aplicacions en nombrosos camps de la biologia, com ara en estudis de
mecànica cel·lular en teixits.

A més a més, una pinça o trampa òptica pot emprar-se per tal de realitzar mesures
quantitatives, com ara posicions i forces amb precisió de nanòmetres (10-9) i femto-
Newtons (10-15). D’aquesta manera, magnituds que altrament foren inaccessibles,
com ara la força en un contacte cel·lular, poden obtenir-se i engegar aix́ı una nova
dimensió en la recerca en biomecànica.

El mètode de mesura directa de forces analitza els canvis en el moment lineal dels
fotons que conformen el feix per tal de mesurar forces òptiques. Aquest mètode
permet de mesurar forces sense dependre d’un alt control experimental, cosa que fa
possible la mesura de forces, per exemple, en objectes irregulars. Per contra, això és
gràcies a un disseny experimental capaç de capturar tota la llum que crea la pinça
òptica i de mesurar-ne els canvis de moment.

En la meva tesi doctoral, demostrem l’aplicabilitat del mètode en situacions en què
la força no es pot obtenir de manera indirecta a partir de tècniques de calibració.
En primer lloc, analitzem les millores tècniques que fan del mètode de detecció de
moment una eina robusta per tal de realitzar mesures de força en un ampli ventall
de situacions experimentals.

Seguidament, emprem pinces òptiques controlades hologràficament per tal d’atrapar
objectes irregulars, com ara sistemes de múltiples esferes i micro-cilindres, i mostrem
la capacitat de mesurar l’intercanvi de moment entre el feix i les part́ıcules que dóna
lloc a les forces òptiques. Un altre aspecte que analitzem àmpliament gràcies a
aquesta tècnica de mesura és l’escalfament que origina una trampa òptica sobre el
medi que envolta la part́ıcula atrapada. Finalment, ens endinsem en la biologia de
teixits per esbrinar com la dispersió a través d’aquests afecta el moment del feix i,
per tant, les mesures.

Les meves conclusions demostren l’aplicabilitat del mètode de mesura en situacions
en què la calibració in situ pot esdevenir molt complicada o, fins i tot, impossible.
Podem considerar que, per tant, el camp d’aplicació de les pinces òptiques anirà
creixent i trobarà nous experiments en què s’elucidaran alguns dels interrogants més
importants de la biologia.
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Abstract

Mechanics is the branch of physics that studies movement and force, and plays an
evident role in life. The swimming dynamics of bacteria in search of nutrients,
organelle transport by molecular motors or sensing different kinds of stimuli by
neurons, are some of the processes that need to be explained in terms of mechanics.

At a human scale, distance and force can be measured with a ruler and a calibrated
spring. However, assessing these magnitudes may become an important challenge
at a micron scale. Among several techniques, optical tweezers stand out as a non-
invasive tool that is capable of using light to grab micron-sized particles and mea-
suring position and force with nanometer (10-9) and femto-Newton (10-15) accuracy.
Small specimens, such as a bacterium or a cell membrane, can be trapped and ef-
fectively manipulated with a focused laser beam. Light momentum exchanged with
the trapped sample can be used for eventually measuring the otherwise inaccessible
forces that govern biological processes.

Optical tweezers have enabled, after trapping cell vesicles in vivo, to measure the
pulling force exerted by molecular motors, such as kinesin. Flagellar propulsion
forces and energy generation have been investigated by optically trapping the head
of a bacterium. Cell membranes have been deformed with optical tweezers and the
underlying tension determined.

However, the exact forces exerted by optical tweezers are difficult to measure beyond
the in vitro approach. In order to calibrate the optical traps, the trapped samples
often need to be spherical or present some degree of symmetry, it is important to bear
information on the experimental parameters, and one needs high control of several
variables that determine the trapping dynamics, such as medium homogeneity and
temperature.

A cutting-edge method, developed in the Optical Trapping Lab – BiOPT, from the
Universitat de Barcelona, targets the light-momentum change as a direct reading
of the force exerted by an optical trap. This frees experiments from the neces-
sity of calibrating the optical traps, and makes possible to perform accurate force
measurement experiments in vivo and involving irregular samples.

In my PhD thesis, the direct force detection method for optical tweezers has been
implemented and tested in some of such situations. I first give a technical description
of the set-up used for the experiments. The use of a spatial light modulator (SLM)
for holographic optical tweezers (HOTs), a piezo-electric platform to induce drag
forces, and the trapping laser emission characteristics, are explained in detail.
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The light-momentum set-up is tested against certain situations deviating from the
ideal performance and some steps for optimization of several effects are analyzed.
Backscattering light loss is quantified through experiments and numerical simu-
lations and finally assessed to account for an average ±5% uncertainty in force
measurements.

Then, the method is used to measure forces on irregular samples. First, arbitrary
systems composed of microspheres of different kinds are collectively treated as ir-
regular samples, in which the global momentum exchanged with the trapping beam
coincides with the total Stokes-drag force. Second, pairs of optical tweezers are used
to stably trap cylinders of sizes from 2 μm to 50 μm and measure forces in accordance
with slender-body hydrodynamic theory.

Another aspect of the thesis deals with the temperature change induced by water
absorption of IR light, which is one of the major concerns within the optical trapping
community. As main reasons, accurate knowledge of local temperature is needed
for understanding thermally-driven processes, as well as eventual damage to live
specimens. Here we use direct force measurements to detect changes in viscosity that
are due to laser heating, and compare the results with heat transport simulations
to discuss the main conclusions on this effect.

The last goal of my thesis has been the implementation of the method inside tissue.
The laser beam is affected by the scattering structures present in vivo, such as
refractive index mismatches throughout different cells, nuclei, cell membranes or
vesicles. As a primary result, despite the trapping beam is captured beyond 95%,
I quantified this effect to result in an increase in the standard deviation of force
measurements around ±20%. The approach has consisted in comparing the trapping
force profiles of spherical probes in vitro (water) and in vivo (zebrafish embryos).

To conclude, I here demonstrate that the direct force measurement method can
be applied in an increasing number of experiments for which trap calibration be-
comes intricate or even impossible. Quantitative measurements become feasible in
samples with unknown properties, the more important examples being arbitrary,
non-spherical samples and the interior of an embryonic tissue.
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1. Overview

State-of-the-art research in biology requires novel techniques with the ability to shed
light into an ever-increasing number of unanswered questions. Understanding na-
ture at the cell scale was primarily possible thanks to the advances of optics and
microscopy during the past century. X-ray crystallography revealed the character-
istic molecular structure of DNA. Nuclear magnetic resonance paved the way to
carrying out a number of biochemical studies.

The role of force in biological processes has been of increasing interest in the past
decades. This has triggered the invention of a number of techniques that tar-
get, by using different strategies, the small forces governing such processes. For
single-molecule force spectroscopy, the most common techniques are atomic-force
microscopy (AFM), magnetic tweezers and optical tweezers [1]. Other techniques,
which are applicable in cell culture and on living tissues, are based on laser ablation,
optogenetics and traction force microscopy. [2, 3]

Optical tweezers enable contact-less manipulation of samples ranging from tens of
nanometers to tens of microns [4, 5, 6, 7, 8]. Compared, for instance, to the ma-
nipulation capabilities of magnetic tweezers and AFM, optical tweezers require no
additional magnetic probes to trap a sample of interest and can penetrate inside
cells and tissue [9]. On the other hand, different to non-invasive techniques based
on microscopy, optical tweezers can trap, move, and apply stresses to different kinds
of samples.

Optical forces can be described and computed through quantum and electromagnetic
theory using a number of analytical and numerical methods [5, 10, 11, 12]. However,
computation of the optical forces in experiments is difficult due to the complexity of
the microscopic world. The exact optical field at the focus of an optical trap, as well
as perfect knowledge of the local parameters defining the light-object momentum
exchange, such as the object geometry and refractive index, are strong requirements
for accurate calculations [7].

For this reason, indirect, calibration-based approaches to determine the optical trap
strength have been thoroughly developed throughout the past forty years. The most
common situation of a spherical microbead trapped in a Gaussian beam trap can
be linearized such that, for object positions in the vicinity of the trap focus (e.g.
within 100 nm), the restoring force behaves as a microscopic, pN-scale spring of the
form F = −κ · x. Provided that some of the features of the surrounding medium
are known and controlled (e.g. buffer viscosity, temperature and homogeneity),
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Chapter 1 Overview

trap stiffness (κ, pN/V) calibration can be performed, for instance, from thermal or
hydrodynamic analysis.

This has enabled, after trapping cell vesicles in vivo, to measure the pulling force
exerted by molecular motors, such as kinesin [13]. Flagellar propulsion forces and
energy generation have been investigated by optically trapping the head of a bac-
terium [14, 15]. Cell membranes have been deformed with optical tweezers and the
underlying tension determined [9]. And the elastic properties of DNA molecules
have been obtained after stretching by use of microspheres bound to the molecular
ends [16]. However, the actual characteristics of the experiment often deviate form
the simplified model used for calibration. For example, vesicles trapped in vivo
may deform from the ideal spherical shape or medium inhomogeneity may lead to
different trap calibration at different regions of the sample [17, 18].

A different force measurement approach, a priori insensitive to local variations in
trap calibration, is the direct detection of light momentum changes giving rise to
optical forces. Force measurements based on light momentum detection require the
caption of all the light interacting with the trapped sample. Their first implemen-
tation was introduced S. Smith et al. in a counter-propagating set-up [19]. In this
set-up, low-NA trapping beams were entirely captured by the corresponding poste-
rior microscope objective. In the more common, single-beam optical tweezers, A.
Farré et al. demonstrated the use of a high-NA collecting lens to capture light over
the whole forward 2π solid angle [20, 21].

Interestingly, one of the main advantages of single-beam optical tweezers is the abil-
ity to dynamically control several optical traps by means of modulation techniques
[22, 23, 24, 25]. For example, spatial light modulation (SLM) can be used to drive
optical trap positioning [26], create arrays of multiple traps to simultaneously ma-
nipulate several samples [24], and generate exotic trapping beams to explore novel
optical trapping possibilities [27, 28, 29].

Direct trapping and manipulation of specimens, together with quantitative force
measurements on irregular samples, is of high interest for optical trapping applica-
tions [14, 15, 30, 31, 32]. Usually, several optical traps are needed for stably trapping
elongated or extended objects, for which holographic optical tweezers (HOTs) are
importantly useful [33, 32, 34]. However, compatibility with light momentum de-
tection needs to be confirmed.

Another important aspect concerning the innocuousness when directly manipulat-
ing biological samples with optical tweezers is the increase in temperature due to
absorption of the laser light. Accurate knowledge of local temperature is needed
for understanding thermally-driven processes, as well as eventual damage to live
specimens. Several methods have been introduced to determine laser heating in op-
tical traps [35, 36, 37, 38], although it is generally assumed that, for 1064 nm laser
wavelength, the heating rate is around 1 ºC at 100-mW laser power [8].
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1.1 Objectives

1.1. Objectives

This four-year work aims at the demonstration of light momentum force measure-
ments in complex samples, with especial insight in biological applications. This often
requires the use of engineered optical fields with increasing capabilities concerning
optical micromanipulation. For example, multiple-trap arrays and complex trap-
ping beams. Here, this will be explored and implemented in a holographic optical
tweezers set-up.

Light momentum detection has been reported to operate in a well-defined range of
situations [20, 21]. However, experiments with biological samples require certain
modifications, such as the use of multiple traps for stable trapping of extended
objects (e.g. bacteria), or mounting samples in thicker microchambers (e.g. zebrafish
embryos). The possibility to detect light momentum changes will be studied in such
situations, which deviate from the ideal performance.

Regarding the applicability into biological samples, the effect of sample heating is a
strong concern that questions the non-invasive action of light for optical trapping.
One needs to make sure that such heating does not affect the normal functioning of
live samples. Moreover, local temperature is important for optical trap calibration.
I will tackle this question by introducing a reliable approach for determining local
viscosity heating-induced changes.

The goals of my PhD thesis can be summarized as follows:

Holographic optical tweezers set-up The first objective is to settle the exper-
imental set-up for accurate optical micromanipulation experiments. On one hand,
generation of the holographic optical traps require control of the laser emission and
phase modulation by means of the spatial light modulator (SLM). I will analyze
them in detail and focus then on the trap positioning accuracy that is achievable.

On the other hand, it is crucial for the object of this thesis to have a good force
reference that I will use for testing and calibration purposes. I will test a piezo-
electric stage as a precise drag force generator. Flow velocities will be accurately
determined from the stage oscillation performance.

Robustness of light-momentum force measurements I will carry out a deep
analysis on the direct force measurement method. Detection of light momentum
requires a number of experimental optimizations that ensure the absolute calibration
of force measurements, which will be thoroughly studied. The analysis will be
complemented with simulations in the far field.

I will also analyze back-scattered light loss. In single-beam optical tweezers, this is
the main source of error in light-momentum measurements. My goal is to determine,
for a wide range of samples with different properties (e.g. size and refractive index),
the validity of the method.
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Chapter 1 Overview

Force measurements on irregular samples Compatibility of the method in ex-
periments involving complex samples and beams will be studied. With the intention
of proving the applicability of light momentum force measurements in arbitrary com-
plex samples, I will make use of holographic trap arrays to trap systems of multiple
beads.

Motivated by a wide scope in biological applications, optical trapping and mea-
surements on elongated objects will be technically analyzed by using synthetic rod-
shaped samples. For example, there has been increasing interest, within the optical
trapping community, to perform studies on chromosomes, elongated bacteria and
sperm cells. I will aim at demonstrating the use of holographic trap pairs for stable
manipulation of this kind of samples and their precise compatibility with the direct
force measurement method.

Determination of heating due to IR light absorption in the optical trap My
approach to determine the effect of laser absorption in optical trapping experiments
will consist of using the absolute calibration of light momentum force measurements
to detect the decrease in viscosity induced by heating around the trap.

Importantly, I aim to study the variability of this effect depending on the specific
properties of the experiment, by performing a large number of tests, for example,
on samples of different sizes. The role of the trapping beam numerical aperture and
optical trap distance to the microchamber surfaces will be also analyzed. In parallel,
heat transport simulations and modeling of the optical trap as a heating source will
be performed.

Optical trapping and light-momentum detection in embryonic tissue The
last goal of my thesis is to implement the method inside biological tissue, which
constitutes a cutting-edge application of optical tweezers that is envisioned to solve
many questions in developmental biology. The trapping beam is strongly affected
by tissue-induced scattering, whose effect in measurements will be assessed. As a
preliminary check for the possibility to detect light momentum changes in living
tissue, I will do trapping experiments in zebrafish embryos.

1.2. Structure

The thesis is structured as follows:

In Chapter 2, I first give a brief introduction into optical trapping theory and mod-
eling and highlight the main technical strategies for quantitative measurements.

In Chapter 3, I analyze in high detail the precision offered by SLM to position
the optical traps within subnanometer accuracy [26, 39]. I study the generation
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1.2 Structure

of controlled drag forces by means of a piezo-electric stage and the trapping laser
emission properties.

In Chapter 4, I focus on the implementation of the direct force measurement method.
Several technical optimization steps need to be carried out for the light creating
high-NA, single-beam optical tweezers to be entirely captured for momentum mea-
surements.

In Chapter 5, measurement of forces through light momentum detection is performed
on irregular samples manipulated with HOTs. I use this scheme to measure the
collective force on a system composed of multiple spherical particles, as well as
rod-shaped samples of different sizes. The use of holographically modulated exotic
beams is as well explored.

In Chapter 6, I apply the same force detection method to determine laser-induced
heating in several experimental situations. I describe in detail the experimental
routine to assess the heating effect, as well as the simulation approach to analyze
this phenomenon.

Finally, in Chapter 7, I describe the manipulation and measurements inside em-
bryonic tissue. I show how the laser beam is affected by the scattering structures
present in live zebrafish embryos and discuss their effect on force measurements.
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2. Micromanipulation and force
measurements with optical
tweezers

Radiation pressure was firstly observed to accelerate dielectric, micron-sized particles
in a laboratory by A. Ashkin in 1970 [4]. Using a weakly focused laser beam, he ob-
served two contributions to the optical force: one accelerating particles downstream
(scattering force), and another one attracting particles into higher beam intensity
regions (gradient force). Importantly, he described the necessity that the particle be
of refractive index higher than that of the surrounding medium (np > nm), otherwise
there was no attracting, but repulsive force. By means of two counter-propagating
beams, scattering forces were balanced so that particles with high np could get stably
trapped.

In 1986, A. Ashkin and co-workers pioneered the construction of a single-beam opti-
cal trap and demonstrated the stable trapping of particles ranging from 25 nm to 10
μm [5]. Basically, it was observed that focusing the laser beam through a sufficiently
high-NA objective produced an axial intensity gradient capable of counteracting the
downstream, scattering force. Regarding the technical point of view, this is a much
simpler scheme that has been largely exploited in optical micromanipulation and
has been complemented with other techniques, such as dynamic optical tweezers by
the use of wavefront modulation or acousto-optic deflectors [7].

In the following chapter, we briefly present the optical trapping technique and in-
troduce the main theoretical approaches describing the optical forces governing an
optical trap. Some indirect trap calibration methods for experimental, quantita-
tive force measurements are then reviewed. The direct force measurement method,
which is based on the determination of light momentum changes arising form an
optical force, as will be analyzed in depth in this thesis, is explained in detail.

2.1. Optical force

A single-beam optical trap is illustrated in Fig. 2.1a. When focused through a
high-NA objective, the trapped particle produces changes in light momentum that
result in optical forces that point to the trap focus. The use of high-NA objectives
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Chapter 2 Micromanipulation and force measurements with optical tweezers

is needed to produce gradient forces higher than scattering forces, i.e. for stable
trapping.

A number of theoretical approaches have been developed to describe the optical force
either analytically or numerically. Optical trapping is often distinguished into two
regimes: the Rayleigh approach, which describes optical forces for particles much
smaller than the trapping wavelength (D � λ), and the ray optics approach, which
is applicable to larger particles (D � λ).

Figure 2.1.: Single-beam optical tweezers. (a) Light momentum changes of the
trapping beam result in forces that attract the trapped particle towards the trap
focus. (b) Ray-optics sketches using the Optical Trapping in Geometrical Optics
toolbox [40].

Under the Rayleigh regime, or dipole approximation, Y. Harada and T. Asakura
found the following gradient and scattering forces [10]:

−→
Fg = 2π

nm
c
a3n

2
rel − 1

n2
rel + 2

~∇I (x, y, z) (2.1a)

−→
Fs =

nm
c

8

3
πk4a6

(
n2
rel − 1

n2
rel + 2

)2

I (x, y, z) ẑ (2.1b)
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2.1 Optical force

where nm is the medium refractive index, nrel = np/nm is the relative refractive index
of the particle, a is the radius of the particle and k = 2π/λ (λ is the trapping laser

wavelength). We can be observed that, while the scattering force,
−→
Fs, points the

beam propagation direction (indicated by the unit vector ẑ) and is proportional

to the laser intensity, the gradient force,
−→
Fg, points towards the intensity gradient,

~∇I (x, y, z), i.e. towards higher intensity regions.

For large particles compared to the trapping wavelength, ray optics provides precise
calculation of the momentum exchanged with the trapping beam that give rise to
optical forces. A recent software has been released by A. Callegari et al. [40] that
is based on this approach and applies for spherical particles, as well s cylinders and
ellipsoids (see. Fig. 2.1b). Each ray composing the trapping beam undergoes a

change in momentum that results in the following force,
−→
F ray, exerted onto the

particle:

−→
F ray =

nmPi
c

ûi −
nmP

(1)
r

c
û(1)
r −

∞∑
j=2

nmP
(j)
t

c
û

(j)
t (2.2)

Here, nm is again the refractive index of the medium. Pi and P
(1)
r are the powers

of the incident ray and the first reflected ray, respectively. P
(j)
t are the powers of

the rays transmitted out the particle after the j th scattering event. ûi, û
(1)
r and

û
(j)
t are unit vectors pointing the direction of each ray. Usually, computing up

to j = 10 suffices for precise calculation of the optical force. At every scattering
event, reflection and refraction angles and relative powers for the subsequent rays
are calculated through Snell and Fresnel laws [40].

The more general approach to calculate optical forces consists in computationally
solving the electromagnetic equations to obtain the momentum exchange by integra-
tion of the Maxwell stress tensor (MST) [11, 41]. The optical fields can be obtained
from finite-difference time-domain (FDTD) simulations, from which the optical force
is calculated as follows [42]:

−→
F =

ˆ

S

←→
T · d

−→
S − εµ d

dt

ˆ

V

−→
U dV (2.3a)

Tij = εEiEj + µHiHj −
1

2

(
ε |E|2 + µ |H|2

)
δij (2.3b)

where
←→
T is the MST, V and S are the volume and surface surrounding the trapped

particle and d
−→
S is the surface element pointing outwards. ε and µ are the permit-

tivity and permeability of the medium, respectively. In principle, this approach is
applicable to arbitrary geometries, but computation time increases considerably.
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Chapter 2 Micromanipulation and force measurements with optical tweezers

In the far field, integration of MST over an spherical surface enclosing the sample
reduces to integration of the Poynting vector, i.e. the plane wave angular spectrum
[42]. Force is thereby obtained by directly computing the change in light momentum:

Fx =
nm
c

˛
[I0 (Ω)− I (Ω)] sin θ cosφ dΩ (2.4a)

Fy =
nm
c

˛
[I0 (Ω)− I (Ω)] sin θ sinφ dΩ (2.4b)

Fz =
nm
c

˛
[I0 (Ω)− I (Ω)] cos θ dΩ (2.4c)

Here, dΩ is the solid angle element and θ and φ are the spherical coordinates,
respectively. I (Ω) and I0 (Ω) are the light intensity distributions in the far field with
and without the particle scattering the beam [11]. We used the Optical Tweezers
package from Lumerical’s FDTD Solutions to solve Maxwell equations and calculate
forces by integrating the Poynting vector in de far field. In Fig. 2.2, the presence of
a microsphere in the trap focus is observed to deflect the beam, which gives rise to
an optical restoring force.

Figure 2.2.: FDTD simulations using Lumerical software. (a) Layout of a freely
propagating beam. (b) When a spherical bead is places at the trap focus, slightly
displaced laterally, the trapping beam is deflected.

A fast computational strategy for obtaining trapping forces consists in decomposing
the far field into a base of functions. This enables to define a scattering matrix,
so-called T-matrix, that describes particle-induced scattering [12, 43, 44].
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2.2 Indirect force measurements

2.1.1. Comparison example

The complete force profile for an NA = 1.2 trapping beam, obtained from FDTD
simulations, is shown in Fig. 2.3. Importantly, it accurately fits the force profile
obtained in the ray optics regime by means of the Optical Trapping in Geometrical
Optics (OTGO) [40] toolbox, according to the bead diameter, D = 3.00µm, being
much larger than the wavelength (λ = 1064 nm). It is worth commenting on the fact
that the force is not perfectly described around the particle surface, i.e. xtrap ∼ D/2

[44]. We additionally compared the force profile, for a trapping beam with a beam
waist of ω0 = 0.4µm, with that obtained from the T-matrix method, by use of the
Optical Tweezers Toolbox 1.3 (OTT) [12].

Figure 2.3.: (a) Force profile for an NA = 1.2 trapping beam simulated in FDTD
(solid line) and OTGO (dashed line). (b) Force profile for a ω0 = 0.4µm simulated
in FDTD (solid line) and OTT (dashed line).

Among the several approaches introduced, we will use the Poynting integration in
the far field to compute trapping forces. Calculation of forces from light momen-
tum changes reproduces the technical functioning of the direct force measurement
method and provides useful insight on the effects arisen from different experimen-
tal situations. For example, FDTD will shed light into the effect of back-scattered
light loss in force measurements, as well as non-uniform transmittance of the force
detection set-up.

2.2. Indirect force measurements

Usually, force measurement strategies in optical tweezers consist in two steps. Cal-
ibration of the optical trap connects a magnitude accessible from experiments with
the optical force. First, a method to determine such calibration is carried out. Sec-
ond, measurement of the so-called primary variable yields thereby force readings.
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Chapter 2 Micromanipulation and force measurements with optical tweezers

The sample position and the minimal trapping power to counter-balance escape
forces are the two main paths for obtaining calibration-based force measurements.
The sample position relates to force through the linear optical spring approach,
which is valid for small displacements with respect to the focus of the trap:

F = −κx (2.5)

The trap stiffness, κ (pN/μm), can be obtained through a number of methods. In
general, they can be classified into two groups, depending on the forces that are used
for calibration [45]. Thermal calibration employs the spontaneous fluctuations, with
no external force, yielding Brownian motion of the trapped sample. The equiparti-
tion theorem and the power spectrum methods are based on this analysis. On the
other hand, a known, external force, can be applied to the sample while its posi-
tion is recorded, allowing for the drag force method, which uses Stokes-drag forces
induced, for instance, with a piezo-electric stage.

On the other hand, the minimal trapping power necessary for keeping a sample
trapped can as well provide quantitative force measurements. Optical force scales
linearly with the trapping laser power:

F =
nQ

c
P (2.6)

Here,F is the optical force, n is the refractive index, c is the speed of light and
P is the trapping power. The dimensionless parameter Q is the so-called trapping
efficiency. One first needs to determine, for a known force value, e.g. from Stokes
drag, the minimal power for trapping. Force measurements therefore lie in trapping
the sample at decreasing powers until it escapes from the trap.

Such indirect approaches necessitate that the calibration procedure be performed on
the same probe eventually trapped for measurements, i.e. in situ. If a new sample
is trapped, a new calibration must be carried out, due to the calibration being
strongly dependent on a number of experimental parameters. Moreover, theoretical
descriptions of thermal or hydrodynamic forces are required for determining the force
reference for calibration, which limits the existence of calibration-based strategies,
for example, within spheres and cylinders or samples that can be modeled this way.

2.2.1. Position measurements

Position measurements in optical tweezers are commonly carried out in two ways.
Standard back focal plane (BFP) interferometry uses light scattered by the trapped
sample to detect 1-nm scale displacements at hundreds of kHz, by means of a quad-
rant photo-diode (QPD) or a position-sensing detector (PSD). Differently, tracking
algorithms combined with fast cameras enable parallel position measurements on
multiple spots with a speed on the order of 1 kHz.
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2.2 Indirect force measurements

If sample positions are to be measured for trap calibration purposes, it is worth that
the acquisition rate be fast enough in order to monitor thermal motion, especially
i thermal-based calibration strategies. We are here describing the main features of
both approaches.

2.2.1.1. Video tracking

In Ref. [46], G. Gibson et al. describe the use of fast, 1-kHz CMOS cameras for
calibrating optical traps through the analysis of the Brownian motion. They show
the possibility to record histograms for equipartition theorem calibration, as well
as power spectrum up to the thermal limit. Moreover, they show the possibility
determine the cross-correlated motion of two beads. A similar approach was applied
by A. Huhle et al. in a magnetic tweezers set-up [47]. In this case, 3D tracking
of several particles was demonstrated at kHz rates with sub-nanometer accuracy,
which enabled measurement of DNA stretching steps of 5 Å.

F. Marsà et al. similarly used a high-speed camera to detect the parallel drift motion
in a dumbell trap configuration [48]. Sub-nanometer tracking in this configuration
will enable measurements of trap positioning accuracy, as we will show in Chapter
3.

Video tracking can as well be applied to position and orientation measurements on
non-spherical samples. In Ref. [33, 32], D.B Phillips et al. apply high-speed video
imaging to calibrate holographically-trapped micro-rods and probes with complex
shape for scanning force microscopy. In Chapter 5 of this thesis, we will use video
images for determining the motion of trapped micro-cylinders to determine their
trapping force profiles.

2.2.1.2. Back focal plane interferometry

Light scattering by an optically-trapped sample is sensitive to the relative position
with respect to the trap focus. Interestingly, beam deflections can be tracked with a
QPD or a PSD and, after calibration, be connected to sample displacements in 3D. A
review of the main steps that made this a unique technique thanks to subnanometer
displacement accuracy and high-rate bandwidth was published by I. Verdeny et al.
[45]. An interferometric theoretical description of scattering by a particle in the
Rayleigh regime was done by F. Gittes and C. Schmidt to find the position sensing
profile of a trapped particle [49]. Usually, a high-NA collecting lens or a microscope
objective is used to capture part of the light emerging from the optical traps to
implement BFP interferometry. In Ref. [50], some experimental features for an
optimized detection sensitivity are discussed.

In principle, BFP interferometry is applicable in single optical traps, due to light
creating multiple traps will be mixed in the detector after scattering. Solutions
for this can be found in dual trap systems with crossed polarizations (dumbbell
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Chapter 2 Micromanipulation and force measurements with optical tweezers

configuration) [48] and using a pinhole at a plane optically equivalent to the trapping
plane to select for the trap of interest [51].

BFP interferometry can be rapidly calibrated by the use of acousto-optic deflectors
(AODs) [52]. Importantly, the use of an additional laser beam for detecting sample
displacement, has been lately implemented independent of the trapping beam for
rheological studies in zebrafish embryos [53]. Recently, some modification of the
detection set-up have been shown to improve the displacement resolution [54, 55]
and aberration effects in the optical traps [56].

In this thesis, we use an optimized version of BFP interferometry that constitutes
the direct force measurement method in optical tweezers [20, 21], as discussed in
Section 2.3.

2.2.2. Thermal forces

Thermal fluctuations can be analyzed in different ways for calibrating the stiffness
of an optical trap. We here review the two methods more used in optical trapping
laboratories.

Equipartition theorem From the linear spring assumption for an optical trap,
spontaneous thermal fluctuations can be applied the equipartition theorem to obtain
the trapping stiffness as follows [7]:

1

2
kBT =

1

2
κ
〈
x2
〉

(2.7)

where kB is Boltzmann’s constant and 〈x2〉 is the variance of the sample position.
Under this approach, no knowledge of the sample properties is a priori a need but
we only need to know the local temperature, T . For example, medium viscosity
or sample geometry is not a requirement. On the other hand, one does need to
calibrate the position detection performance (e.g. through BFP interferometry if no
high-rade video recording is available).

Concerning irregular samples, this method can be generalized to include higher
degrees of freedom to calibrate the stiffness matrix of micro-rods [33] and rod-like
shape bacteria [57].

Power Spectrum When parameters describing the experiments are known, such
as the particle radius and the medium viscosity, Lagevin’s equation can be used to
model thermal fluctuations. This method is particularly useful for standard calibra-
tion using BFP-interferometry set-ups, for which sample positions are measured as
x = β Sx. In a viscous medium, such as water or glycerol, the power spectrum of
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2.2 Indirect force measurements

the Brownian thermal motion damped by a linear optical trap becomes a Lorentzian
that can be fitted as follows:

P (f) =
1

Tmsr
|x̃ (f)|2 =

a

1 + f2

f2c

(2.8)

Here, Tmsr is the time length of the measurement, f is frequency coordinate and x̃ is
the Fourier transform of the trapped particle position. From the corner frequency,
fc, and the lorentzian amplitude, a, we can easily obtain the sensor responsivity (β,
μm/V) and the trapping stiffness (κ, pN/μm):

κ = 12π2ηRfc (2.9a)

β =

√
kBT

12π3f 2
c ηRa

(2.9b)

A thorough implementation software for this calibration method, that accounts for
further corrections to the power spectrum (such as aliasing due to digital acquisition
and surface hydrodynamic correction) was published by I. M. Tolic-Nørrelykke et al.
[58] in Matlab. Under this scheme, forces are eventually obtained as F = κx = κβ x,
from which we can obtain a direct connection from the sensor voltage signals with
the applied forces:

αtrap = κ·β (2.10)

As will be discussed in the Section 2.3, this parameter becomes in principle invariant
in the direct force measurement method. Chapter 4 focuses thereby on using this,
together with αtrap Stokes calibration int he next section, to analyze this property.

2.2.3. Drag forces

The drag force that a fluid exerts on a spherical particle at low Reynolds number is
described by the following equation [7]:

Fdrag = 6πηRb vflow (2.11a)

b =
1

1− 9R
16h

+
(
R
2h

)3 (2.11b)

where η is the fluid viscosity, R is the particle radius, vflow is the fluid velocity and
h is the distance to the surface. Factor b is Faxén’s coefficient correcting for the
sphere-to-surface interaction.
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Chapter 2 Micromanipulation and force measurements with optical tweezers

Stokes-drag forces can be used for trap calibration in two ways [8]. In the position-
based calibration approach, a known force is applied to the sample whilst its dis-
placement is recorded to obtain the trapping stiffness, κ. In the escape-force-based
strategy [59], the force at which a trapped sample escapes the trap at a given trap-
ping power is known through equation 2.11 and can be similarly expressed as:

Fesc =
nQesc

c
P (2.12)

Following Eq. 2.12Force measurements are eventually carried out by monitoring the
minimal power keeping the sample trapped, which scales linearly with respect to
the former power value.

In BFP-interferometry-like set-ups, a factor directly relating force values (pN) to
sensor responses (V), i.e. αtrap (pN/V), is obtained as follows:

αtrap =
6πηRb vflow
〈Sx〉

(2.13)

Here, 〈Sx〉 is the average voltage signal while a constant flow is applied. This
scheme will be carried out in Chapter 4 for testing the accuracy of the direct force
measurement method on different samples.

The Stokes-drag approach can be applied as long as theoretical description of hy-
drodynamics is available. For example, the head of an E. Coli bacterium has been
modeled as an ellipsoid for propulsion force measurement [15], and chromosomes
have been represented as slender cylinder for motility measurements within the mi-
totic spindle [30].

2.3. Direct force measurement method

Light-particle interaction in an optical trap gives rise to forces that confine the
trapped particle at the beam focus and, from the perspective of Newton third law,
to beam momentum changes. Detection of such light momentum changes leads to
direct measurement of optical trapping forces. The term direct expresses the fact
that force is measured itself, instead of being inferred from a primary variable, such
as particle position or laser power, that connects to force. As discussed in the
previous section, relating another variable to force makes it necessary to accurately
know the microscopic details of the experiment (e.g. viscosity, temperature, particle
geometry) and the specific dynamics that govern optical forces and forces used for
calibration (e.g. F = −κx linearity and drag coefficient γ).

These promising advantages necessarily come at the cost of a complex optical design,
since it should be capable of collecting all the light interacting with the sample. If
not so, the momentum information transferred to missing photons would eventually
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2.3 Direct force measurement method

produce errors in force measurements. Proper detection of light momentum requires
the beam first be captured and, further, be conveyed to sensors accordingly assessing
the beam momentum structure.

A first strategy, proposed by Smith et al. in 2003, was applied in counter-propagating
optical traps [19]. In this system, two 1.2-NA objectives facing one another focus
each low-NA beams at the same point, thus creating a stable optical trap. Underfill-
ing the trapping objectives ensures the collection of most part of the light trapping
the samples, since large beam deflections due to applying external forces can still
be captured. Concerns on total light collection have led to using this approach by
several laboratories [19, 60, 61, 7].

As has been discussed, single-beam optical tweezers offer important advantages
with respect to counter-propagating optical traps, such as a simpler design strat-
egy through a commercial inverted microscope and compatibility with wavefront
modulation for dynamic trapping. Farré et al. described the technical conditions
that ensured high-NA beams needed for creating stable optical tweezers (gradient
forces must counterbalance scattering forces) to still be completely collected and
their momentum measured [20].

Light emerging from such high-NA trapping beams after interacting with the trapped
samples primarily travels towards the positive direction, as will be analyzed in Chap-
ter 4, but one needs to make sure that light comprised in the forward 2π solid angle
is wholly captured. This is achieved by means of an oil-immersion collecting lens
with NA higher than the medium refractive index, i.e. NA > nm, for which rays
traveling at θ → 90º still enter the momentum detection optical system.

The second condition is that such collecting lens needs to accurately fulfill the Abbe
sine condition, meaning that rays traveling at angle θ focus at x = f ′n sin θ at its
back focal plane (BFP). Here, f ’ and n are the focal length of the lens and the
refractive index of the immersion oil. In other words, it is a need that the principal
surface of the lens be perfectly spherical. Under this assumption, a photon with
lateral momentum px = ~k sin θ = h

λ0
n sin θ (where h is Planck’s constant and λ0 is

the trapping laser wavelength in vacuum) will focus at x.

The detection system is technically similar to that of a usual BFP interferometry (see
section 2.2.1.2), but needs to be optimized to accomplish these conditions [21, 62].
The entirely captured beam is finally shined onto a position-sensing detector (PSD)
appropriately placed at a plane optically equivalent to the BFP. This sensor yields
positional and sum signals as follows, where γ is the sensor responsivity and RD its
radius:
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Sx =
ψ

RD

¨

PSD

xI (x, y) dxdy (2.14a)

SSUM = ψ

¨

PSD

I (x, y) dxdy (2.14b)

Using the aforementioned relations for x and px and that the energy of a single
photon is E = hν = h c

λ0
, we obtain a direct reading of the total X component

of the beam momentum, and hence the optical force, from S x (similar for the Y
component):

Sx =
ψf ′c

RD

¨

PSD

px (x, y)
I (x, y)

hν
dxdy ≡ 1

α
Fx (2.15)

Providing that light is chiefly scattered forward, expression 2.15 is the experimental
equivalence to the momentum flux in Eqs. 2.4 for the lateral cases (X and Y). In
turn, the S SUM signal corresponds to the optical trap power by SSUM = ψPtrap.
Again, such equivalence will be thoroughly assessed in Chapter 4.

Note that the optical force, Fx = αSx, is obtained from the direct reading of the
sensor and that α is uniquely determined by the parameters of the optical detec-
tion set-up: ψ, f ′, RD. In other words, this constitutes a macroscopic calibration
insensitive to local, microscopic features of the optical trap, trapped specimen or
medium.

The light capture performance is sketched in Fig. 2.4. Similar to a Ronchi ruling
experiment, in Fig. 2.4(a) we used the SLM to display a circular pattern by al-
ternating zero- and π-phase (see Chapter3). The pattern was visible at the PSD
plane by means of a CCD. As will be shown in Chapter 4, the impact position of
rays exiting the trap with angle θ is f ′n sin θ 2.4(b), according to the Abbe sine
condition . Finally, a bead was placed at the trap focus to scatter light and rays
exiting at θ → 90º were observed to reach f ′n sin θ ∼ f ′nm.

The same principle can be applied to measure axial optical forces after some mod-
ification of the detection performance. Thalhammer et al. substituted the PSD at
the BFP with a high-speed camera to digitally compute the three components of
the beam momentum [63]. Similar to Eqs. 2.14, expressions defining the momen-
tum flux in 3D (see Eqs. 2.4) can be reduced into integrals in the BFP. Combined
with phase detection, this approach will eventually lead to complete determination
of the forward-scattered field, providing information on higher-order momenta, such
as torque. A different scheme was devised by Smith et al. to achieve beam power
concentration measurements [64]. This briefly consists in using a mask with a cir-
cular transmittance profile, after which the S SUM signal of the PSD is equivalent to
F z.
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2.3 Direct force measurement method

Figure 2.4.: Collecting the forward 2π solid angle. (a) A circular-grating hologram
is displayed at the SLM, which is conjugated at the entrance pupil of the micro-
scope objective (water-immersion, NA = 1.2), which is in turn conjugated at the
BFP of the collecting lens. (b) A CCD camera substituting the PSD at a plane
conjugate to the BFP records the BFP pattern obtained. (c) The same pattern
recorded with a bead scattering light from the trap. Rays with NA = 1.32, which
correspond to angle θ → 90º are still captured.

Beam momentum detection for force measurements has been applied in an increasing
number of optical trapping laboratories. As has been mentioned, direct detection
of force unbinds experiments to trap calibration prior to force measurements, which
is difficult, if not impossible, when working in inhomogeneous buffers and non-
spherical samples. J. Mas et al. measured stall forces in living cells and validated
the momentum detection with active-passive calibration [65, 66]. Y. Jun et al.
similarly explored the possibility to measure force in vivo with no need of in situ
trap calibration [67]. M. Taylor et al. used the direct force measurement method to
determine the trapping force profile in optimized, non-Gaussian traps [68].

In this thesis, beam momentum detection has been proven accurate to measure forces
on microcylidners optically-trapped in pairs of holographic tweezers [69], and the
invariant momentum calibration has been used to measure local trap temperature
[70]. Recently, R. Meissner et al. similarly measured drag forces on microrods
[71]. Examples of measurements on arbitrarily shaped particles using the absolute
calibration of light momentum detection can be found in the work by A. Bui et al.
[72].

Indirect calibration-based force measurements require high control of variables and
physics governing the trapping process. The linear relationship F = κx is accurately
assumable for the case of spherical particles in Gaussian traps, but cannot be taken
for granted in more complex situations. In fact, even when trapping microspheres,
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Chapter 2 Micromanipulation and force measurements with optical tweezers

one needs to make sure that their position with respect to the trap remains within
the linear response region, i.e. forces cannot be measured up to the escape force.

Knowledge of local variables is demanding in most applications and almost out of
reach in vivo, importantly limiting accurate force measurements for biological appli-
cations. Local temperature, viscoelasticity and trapped particle geometry are crucial
in nearly all the calibration schemes, which require precise thermal and/or hydro-
dynamic description. Trapping beam structure (i.e. NA or waist, power, relative
refractive index or parameters as for non-Gaussian beams) strongly affects optical
force, hence urging a new calibration if any of these parameters changes. Moreover,
fulfilment of the fluctuation-dissipation theorem is of the utmost importance for
thermal calibration, which is not straightforward under drift and in vivo conditions.

The invariant charactersitic of F = αS robustly overcomes the difficulties or inexis-
tence for trap calibration. Results from several laboratories and conclusions of this
thesis let us envisage that light momentum measurements in single-beam optical
tweezers will trigger more precise experiments in optical trapping. For example,
direct trapping and measurement on biological samples, such as microorganisms,
chromosomes, cell membranes or actin bundles, will be possible with no need of aux-
iliary calibrated microbeads and the intricate force calibration strategies depicted
in section 2.2.
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As introduced in the previous chapter, the manipulation versatility of optical tweez-
ers becomes highly increased if a dynamic driving scheme is incorporated in the
set-up. Several examples, such as scanning mirrors and acousto-optic or electro-
optic deflectors, offer precise trap positioning and fast, time-sharing capabilities [7].

Among these, holographic optical tweezers (HOTs) [73, 74] offer useful and novel
capabilities derived from beam shape engineering: creation of multiple optical traps
in 3D [24], aberration compensation [75] and generation of exotic light beams, among
others [76, 27, 29].

In the following chapter, the main features for the design of a holographic optical
tweezers set-up based on an inverted microscope are analyzed. First, we briefly de-
scribe the optics to properly manipulate a laser beam to create a stable HOT. We
then focus on the functioning of some of the devices used. We assess the effect of
polarization instability of the fiber laser, as well as its high-frequency noise. The
phase modulation performance of the SLM is accessed by use of a simple ellipso-
metric approach. In addition, the piezo-stage further used for accurate drag force
measurements is calibrated to correct for its driving electronics transfer function.

Second, the manipulation flexibility of HOTs is shown. We first use a dumbbell
configuration to split the laser beam into one modulated and one non-modulated
orthogonally-polarized components [48]. This configuration enables accurate re-
moval of slow drift noise, and sub-nanometer accuracy in single-trap positioning is
demonstrated through precise video tracking. Positioning deviations due to phase
quantization and plane pixelation are determined and corrections for hologram com-
putation are presented. Generation of multiple-trap arrays is as well schemed, which
will be eventually used for manipulation of multiple-bead systems and extended ob-
jects in Chapter 5. Finally, we show the modulation performance for exotic beam
shaping, e.g. to create cogwheel beam traps [27].

3.1. Optical tweezers set-up

The holographic optical tweezers set-up used in our experiments is presented in
Fig. 3.1. The laser (IPG YLM-5-1064-LP) emits a continuous, linearly polarized
Gaussian beam TEM00 up to 5 W at a wavelength of λ = 1064 nm, with a nominal
beam diameter of 5.1 mm. A combination of a half wave-plate (HWP 1) and a
polarizing beam splitter (BS) facilitates power control by polarization.
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Figure 3.1.: Holographic optical tweezers set-up. (i) A typical phase hologram
displayed at the SLM. (ii) Scheme of the multiple-trap array generated at the
sample plane. (iii) BFP image of the trapping beam. HWP: half-wave plate; B:
beam block; BS: beam splitter.

Telescope 1 (T1, f 1 = 30 mm, f 2 = 100 mm) widens the beam to overfill the SLM
active area. We use a liquid crystal on silicon, parallel nematic reflective SLM
(Hamamatsu X10468-03: 800x600 pixels, p = 20 μm pixel sized, 8-bit DVI signals).
Before the SLM, another half-wave plate rotates the polarization to control the
relative power of the phase-only modulated beam (horizontal polarization) with
respect to the non-modulated beam (vertical polarization).

The beam enters a commercial, inverted microscope (Nikon Eclipse TE2000-U)
through the rear port and is reflected up by a dichroic mirror. Telescope 2 (T2,
f 3 = 150 mm, f 4 = 100 mm) conjugates the SLM plane at the back focal plane of
the microscope objective in a 4f-configuration with a magnification f3/f4 [25], such
that the 600 active pixels of the SLM (12 mm wide) exactly fit in the entrance pupil
of the objective, with a diameter ΦEP = 2 NA f = 8 mm (See Fig. 3.1i). We typi-
cally use a water immersion microscope objective (Nikon Plan Apo, 60x, NA=1.2)
to focus the laser light into the specimen to create the optical trap (Fig. 3.1ii). It
is an infinity corrected objective with a lens tube of focal length ftube = 200 mm,
therefore with a focal length f = ftube/60 = 3.33 mm. This objective allows for
compensating the aberration introduced by the microscope coverslip by means of
a correction collar and enables creating the optical traps up to 280 μm in depth
(working distance).

For typical optical microscopy applications, a condenser illuminates the sample from
above, and its bright field image through the objective is registered by a conventional
CCD camera (QICAM 12-bit Qimaging, 1392x1040 pixels, 4.65 μm pixel sized, 24
Hz) at a different port of the microscope. In force measurement experiments, the
condenser is substituted by a direct force detection instrument (Impetux Optics, Lu-
nam T-40i), which as well permits illumination of the sample plane, while collecting
the laser beam emerging from the optical traps through an oil-immersion NA = 1.4
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3.1 Optical tweezers set-up

lens, as disscussed in Section 2.3. As will be thoroughly described in Chapter 4, the
back focal plane (BFP) of the collecting lens is imaged at a position-sensing detector
(PSD) for force measurements. This sensor yields positional signals, S X and S Y,
related to trapping forces as FX,Y = αSX,Y ; and sum signals, S SUM, related to trap
powers as P = 1/ψSSUM (see Eqs. 2.14). Similarly, the PSD can be substituted by a
CCD camera (UEye, specs) to analyze the beam intensity distribution (Fig. 3.1iii).

Microchambers containing different kinds of samples are typically prepared by gluing
a thin coverslip and a microscope slide. The coverslip (usually Deltalab or Menzel
nr. 1, approximately 150 μm thick) faces the objective, while the microscope slide
(Deltalab, 1 mm thick) is in contact with the immersion oil in force detection ex-
periments. As spacers, we habitually use 90-μm double-scotch tape, in which an
approximately 1x1cm cavity has been drawn out. When thicker microchambers are
needed, i.e. in the experiments with embryos in Chapter 7, the upper thick slide is
replaced by another thin coverslip and 3-5 tapes are carefully stacked for spacing.
In this way, the collecting lens working plane can be located deeper in the chamber.
Samples (polystyrene, melamine resin or silica microbeads, or glass microrods) are
diluted in water, glycerol or sucrose solutions to a sufficiently low concentration to
avoid unexpected trapping. Particular details on experiments will be given in the
following chapters.

A piezoelectric platform (Piezosystem Jena, TRITOR 102 SG) is used, at the mi-
croscope stage, to induce precise drag forces on the optically-trapped particles. A
National Instruments NI-DAQ interface enables driving and monitoring of the plat-
form through LabView software. To prevent microchambers from sliding, they were
fixed with tapes onto the piezoelectric platform.

3.1.1. Laser characterization

The combination of a half-wave plate (HWP) and a polarizing beam splitter allows
for running the fiber laser at a relatively high power to improve stability. See in
Fig. 3.2a the positional power spectrum recorded with the PSD through signal S X

at 15 kHz for an empty trap. High frequency peaks around 1-10 kHz are shifted out
of the spectrum as the laser output power, Poutput, is increased from 0.1 W to 2 W,
while the trap power is set at P trap = 10mW by properly rotating HWP 1 (see Fig.
3.1).

In Fig. 3.2b, two 1.16-μm beads are captured in traps with the same power values.
The power spectrum becomes a typical lorentzian curve, arising from the harmonic
potential introduced by the optical trap (see Section 2.2). Note that a high Poutput

is necessary for eliminating noise peaks that would eventually affect trap stiffness
calibration.

On the other hand, using a polarizing beam splitter (BS) to control laser power
makes evident that the output beam polarization oscillates in a long-range timescale,
of around 1 min. As provided by the manufacturer, the laser source is a TEM00
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Chapter 3 Holographic optical tweezers

Figure 3.2.: Laser fluctuations. (a) Power spectrum recorded with no bead in the
optical trap. In red (black), laser output is Poutput = 0.1 W (Poutput = 2 W) and
the HWP rotates polarization parallel (obliquely) to the BS transmitting axis.
Trap power is P trap = 10 mW for both spectra. (b) The same spectra with 1.16-
μm beads trapped. (c) Trap power recorded over 10 minutes. Oblique polarization
with respect to the transmitting axis of the BS leads to power fluctuations due to
polarization large-scale instability.

with linear polarization extinction ratio of 22 dB. See in Fig. 3.2c though, a certain
instability for different polarization directions. The more orthogonal the polarization
angle to the transmitting axis of the BS, the more visible the fluctuation, which is
translated into power long-range instability. Differently, if no polarizing elements are
used, Poutput remains stable within less than 1% RMS. Also, the laser power remains
stable within a similar RMS if polarization is set parallel to the BS transmitting axis.

An automated feed-back for stabilizing the laser power has been therefore pro-
grammed in LabView, which addresses Poutput through an RS-232 interface when
HWP 1 is required to control laser power. For the worst case in Fig. 3.2c, the laser
power is stabilized from t = 10 min, within an RMS comparable to that reported
by the manufacturer for Poutput.

3.1.2. SLM characterization

Parallel nematic liquid crystal SLMs enable wavefront modulation in a phase-only
performance. Liquid crystal is composed of anisotropic molecules whose extraor-
dinary refractive index depends on their orientation with respect to the incident
optical vector field [45]. This orientation can be tuned with computer-generated
voltage signals, usually in the form of grayscale images in which each gray level cor-
responds to a voltage value and eventually to a local, pixel-wise phase delay. In our
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3.1 Optical tweezers set-up

set-up, modulation is applied to the horizontal polarization component, whereas the
vertical component remains non-modulated, according to their being parallel to the
refractive index ordinary axis. This will further enable splitting the laser beam into
a holographically-modulated beam to draw several kinds of optical trap patterns,
and a non-modulated, motionless beam creating an optical trap onto the optical
axis [48], as shown in Section 3.2.

SLMs can be addressed both through digital and analog signals. As analyzed in
Ref. [77], digital addressing leads to phase flickering due to the alternating voltage
binary values generated through pulse-width modulation (PWM), finally giving rise
to positioning instability. This can be considerably reduced by addressing SLM
signals in an analog scheme. Our analog-addressed Hamamatsu X10468-03 SLM is
driven by 8-bit DVI signals, thereby providing 28 = 256 available phase values.

In order to assess the phase modulation for the horizontal polarization component,
we shined a beam polarized at +45º onto the SLM, by properly orientating HWP
2 in Fig. 3.1, while a constant phase hologram was being displayed. The reflected
beam intensity was recorded with a power meter (Thorlabs, S130C) placed after an
analyzer at -45º. The phase delay, φ, between horizontal and vertical components
leads to elliptical polarization for which the intensity after the analyzer reads as
I (φ) = I0 + A sin2 φ

2
. In Fig. 3.3a, we show our SLM exhibiting a perfect linear

response between the gray levels, g, and phase (the so-called look-up table, LUT).
A sweep over the 256 values can hence be fitted by:

I (g) = I0 + A sin2

[
2π

2M
(g − g0)

]
(3.1)

Here, M is the number of gray levels available between 0 and 2π and g0 is the gray
level for 0-phase modulation. Although phase modulation was linear, we did observe
an effective phase modulation range beyond 2π, as has been reported by Albero et
al. [78] and Calero et al. [79]. This effectively translates into less than 256 gray
levels between 0 and 2π. In particular, we found values of M between 220 and 235,
depending on the laser power and running time, as well as local variations due to the
non-constant (ideally Gaussian) beam intensity profile. This is likely due to heating
of the SLM, as suggested in Ref. [80]. In Fig. 3.3b, see the M values at different
laser powers over 45 minutes. After an abrupt rise in the first 4-5 minutes (shaded
area), it keeps slowly going up and nearly stabilizes after approximately 20 minutes.
This will be taken into account in Section 3.2.2 to avoid holographic drift that leads
to long-range trap positioning instability.

We further measured the local LUT by displaying constant phase values on pixels
with greater effective size (Fig. 3.3c). The remaining pixels of the hologram were
set to steer light off the power meter by applying a phase grating (see Section 3.2).
In Fig. 3.3d, we obtained the Gaussian beam profile at the SLM by sending light
polarized horizontally so as to not have the non-modulated counterpart, while the
analyzer in front of the power meter was as well removed. The hologram was divided
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Figure 3.3.: SLM LUT analysis. (a) Intensity recorded from a power meter after an
analyzer oriented at -45º. The incident beam is polarized at +45º. (b) M values
for three different laser powers, over 45 minutes. (c) Typical hologram displayed
for Gaussian beam profile and local LUT assessment with bigger effective pixels.
(d) Trapping beam Gaussian profile obtained from holograms with 40x40 effective
pixels. (e) Local values of M obtained over the SLM with 200x200 effective pixels.
.

into 15x20 effective pixels square-sized 40x40 (the total SLM pixel size is 600x800).
The beam waist from fitting a 2D Gaussian to the data was 9.0 mm, similar to the
theoretical value of 8.5 mm, calculated from the 5.1-mm-diameter waist laser output
expanded through telescope 1 (See Section 3.1 and Fig. 3.1).

Variation of M over the SLM plane is shown in Fig. 3.3e. The SLM was now divided
into 3x4 effective pixels of square size 200x200. Similar to the M -power dependence
in Fig. 3.3b, M was observed greater for higher local intensity. As will be analyzed
in Section 3.2.2, LUT inaccuracy is the main source of error in trap positioning,
together with phase quantization effects.

3.1.3. Piezo-electric stage characterization for accurate drag
force measurements

As depicted in the introduction of this thesis, most experiments to demonstrate the
operation of beam momentum detection consist of applying controlled drag forces
for which hydrodynamic analytical expressions are available, such as Eqs. 5.1, 5.2
and 5.3 in Chapter 5. Constant flow velocities were created by addressing triangular
signals for xpiezo(t) (Fig. 3.4a) such that stage velocity, vflow = vpiezo(t) =

dxpiezo(t)

dt
,

was thus a square-shaped waveform (Fig. 3.4b). In Fig. 3.4c, we compare the
typical force signal obtained with the light-momentum sensor, i.e. FX = αSX (see
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Section 2.3), with the hydrodynamic force through Fdrag = γvflow for a 3.00-μm
bead captured in the optical trap.

Figure 3.4.: Piezoelectric stage performance. (a) Triangular signal (f = 3Hz,
A = 28µm) drawn by the stage. The shaded areas indicate the constant-slope
timeframes. (b) Stage position derivative (red) and ideal velocity, vflow = 4Af .
The shaded areas indicate the constant-velocity timeframes. (c) Force obtained

and ideal force signal, i.e. γ dx(t)
dt

. (d) Triangular signal (f = 3Hz, A = 28µm)
showing greater deviation. (e) Deviations for a series of driving frequencies and
different amplitudes.

A close look onto the waveform makes one notice some deviation from the ideal
triangular (stage position, xpiezo(t)) and from the derivative square (stage velocity,
vpiezo(t)) shapes (Fig. 3.4d). This is due to the driving electronics transfer function,
which decays similar to a single-pole-like function, as has been shown in Ref. [70]
(Supplementary Information). This translates into the fact that constant velocity
is only achieved within the 40% to 80% range of a semiperiod, approximately (see
shaded areas in Fig. 3.4a,b,d).

In the experiments described in the next chapters, drag forces are eventually mea-
sured from the averaged 40-80% timeframe plateaus on signals analogous to Fig.
3.4c. For proper comparison with theoretical drag forces, flow velocities were as
well measured over the same time range via the stage monitor output. Results
are shown in Fig. 3.4e. Note discrepancies as high as 7% for certain amplitude-
frequency combinations, especially for faster oscillations. To avoid waveform shape
aberration, drag force experiments will be carried out at relatively low laser power.
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This way, force accuracy assessment will be available up to the escape force with
proper accuracy.

The absolute drag force is calculated as the half-difference between the two averaged
plateaus, which automatically cancells out the initial momentum of the beam. To
average the force values, approximately 10,000 data points are taken for a typical
50-kHz force signal. Signal averaging also eliminates zero-mean Gaussian noise,
leading to eventually 20-fN to 50-fN standard deviation for measurements repeated
over 20 cycles. Such reproducibility can be considered to be the minimum force
value attainable for drag force measurements on microspheres.

3.2. Holographic steering of a single trap

Among the wide number of applications offered in optical trapping, SLMs can be
applied to accurate beam steering and positioning of optical traps [23, 81]. A single
beam is easily steered by generating a linear phase profile whose slope determines
the deflection angle. The digital structure and the phase quantization of the SLM
limit resolution but, for commercial SLMs having N ∼ 500 pixels and M ∼ 200 phase
values, theoretically almost continuous positioning should be achieved [23]. In [26],
a detailed analysis of the effects of phase quantization in a 1D phase-only SLM on
beam steering is performed. They show that the staircase generated by the SLM
pixels can lead to unexpected errors for certain steering angles, and they optimize the
holograms to minimize the difference between the mean slope of the staircase grating
and the aimed slope (a similar approach is performed in [39]). D. Engström and
co-workers [26] also compare the theoretical predictions with experimental results,
by measuring the center of mass of the far-field pattern of the steered beam. By
artificially limiting the performance of the SLM down to N = 256 pixels and M =
32 phase levels, positioning deviations over steering angles of 2-3 mrad were outlined
over the noise in the setup.

Microscope objectives are aplanatic lenses that satisfy the Abbe sine condition. The
optical field distribution at the back focal plane (i.e. the plane containing the optical
traps) is the Fourier transform of the electric field at the front focal plane, with a
scaling factor λf, where λ is the laser wavelength and f is the focal length of the
microscope objective [82]. Considering that telescope 2 (Fig. 3.1) conjugates the
SLM plane onto the objective front focal plane with f3/f4 magnification, a linear
phase profile displayed at the SLM of the form:

φideal (x; d) =
2π

λf

f4

f3

d x+ φ0 (3.2)

gives a displacement d of the focused beam at the trapping plane. φ0 is an arbitrary
offset phase value that can be used as a free parameter for optimization [26], as will
be used in Section 3.2.2.2.
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Considering the pixelated performance of the SLM, equation 3.2 reads as:

φidealj (d) =
2π

λf

f4

f3

d xj + φ0 ; j = 1, ..., N (3.3)

where the pixel position is now xj = p j (p is the pixel size) and N is the number of
pixels along the steering direction. The effect on trap steering efficiency due to the
discrete nature of digital holograms will be explained in Section 3.2.1.

The same conclusion can be drawn by considering the optical path slope applied to
the wavefront (Fig. 3.5). In order to position the optical tap at a distance d from the
optical axis, the SLM tilts the wavefront at an angle tanα = d

f
f4
f3

(the beam is then

magnified through telescope 2 as f3
f4

). The optical path length modulated at the j th

pixel will be δj = xj tanα = λ
2π
φj, whereby we can again obtain φj (d) = 2π

λf
f4
f3
d xj.

As will be shown in the next sections, the latter, slope-wise phase approach suf-
fices for explaining the positioning deviation performance due to phase quantization
(Section 3.2.2.2). Differently, deviations due to imperfect LUT will be described
analytically from Fourier optics after applying the mod 2π function to the hologram,
according to the fact that phase values are truncated at φ = 2π.

Figure 3.5.: Linear phase optical path.

Studies on beam steering accuracy have been scarce thus far, probably due to the
difficulty of measuring positioning with the required precision. Trap positioning
errors within ∼2 nm have been found in [81] for three holographic traps, for an
SLM with N = 1080 pixels and M ∼ 200 phase values. These errors are mainly
due to phase modulation deviations, i.e. in the conversion from the gray level (or
voltage) addressed to the SLM at each pixel and the actual phase added locally
to the incoming light beam. Mismatches on the look-up-table (LUT) conversion
from gray levels to phase have been widely studied in terms of diffraction efficiency
[80, 83], but not in terms of positioning accuracy.
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In this section, we briefly analyze the efficiency drop when steering an optical trap
off the optical axis and study both the phase quantization and imperfect LUT effects
on single trap positioning. Trap positioning will be obtained by tracking trapped
polystyrene microbeads, allowing subnanometer holographic trap displacement mea-
surements, corresponding to steering angles of the order of 0.1 μrad. Importantly, it
is necessary to split the laser beam into the non-modulated component, creating a
static trap on the optical axis, and the modulated component that will be steered.
This way, relative bead position cancels out drift-noise motion. In addition, trap
focusing in terms of Fourier optics is used as a model to be qualitatively compared
with measurements.

3.2.1. Efficiency

Single-trap steering efficiency can be predicted by focusing the optical field modu-
lated by the discrete hologram described by Eq. 3.3 in terms of Fourier optics, with
spatial frequency u = x′

λf
f4
f3

(x’ is the spatial coordinate at the trapping plane). Let

us consider the optical scalar field at the SLM plane as follows (see Appendix A.1):

U (x) = rect
(x
L

){
rect

(
x

p

)
∗

[
∞∑

n=−∞

δ (x− np) ei
2π
T
x

]}
(3.4)

where T = λf
d
f3
f4

is used for simplicity, and p and L are the pixel and SLM size,
respectively. By using the convolution and product properties of Dirac delta function
and Fourier transform [82], we obtain:

∣∣∣Ũ (u)
∣∣∣2 ∝ ∣∣∣∣∣

∞∑
n=−∞

sinc

[
L

(
u− 1

T
− n

p

)]
sinc

[
p

(
1

T
+
n

p

)]∣∣∣∣∣
2

(3.5)

The desired optical trap corresponds to the n = 0 term, for which sinc
[
L
(
u− 1

T

)]
is

equivalent to a plane wave diffracted through the SLM window, while it is weighted
by the factor sinc

(
p
T

)
(see Eq. A.8):

∣∣∣Ũ (u)
∣∣∣2 ∝ ∣∣∣∣∣

∞∑
n=−∞

sinc

[
p

(
1

T
+
n

p

)]
sinc

[
L

(
u− 1

T
− n

p

)]∣∣∣∣∣
2

(3.6)

In Fig. 3.6, the trap power as it is steered over a ±50µm range is recorded from the
S SUM signal of the force detection instrument, and is observed to follow the efficiency
curve arisen from Eq. 3.6. Mismatches are likely due to having not considered the
finite size of the objective entrance pupil, quantization of the LUT or light driven
at orders different from n = 0 still reaching the detector.

30



3.2 Holographic steering of a single trap

In addition, we used the S x signals to calculate the trapping stiffness after recording
the power spectrum density through back focal plane (BFP) interferometry. Trap-
ping stiffness is proportional to the trap power, hence it is as well a good indicator
for steering efficiency [80].

Figure 3.6.: Trap steering efficiency.

3.2.2. Trap positioning accuracy.

3.2.2.1. Bead tracking

As pointed out by Schmitz et al. in Ref. [23], almost continuous trap positioning
is achievable by means of an SLM with N = 512 pixels (600x800 in our set-up)
and M = 130 gray levels (220–235 in our set-up). We confirmed this by using the
sub-nanometer tracking CISMM’s software Video Spot Tracker [web] in a double-
bead arrangement, so-called dumbbell configuration. As commented above, the two
traps are created by shining the SLM with a 45º-polarized laser beam that splits
into the modulated, steered trap after focusing through the microscope objective
(horizontal polarization), and the non-modulated trap remaining static at the optical
axis (vertical polarization) [48]. Both beams go past the same optical path, thereby
being equally affected by drift noise due to the optical setup, i.e. in a parallel
manner. Two 1.16-μm polystyrene beads are trapped and tracked from bright-field
images after removing IR light with a neutral filter.

Drift noise cancellation is shown in Fig. 3.7a. In the top figures, position traces
obtained at 24 fps for the two beads are represented, which clearly undergo parallel
long-range, slow motion. The bottom figure shows the relative drift-less trajectory,
which thereby exhibits Brownian-like motion. It is worth noting that stabilization

31



Chapter 3 Holographic optical tweezers

of the relative position occurs after approximately 4 minutes (shaded area), which
corresponds to the transitory evolution of phase modulation shown in Fig. 3.3b.

Figure 3.7.: Bead tracking. (a) Top - Position traces of the bead trapped by
the non-modulated (bead 0) and modulated (bead 1) traps. Bottom - Relative
position. In blue, signals smoothed by a 1-second digital filter. (b) Allan Variance
for the three signals. (c) Relative position (x̄±σx) as the laser power is increased.

Allan Variance analysis [84] for the three traces (bead 0, bead 1 and relative position)
is shown in Fig. 3.7b.1 At long-scale (large τ), see that the two beads experience
highly correlated motion. In contrast, at low τ, motion is uncorrelated and the three
signals exhibit the -1/2 slope according to the thermal limit.

We finally analyzed the effect of the laser-power-varying LUT of our SLM. In Fig.
3.7c, we show the relative position at different laser powers. Note that the LUT
variation, shown in Fig. 3.3b, translates into actual positioning variations of up to
5 nm.

In the following measurements, we need highly control of the experimental condi-
tions to achieve reproducible trap positioning. In particular, one needs to achieve
a constant LUT response, for which the laser power needs to be set the same value

1Fig. 3.7b has been courtesy from F. Marsà and A. Farré, published in Ref. [48].
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3.2 Holographic steering of a single trap

and, additionally, one needs to let the LUT stabilize a few minutes (10-20 minutes),
according to Figs. 3.3b and 3.7a.

3.2.2.2. Positioning deviations due to phase quantization

As described in Section 3.1, our SLM is addressed through an 8-bit digital video
interface (DVI). This results into a finite number of phase values in the 0 - 2π phase
range, ideally M = 28 = 256, though it has been shown to be around 220-235 in
Section 3.1.2. Every pixel takes the phase value that is closest to the ideal, what
makes the linear phase profile in Eq. 3.3 therefore become:

φactualj (d) = round

[
φ
ideal

j (d)
M

2π

]
2π

M
; j = 1, ..., N (3.7)

Such phase quantization leads to a staircase phase profile whose average slope will
necessarily differ from the expected. In Fig. 3.8a, we show the ideal, continuous
phase profile, φideal (x; d); the ideal, pixelated phase profile, φidealj (d) ; the actual, pix-
elated phase profile, φactualj (d); and the average, continuous phase profile, obtained

from a linear fitting as φj = a xj + b. Actual trap positioning will be dactual = λf
2π

f3
f4
a

and will differ with respect to dideal = λf
2π

f3
f4

φidealj (d)

xj
.

The addition of an arbitrary phase offset in Eq. 3.2, as proposed by Engström et al.
[26], leads to a different average slope, a. As shown in Fig. 3.8b, adding φ0 to the
phase staircase makes some of the pixels reach a different phase value after rounding
in Eq. 3.7. This property can thus be used to optimize dactual ∼ dideal.

Phase-quantization-induced positioning deviations are shown in Fig. 3.8b. Curi-
ously, these deviations especially occur around positions defined by phase slopes
equal to an integer number (n) of gray levels per pixel, φj = n 2π

M
j, i.e. so-called

M-positions :

d
(n)
M = n

λf

Mp

f3

f4

(3.8)

Although M-positions are perfectly reproduced because quantized phase values from
Eq. 3.7 are equal to the ideal ones through Eq. 3.3, positioning around them behaves
as shown in Fig. 3.8c. In our set-up, for a typical case of M = 228 gray levels, and
N = 600 pixels, M-positions are d

(n)
M = 1.1655n (μm) and deviations can reach 2-3

nm, which can be detected with video tracking after drift elimination, as described
in Section 3.2.2.1. Re-positioning performance by the addition of φ0 is shown in Fig.
3.8c - insets i and ii for two example positions.

Indeed, experimental results are shown in Fig. 3.8c. Trap positioning near d
(4)
M=228 =

4.662µm fails with 2-3 nm errors in the first 5 nm (affected domain), whereas it
is almost perfect, with clear subnanometer accuracy, beyond 5 nm (non-affected
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Figure 3.8.: Phase quantization effect on trap positioning. (a) Hologram with
reduced number of pixels (N = 5). The continuous line is the ideal linear phase
profile, φideal (x), to steer the trap at dideal and the dashed line is the average phase
profile obtained from the linear fitting, φj = a xj + b, eventually steering the trap
at dactual (see text). The thick line staircase represents the ideal discrete phase
values, φidealj , and the bar plot corresponds to the nearest phase values, φactualj .
(b) For the same case, the addition of φ0 produces a change in the 2nd pixel,
which yields to an average phase profile closer to the ideal. (c) Trap positioning
simulated over a position sequence around d1

M=228. Insets i and ii show the effect
of adding the term φ0 for trap positioning at di and dii. Phase offsets, φi0 and φii0 ,
optimizing for positioning at dideali and didealii are indicated. (d) Mean positions
(d̄ ± σd) obtained from video tracking and phase optimization for two positions
(insets ii and ii).
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domain). Position correction is superimposed and exhibits an accuracy comparable
to the non-affected domain. Two examples of the position changes for the addition
of φ0 are shown in Fig. 3.8d - insets i and ii.

3.2.2.3. Positioning deviations due to non-ideal LUT

As has been analyzed in section 3.1.2, our SLM exhibits a perfectly linear LUT with
certain variations in the phase modulation range, which are mainly dependent on the
laser power. The phase delay introduced by displaying the graylevel g, ideally 2π

28
g,

will instead be 2π
M
g ≡ a 2π

28
g. For the typical case with M = 228, a = 28/228 = 1.12.

In this section, we present a continuous model to qualitatively describe the effects
of using a phase modulation range different from 2π on trap positioning. Further,
we suggest a correction scheme similar to that used presented byu Engström et al.
in Ref. [26] and used in Section 3.2.2.2.

Linear phase profiles, such as that in Fig. 3.5, become linear phase gratings due to
the limitation of the SLM to modulate the wavefront within a finite phase value.
This translates into the need of applying a mod 2π function, which instead leads to
phase holograms with a sawtooth shape (Fig. 3.9a). To drive the trap onto position
d, the optical field at the SLM plane can be described as follows (see Appendix A):

U (x) = rect

(
x− x0

L

)
·

[
∞∑

n=−∞

δ (x− nT ) ∗

(
ei

2πa
T
x · rect

[
x− T

2

T

])]
(3.9)

where φ (x) = 2π a
T
x accounts for the actual phase scaling as φactual = a φideal. The

period of the grating, T, is related to the ideal steering position as d = λf
T
f3
f4

, as used
in Section 3.2.1. Here, x 0 and L are the center and length of a window defining the
finite size of the SLM.

As discussed before, the scalar optical field at the trapping plane is the Fourier
transform with spatial frequency u = x′

λf
f4
f3

, hence:
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(3.10)

This summation can be understood as a series of diffraction peaks, sinc
[
L
(
u− n

T

)]
,

each of which is modulated by the function sinc (n− a) eiπ(
2x0
T
−1)n (Fig. 3.9b).

The position of the nth peak, un = n
T

, corresponds to x′n = λf
T
f3
f4
n. For the ideal

case a = 1, all the terms vanish except for n = 1, hence the trap is created at
d = x′1 = λf

T
f3
f4

, as expected, with an efficiency of 100%.

For other cases (a 6= 1), not only does the efficiency decrease due to the appearance of
other diffractive orders (Fig. 3.9b), but we can have a close look into the intensity
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Chapter 3 Holographic optical tweezers

Figure 3.9.: (a) 1D Linear phase grating displayed by the hologram to create the
optical trap at d = λf

T
f3
f4

. T and L are the period and length of the grating. ψ0 is
the phase offset introduced to the hologram to induced a shift of x 0. The phase
mismatch at 2πa eventually induces a drop in efficiency and trap positioning
deviation. (b) In different colors, we represent absolute value for the the n =
−2, ..., 5 terms the summation in Eq. 3.10. In red, their complex addition. The
dashed line is describes de sinc (n− a) factor. (c) Simulated position modified
by the addition of ψ0 at xtrap = 3µm. (d). Position deviation for constant
ψ0 = 0 (blue), ψ0 = 0.4 (red), ψ0 = 0.8 (orange), ψ0 = 1.2 (black) and ψ0 = 1.6
(green), over the xtrap = (2, 4) µm range. (e) Experimental modification of trap
positioning for a certain ideal position. (f) Deviations with no corrections (black)
and ψ0-optimization.
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3.2 Holographic steering of a single trap

profile to notice a small deviation in the effective trap position (inset). In this
simulated example (a = 0.6), we can see that the actual intensity profile is perturbed
by the existence of other orders. Eventually, the trap position (considered by a
center-of-mass calculation) will be different than the ideal from the 1st (n = 1)
order.

On the other hand, we can use x 0 as a free parameter to reach the position closest to
d, though no improvement in efficiency would be achieved, since x 0 only alters the
relative phase between the orders. Mathematically, a change in x0 can be produced
by adding a certain offset phase, ψ0, to the hologram. This is interestingly similar to
the addition of φ0 introduced in Section 3.2.2.2, since the same positioning correction
strategy can be implemented.

The position variation induced by shifting the hologram through ψ0-addition is
shown in Fig. 3.9c for a = 0.6 and L = 12 mm. Indeed, there exists a certain value
for ψ0 that optimizes the trap position. In Fig. 3.9d, trap positioning for different
constant ψ0 values is shown. A certain periodical behavior can be observed, with a
period of uL = 1

L
, arising from the sinc function in Eq. 3.10. In spatial dimensions

at the trapping plane, the period turns out, for the specs in our set-up:

dL =
λf

L

f3

f4

= 0.4429µm (3.11)

Parameter dL is an estimator of positioning inaccuracy due to imperfect LUT in
relative terms and is so-called L-distance. In other words, steps far smaller than
the L-distance will in principle be performed perfectly, while oscillations in trap
positioning accuracy become visible for steps in the order of dL.

The model described in Eq. 3.10 simplifies the effective LUT by considering φactual =
a φideal over the whole SLM. Nonetheless, in Section 3.1.2 we showed that the LUT
has more of a local response, probably due to the non-constant beam intensity profile.
This leads to theoretical results notably different than experimental measurements,
but on the other hand this permits to qualitatively predict the existence of micron-
range positioning inaccuracy on the order of 2-3 nm and correction by ψ0-addition,
i.e. hologram shifting.

That hologram shifting induces changes in trap positioning, which can eventually
be optimized, is experimentally shown in Fig. 3.9e. Trap position oscillates approx-
imately ±3 nm in the ψ0 = (0, 2π) range. In Fig. 3.9f, a similar ±3 nm amplitude
of deviation is shown for holograms created with the same ψ0 = 0 for all positions,
while it is corrected to less than ±1 nm through ψ0-optimization.

3.2.2.4. Discussion on single trap positioning accuracy

The two sources of positioning deviation are visible in different ranges. While phase
quantization affects positioning over 5-10 nm around M -positions (Eq. 3.8), inac-
curacy due to LUT mismatch is visible in positioning steps comparable and larger
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Chapter 3 Holographic optical tweezers

than the L-distance (Eq. 3.11). It is interesting that correction proposed by En-
gström et al. [26] in order to correct for phase quantization (addition of φ0) can be
extrapolated to correct for non-ideal LUT (addition of ψ0, i.e. hologram shifting).
Otherwise, we envisage that correction of the local dependence of the LUT, which
has been observed to correct for steering efficiency [80], would as well correct for
trap positioning accuracy.

A comment on experimental intricateness is a need. Trap positioning and image
tracking of the trapped beads with subnanometer accuracy is dramatically affected
by any kind of optical aberration, drift and imaging optics. This eventually lessens
the capacity to carry out experiments with sufficient reproducibility and forces φ0

and ψ0 optimizations to be performed in situ. After changing any of the experimen-
tal situation affecting trapping (e.g coverslip, trapped bead or spherical aberration
compensation by the microscope) or tracking (e.g. illumination NA or Köhler sys-
tem alignment), bead position measurements have repetitively exhibited variations
of the order of 1nm. That is the order of the deviations observed in our case with
N = 600 pixels and M = 228 gray levels.

Another issue strongly influencing trap positioning is the drift component remain-
ing after relative position measurement in our dumbbell configuration. We believe
that this arises from the LUT evolution throughout time (Fig. 3.3b) and so-call it
holographic drift. In Fig. 3.7a, we showed an example of relative position stabiliza-
tion. Nonetheless, position optimization experiments can last much longer than 10
minutes and unexpected position instability from LUT variations can likely occur.
Thereby, the set of φ0 and ψ0 values for correction would be no longer valid and a
new correction sweep should be performed.

Importantly, such lack of reproducibility is subject to the fact that we are using our
SLM under its full capacity (N = 600, M = 228), which drives our deviations from
ideal positioning down to the nanometer scale. In other works [26, 39], smaller values
for N and M are used to produce larger deviations, i.e. over the detection limit, to
test for correction. To conclude, we confirm that SLMs with a high number of pixels
(N ∼ 500) and phase levels (M ∼ 200), facilitate continuous single-trap positioning
within 2-nm deviations (induced by phase quantization and LUT aberrations). After
correction for such effects, positioning is achieved with sub-nanometer accuracy.

3.3. Multiple trap generation

Holographic wavefront modulation in optical tweezers has been widely used to gen-
erate patterns of multiple traps to manipulate several particles at the same time
[24, 22, 23], as well as large objects that need more than a single trap for stable
trapping and orientation [34, 33, 69].

In Ref. [24], R. di Leonardo et al. review some of the algorithms most used for
multiple-spot generation in HOTs and discuss the different compromise between
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3.3 Multiple trap generation

calculation time and efficiency. Another thorough description can be found in J. Mas
PhD thesis [85]. Here, we briefly describe the algorithms used in further chapters
that best fit to the needs of our experiments.

3.3.1. Prisms-and-lenses

Fast calculation of holograms for multiple-trap generation can be achieved through
prisms-and-lenses algorithm. It lies in the direct addition of the complex amplitudes
driving single traps in 3D. For transverse displacements, the complex amplitude
arises from the linear phase gratings -emulating prisms- described in Section 3.2.
For axial displacements, quadratic phase profiles emulating lenses are needed. Once
the complex amplitudes are calculated, the resulting phase is displayed at the SLM
as follows:

φ(x, y) = arg

(∑
j

eiφj(x,y)

)
(3.12)

We have used this scheme to rapidly generate dual trap configurations for trapping
cylinders perpendicular to the optical axis, as will be shown in Chapter 5. We allow
one of the traps to remain static at the optical axis, hence its phase profile will be
a plane wave at angle α = 0. The second trap will be created by a phase grating
of the form described in Eq. 3.2. Note that the mod 2π function must be applied
before the addition of the complex amplitudes. Taking T = λf

d
f3
f4

for simplicity, as
has been done in the previous section, and steering the trap along the x axis, the
complex amplitude will be:

∑
j

eiφj(x) = 1 + ei
2π
T
x =

(
1 + cos

2π

T
x

)
+ i

(
sin

2π

T
x

)
(3.13)

from where we can easily obtain that the phase is:

φ (x) = arctan

[
sin 2π

T
x

1 + cos 2π
T
x

]
=
π

T
x (3.14)

The same result can be obtained by applying a = 0.5 to the formalism introduced
in Eq. 3.10. In this way, the sinc (n− a) function modulating the diffractive orders
will yield a 0th order (static trap) and 1st order (movable trap) weighted by the
same factor. The works by Albero et al. [78] and Calero et al. [79] point to the
same result when the phase modulation range is modified. In particular, prisms-
and-lenses algorithm in Eq. 3.14 and the a = 0.5 case in Eq. 3.10 corresponds to
the phase modulation range being equal to π.
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3.3.2. Random-mask

Another approach for the direct addition of complex fields generating multiple trap
patterns is the random-mask encoding algorithm introduced by our group in 2006
[86]. To create an array of n traps, it briefly consists of randomly splitting the
pixels composing the hologram into n series of pixels. For our 600x800 SLM, each
multiplexed hologram would have 4.8·105

n
pixels. The hologram defined by Eq. 3.3

is assigned to each series of pixels according to d i . In Fig. 3.10a, a random-mask
multiplexed hologram creating the three optical traps in Fig. 3.10b is shown. The
superposition of the three linear phase gratings is clearly visible.

Figure 3.10.: Holograms for multiple trap generation. (a) Random mask hologram
generating traps 1, 2 and 3 in (b). Red lines highlight the linear phase gratings
superposed to create the three traps. In (b), a strong 0th order is as well indicated.
In (c), a Gerchberg-Saxton hologram generating the array of six HOTs in (d) is
shown.

The fast performance of the random-mask multiplexing algorithm comes at the cost
of lower diffracting efficiency. As can be seen in Fig. 3.10b, a strong, undesired 0th

order spot is created. To correct for such decrease, slower iterative (but considerably
more efficient) algorithms are needed.

3.3.3. Gerchberg-Saxton algorithm

Both prisms-and-lenses and random-mask multiplexing algorithms constitute fast
approaches to create arbitrary arrays of optical traps in real time. However, the drop
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3.4 Exotic beam optical traps

in efficiency is dramatic as the number of traps is increased, what makes it highly
recommendable to explore new strategies to compute multiple-trap holograms.

Gerchberg-Saxton iterative algorithm works out the phase profile displayed on a
phase-only SLM that creates the desired amplitude distribution at the sample plane.
The algorithm is based on the digital Fourier transform (DFT). The field amplitude
at the sample plane is set to be the desired pattern, while the hologram at the SLM
is imposed to be a constant amplitude, phase-only field distribution. After some
iterations, the algorithm converges and yields a hologram with, theoretically, 100%
efficiency [24, 85]. The hologram shown in Fig. 3.10c creates the six-trap array (Fig.
3.10d) that will be used in Chapter 5 for force measurements.

As discussed by C. Schmitz et al. in Ref. [23], DFT-based performance for hologram
computing limits the precision at the sample plane. The artificial discretization, i.e.
the minimal spatial frequency, coincides with the L-distance introduced by Eq. 3.11.

3.4. Exotic beam optical traps

A promising application of wavefront modulation in optical manipulation is the
creation of exotic traps with interesting properties beyond the parabolic potential
created by a focused Gaussian beam. Some examples in HOTs set-ups are the
generation of Laguerre-Gaussian beams with topological charge l 6= 0 to transfer
orbital angular momentum to trapped particles [28], extended optical traps [87],
optical solenoid beams [88] and tug-of-war optical tweezers with strong transverse
momentum transfer for splitting cellular clusters apart [29].

Apart from holographic wavefront modulation, complex trapping geometries have
been used to create tractor beams [89], and AOD-based set-ups have been applied
to create object-adapted optical potentials [90, 91, 92, 93].

We here explore the generation and trapping of microspheres by means of cogwheel
beam traps [27]. As will be discussed in Chapter 5, these are used in this thesis to
perform calibration-free force measurements, from light-momentum detection, in an
example of a non-Gaussian beam.

3.4.1. Cogwheel beam traps

Cogwheel beam tweezers are obtained by the superposition of two doughnut beams
of equal opposite helical index l, meaning the optical field modulation takes the form
eilθ+e−ilθ, being θ the azimuthal coordinate [27]. A phase-only hologram with l = 4
is shown in Fig. 3.11a. The optical trap created by focusing the beam through the
microscope objective is simulated in terms of a 2D Fourier transform in Fig. 3.11b.
Observe that the number of azimuthal lobes appearing in the focus spot is twice
the helical mode l. An image of our cogwheel trap, obtained by reflecting the trap
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Chapter 3 Holographic optical tweezers

onto the lower coverslip of our micro-chamber is presented in Fig. 3.11c. On the
other hand, note the appearance of the non-Gaussian “cog” modulation pattern at
the BFP of the force detection set-up (Fig. 3.11d).

Figure 3.11.: Cogwheel holograms. (a) Holograms generating l = 2, 3, 4 cogwheel
beams. (b) Transverse profile at waist and (c) actual image in our set-up (trap
reflection at the coverslip). (d) Beam diffraction pattern at the BFP captured
with a CCD camera for a 4.94-μm, PS bead trapped in the optical tweezer.

As reported by Jesacher et al. [27], only particles surpassing a certain size get
trapped in these optical tweezers for a given helical mode, thus suggesting interesting
applications in passive size-selective particle sorting. In our case ( λ = 1064nm, NA
= 1.2), 3.00-μm PS micro-spheres were stably trapped in l ≤ 3 beams, 4.94-μm PS
micro-spheres in l ≤ 4 beams and 8.06-μm poly-methacrylate (PM) micro-spheres
in l ≤ 13 beams. Smaller micro-beads were actually pushed upwards as they could
not be trapped for any l value.
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4. Robustness of light-momentum
force measurements

As discussed in Chapter 2, the first condition for accurate measurement of beam
momentum changes is the capture of all the light emerging from the traps and thus
contributing to the global momentum exchanged with the trapped samples. This
is especially delicate when using single-beam optical tweezers, although they pose
clear technical advantages with respect to counter-propagating beam traps.

When creating high-NA, single-beam traps, we need to make sure that 1) backscat-
tered light losses represent a relatively small fraction of the total light scattered by
the samples, and 2) the forward 2π solid angle is fully captured by an aplanatic lens
(i.e. it fulfills the Abbe sine condition). Under these terms, the detection perfor-
mance through Eq. 2.14a will be equivalent to the theoretical perspective of Eq.
2.4a.

In the practical implementation of beam momentum measurements, such equivalence
might miss due to using samples that back-scatter a substantial fraction of light.
Similarly, some situations may cause light loss or the Abbe sine condition to fail, for
example, when creating the traps at a plane distant from the working distance of
the aplanatic lens. In addition, the optical system transmittance is strongly variant
for large angles, which high-NA collecting lenses need to be compensated for.

All these issues are addressed in the following chapter in two steps. First, we ex-
plore the tolerance of the forward-scattered light-momentum detection system and
determine the effects mentioned on force measurements by using drag forces as a
calibration reference. Similarly, we use scattering simulations to estimate measure-
ment errors. Experimental solutions to these effects are shown to minimize force
inaccuracy down to the limit strictly due to backscattering.

Second, backscattering accounting for measurement deviations is determined nu-
merically from simulations of the far-field angular distribution of beam intensity.
Forward-backward splitting of light scattering is obtained from FDTD computation
as described in section 2.1. Results are then confirmed experimentally, again, by
using well-calibrated Stokes drag forces, as well as fast, AOD-based stepping for
obtaining force and captured light profiles1.

1We thank Raúl Bola for developing the acquisition software synchronizing AOD light modulation
with force detection and devising the scanning experiments.
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Chapter 4 Robustness of light-momentum force measurements

Previous to this analysis, we discuss Stokes-drag calibration as a fast and precise
test for the performance of light momentum detection. Different to the power spec-
trum method used before as a reference for the absolute momentum calibration (see
Section 2.2 and Ref. [21] by A. Farré et al.), Stokes-drag offers a one-step strategy
to analyze measurement accuracy, as well as the fact that force detection can be
studied within the whole trapping range –i.e. up to the escape force–.

4.1. Introduction. Deviations in light momentum
detection

In Section 2.3, we described the main technical aspects for the implementation of
light-momentum detection for force measurements in optical tweezers. We con-
cluded that, provided that a position sensing detector (PSD) is used to integrate
the transverse component of light momentum at the BFP of a high-NA collecting
lens (NA > nm), the voltage signals match lateral forces if:

1. The detection system fulfills the Abbe sine condition and maximizes light
collection.

2. The optical transmittance of the detection set-up is constant over the whole
angular range, especially for high-NA rays.

3. Most part of photons are scattered, following optical trapping, within the
forward 2π solid angle.

From a theoretical perspective, this leads to a Volt-to-picoNewton relationship in-
variant to the local optical trapping dynamics, constituting a macroscopic force
calibration of the form:

Fx = αdetector · Sx ≡
RD

ψf ′c
· Sx (4.1)

where RD and ψ are the sensor radius and sensitivity, f ′ is the system focal length
and c is the speed of light. As well, trapping power is obtained as Ptrap = 1/ψ ·SSUM .
From now on, we will discern such calibration from the actual, in situ calibration
factor, αtrap, and we will thereby name it αdetector. In non-optimized, typical BFP
interferometry detection systems, αtrap is highly sensitive to the specific properties
of the experiment (e.g. trapping power, sample size and refractive index), whereas
it turns out to be constant –and equal to αdetector– in light-momentum detection
set-ups [21].

Yet some practical deviations from the ideal conditions 1, 2 and 3, necessarily lead
to the actual αtrap differing form the ideal αdetector even in the light-momentum,
optimized BFP interferometry scheme thoroughly described in Refs. [20, 21, 62].
That is, resulting into errors in force measurements. It is important that not only
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4.1 Introduction. Deviations in light momentum detection

does αtrap differ from αdetector, but it becomes dramatically sensitive on the experi-
mental parameters, leading to the loss of the invariant property of light-momentum
detection. The scattered pattern of the trapping beam strongly depends on the
properties of the scatterer, e.g. refractive index, size and position within the opti-
cal trap. Inhomogeneities in the beam collection performance (e.g. light loss and
instrument transmittance non-uniformity) result thereby in variations of the signal-
to-force conversion αtrap.

This chapter is therefore focused on the analysis of the discrepancies induced by the
practical implementation of light-momentum measurements and discuss the limits
in the accuracy after compensating for the effects associated with light detection.
As we will show in the next sections, an important part of these discrepancies comes
from an incorrect capture of the forward-scattered light as this represents most of the
trapping beam. We will finally show that measurement inaccuracy can be brought
from 15−20 % to the minimum strictly due to back-scattered light loss, around 5 %.

4.1.1. Drag force measurements as a calibration reference

Detector calibration, αdetector, can be tested against actual trap calibration, αtrap,
using two of the approaches introduced in Section 2.2. In Ref. [21], A. Farré et
al. described the optimization method in order for BFP interferometry to detect
light-momentum changes and demonstrated, both theoretically and through power
spectrum experimental calibration, the invariant feature of αtrap on a range of micro-
spheres. On one hand, linear trapping response permits to define a spring constant
(κ, pN/μm), such that Fx = −κ · x. On the other, little particle displacements
within the optical trap can be tracked through the detector sensitivity (β, μm/V),
i.e. x = β · Sx. It was thereby shown that, if BFP interferometry was optimized to
account for the aforementioned point 1, the product αtrap = κ · β was constant and
equaled αdetector (pN/V).

Here we use an alternative scheme which we consider has several advantages over
the former, thermal-based approach. Stokes-drag calibration of optically trapped
spherical microbeads has become robust and well-established, thanks to the fact that
measurements are accessible in a single step, through Fdrag = 6πηRvflow (η: medium
viscosity2, R: particle radius, vflow: flow velocity)3. Thermal motion analysis (e.g.
power spectrum calibration [94] or equipartition theorem) is reduced to a small
region around the trap equilibrium position due to the lightness of Brownian forces.
In contrast, Stokes drag can operate over a wider range and can eventually provide
escape force calibration [59], clearly increasing the extent for calibrated force values.
Since the Stokes-drag scheme sets the external force for which αtrap is calibrated,
measurement discrepancy can as well be analyzed as a function of it.

2Viscosity dependence on temperature is considered as described in detail in Chapter 6.
3Faxén sphere-to-surface factor is omitted for simplicity. See Eq. 2.11.
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Chapter 4 Robustness of light-momentum force measurements

Furthermore, Stokes-drag forces have been widely applied for trap calibration on
non-spherical samples, as was discussed in Section 2.2. In Chapter 5, hydrodynamic
expressions for slender cylinders or sphere-to-sphere interaction will be used to test
the light-momentum performance on irregular samples.

In Section 3.1.3 we described our using a piezo-electric stage to induce controlled
drag forces, from which we can calibrate αtrap, for the case of microspheres, as
follows:

αtrap =
6πηRb vflow
〈Sx〉

(4.2)

where 〈Sx〉 is the average voltage output of the sensor over the constant velocity
time frame (see Fig. 3.4). In Fig. 4.1, typical force deviation curves are shown
for a set of polystyrene microbeads of different diameters up to the escape force.
Here, forces are measured as Fmeasured = αdetector · Sx and are compared to Fdrag.
Note that the measurement error depends on the force applied or, similarly, on the
position in which the trapped particle locates to optically counterbalance the drag
flow (especially for the largest beads). This will be discussed in depth in the next
sections.

Figure 4.1.: Example of a deviation curve for 061-μm (a), 1.16-μm (b), 1.87-μm
(c) and 3.00-μm (d) polystyrene (PS) microbeads in a 20-mW optical trap.

We compared αtrap calibrations from both procedures to confirm that discrepancy
arises from deviations in the light momentum detection performance, instead of
some kind of inaccuracy related to the experimental method. As shown in Fig. 4.2,
both αtrap obtained via Stokes calibration at low forces, and via power spectrum
calibration (αtrap = κ · β), accurately coincide. This indicates that some features in
relation to points 1, 2 and 3 –which ensure the invariant property of the macroscopic
calibration αdetector– fail to a certain extent and, as will be discussed, need to be
corrected for.

Importantly, we can observe that although the error in the force calibration reached
a ±5 − 10 % in this example, light loss accounted for 2 − 3 % at most. This evi-
dences that the amount of light collected cannot be used as a reliable indicator of
the quality of the measurements, due to our unknowing the momentum information
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4.2 Tolerance of the force detection instrument

Figure 4.2.: Deviation of actual trap calibration with respect to αdetector. Stokes-
drag αtrap values are obtained in the limit Fdrag → 0.

missing alongside lost light. Instead, two strategies will be used in order to assess
trap calibration accuracy. First, a vast range of calibration results in situations with
different properties will be used as a suitable predictor for further force measure-
ments. Second, simulations will shed light onto the scattering properties of several
samples and will be used to determine the contribution to the momentum exchanged
with them arising from back-scattered light.

4.2. Tolerance of the force detection instrument

In the following section, we examine conditions 1 and 2, which are required for
properly conveying the forward-scattered beam onto the PSD placed at the BFP.
Condition 3, regarding the loss of momentum information along with backscattered
light, will be studied in Section 4.3.

First, we studied the effect of axial incorrect positioning of the force detection instru-
ment (condition 1). This leads to an effectively different numerical aperture (NAeff)
that produces less than a 2π forward solid angle to be captured. Besides, this causes
the Abbe sine condition to fail. We measured the G (θ) function to show the actual
correspondence between angles at the sample plane and ray impact positions at the
BFP plane, x = f ′G (θ) [20]. Finally, positioning of the optical trap is as well ex-
plored. Especially in thick chambers (used in further Chapter 7 for working with
zebrafish embryos), creating the trap at the bottom surface produces high light loss
for which the detection instrument position needs to be accurately corrected.

Second, the effect of the instrument non-uniform transmittance is studied (condition
2). Especially for large angles, Fresnel coefficients at the different lens surfaces differ
from angles near the optical axis. This can be corrected with a compensating mask
at the BFP.

47



Chapter 4 Robustness of light-momentum force measurements

We used polystyrene (PS) spherical microparticles of four different diameters (0.61
μm, 1.16 μm, 1.87 μm and 3.00 μm) as good targets for drag force experimental
references. As mentioned above, forces are measured through Fmeasured = αdetector ·Sx
and are compared to Fdrag = 6πηRvflow to test for light-momentum calibration
deviations. In order to complement the discussion from a qualitative perspective,
far field simulations accounting for the effects mentioned are as well presented.

4.2.1. Instrument and trap position

4.2.1.1. Instrument height

The first problem we encounter is the difficulty in setting the height of the instrument
from the sample. This involves two main questions: where to put the instrument
and how to set it reproducibly. An incorrect positioning of the system can lead to
essentially two different effects: losses of light due to the truncation of the lateral
components of the momentum or the modification of the beam structure due to the
deviation from the Abbe sine condition.

In either case, the error introduced in the measured force depends on the intensity
distribution scattered by the sample and may yield therefore different instrument
responses for different conditions. This ultimately translates into both a larger
discrepancy between samples of different kinds (loss of the invariant property of light
momentum calibration) and to errors in the absolute value of the force calibration
(αtrap � αdetector).

To show the variation of the instrument’s force response in the presence of controlled
light losses, we analyzed the measured drag force truncating the light pattern at
different NAeff. We used rings of calibrated size placed at the BFP of the front lens
of the instrument to partially block the laser from the trap (Fig. 4.3). Their inner
diameter, D in , was selected so that the effective capturing angle of the lens, θeff ,
could be reduced in a controlled manner, NAeff = n sin θeff = Din/2f ′. Four values,
NAeff = 1.33, 1.3, 1.25, 1.2, were selected. Values lower than that of the trapping
objective (water-immersion, NA = 1.2) were disregarded as they would introduce
too large errors.

As expected, results in Fig. 4.4a-d show that the error introduced by the differ-
ent rings does not only depend on the sample kind but also on the applied force,
since the result ultimately relies on the specific structure of the scattered intensity.
Discrepancies between different microspheres can increase by 10% when NAeff is re-
duced down to that of the trapping objective. Likewise, for a single particle at a
given applied force, differences in the measured force of 5-10% can show up. This
can drive to maximum discrepancies between different conditions of 20-25%.

Changes in the measured force can be qualitatively explained by the light patterns
observed at the BFP of the collecting lens (Fig. 4.3). When the diameter of the
bead increases, the scattering structure varies from a uniform disk to a sort of
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4.2 Tolerance of the force detection instrument

Figure 4.3.: BFP images after rings truncating the beam at NAeff =
1.33, 1.3, 1.25, 1.2 are placed at the BFP of the collecting lens.

reduced pattern. For particles smaller than the beam waist (D . 2ω0 ∼ 1µm),
the intensity distribution can be approximated by the addition of a simple spherical
wave, observed here as a faint disk of NAeff = 1.33, and the reference incident
beam with NAeff = 1.2. As the particle is displaced, both the spherical wave and
the incident beam remain unaltered, and only the interference term between them
changes. Neither of the two first terms carries net transverse momentum, so only
the interference pattern confined in the disk of NAeff = 1.2 contains information
about the force. This explains why the measurement barely changes when the light
between NAeff = 1.2 and NAeff = 1.33 is blocked.

For the largest particles, the interaction between laser and sample can be described
in terms of ray optics. In this case, the sphere acts as a small lens focusing the
incident beam. This produces a contraction of the pattern at the BFP of the lens;
light is confined in smaller NAeff. Transverse displacements of the trapped object
produce motions of the entire pattern.

When the particle is pulled by a large force, the beam can be eventually deflected
to angles larger than those given by the NA of the incident beam, producing an
underestimation of the pattern displacement and therefore of the force if light at
NAeff > 1.2 is truncated. This reduction in the measured force is clearly observed
for 1.87-μm 3.00-μm particles. For intermediate sizes, D ∼ λ, the error introduced
in the measurement is a combination of the two extreme cases.

In Fig. 4.4e-h, we show simulations for the situations plotted in Fig. 4.4a-d. Al-
though average accuracy is observed to be substantially better, we do notice the
different experimental behavior for the different size of the beads. Whereas the
smallest, 0.61-μm bead shows a flat force deviation curve, larger beads exhibit
a force-dependent inaccuracy originating from the beam being deflected beyond
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Chapter 4 Robustness of light-momentum force measurements

Figure 4.4.: Drag force measurements on 0.61-μm (a), 1.16-μm (b), 1.87-μm (c)
and 3.00-μm (d) PS beads after reducing NAeff by means of different blocking
rings at the BFP of the beam collection lens. Far field simulations of this effect
are shown for 0.61-μm (e), 1.16-μm (f), 1.87-μm (g) and 3.00-μm (h) beads. Colors
correspond to NAeff = 1.33 (black), NAeff = 1.3 (red), NAeff = 1.25 (green) and
NAeff = 1.2 (orange) in all figures.

NAeff = 1.2 in a ray-optics picture. As well, reducing NAeff results in a decrease
in the absolute force measurement by the order of 5%. This is clearly visible to
coincide with measurements on 1.87-μm and 3.00-μm beads.

This simulation considers the effect of the non-uniform transmittance of the collect-
ing lens, since the compensating mask used to correct for this effect could not be
placed together with the calibrated blocking rings at the BFP. Explanation for the
average -10% deviation when simulating the non-uniform transmittance is discussed
in section 4.2.2.

Forced light loss shown in Fig. 4.4 reproduce the effect of real NAeff reduction when
positioning the instrument at an incorrect height. For a situation in which this
locates at z = 2 mm above the ideal position, we obtain NAeff = 1.2, besides certain
beam pattern aberration at the BFP due to the failing Abbe sine condition. In
Section 4.2.1.2, this will be explained in detail and a reproducible solution for the
instrument axial position corresponding to the trap working plane will be used.

To accurately determine NAeff, we used a calibrated ring with the correct aperture
while carefully making the beam size at the BFP coincide with it. For this position,
we measured the drag force applied on the same set of four PS microspheres and
we compared the result with that obtained in the correct position. As can be
observed in Fig. 4.5, force measurements decrease with the higher positioning of
the force detection set-up. We found a mean change in the force calibration of
4%, similar to that observed for the blocking ring with NAeff = 1.2 in Fig. 4.4.
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Again, variations were slightly different for the several particles due to the different
scattering patterns for each bead. This might explain the difference between the
1.16-μm bead measurement deviation here (-5%), and that obtained from artificially
blocking the captured light cone at NAeff = 1.2 (+4%).

Figure 4.5.: Drag force measurements on 0.61-μm (a), 1.16-μm (b), 1.87-μm (c)
and 3.00-μm (d) PS beads after positioning the force detection at z = 0.2 mm
from the ideal working plane (hence reducing NAeff down to 1.2).

4.2.1.2. Optical trap position in thick microchambers

In the optical trapping experiments shown so far, we used thin microchambers that
were made of a coverslip and a microscope slide spaced with a 90-μm-thick double-
scotch tape. We here study the light-momentum detection performance in thicker
chambers that are needed, for instance, in experiments with 500-μm zebrafish em-
bryos (Chapter 7).

We performed this study by displaying calibrated phase patterns at the SLM that
become visible at the BFP and can be used to measure the G (θ) function to observe
the fulfillment –or fail– of the Abbe sine condition. As schemed in Fig. 4.6a, the
SLM (plane A) is conjugated, through telescope 2, onto the front focal plane of
the trapping objective (plane B). In turn, this is conjugated onto the collecting
lens BFP (plane C) and, last, onto the PSD plane (plane D), through the relay lens.
This makes the hologram become visible with a CCD substituting the PSD4. Square
patterns were displayed to show the dramatic distortion when the trap is created off
the working plane (Fig. 4.6b), while circular patterns were used to measure impact
ray positions, x, at the BFP (Fig. 4.6c).

The Abbe sine condition is strictly valid for a specific position of the lens –i.e so-
called working distance–, and at a particular plane, the top interface between the
suspension medium and the glass surface. Actual G (θ) might deviate from Abbe’s

4Ideally, phase-only holograms should not be visible at the BFP, but it is likely due to a slight
affection from imperfect conjugation that 0 - π phase jumps become noticeable.
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Chapter 4 Robustness of light-momentum force measurements

Figure 4.6.: Loss of the Abbe sine condition. (a) Experimental sketch of the holo-
graphic patterns used to observe distortion and measure the G (θ) function. (b)
Effect of improper setting the force detection instrument height leading to a work-
ing plane different from the trapping plane. (c) Typical circular pattern to mea-
sure x = f ′G (θ). Note the appearance of the NA = 1.32 disk due to the presence
of a bead in the optical trap.

due to the front lens itself, to a wrong positioning of the same or the trapping plane,
and due to the design of the relay lens system.

In order to place the instrument at the proper height from the sample, we first need
to observe, by means of a CCD camera at the BFP, that the beam diameter equals
that expected from the Abbe sine condition, i.e. D = 2 · f ′ · n sin θ0 = 2 · f ′ · NA
(θ0 is the divergence angle for the current trapping objective, e.g. water-immersion,
NA = 1.2). Note the focal length here, f ’, is that of the instrument –considering
the relay lens–, but not that of the collecting lens. When this is fulfilled, an iris
(or alternatively a reference element) is placed at the illumination path so that it
appears in sharp focus at the trapping plane. From now on, the CCD can again be
substituted by the PSD and the instrument height is determined by the iris imaging
condition at the trapping plane. Deep details on this method for accurate axial
positioning of the force detection instrument are published in Patent [95].

In Fig. 4.6b, we show a beam profile affected from positioning the trap at the bottom
surface of a 500-μm-thick camber, while the detection instrument locates such that
the iris image plane is at the top surface. As easily observed, a large amount of light,
especially that propagating at large angles, is not captured by the collecting lens.
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4.2 Tolerance of the force detection instrument

Moreover, a strong aberration of the square pattern appears. Importantly, a perfect
square shape, as well as the accurate beam diameter for NA = 1.2, is recovered when
the iris image working plane coincides with the trapping plane, demonstrating that
the Abbe sine condition is successfully recovered.

We next measured the G (θ) functions in 300-μm and 500-μm chambers. We per-
formed this measurement by displaying a circular pattern at SLM, whose size (largest
circle) corresponded to the NA = 1.2 rays. By creating the trap onto a 1.16-μm mi-
crobead as a scatterer, light travelling up to NA = 1.32 (i.e θ → 90º) appeared, so
that G (θ) could be measured up to the full angular domain (Fig. 4.6c).

In the ideal case, the iris image plane and the trapping plane are placed at the top,
water-coverslip interface. We can observe that G (θ) fulfills the Abbe sine condition,
i.e. exhibiting a perfect response from which the linear fit leads to a system focal
length of f ′ = 2.16 (±0.5%) mm (Fig. 4.7a). Differently, when creating the optical
traps at z = 300µm and z = 500µm down from the top interface, G (θ) collapses
and gets considerably distorted, resulting in a noticeable reduction of NAeff.

Different to the Abbe sine condition expressed in terms of Eq. 4.3a, we can model
distortion in Fig. 4.7b through Eq. 4.3b, which fits distortion with accurate agree-
ment:

x = f ′n sin θ (4.3a)

x = f ′ (1− A sinm θ)n sin θ (4.3b)

As a qualitative study on the impact of such aberration onto force measurements,
Eq. 2.14a can be modified to include for this effect:

Sx =
ψ

RD

¨

PSD

f ′ (1− A sinm θ)n sin θ I (x, y) dxdy (4.4)

Here, we can identify the term Teff ≡ (1− A sinm θ) as an effective transmittance
–due to the G (θ) curvature induced by the loss of the Abbe sine condition– to
emulate the actually measured force, Fx, through Poynting vector integration in the
far-field (from Eq. 2.4a):

Fx =
n

c

¨
2π

Teff (θ) I (Ω) sin θ cosφ dΩ (4.5)

After such transformation, we obtained the results in Fig. 4.8. Force measurement
deviation in the 300-μm thick microchamber case is estimated to decrease by 10%,
whereas it turns out to be dramatically erroneous in 500-μm thick microchambers,
not only due to the fail of the Abbe sine condition, but as well due to the high loss
of light. NAeff in this case is 0.9.
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Figure 4.7.: G (θ) functions in thick chambers. (a) The iris image plane is placed
at the top, water-coverslip interface while the trapping plane is created at ztrap = 0
(black), ztrap = 300µm (green) and ztrap = 500µm (red) from the interface. The
black linear curve is the Abbe sine condition fit (Eq. 4.3a) to the measured impact
positions, x, while the red and green curves are fits using Eq. 4.3b. (b) Same
measurements after locating the force detection instrument so that the iris image
plane coincides with the trapping plane. (c) BFP images corresponding to the
different measurements in a and b. In the upper images, the iris image plane is at
the top interface while, in the lower images, it coincides with the trapping plane.
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4.2 Tolerance of the force detection instrument

Figure 4.8.: Simulations of the fail of the Abbe sine condition in thick chambers
for 0.61-μm (a), 1.16-μm (b), 1.87-μm (c) and 3.00-μm (d) PS microspheres. In all
the figures, the ideal case is plotted in black, whereas traps created at the bottom
interface of 300-μm (500-μm) thick microchambers are plotted in green (red).

Fortunately, light loss can be minimized and the Abbe sine condition notably recov-
ered after relocating the instrument by making the iris image plane coincide with
the trapping plane. In Fig. 4.7b, we can observe that an effective focal length equal
to that in the ideal case (f ′ = 2.16 (±0.5%) mm, obtained from linearly fitting G (θ))
is perfectly recovered. In the 300-μm case, we obtain f ′ = 2.19 (±1.8%) mm and,
for the 500-μm case, we obtain f ′ = 2.19 (±0.9%) mm.

However, in spite of recovering the Abbe sine condition, light loss still occurs for
such thick chambers, especially in the 500-μm thick ones. In Fig. 4.7b, see that
rays traveling beyond NA = 1.2 are missed by the collecting lens. We can therefore
assume force measurement deviations comparable to those shown by the use of
blocking rings with calibrated diameter, around 10%.

In Fig. 4.9, we indeed see that drag force measurements at the bottom interface of
a 500-μm thick microchambers are 10% lower than those carried out at the upper
interface. This agrees with the results shown in Fig. 4.4, where light loss produced
by blocking the captured beam beyond NAeff = 1.2 leads to a 5% decrease in the
measured force for 0.61-μm PS beads, whereas 3.00-μm PS beads suffer from a 10%
reduction. As has been discussed, larger beads tend to deflect the trapping light
at angles higher than θ0 (for NAeff = 1.2), which explains the stronger deviation in
these measurements.

All in all, the use of an iris at the illumination optical plane to reproducibly set
the instrument height has been shown to maintain αtrap calibration within a ±5%
in all the samples used. Similar, it has been shown to be equal to the macroscopic,
αdetector calibration within a ±10% margin of error. On the other hand, simulations
can be used to explain, in a qualitative approach, the errors arisen from light loss
and the fail of the Abbe sine condition.
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Figure 4.9.: Drag force measurements in thick microchambers on 0.61-μm (a),
1.16-μm (b) and 3.00-μm (c) PS microspheres. In all the figures, measurements at
the top (bottom) interface off a 500-μm thick microchamber are plotted in black
(red). The iris image plane and the trapping plane coincide in both.

4.2.1.3. Optical trap lateral position

To conclude, we assessed possible loss of light and force measurement deviations
from driving the traps off the optical axis. In Fig. 4.10, we recorded the power of
an empty trap steered holographically along X and Y to show that there was no loss
of light resulting from the position of the optical trap in the trapping plane. That
is, we found decreased intensity for off-center traps merely due to diffraction of the
pixilated SLM. In Section 3.2.1, the same decrease was observed when determining
trap stiffness through power spectrum calibration. We additionally applied a 60-
μm/s flow to induce a drag force of 1.6 pN on a 3.00-μm polystyrene bead trapped
at the same trap positions before, confirming that the measured force could be
reproduced independently of the trap position. The standard deviation was found
0.6%.

4.2.2. Collecting lens optical transmittance

Even when the instrument is correctly set and the sample is kept within a safe
margin of positions, there is a second problem that needs to be compensated for. The
high-NA lenses used in microscopy show a non-uniform transmittance. In optical
trapping, this has been discussed for the computation of the total power at the
sample [96] and to obtain accurate simulations of the optical forces [97]. Here, we
explored its effect in light momentum detection.

Due to the angular dependence of the Fresnel coefficients, transmittance through a
lens is not uniform. In general, this effect is negligible but, for high-NA optics, the
difference between marginal rays and those propagating close to the optical axis can
be large, which gives rise to a non-uniform transmittance of the beam (Fig. 4.11a)5.

5We kindly acknowledge F. Marsà and A. Farré for providing the high-NA lens transmittance
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Figure 4.10.: Top - Light intensity captured for an empty trap at different positions
from the center, which overlaps with the sinc2 modulation originating from the
SLM pixel structure. Bottom - Force measured on a 3.00-μm PS bead in a medium
flowing at 60 μm/s trapped at the same positions above. The black and red
symbols show results from the trap steered perpendicularly and parallel to the
flow, respectively.

To emulate the effect of the non-uniform transmittance of the collecting lens, we
used a polynomial fitting of the following form, which is similar to that used by M.
Mahamdeh et al. for an NA = 1.3, oil-immersion objective [97]:

Ts (θ) = T (0)
s + bs sin2 θ + cs sin14 θ (4.6a)

Tp (θ) = T (0)
p + bp sin8 θ + cp sin12 θ (4.6b)

According to the polarization used in our experiments, we took Ts (θ) and calculated
the integral of the momentum balance:

Fx =
n

c

¨
2π

Ts (θ) I (Ω) sin θ cosφ dΩ (4.7)

Results are shown in Figs. 4.11c-f for the common set of four PS microspheres.
Simulations predict an average error (mean ± s.d.) of ∆F = −8.9 ± 2.6 %. For the
case of ideal, uniform transmittance, and only accounting for back-scattered light

profile measurement.
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Figure 4.11.: Simulation of the effect from non-uniform transmittance profile. (a)
Collecting lens transmittance profile for s (top) and p (bottom) polarizations.
Circles are experimental data and the curves are the fits from Eqs. 4.6. (b) Scheme
of the compensation mask with an inverted transmittance profile. Simulations
accounting for the non-uniform transmittance effect are shown in red for 0.61-μm
(c), 1.16-μm (d), 1.87-μm (e) and 3.00-μm (f) PS microspheres. The shadowed
area shows the standard deviations of the measurement errors. Similarly in black
for an ideal, uniform transmittance.
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loss, we obtain ∆F = −0.8± 1.2 %. In other words, the non-uniform transmittance
results in a +8.9% deviation for αtrap with respect to αdetector, while its reproducibil-
ity (calibration invariance in light momentum detection) is of ±2.6%. Differently,
uniform transmittance, leading to the only deviation produced by backscattering,
predicted αtrap to be closer to αdetector and more insensitive over samples of different
size.

The non-uniform transmittance can be corrected by use of a compensation mask
with an inverted transmittance profile (Fig. 4.11b). Our force detection instrument
(Lunam T-40i, Impetux Optics, Spain) includes this possibility, hence the effect of
correcting for this can by analyzed as well experimentally.

Nominal calibration of the force detection instrument was performed by the man-
ufacturer in the presence of the compensation mask, which defines ψ according to
a uniform transmittance profile. When this is removed to assess the effect of the
non-uniform transmittance, αdetector modifies according to the new value for ψ. How
to measure it through a non-uniform transmittance is unclear, because the power re-
sponsivity of the instrument, SSUM = ψ Ptrap, will thereby be dependent on the angle
of propagation. Considering the laser beam with no sample trapped, a mean value
was determined by taking average power values through S SUM as ψ′ = S′

SUM/SSUM ψ.
Yet we obtained a certain average deviation for αtrap, for the overall set of beads,
with respect to α′detector = RD/ψ′f ′c. We therefore suggest, as discussed in Section 4.4,
that a global correction optimizing for αdetector to be closer to αtrap can be imple-
mented. As shown in the example in Fig. 4.12, α′detector can differ by 5% on average
from αtrap.

Figure 4.12.: αdetector scaling. Measurements on 0.61-μm (a), 1.16-μm (b), 1.87-
μm (c) and 3.00-μm (d) obtained from α′detector = RD/ψ′f ′c (red) and from scaling
to overall αtrap (black).

We performed three series of measurements for the four set of PS microbeads. Drag
force measurements show a standard deviation of ±7.2 % when the collecting lens
transmittance was not compensated (Fig. 4.13a-d). This result is substantially
higher than the ±2.6% variation observed in simulations in Fig. 4.11c-f. Inaccu-
racy in the modeling of the scattered beam transmitted through the non-uniform
transmittance profile can account for that.
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Figure 4.13.: Three series of drag force measurements with and without compen-
sating the non-uniform transmittance of the collecting lens. Averaged measure-
ments on 0.61-μm (a – not compensated, e – compensated), 1.16-μm (b – not
compensated, f – compensated), 1.87-μm (c – not compensated, g – compen-
sated) and 3.00-μm (d – not compensated, h – compensated) PS microspheres.

The most visible effect is that measurement inaccuracy is different for each kind of
microbead. Although 0.61-μm and 1.16-μm beads have flat responses, they show
errors differing by 15%. In other words, αtrap calibration will be more than 15%
different between these beads. More importantly, the same bead (1.87-μm and 3.00-
μm ones) show different errors depending on the drag force applied, resulting in
non-unique αtrap, which can vary up to 10% in the whole tapping range.

There is a notable improve in force measurements when the collecting lens trans-
mittance is corrected for (Fig. 4.13e-h). In this case, measurement errors exhibit
a standard deviation of ±2.1 % and maximum deviations, peak-to-peak of ±5%.
This result is close to that obtained from simulations (Fig. 4.11c-f), which now ac-
counted only for the effect of not capturing back-scattered light. From a numerical
±1.2% deviation in calibrating αtrap, we observed an experimental ±2.1% deviation,
obtained from accurate drag forces, with respect to αdetector.
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4.3. Back-scattered light loss

After correcting for the effects worsening the detection of the forward-scattered
contribution to light momentum (conditions 1: positioning of the force detection
instrument; and 2: collecting lens transmittance), we finally need to prove that light
is mostly scattered forward and that the contribution of backscattered light to the
total momentum is negligible (condition 3).

The amount of light scattered backwards in single-beam optical tweezers is known
to be small in several cases of practical interest, such as spherical beads and mi-
crocylinders [20, 69]. However, we consider that a systematic study of its effect on
force measurements accuracy is still needed. In fact, although low backscattering
is partly indicating that the error in momentum measurements will be small, one
needs to specifically determine the amount of momentum information lost alongside
missing photons. According to our forward-based capture performance, the question
we want to address is not only the amount of light missing detection (Eq. 4.8a), but
also to what extent the momentum integral over a half sphere coincides with that
over the entire solid angle (Eq. 4.8b):

P =

˛
I (Ω) dΩ '

¨

2π,fwd

I (Ω) dΩ (4.8a)

Fx =
n

c

˛
I (Ω) sin θ cosφ dΩ ' n

c

¨

2π,fwd

I (Ω) sin θ cosφ dΩ (4.8b)

From computer simulations, we can obtain a qualitative analysis of the different
situations (Fig. 4.14). For dielectric particles, most of the light is always scattered
in the forward direction, and shows up as a deflection of the laser beam, pointing
towards the same direction of the external force, F ext . Nonetheless, the scattering
process is, in general, complex, and a fraction of the light may be also reemitted in
the opposite direction of the force or in the backward direction, either in the direction
of the force or opposite to it. Light missing detection will result in different errors
in the force measured. In general, if light backscattered points towards the direction
of the force, the measurement will be underestimated. On the other hand, if light
backscattered points to the opposite direction, force measured will be greater than
F ext .

This illustrates that the recorded laser power cannot be used as an indicator of the
quality of force measurements. The disconnection between light intensity and the
direction of propagation brings about that here is no control of the error in the force
unless it can be tested against a known value.

In the next sections, we show that the inaccuracy in momentum measurements
can be reliably predicted from an FDTD-based scheme that considers splitting of
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Figure 4.14.: Backscattering contribution to momentum. (a) A 3.00-μm PS bead
at the escape force position produces backscattering pointing towards the ex-
ternal force, eventually producing an underestimation in the measurement. (b)
Differently, in an intermediate position, force will be overestimated due to the
backscattering component pointing against the external force.

light scattered forward and backward (light loss). For a series of microspheres of
different sizes and materials, simulations are compared with force and backscatter-
ing experimental profiles based on AOD fast stepping of the optical trap, which
proves to yield trap stiffness calibration in coincidence with that from power spec-
trum analysis. Theoretical errors from simulations are finally observed to coincide
in magnitude with momentum-based measurements of Stokes forces, thus making
forward-backward splitting of trapping light scattering a good estimator for the
measurement accuracy.

4.3.1. Analysis from simulations

Finite difference time domain (FDTD) computation provides useful insights into
the behavior of fields in optical trapping [11, 41, 42]. Once the field distribution
is known, optical forces are typically obtained by integrating the Maxwell stress
tensor (MST) over a surface surrounding the particle. If such surface is located in
the far field, the calculation is reduced to integration of the Poynting vector [43], i.e.
the angular distribution of beam intensity. The amount of light missing the force
detection set-up can be computed as follows:

p(fwd) =
n

c

ˆ 2π

0

dφ

ˆ π/2

0

I (θ, φ) sin θdθ (4.9a)

p(bck) =
n

c

ˆ 2π

0

dφ

ˆ π

π/2

I (θ, φ) sin θdθ (4.9b)

where the total trapping power is P = p(fwd) +p(bck), being p(fwd,bck)the power corre-
sponding to light propagating forward and backward after scattering, respectively.
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Similarly, we can emulate the precision of lateral force measurements by splitting
the forward- and backward-scattered light momentum contribution:

f (fwd)
x =

n

c

ˆ 2π

0

dφ

ˆ π/2

0

I (θ, φ) sin θ cosφ sin θdθ (4.10a)

f (bck)
x =

n

c

ˆ 2π

0

dφ

ˆ π

π/2

I (θ, φ) sin θ cosφ sin θdθ (4.10b)

Here, the total optical force is Fx = f
(fwd)
x + f

(bck)
x , where f

(fwd,bck)
x is the force

exerted by forward- and backward-scattered photons. As commented before, for
accurate light momentum measurement in single-beam optical tweezers, not only do
we need to confirm that p(bck) is negligible, but also that so is the momentum carried
by the term f

(bck)
x . To this end, we made use of the Optical Tweezers package from

Lumerical’s FDTD Solutions to solve the optical trapping problem on microspheres
of different sizes and materials and computed the light distribution in the far field by
means of the Near to Far Field Projection function. Simulations were performed in
2D for faster computing speed and were proved to yield proper results in accordance
with other optical trapping simulation software schemes (Section 2.1.1).

An instantaneous screenshot of the field scattered by a spherical particle out of the
equilibrium position is pictured in Fig. 4.15a (diameter D = 3.00µm, refractive
index n = 1.57, particle position xtrap = 1.5µm). A close observation to the angular
distribution of light intensity in Fig. 4.15b makes us notice a non-zero momentum
contribution to the optical force arising from back-scattered light, leading to an
eventual error of −f (bck)

x to the force measurement (Fig. 4.15c).

An example for the optical force split into the contributions to trapping light momen-
tum arising from forward (f

(fwd)
x ) and backward (f

(bck)
x ) scattering appears in Fig.

4.15c. The measurement error, −f (bck)
x , indicated for the worst case (xtrap = D/2) in

this specific set of parameters, will be generally different at every trap position. Sim-
ilarly, the amount of light propagating forward after trapping –and thereby ideally
captured by the detection set-up-, p(fwd), depends on xtrap. For the D = 3.00µm
example shown, light captured is minimal at xtrap ∼ D/2, which is characteristic for
bead radii larger than the wavelength (Fig. 4.15d), as discussed below.

4.3.2. Experiments

Together with the simulations, that a certain amount of light does not reach the
detector can be evidenced experimentally. A straightforward check, consisting in
measuring the light power captured by the detector with and without a trapped
particle has been shown in [19]. Such measurement does not account for the fact
that the amount of light backscattered, p(bck), and thereby the corresponding lost
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Figure 4.15.: (a) Instantaneous E field as a focusing, NA = 1.2 Gaussian beam
pulse goes past a trapped 3.00-μm bead with n = 1.57, indicated by the red
circle. (b) Angular distribution of the outgoing intensity in the far field. Forward
(backward) contributions to momentum are represented by green (red) arrows

(not to scale). (c) Optical force (Fx, blue), split into the forward (f
(fwd)
x , green)

and backward (f
(bck)
x , red) contributions, as the bead is displaced laterally from

the trap center. (d) Percentage of light captured, p(fwd), in the simulation in c.
The red circle indicates the trap position in a and b.

force, f
(bck)
x , varies depending on the trapping force, i.e. the bead position with

respect to the trap. In order to study the effect of p(bck) on force measurements, the
complete force profile is measured in real time under the scheme presented in Fig.
4.16a.

The implementation of AODs on the experimental setup allows us to rapidly change
the trap position, much faster than the response time of the trapped objects. This
principle can be used to rapidly time-share the focus spot over a series of positions
and create an effectively static series of multiple traps [7]. Similarly, one can steer
the trap over a particle to assess the detection signal and determine, for example,
the volt-to-nm conversion factor [52].

Here, AOD modulation is used to obtain the complete force profile by rapidly scan-
ning the microsphere while trapped. The scanning strategy consists on two time-
shared traps (at 15kHz), one of them is placed at the equilibrium position (xtrap = 0)
for 0.6 ms (10 clock cycles) and the other one is swept over the scanning direction,
staying 66 μs (1 clock cycle) at each position, thereby obtaining a force value each
time the trap is changed. This timeframe ensures proper charging response for the
PSD and the bead being virtually static at x = 0 (at 10-mW trapping power). Pre-
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4.3 Back-scattered light loss

Figure 4.16.: (a) Typical signal obtained from the fast stepping scheme over a
1.16-μm PS bead (see text). (b) Mean (±s.d) force profile obtained from a series
of N = 50 measurements performed as in a, from which the trapping stiffness is
obtained in the linear regime, i.e around x = 0. (c) Lorentzian fit to the power
spectrum.

cise synchronization of the RF signal with the force-detection instrument is carried
out by means of a trigger signal via the NI-DAQ acquisition card.

Passive detection signals (1s long) are monitored after each stepping cycle is recorded
in order to validate trap stiffness calibration from stepping (Fig. 4.16b) with power
spectrum analysis (Fig. 4.16c) [94]. A set of 50 consecutive measurements are
performed for each bead. The agreement between the stiffness measured from the
force profile around x = 0 and the power spectrum fitting constitutes an additional
confirmation of the step-profiling scheme used in the following results.

4.3.3. Analysis over samples of different size and refractive
index

We next discuss the force and power profiles obtained experimentally (αdetector Sx,
1/ψ SSUM) and through the simulations schemed above (f

(fwd)
x , p(fwd)) . First, a com-

parison between the profiles on microspheres of similar size and different refractive
indices is presented. We used 2.32-µm silica (n = 1.45), 1.87-μm polystyrene (PS,
n = 1.57) and 2.19-μm melamine resin (MR, n = 1.68) microbeads.

In Fig. 4.17a, we show the three experimental force profiles obtained, which exhibit
the double slope (double stiffness) typical for beads approaching the geometrical
optics regime. As expected from the considerably lower refractive index, silica mi-
crospheres experience much smaller optical force throughout the whole scan. The
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Chapter 4 Robustness of light-momentum force measurements

three beads used exhibit light loss maximums at xtrap ∼ ±D/2 (Fig. 4.17b), though
little leak is observed for the silica beads, which is as well understandable according
to their low refractive index. In Fig. 4.17c-d, simulations of f

(fwd)
x and p(fwd) are

shown. The qualitative behavior of both the backscattering and the force profiles is
clearly reproduced. MR and PS beads exhibit equal force in the linear regime, while
silica beads behave with substantially lower trapping force. The two light loss peaks
at ±D/2 are as well reproduced, although experimental results for PS show much
greater light loss than simulations. Meanwhile, the higher and lower backscattering,
for MR and silica respectively, is likewise observed.

Figure 4.17.: (a,b) Force and backscattering profiles obtained from the Sx and
SSUM signals, measured by fast stepping the AOD-steered tweezers over silica
(black), PS (red) and MR (blue) beads. (c,d) f

(fwd)
x and p(fwd) curves simulated

for the same series of beads. (e) Normalized measurement error emulated from
simulations, −f

(bck)
x /Fx, against the theoretical force obtained from the whole 4π

solid angle integral. (f) Measurement errors with respect to Stokes-drag calibra-
tion over the same series of beads.

The theoretical error for the three beads, −f (bck)
x , normalized to the total momen-

tum, is shown in Fig. 4.17e. Since force measurements are limited to the stable
trapping range, we plot this figure up to the escape force. Interestingly, light loss
does not straightly imply that forward momentum measurements will underestimate
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4.3 Back-scattered light loss

optical forces. Yet we can observe, especially for the MR case at low forces, that the
force measurement can be 7% greater than the theoretical value. Near the escape
force, MR beads exhibit errors as high as –10% as the trap approaches the escape
force position. Apart from this case, which is particularly extreme due to such high
refractive index, the error can reach, at most, ±1% for silica beads or ±2% for PS
beads.

Errors in force measurements can be assessed experimentally by comparing them
to Stokes-drag forces. In a static trap, the trapped samples were applied calibrated
constant flows at increasing values up to the escape velocity. In Fig. 4.17f, see
the measurement deviation with respect to the theoretical values. For the three
beads, note that escape forces are smaller than those obtained in the fast-stepping
experiments (Fig. 4.17a) and simulations (Fig. 4.17c,e), according to the dragged
bead undergoing a curved trajectory [59]. Stokes forces are measured within a ±5%
uncertainty range if we disregard some particular positions for the highest refractive
index –and hence strongly-scattering-, MR beads. A similar margin is obtained from
considering the backscattering-induced error in Fig 4.17e.

Our next analysis is focused on the role of the particle size in the precision of mo-
mentum measurements accounting for backscattered light omission. In this case, we
used PS microspheres sized 0.61 μm, 1.16 μm, 1.87 μm and 3.00 μm in diameter,
respectively. Analogous to the previous result, we can first observe the experimen-
tal force profiles in Fig. 4.18a, which now interestingly show the transition between
Rayleigh-behaved particles (0.61 μm) and the geometrical optics regime (3.00 μm).
The chief difference is, as widely studied by the optical trapping community, the
exhibition of a double stiffness profile in the latter case, while the former shows a
single slope that extends over a larger range in relative length units. Concerning the
captured light in Fig. 4.18b, note that small beads present a single centered light
loss peak, while large particles show a double peak, as mentioned in the previous
experiment, at xtrap ∼ ±D/2 . We can imagine that, under the dipole approxima-
tion, a small bead at the trap focus, hence experiencing higher fields, will produce
larger amount of scattering. On the other hand, if we consider geometrical optics
to describe trapping of larger beads, rays impacting at the edge of the beads will
tend to be more internally-reflected according to the Fresnel coefficients, as can be
intuited from the D = 3.00µm simulation in Fig. 4.15a.

Fig. 4.18c-d shows the simulation results for f
(fwd)
x and p(fwd) for the same series of

PS beads. Notice the same change in the behavior of the force and backscattering
profiles according to the optical trapping regime. We obtain, for large particles
(1.87 μm and 3.00 μm), the two peaks at ±D/2 , though it is considerable that
experimental light loss is higher. Differently, we observe, for the smallest bead (0.61
μm), a single light loss peak in the trap center, while a certain transition between
the two shapes is observed in the 1.16-μm bead profile.

While we had seen, in the refractive index measurement before, that low refractive
index was best to minimize light loss and thus maximize force measurement accuracy,
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Chapter 4 Robustness of light-momentum force measurements

Figure 4.18.: (a,b) Force and captured light profiles obtained for 0.61-μm (blue),

1.16-μm (green), 1.87-μm (red) and 3.00-μm (black) PS beads. (c,d) f
(fwd)
x and

p(fwd) simulated for the same series of beads. (e) Normalized measurement error
emulated from simulations, −f

(bck)
x /Fx. (f) Measurement errors with respect to

Stokes-drag calibration over the same series of beads.

here we find actually null error for the smallest, 0.61-μm beads, and almost constant
–2% error for 1.16-μm beads (Fig. 4.18e). Differently, for beads of increasing size,
not only does the accuracy worsen, but the error is no longer constant for different
bead positions. Nonetheless, it is observed to be, at most, from –4% to 1% for
1.87-μm beads and from –8% to 4% for 3.00-μm beads.

Analogous to Fig. 4.17f, Fig. 4.18f shows experimentally-obtained errors by com-
paring force measurements with Stokes forces. Qualitatively similar to simulation
predictions in Fig. 4.18e, 0.61-μm beads exhibit constant, low deviations, while 1.16-
μm beads show a slowly increasing discrepancy. In contrast, the larger, 1.87-μm and
3.00-μm beads show noticeable deviation curves, which differ from those estimated
in Fig. 4.18e, but do reproduce the limits to which we can consider an a priori
accuracy: ±5%. Finally, it is observed to be critical that light loss for large beads
can achieve values of 5-10% for ∼2-μm beads (Fig. 4.17b,d) and ∼3-μm beads (Fig.
4.18b,d). It is worth noting though, that the extreme position of xtrap ∼ ±D/2 is
never possible in experiments under equilibrium condition. The experiments here
were performed by fast stepping the trap over the bead, which remained static (Fig.
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4.16b), whereas real axial equilibrium positions are different at each lateral xtrap
[59]. This leads to the fact that actual escape forces are much lower than these
shown here, from which we can state that light loss will never be that dramatic. In
fact, this is in complete accordance with real force measurements, based on Stokes
drag, being measured within an accuracy of ±5%.

4.3.4. Comment on back-scattered light for trap calibration

Information carried by back-scattered light, lost in most set-ups which perform de-
tection from the posterior part of the optical trap, can as well be used for quantita-
tive studies. For example, intensity of back-scattered light has been demonstrated to
provide valuable information on the coalescence and equilibration process of aqueous
droplets [98], as well as properties of vesicle lipid bilayers [99].

In a scheme analogous to BFP interferometry (see Section 2.2.1.2), trap calibration
for force measurements from backscattering has been demonstrated numerically by
G. Volpe et al. [100]. Similarly, J. H. G. Huisstede et al. [101] demonstrated the
capture of the back-scattered light with the same trapping objective to calibrate the
optical traps using the power-spectrum method.

On the other hand, in this chapter we have discussed on the possibility to measure
beam momentum from capturing light over the forward 2π solid angle. We could
therefore believe this disagrees with the fact that back-scattered light can as well be
tracked for force detection.

Interestingly, when measuring axial optical forces, the amount of light back-scattered
does accurately correlate with the error in force measurements [63]. Being Fz,m the
measured axial force, the following correction can be implemented:

Fz = Fz,m + kp
Pr
c

(4.11)

Here, Pr is the amount of light reflected backwards, which can be measured with a
camera imaging the sample plane. kp is a factor that can be eventually calibrated
for a given sample. Eventually, axial force measurements can be performed within
1% accuracy using this approach.

However, we had early stated that the quantity of light lost cannot be considered
to be a proper indicator of lateral force measurement accuracy. Differently, back-
scattered light can have a neat lateral momentum component considerably larger
than the percentage of photons it accounts for. The information from backward
photons result in the average ±5% inaccuracy showed before, tested over samples
of different sizes and materials.

The point is that this ±5% contribution to force from f
(bck)
x arises from deflections

in the back-scattered beam, which are related with the sample position within the
trap, from which a position-conversion factor β (μm/V) can thereby be obtained.
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Chapter 4 Robustness of light-momentum force measurements

Nevertheless, this constitutes an eventual calibration approach which uses 2−3% of
light and is hence strongly sensitive to the in situ experimental features (e.g. sample
size and refractive index). Differently, in this chapter we have shown the robustness
of the light-momentum invariant calibration over a wide set of samples, which is
possible from the optimized collection of the 97-98%, forward-scattered light.

4.4. Conclusion

In this chapter we addressed the technical aspects necessary for absolute light mo-
mentum detection in an optimized BFP interferometry system, which directly yields
trapping force measurements in optical tweezers. The amount of light collected,
above 97% for all the situations analyzed, points out in some degree that trapping
forces will be properly measured. However, we have shown that it is necessary to
know the exact contribution of back-scattered light to the total momentum. Hence,
since there is no prior indicator of the measurement accuracy, calibrated Stokes-drag
force has been used as a confident reference to be compared with measurements. For
the completeness of the following conclusions, the study has been undertaken over
samples of different size and materials.

Erroneous positioning of the light detection instrument has been shown to produce
large amount of light loss and fail of the Abbe sine condition. Reproducible po-
sitioning of the instrument using an iris conjugated at the sample plane has been
confirmed to successfully correct for this effect. Importantly, this has been demon-
strated in thick, 500-μm microchambers, used in Chapter 7 for optical trapping in
zebrafish embryos. In turn, the high-NA collecting lens has been observed to have
a non-uniform transmittance profile. Compensation by use of a mask at the BFP
has been as well observed to reduce measurement inaccuracy.

After optimization of the detection of the forward-scattered light, we have dealt
with the question of back-scattering as the remaining source of error in single-beam
optical tweezers. AOD-based scanning has been useful for determining the trapping
force and light loss profiles over the whole trapping range. Simulations of the far-
field intensity distribution after scattering have been showed to provide insight in
the eventual error caused by omitting the backward contribution.

The limitation due to the backscattering contribution leads to necessarily differ-
ent αtrap calibration depending on the specific features of the experiment, such as
particle size and refractive index, and trapping beam characteristics. Different to
typical, non-optimized BFP interferometry though, variations have been shown to
remain within a maximum ±10% margin and ±5% for the most common situations
–avoiding the use, for example, of high refractive index melamine resin microbeads–.

Light-momentum calibration is determined through Eq. 4.1 by the sensor radius
(RD), the set-up responsivity (ψ, V/mW) and the focal length (f ′). These are
parameters invariant to the microscopic properties of the experiments. However,
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imprecision in the determination of any of these leads to an uncertainty of ±10% in
αdetector [62]. This is clearly compatible with the average deviation observed in the
αtrap wide set of calibrations shown. Considering that Stokes-drag calibration is a
precise reference in the case of single microspheres used in this work, it is therefore
reasonable to use such number of tests to correct for the actual calibration, i.e.
forcing αdetector = αtrap. As an example, we did this operation due to the uncertainty
in determining ψ when using a collecting lens with a non-uniform transmittance
profile (Fig. 4.12).

In Fig. 4.19, we show measurement errors in a variety of situations. In all of
them, forces are calculated from positional signals of the PSD (Sx, V) through
the macroscopically-determined conversion factor (αdetector, pN/V). ±5% and ±10%
margins are indicated. These involve diverse experimental conditions, which strongly
determine trap stiffness (κ, pN/μm) calibration. Contrasted with the subsequent
variability of κ, αtrap in a light-momentum detection scheme remains invariant within
said 5%− 10%, assessed against Stokes-drag calibration.

Figure 4.19.: Robustness of absolute light-momentum calibration. (a) Different
samples trapped with a water-immersion objective. (b) Different samples trapped
with an oil-immersion objective. (c) 3.00-μm PS beads trapped with a water-
immersion objective with different degrees of compensation of spherical aberra-
tion, i.e. different positions for the correcting collar.

We can therefore conclude that the volt-to-picoNewton conversion is invariant in
systems directly detecting light momentum changes due to optical forces in single-
beam optical tweezers. We have shown the importance of not only capturing most
of the light scattered forward, but as well the need to convey the beam onto a PSD
accurately placed at the BFP of a high-NA (NA > nm) aplanatic lens (i.e. fulfilling
the Abbe sine condion) with a corrected, uniform transmittance. Deviations caused
by the remaining question of backscattering have been determined to be close to

71



Chapter 4 Robustness of light-momentum force measurements

those predicted from the theoretical limit.
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5. Force measurements on irregular
samples

Optical trapping has become an optimal choice for biological research at the mi-
croscale due to its noninvasive performance and accessibility for quantitative stud-
ies, especially on the forces involved in biological processes. However, reliable force
measurements depend on the calibration of the optical traps, which is different for
each experiment and hence requires high control of the local variables, especially of
the trapped object geometry. Many biological samples have an elongated, rod-like
shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane
tubules, certain microalgae, and a wide variety of bacteria and parasites. This
type of samples often requires several optical traps to stabilize and orient them in
the correct spatial direction, making it more difficult to determine the total force
applied.

In this chapter, we manipulate glass1 (in the 10-μm range, with high slenderness)
and zeolite2 (in the 1-μm range, with small slenderness) microcylinders with holo-
graphic optical tweezers and show the accurate measurement of drag forces by the
calibration-free direct detection of beam momentum studied in this thesis. The
agreement between our results and slender-body hydrodynamic theoretical calcula-
tions indicates potential for this force-sensing method in studying protracted, rod-
shaped specimens.

Previous to these results, we make use of the holographic-trap layouts introduced
in Section 3.3 to manipulate spherical samples, and conclude on the compatibility
of object-adapted optical potentials for manipulating extended samples, with light-
momentum measurements. Multiple-trap arrays (Section 3.3) will be used to trap
sets of multiple beads for which the overall light momentum exchanged accurately
fits the total drag force. Cogwheel beam traps (Section 3.4) will be used to trap
large microspheres (3 - 8 μm) and demonstrate the measurement of light momentum
on non-Gaussian beam traps.

1We thank J. Ignés-Mullol, from the group of Self-Assembled Materials and Self Organized Com-
plexity, in Facultat de Qúımica, from Universitat de Barcelona, for kindly providing a series of
Nippon Electric Glass (PF50) cylinders.

2We thank T. Buscher and A. Studer, from Westfälische Wilhelms Universität Münster, for kindly
providing a series of zeolite cylinders [71].
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5.1. Optical micromanipulation for extended objects

Trap calibration has become routine in force measurement studies involving spher-
ical objects, for which the optical restoring force is well understood [7, 6]. This
method can also be applied to non-spherical specimens, with synthetic microbeads
bound to the sample of interest used as force probes. This has enabled numerous
investigations, such as those into biopolymer stretching [16], the assembly dynam-
ics of microtubules [93], cell membrane mechanics [102] and parasite flagellar forces
[14]. However, when it comes to the direct trapping of the sample non-invasively,
light momentum transfer gives rise to trapping forces that are difficult to quantify.
This, together with complicated hydrodynamic theorizing, makes force calibration
for non-spherical samples a complex challenge.

Many microobjects found in nature display cylindrical symmetry, such as rod-shaped
Bacillus bacteria, Synedra and Nitzschia diatoms, and eukaryotic nuclear chromo-
somes. Often, the rod-like shape confers a biological advantage over the spherical
form. For example, the larger area to volume ratio of non-spherical mitochondria
favors diffusion and makes aerobic respiration more efficient [103]. Likewise, light
absorption is maximized in chloroplasts, favoring photosynthesis in plant palisade
cells [104]. Direct trapping and measurement of optical forces on rod-shaped speci-
mens is, thus, an important area of interest in several scientific fields.

One solution that is widely applied in bacterial swimming studies consists of mon-
itoring the trapping laser light with a photodiode and inferring information after
complex processing of the electric signals obtained. Although not strictly mea-
suring forces, this strategy has successfully shed light on several motility parame-
ters, such as body and flagellar rotation frequencies, velocity variations and direc-
tion reversals, cell viability, bacterial swimming patterns and bacterial chemotaxis
[105, 106, 107, 108].

For quantitatively measuring trapping forces on microrods and biological rod-shaped
samples, several calibration strategies have been developed, whereby force values are
obtained from primary variables such as the sample escape velocity or position [8].
Escape velocity measurement, together with the trap power recording, has enabled
the assessment of, for instance, trypanosome swimming forces [14] and chromosome
motility [30]. Meanwhile, the force-position relationship, i.e. the trap stiffness κ,
has been measured for Escherichia coli using Stokes’ drag force calibration [15] and
equipartition theorem [57].

Rod-shaped samples, even if stably trapped in a single Gaussian focus, tend to align
their longest dimension with the optical axis due to the gradient force [109], thus
remaining in a position that is not always helpful. To manipulate, rotate and orient
them in a specific direction, several coordinated optical traps are necessary. Such
multi-trap configurations have been modelled by a stiffness matrix whose calibra-
tion permit 3D force and torque measurements [110, 111]. Experimentally, the trap
stiffness matrix of an elongated diatom trapped with two optical tweezers has been
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obtained from thermal motion analysis for force probing purposes [31]. Likewise,
synthetic microrods [33] and microdevices inducing complex force fields [32] in a
double-trap configuration have been calibrated against Stokes drag. Another tech-
nique for stable trapping and orientation of anisotropic samples is the creation of
object-adapted optical potentials [90, 29], which can be calibrated for force sensing
through back-focal-plane interferometry [91].

In all these cases, precise measurements of the primary variable –escape velocity, trap
power or sample position– is of the utmost importance, which, together with the ac-
curate modeling of the sample hydrodynamics [112, 113], is very challenging even for
regular microrods. Any deviation from the actual sample shape with respect to the
geometry conceptualized, as well as uncertainties regarding model approximations
or linear assumptions, will produce large inaccuracies in force measurements.

Direct detection of beam momentum enables force measurements without the need
for specific trap calibration, as the force is determined directly from the light mo-
mentum exchange between the trapping beam and the sample [19, 20, 21, 67, 63,
71, 72]. Therefore, direct measurement of momentum in non-spherical samples can
be performed without complex theoretical calculations. Furthermore, the individual
changes in momentum exerted on several optical traps by a sample are added up au-
tomatically in the detector, thus directly providing the collective force applied to the
trapped object. These advantages come at the cost of complex technical implemen-
tation, since all the light creating high-NA optical traps, and therefore contributing
to the total momentum exchanged with the sample, must be captured and conveyed
to the detector [62]. This is feasible with microbeads and single tweezers, as shown
in Refs. [20] and [21], but this certainly cannot be taken for granted for rod-like
samples or multiple light foci.

In the next sections, we measured the total drag force exerted on an arbitrary
multiple-bead system trapped by several holographic optical tweezers (HOTs). The
same Stokes-drag scheme was used to prove the force measurement implementation
on microspheres in cogwheel beam optical traps. We then focused on optical ma-
nipulation of synthetic microcylinders in a double-trap arrangement and ensured
that all the light interacting with the sample was captured. Finally, we compared
the drag force measurements with theoretical predictions and discussed the trapping
force profiles of dielectric microcylinders.

5.2. Multiple bead systems as early irregular objects

When it comes to measurements on directly-trapped (i.e. with no attached auxiliary
microsphere) non-spherical samples, Stokes drag theoretical calculation becomes
challenging and can be considerably complex even for cylinders [112]. Here we test
beam momentum measurements on a system composed of multiple microspheres,
analogous to the verification introduced by G. Thahammer et al. for momentum-
based axial force measurement in Ref. [63]. For such system, an analytical expression
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based on direct addition of individual forces exists and can therefore be used as
a reference to which the measurements be compared. In addition, microspheres
constitute by far the most used geometry in optical trapping and were the first
proved to yield negligible backscattering, a sine qua non condition for momentum
measurements on single beam optical tweezers [20].

Static trap arrays created holographically are successfully laid over the field of view
with sufficient efficiency and can be changed in real time, for instance, to reduce
hydrodynamic interaction between microspheres. Importantly, no light loss is ap-
preciable from holographic trap steering over the field of view considered and the
force measured is likewise insensitive to the trap position, with a standard deviation
of less than 1% (see Section 4.2.1.3).

In the following experiments, multiple-bead systems behave as early irregular ob-
jects. Light emerging from all the trap spots is mixed at the back focal plane BFP
(Fig. 5.4), thus giving rise to a overall momentum exchange that corresponds to the
total drag force applied. It is therefore highly interesting to introduce this result as
a proof-of-concept on the possibility to detect light momentum changes on samples
with arbitrary shape.

5.2.1. Hydrodynamic interaction

We here explore hydrodynamic interaction as a possible source of error for the
theoretical reference used in total drag force measurements. Firstly, we trap two
identical 3.00-μm beads and record the total force as a function of the distance
between them, D. This will help us choose an interaction-minimized six-bead system
geometry, in which force additivity will be secondly checked. It is worth commenting
that this verification is carried out on the largest beads used here, ensuring a top-
threshold for hydrodynamic interaction for the following experiments.

In Fig. 5.1, we analyze three components for hydrodynamic interaction. First, the
interaction between beads separated perpendicular to the exerted flow is measured.
As expected, the total drag force equals 2Fdrag when isolated, i.e. D → ∞, and
clearly decreases as the beads approach each other. We find less than 5% force drop
beyond 20-μm separation. Second, we observe the same asymptotic tendency for
the beads placed parallel to the flow, though an evident, stronger force reduction
occurs. To make sure this will not modify our theoretical drag force reference, the
two three-bead rows (Fig. 5.2c) are transversely shifted. This successfully minimizes
hydrodynamic interaction, as shown in our third test. The two beads are separated
diagonal to the flow and, similar to the first point, interaction is assessed to be less
than 5% as well.

Hydrodynamic coupling between two identical beads has been measured by Crocker
through video tracking of their Brownian motion [114]. Compared to the single
sphere with drag coefficient γ = 6πηR, the two-bead-system drag coefficient is
described by four components: two components for the center-of-mass coefficients
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Figure 5.1.: Drag force measured on a 3.00-μm polystyrene bead system at a 60-
μm/s flow against the separation distance, D. The theoretical, individual Stokes

force is F
individual

drag = 1.6 pN. Both traps have a power of 10 mW. The black and red
lines show results from the beads separated perpendicularly and parallel to the
flow, respectively. Theoretical curves inferred from Ref. [114] are superimposed
as continuous lines. ...

and two more for the relative coefficients. Our global force measurement corresponds
to the coupled center-of-mass drag force:

γ
‖
CM =

2γ

1 + 3
2ρ
− 1

ρ3
− 15

4ρ4

(5.1a)

γ⊥CM =
2γ

1 + 3
4ρ

+ 1
2ρ3

(5.1b)

These expressions describe with amazing accuracy our experimental results in Fig.
5.1, though a small correction must be considered in relation to momentum-based
force measurements. As has been discussed in Chapter 4, a certain deviation ex-
ists between ideal lateral forces and measurements of the forward-scattered light
momentum, hence the curves from Eqs. 5.1 have been multiplied by 1.065.

From these results we can consider that force is additive for the six-bead system
geometry described next. An example for the trapping sequence used is depicted in
Fig. 5.2a. As a new bead is trapped in the array, the force increases the amount
corresponding to F

individual

drag , in accordance with the fact that the total force is pro-
portional to the number of beads. The descending tendency in Fig. 5.2a-right shows
that a certain interaction of 5% still occurs, which is more visible with the trapping
of the fourth bead for this specific sequence (Fig. 5.2b). The final geometry of the
optical trap array is depicted in Fig. 5.2c.
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Figure 5.2.: Trapping sequence of six beads in the six-trap holographic array. (a)
Force measurements on a system of identical 3.00-μm (black) and 1.16-μm (gray)
microbeads in a medium flowing at 60 μm/s (left). The red lines correspond to the
theoretical drag forces. Force measurement deviation with respect to N ·F individual

drag

(right). (b) Sequence in which the different beads were trapped in the array. (c)
Layout of the six-trap array.

5.2.2. Measurements of global momentum on arbitrary multiple
bead systems

The use of microspheres allows the comparison of our direct force measurements with
theoretical values derived from adding all the individual Stokes’ forces together as
follows:

Ftotal =
∑
i

6πηRi

1− 9Ri
16h

+
(
Ri
2h

)3v (5.2)

where Ri are the different radii of the microbeads, v is the flow velocity, η the fluid
viscosity whose dependence on temperature is taken into account (Eq. 6.3), and
h the distance to the upper surface to include Faxén’s effect (Eq. 2.11). In this
equation, inter-particle hydrodynamic interactions are not considered and the total
drag force on a set of several samples is simply the total sum of single-bead drag
forces, according to our previous checking on force additivity (Figs. 5.1 and 5.2).

We performed a similar experiment using the same array of six optical traps, but
with microbeads of different sizes and materials. The theoretical drag forces were
now different for each type of microbead. The measurements, represented against
the theoretical values for twenty-four different combinations of microbeads, settle
along a straight line with a slope of one (Fig. 5.3).

These results demonstrate that the light emanating from a set of optical traps can
be completely captured and analyzed to determine the total momentum change giv-
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Figure 5.3.: Measurements on twenty-four combinations of beads immersed in a
medium flowing at 80 μm/s. The solid blue line is a curve with a slope of one.
The dashed blue line is the best linear fit to the data, with a slope of 1.017 and
a normalized root mean square error (NRMSE) of 2.9% (shadowed area in the
inset). The table indicates the amount of beads of each kind trapped in the array,
as well as theoretical and measured drag forces.

ing rise to trapping forces. The measurement of momentum was not subject to the
specific characteristics of the sample under study – bead sizes and refractive indices
– but was defined by a persistent macroscopic calibration, represented by the equiv-
alence factor αdetector. It should be noted that a global optical potential describing
each of these situations, from which position measurements could hypothetically
lead to indirect force calculations, is non-existent if based on the detection of the
trapping laser light. The trapping stiffness corresponding to every bead-trap pair
should be calibrated separately, for example, by fitting the power spectrum obtained
from high-rate video tracking [46].

Under a certain interpretation, a system of multiple microspheres handled as a whole
can also be considered an early irregular object. Light arrives at the detector scat-
tered from different particles at different spatial locations to generate a complicated
pattern at the BPF (Fig. 5.4). Moreover, the holographically modulated laser beam
focusing at six different positions at the sample plane stops being purely Gaussian,
but can still be collected in its entirety and the overall interchange in momentum
measured.
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Figure 5.4.: (a) BFP image for a single trap with no bead trapped. (b) Sample
image (traps reflected at coverslip) and BFP image for the six-trap array with
no beads trapped. (c) Holographic scheme generating the six-trap array. (d-i)
Sample and BFP images as one to six beads are trapped in the array.

In Fig. 5.4, we illustrate how the six-spot trapping beam is created through Gerchberg-
Saxton-algorithm hologram (Section 3.3.3) and captured -and finally conveyed to the
PSD- by the force detection system. Beam profile images have been taken with a
CCD camera placed at the BFP (PSD plane). Compared to the single-trap, Gaus-
sian beam case (Fig. 5.4a), in the six-trap situation, a fringe pattern arising from
the complex phase hologram appears, according to this plane being conjugated with
the SLM plane through telescope 2, the microscope objective and the force detection
system (see Figs. 2.4 and 3.1). Despite it being a phase-only hologram, sort of a
Gerchberg-Saxton pattern appears to be visible at the BFP (see Fig. 5.4b - inset
and the discussion in Section 4.2.1).

When sequentially trapping microspheres at the different optical traps, the beam
profile modifies from the Gaussian profile, cropped at NA = 1.2, to the one-microbead
(1.16-μm, polystyrene in this example), in which the NA = 1.32 ring arising from
scattering becomes visible (forward 2π square radians cone). See this effect in Fig.
5.4d-i and compare with Figs. 2.4 and 2.4.
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5.3 Force measurements in cogwheel beam optical traps

5.3. Force measurements in cogwheel beam optical
traps

The next experiment targets the robustness of light-momentum force detection when
using exotic, explicitly non-Gaussian beams that might be a need in certain optical
trapping situations. As discussed in Chapter 1, there has been an increasing interest
on creating structured trapping beams, e.g. in an object-adapted wise, to enhance
the possibilities of optical trapping on complex-shaped samples.

Due to the generally complex interaction of the trapping beam with the sample,
trap calibration and position detection will deviate from the ideal spring, F = −κx,
and linear BFP interferometry, x = β Sx, approaches. Differently, the F = αSx ap-
proach proves consistent with the cogwheel beam traps used here. Again, the same
macoscopically-determined αdectector factor yields trapping force measurements that
match theoretical drag forces within the same accuracy presented previously (Chap-
ter 4). We use this result to confirm the possibility to implement light-momentum
force detection onto non-Gaussian beams, indicating that this is applicable to arbi-
trary, exotic beams.

As a final result, cogwheel beam trapping force profiles are obtained by sweeping
a bead stuck onto the surface over the optical trap. Curiously, a linear region is
observed, in which our measurements on trap stiffness are compared with those
reported by A. Jesacher et al. in Ref. [27].

5.3.1. Drag force measurements on microspheres in a cogwheel
beam trap

Within the same strategy used previously, the trapped particles were applied con-
stant drag forces by inducing triangular flows by means of the piezo-electric stage.
The square-shaped voltage signals provided by the PSD yield the applied force after
the invariant conversion factor αdetector. Alongside with the Gaussian cases, two cog-
wheel modes were considered for each bead. For each combination, we applied ten
equidistant force values up to the escape force which, in turn, was observed to de-
crease with higher l -index. As mentioned in Section 3.1, 8.06-μm polymethacrylate
(PM) beads were observed to easily stuck to the lower surface after fast sediment-
ing. For precise force measurements, we tried 3.00-μm and 4.94-μm polystyrene (PS)
microbeads. The measured forces are represented against the theoretical values in
Figs. 5.5a,c.

As thoroughly discussed in Chapter 4, force measurement deviations are mainly
due to light loss through backscattering. The specific shape of the deviation curves
shown in Fig. 5.5b,d (left sides), for a given combination of bead and trapping beam,
corresponds to the momentum transferred by lost photons. We can notice clear
difference with respect to the Gaussian cases mainly due to the strong differences
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Figure 5.5.: Drag force measurements on microbeads trapped in cogwheel beam
optical tweezers. (a) Measurements on 3.00-μm PS beads. (b) Overall deviations
with respect to theoretical drag forces (left side) and deviations for each l mode
analyzed (right side). (c) and (d) show the same results for the 4.96-μm PS bead
case.

in the beam structure. Nonetheless, the accuracy for cogwheel beam traps is of
the same average magnitude as Gaussian beam traps, which is of high importance
bearing in mind that force measurements were obtained from the same volt-to-
picoNewton conversion factor, αdetector. The overall deviation is +4.3 ± 3% for the
3.00-μm bead case, which is comparable to that reported in Fig. 4.18. We found
higher, +9.8 ± 2% average deviation for the 4.94-μm bead case, which might be
attributable to such large samples being affected by critical interaction with the
surface. Yet theoretical forces were corrected through Faxén’s coefficients (Eq. 2.11).

In Section 3.4.1 we described the generation of cogwheel beam traps through wave-
front modulation by means of an SLM. Especially when closely observing Fig. 3.11d,
one can notice that the beam structure at the BFP is considerably different from
the Gaussian beam case. We thereby consider the measurements in Fig. 5.5 a clear
proof-of-concept for the accuracy of force measurements through the detection of
beam momentum changes in non-Gaussian traps. As we have discussed, capturing
all the light interacting with trapped specimens makes possible to implement such
calibration-free approach.
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5.3.2. Cogwheel beam trapping force profiles

An 8.06-μm PM bead was stuck at the upper surface of the micro-chamber and the
force signal was recorded as the piezo-electric stage swept positions continuously.
For the cogwheel trapping beams, the force profiles turned out to be linear in a
region comparable to that of the Gaussian traps (Fig. 5.6). This makes possible
to perform trap stiffness calibration if precise position measurements are possible
[27, 115].

Figure 5.6.: Trapping force profiles on an 8.06-μm bead in a 20-mW cogwheel beam
trap with helical index of l = 0, 2, ..., 10. In the inset, we plot the trapping stiffness
obtained from a linear fit around x = 0.

We do observe a decreasing trapping stiffness as the helical index, l, is increased.
A. Jesacher et al. [27] report that the optical trap stiffness remains constant for a
given microbead, regardless of the l -index, if the bead is sized far larger than the
ring spot. They suggest that this might be due to the photon momentum being
chiefly determined by the numerical aperture of the beam. On the other hand, they
specify that smaller beads actually exhibit changes in the stiffness and, eventually,
can no longer get trapped, as mentioned in Section 3.4.1.

Both results may be compatible if a list of issues is taken into account. First, our
8.06-μm-sized samples are quite smaller than the 10-μm and 15-μm ones for which
they reported constant stiffness. Second, their determining the trap stiffness from
trajectory measurements lead to intrinsically noisier measurements. Last and more
importantly, our measuring the stiffness on stuck beads does not guarantee the same
axial position as in A. Jesacher et al.’s set-up due to their actually optically-trapping
the samples (axial trapping equilibrium position).

Finally, Fig. 5.6 confirms as well our previous observation that the escape force
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decreases with higher l numbers. At an extreme point, the particle would not
remain statically in the optical trap.

5.4. Force measurements on microrods

Beam momentum detection can be applied to measure forces on optically trapped
cylinders, without the need for previous trap calibration or complete description of
the trapping dynamics. As has been discussed in Chapter 4, once the light collecting
system has been set up, accurate measurement depends on the capture of all the light
interacting with the specimen. In our drag experiments, two traps were required to
hold the cylinders on a plane perpendicular to the optical axis [69]. Therefore, we
first studied if nearly all the light creating the two traps would leave the sample and
penetrate the collecting lens. Positioning the traps far from the optical axis did not
produce significant light loss per se (Fig. 4.10), leading to the question of whether
the particular cylindrical shape contributed to a substantial drop in the captured
light due to unfavorable backscattering.

In this section, we start by analyzing optical trapping and force measurements on
large glass microcylinders, in the order of tens of microns, with slenderness coef-
ficients, s = L/2a (L and 2a are the cylinder length and diameter, respectively) of
approximately 5 - 10. Slender-body hydrodynamic theory [112] describes well the
drag forces measured for these samples.

Since the microcylinders were far larger than the laser wavelength (20 to 50 μm in
length and 5 μm in width), ray optics was used to describe their interaction with
the trapping beam. We used the Optical Tweezers in Geometrical Optics (OTGO)
package in Matlab [40], which computes optical trapping forces and torques from
a ray-optics perspective. Interestingly, the user can split the beam resulting from
the interaction with the sample into rays travelling forwards and backwards, hence
providing an immediate means for determining the amount of light captured by our
beam momentum detection instrument. For an objective numerical aperture NA
= 1.2, more than 97.5% of light propagated towards the positive axial direction,
slightly decreasing to 96.4% for NA = 1.3. These results were consistent with our
subsequent measurements.

On the other hand, we considered using shorter microcylinders (2 to 6 μm in length
and 1 to 3 μm in width) with the aim of extending the conclusion of accurate
force measurements to the case of biological samples. For example, Escherichia
coli bacteria are around 2 to 3 μm in length and 0.5 to 1 μm in diameter [116].
Chromosomes isolated from chinese hamster ovary (CHO) cells are 6 μm in length
and 0.5 μm in diameter [30]. Force modeling for these cylinders starts failing for their
lower slenderness (s ∼ 2− 3), besides the fact that two-trap manipulation requires
more careful application of the holograms described in Section 3.3.1. In Ref. [116],
P. Y. Liu et al. introduce a method to determine the size and refractive index of
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a single bacterium. We finally complement our conclusions with their results and
others in the literature to envisage that light-momentum detection will be a strong
strategy to perform mechanical measurements on rod-shaped biological samples.

5.4.1. Force measurements on 10-μm scale, slender cylinders

We performed a Stokes’ drag force experiment for a cylinder trapped in a two-tweezer
set-up with a water immersion objective of NA = 1.2, and then with an oil immersion
objective of NA = 1.3. Different flow rates were applied until the cylinder escaped
from the traps, both along the transverse and longitudinal directions. Experiments
were also carried out for both p and s light polarizations. We determined for each
applied flow the amount of light collected in sync with the optical force experienced
by the cylinder so as to counteract the drag force (Fig. 5.7b,c). Backscattering
was observed to account for, at most, 3% of the trapping beam intensity, which was
measured by removing the cylinder from the traps to avoid obstruction of the laser
beam.

Since the light interacting with the cylinders was almost entirely captured, we ex-
pected the beam momentum measurements to accurately coincide with the lateral
trapping forces. In Fig. 5.7c, we compare the measured forces with the drag forces
applied, which were calculated from slender-body theory [112]:

γ⊥ =
4πηL

ln L
a

+ C1 − 3L
8h

(5.3a)

γ‖ =
2πηL

ln L
a

+ C2 − 3L
16h

(5.3b)

Here, γ⊥ and γ‖ are the transverse and longitudinal drag coefficients of the cylinder,
such that, at flow velocity v, F = γ⊥,‖v. The parameter η is the liquid viscosity,
h is the distance to the upper surface, a = 2.5µm is the cylinder radius and L its
length, which were determined by analyzing bright-field images (Section 2.2.1.1).
Parameters C1 and C2 for slender cylinders are defined as: C1 = ln 2 − 1/2 and
C2 = C1 − 1.

During the course of these studies, we observed greater variation in force mea-
surements compared to similar experiments with microspheres, which might be at-
tributable to a number of issues. First, most of the cylinders we used had coarse and
sharp borders, thus affecting the viscous force. Second, the hydrodynamic model
considered assumed high slenderness of the objects under study, which might not be
true for the shorter cylinders. Finally, although the cylinders were stably trapped
with two optical tweezers, vibration could still occur, thus producing some noise.

We further determined the transverse and longitudinal drag coefficients for a variety
of cylinders of different lengths, dividing the force values measured by the applied
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Figure 5.7.: Force measurements on 10-μm scale cylinders. (a) Ray optics OTGO
modeling of the trapping beam acting on the cylinder edge. (b) Light scattered
backwards for a 33-μm cylinder trapped with two 20-mW optical tweezers, dragged
at several flow velocities up to the escape force. The eight data series correspond
to p and s polarizations, water and oil immersion objectives, and transverse and
longitudinal drag. (c) Forces determined through beam momentum detection
over the same data series in b matched with theoretical Stokes’ values (solid
line), with an NRMSE of ±8%. (d) Longitudinal and transverse drag coefficients
determined by force measurements on a variety of cylinders, compared with the
theoretical values (NRMSE is ± 2.6 and ± 6.6% for transverse and longitudinal
drag experiments, respectively).
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flow velocity that was now constant for all the samples (Fig. 5.7d). For both
directions, our results and theoretical curves overlapped, with a maximum deviation
of ±10%. It should be noted that, again, the same macroscopically determined
conversion factor αdetector yielded accurate force values from the signals provided by
the PSD.

5.4.2. Force measurements on 1-μm scale, non-slender cylinders

We have carried out drag force measurements on a series of cylinders of sizes from 1
μm to 3 μm in diameter and 2 μm to 6 μm in length. The results, compared to Stokes
formulae for slender cylinders, are plotted in Fig. 5.8a, where the horizontal error
bars stem from the uncertainty in determining the theoretical Stokes force applied.
This error is associated with the uncertainty in determining the cylinder size from
bright-field images.

Vertical error bars, calculated from the standard deviation of 20 measurements re-
peated for each point, were not plotted as they ranged from 20 fN to 50 fN (Section
4.1.1). See the length and diameter distributions of the cylinders used in Fig. 5.8b.
While transverse drag measurements remain within a normalized root mean square
error (NRMSE) of ±5%, longitudinal drag measurements deviate considerably from
the theoretical values, especially for cylinders of lower slenderness. In fact, we have
found a clear correlation between the deviation from Brennen and Winet’s model
[112] and the slenderness of the cylinders analyzed (Fig. 5.8c).

We can state, from these results, that light-momentum-based measurements are
as well valid for this series of shorter cylinders, yet the use of a Stokes reference
fails, especially, for the longitudinal drag case. We envision that a more complex
theoretical hydrodynamic description [117] could be used to reinforce the conclusion
on force measurement accuracy.

As a second confirmation of the measurement operation, backscattering of the cylin-
ders used here was observed to be 2.1±0.6%, slightly lower than the value obtained
for larger cylinders (Fig. 5.7b), hence the beam momentum will be measured with
a similar accuracy. The refractive index of biological samples is notably lower, lead-
ing to smaller backscattering and making the light momentum measurable from
capturing the light scattered in the forward direction.

5.4.3. Optical manipulation of microrods

As has been discussed, elongated objects tend to align parallel to the optical axis
when trapped [109], hence some technical tricks need to be undertaken if one needs to
manipulate a rod-shaped sample in a perpendicular orientation. S. Chattopadhyay
et al. [15] reported that E. coli bacteria can be stably trapped horizontally if the
working plane is set near the coverslip surface or, on the other hand, a constant
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Figure 5.8.: Force measurements on 1-μm scale cylinders. (a) Drag forces mea-
sured along the transverse (black) and longitudinal (red) directions against the-
oretical values from slender-body theory [112]. The blue line is a y = x curve.
Each symbol corresponds to a different cylinder. (b) Length against diameter for
the cylinders used (blue symbols) and constant-slenderness curves (in red). (c)
Deviation from slender-body calculations with respect to the slenderness (s) of the
cylinders. Black (red) symbols are transverse (longitudinal) drag measurements.

flow is applied. E. Stellamanns et al. [14] used as well a calibrated flow to study
propulsion forces of the rod-shaped Trypanosoma brucei brucei bateria, whereas N.
Khatibzadeh et al. [30] used the same approach to calibrate chromosome trapping
forces through escape velocity measurements. Differently, only-optical solutions can
be applied by considering light shaping. Object-adapted potentials [90, 91] and
tug-of-war [29] optical tweezers can be used for accurate orientation, as well as
multiple-trap systems to trap extended objects [34].

In the experiments shown before, we used a double-trap holographic scheme that
permitted stably trapping the two kind of microcylinders. This approach has been
used in a number of laboratories [33, 31, 32, 110, 69]. The hologams we used are
described in Section 3.3.1 and can be generated in real time to comfortably set the
distance between the two traps, D, and the relative power between them.

We next describe some of the optical manipulation properties of the samples used.
Large cylinders were tracked from bright-field images with sufficient precision to
assess the trapping force profiles and study the effect of different D-values. For the
smaller cylinders, less stable trapping was observed, as will be discussed.

5.4.3.1. Manipulation of 10-μm scale microcylinders

For the 10-μm scale glass microcylinders, we noticed that a certain trap power
threshold was required to counteract weight. We estimate that a 20-μm long, 5-μm
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in diameter microcylinder weighs around 10 pN3, hence two traps powered above
10-mW were needed for stable trapping, otherwise the microcylinders could not be
raised above the chamber surface. In this case, we believe that the two traps were
needed to counteract weight torque, rather optical torque, to avoid trapping along
the optical axis of one of the traps, i.e. being held by one of the cylinder edges.

Force measurements enabled the assessment of the trapping force profiles, i.e. versus
lateral displacement. We determined the longitudinal force profile by combining
force detection with position measurements based on video tracking (Section 2.2.1.1).
Analogous to the experiments described above, we dragged a given cylinder (L =
32.7µm) by applying a triangular flow oscillation along its longitudinal axis. Force
profiles were determined in two different regimes. First, the distance between the
traps was smaller than the cylinder length (D < L), so that only one trap exerted
an optical force counteracting the drag flow (see Fig. 5.9a). Under this regime, the
posterior trap exerts no force unbalancing the restoring force exerted by the anterior
trap, hence the microcylinder escape force is higher. Second, the effect arisen from
the D ∼ L situation was assessed: escape forces were observed to decrease as D
approached L (D → L), due to both traps competing towards opposite directions;
but, on the other hand, a linear region with increasing trap stiffness appeared.

In the D < L case, consistent with the fact that the optical traps only exert sig-
nificant longitudinal forces when interacting with the cylinder ends, we recorded a
zero-force plateau for displacements smaller than ∆x0 = (L−D)/2 (Fig. 5.9b). The
force rapidly increases when the first trap reaches the end of the cylinder. The force
profile against the trap position with respect to the cylinder edge, xtrap, indicates
that the optical force profile is independent of D.

The time force signals are shown in Fig. 5.9c. The top and bottom plateaus cor-
respond to the force exerted by one of the traps on their respective cylinder end,
whereas the central plateau (when reducing the distance between the traps) corre-
sponds to the time during which the cylinder slides before its rear edge reaches the
other trap. The central plateau coincides with the initial momentum of the beam,
confirming that the cylinder is experiencing no trapping force during this time.

In Fig. 5.9b, ∆x was calculated as half the difference between the two extreme
cylinder positions when being dragged back and forth, in a way analogous to force
measurements with respect to the initial beam momentum (Section 4.1.1). These
two positions were determined by averaging the corresponding half oscillation period.
We then duplicated and used the force measurements to plot the restoring optical
force for both positive and negative ∆x values. In the inset, the position of the left
trap with respect to the left cylinder edge was calculated as xtrap = (L−D)/2−∆x. As
shown, the four curves –corresponding to different D values– overlapped after this
transformation. This is due to the fact that only one of the optical traps balances
the drag flow, since D < L, i.e. the posterior trap is in a flat position regarding the
cylinder (far from the edge), hence applying no longitudinal force to the cylinder.

3Glass Micro Rod PF50 density: 2.6·103 kg m−3 (Nippon Electric Glass).
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Figure 5.9.: Trapping dynamics of 10-μm scale cylinders. (a) Schematic of the
trapping dynamics of a cylinder with two holographic optical tweezers. L is the
cylinder length; D is the distance between the two traps. The optical traps exert
longitudinal forces only (in orange) when they are close to one of the cylinder
edges. (b) Experimental force-position curves up to the escape force for a cylinder
with L = 32.7µm trapped with two 25-mW optical tweezers and different D
values. Measured forces are represented against the distance between the cylinder
center and the intermediate point between the two traps, ∆x. Inset - optical force
against the trap position with respect to the cylinder edge, xtrap, for the four
D values. The blue line is the theoretical momentum balance inferred from ray
optics. (c) Force signals for D = 30µm (top), D = 25µm (center) and D = 20µm
(bottom), for L = 32.7µm. Traces for the other two values of D are also plotted
in light gray for comparison. The dashed blue line indicates the initial momentum
of the trapping beam.

90



5.4 Force measurements on microrods

We next approached the D → L situation. In Fig. 5.10a, the two traps simultane-
ously exerting opposite optical forces are schemed. While the anterior trap exerts an
optical force pointing against the flow (F+), the posterior trap does interact with the
corresponding microcylinder end and exerts a certain optical force (F-) favoring the
drag force. To counterbalance the drag force, optical forces arising from both traps
should fulfill F+ − F− = Fdrag = γ‖vflow, which makes the microcylinder actually
having a rapidly-decreasing escape force down to the situation in which it can no
longer be stably trapped (F+ ∼ F−), as shown in Fig. 5.10b.

Concerning the force profiles, in Fig. 5.10c we show measurements analogous with
those in Fig. 5.9b. Differently, the zero-force plateau disappears and a linear region,
F = −κx, becomes visible. Importantly, OTGO simulations accurately overlap with
the measurements, reinforcing the geometrical optics description of these samples
according to their dimensions L,D � λ. Here, the code was modified to include the
second optical trap, which was not a need in Fig. 5.9b due to this exerting no force
along the cylinder axis4.

Figure 5.10.: (a) See Fig. 5.9a. (b) Escape force values versus the distance be-
tween the traps, D Experimental results (mean ± s.d.) match the simulation
results computed with the OTGO package and the drag forces applied with the
piezostage-induced flow. (c) Force profiles for three different D-values. The con-
tinuous lines show the theoretical forces computed with OTGO, which again over-
lap the experimental data and drag forces.

The fact that a linear restoring force appears in this situation (with no zero-force
range) could be eventually used for calibrating the trap stiffness for indirect force
measurements, such as the methods described in Section 2.2. However, it is worth

4We thank Neus Allande’s for writing the software for the trapping force simulations shown in
Fig. 5.10b.
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noticing the high variability due to a slight change in D, hence we would rather
recommend the escape force method in combination with video tracking.

In either case, regardless of the D value, neither the measured back-and-forth forces
nor the initial momentum –corresponding to null force– changed (Fig. 5.9b-c and
Fig. 5.10). Therefore, the measured force only depended on the external drag
force applied, which was optically counterbalanced regardless of the trapping beam
structure. This reinforces the idea that the direct detection of beam momentum
facilitates the optimal choice of the trapping beam or multiple-trap arrangement
to manipulate a given sample, providing accurate force measurements without the
need for previous in situ trap calibration. In addition, the non-linear response of the
force profile –or the strongly-varying linear response in Fig. 5.10b– did not impede
the measurement of optical forces, as they were obtained directly from the detection
of changes in the beam momentum.

5.4.3.2. Manipulation of 1-μm scale microcylinders

When trapping the shorter cylinders, in the 1-μm scale, we found that the choice of D
became quite critical for horizontal trapping, especially for the shorter ones. Usually,
slight changes in D, of tens of nanometers, could eventually lead to unexpected
collapse of the microcylinder into one of the traps. Something similar happened at
the point the piezostage-induced flow started. To avoid this and ensure horizontal
trapping, we assayed trapping over a series of D values, as well as the relative
power between the traps through parameter M (Section 3.3.1), and set the most
stable configuration. We envision that another solution could be implemented by
generating complex force fields, such as those proposed by Bezryadina et al. with
high transverse momentum transfer [29]. As discussed in Section 5.5, optical force
can still be measured through light-momentum detection on non-Gaussian beam
traps.

5.4.4. Discussion on the applicability on biological samples

Direct detection of beam momentum differs from other force-sensing methods in
optical micromanipulation, in that force measurements can be obtained directly
instead of being inferred from an intricate relationship with the position and ori-
entation of the trapped specimen. Thus, this enables accurate force measurements
without the need for specific trap calibration or linearity between the position and
orientation of the trapped sample and the optical force.

Accurate measurement requires the capture of all the light interacting with the
sample; a condition which is fulfilled as long as light losses are negligible. This has
been previously demonstrated for micro-spheres trapped on-axis [20], as well as in the
present chapter for multiple holographic traps spread over the sample field of view
and optical manipulation of cylindrical objects. In the multiple-bead experiment,
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we demonstrated that the high-NA collecting lens captured all the light from off-axis
traps, and that the force was independent of the trap position. Backscattered light
for 10-μm scale, glass cylinders was assessed to be 3% of the incoming light, despite
their particular symmetry.

The macroscopic calibration of the set-up, represented by the volt-to-picoNewton
parameter αdetector introduced in Section 2.3, is not affected by local variables nec-
essary to calibrate traps in situ, such as temperature, viscosity and trapped object
geometry. Likewise, it does not depend on other key parameters determining opti-
cal trapping dynamics: laser power, trapping beam NA and structure, and medium
and sample refractive indices, among others. Furthermore, force measurements can
be undertaken on non-spherical samples [110, 111] and non-viscous media [118], for
which calibration is considerably complex.

In this chapter, we have shown that the measurement of the total drag force exerted
on a multiple-bead system can be addressed by analyzing the total momentum
exchanged between the multiple-spot trapping beam and the several trapped beads.
An indirect calibration-based method is not applicable here, as individual bead-trap
calibration is inaccessible at the BFP. The system collects all the light creating
the different optical traps and measures the change in the transverse component of
the beam momentum, which is equivalent to the entire lateral drag force applied.
Multiple-spot optical tweezers have been widely used for stable trapping of extended
objects and calibrated for force measurements [110, 111, 31, 33, 32, 34]. However,
the independence of the in situ experimental conditions permits the creation of
arbitrary trap patterns adapted to a particular situation without the need of a new
calibration.

We have demonstrated the accurate measurement of hydrodynamic forces on glass
microcylinders trapped with pairs of optical tweezers and shown that most light was
eventually forward-scattered, which permitted beam momentum measurements. For
micro-rods in the same order of magnitude of biological specimens, i.e. in the micron
range, we measured 2.1 ± 0.6% backscattering. For microorganisms trapped in wa-
tery solutions, the relative refractive index, nrel, is substantially smaller than that of
the samples used here. For example, for an E. coli bacterium with refractive index
nEC = 1.388 [116], we expect nrel = 1.04. For chromosomes with nChrom = 1.36−1.4
[30], the refractive index will be nrel = 1.05 at highest. In this kind of samples, there
will hence be negligible backscattering and the light-momentum detection principle
can be applied. Therefore, the results here are applicable to precise measurements
on rod-shaped organisms in microbiological studies, which constitutes a primary
concern in microbiology as they are widely found in nature. For example, in exper-
iments analyzing hydrodynamic properties of biological swimmers, a given microor-
ganism can be trapped with pairs of optical tweezers that can be used for controlled
alignment and orientation.

As will be discussed in Chapter 7, in addition to rod-shaped samples, the method
described here can be undertaken in non-viscous media, such as the interior of a cell.
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Biological cargoes driven by molecular motors can be directly trapped without the
aid of spherical probes, and the pulling forces measured under strict physiological
conditions. Importantly, many of these cargoes have an elongated, rod-like shape
(e.g., chromosomes, mitochondria, peroxisome peroxules, etc.). Even vesicles that
are frequently targeted in cellular experiments for their appropriate characteristics,
such as lipid droplets, can change from their rigid homogeneous sphere when they
increase in size, posing difficulties for the calibration even in controlled conditions
ex vivo [17].

The necessity for capturing a significant fraction of the scattered light is not more
limiting in biological studies than in the experiments we carried out here. For
example, inside a cell, backscattering is reduced as the relative refractive index of
intracellular organelles (i.e., with respect to that of the cytoplasm) barely reaches
nrel = 1.1 (e.g., lipid droplet refractive index nLD = 1.48 − 1.53 [119], cytoplasm
refractive index nc = 1.36− 1.375 [120]), whereas for glass microcylinders in water,
nrel = 1.17. Angular light-scattering studies show that even in organelles with
complex internal structure, such as mitochondria, scattering predominantly occurs
in the forward direction [121].

Direct detection of beam momentum can also be used for synthetic objects with
interesting trapping properties. As an example, elaborate microprobes exhibiting
specifically engineered force fields can be manipulated and quantitatively analyzed,
with possible applications for photonic force microscopy [32]. As previously men-
tioned, the tendency for elongated objects to align parallel to the optical axis, as
observed both in biological and synthetic samples, can be easily resolved by using
pairs of optical traps without impeding the measurement of global optical forces.
Moreover, the arbitrariness of the HOTs array used in the multiple-bead experiment
strongly suggests that direct detection of beam momentum is suitable for quanti-
tative experiments with complex, non-Gaussian trapping beams creating adapted
optical potentials [90, 91, 29].
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6. Determination of heating due to
IR light absorption in the optical
trap

In optical tweezers, heating of the sample due to absorption of the laser light is
a major concern as temperature plays an important role at microscopic scale. A
popular rule of thumb is to consider that, at the typical wavelength of 1064 nm,
the focused laser induces a heating rate of B = 1 °C/100 mW [8]. We analyzed
this effect under different routine experimental conditions and found a remarkable
variability in the temperature increase. Importantly, we determined that temper-
ature can easily rise by as much as 4 °C at a relatively low power of 100 mW, for
dielectric, non-absorbing particles with certain sets of specific, but common, pa-
rameters. Heating was determined from measurements of light momentum changes
under drag forces at different powers, which proved to provide precise and robust
results in watery buffers. We contrasted the experiments with computer simulations
and obtained good agreement. These results suggest that this remarkable heating
could be responsible for changes in the sample under study and could lead to serious
damage of live specimens. It is therefore advisable to determine the temperature
increase in each specific experiment and avoid the use of a universal rule that could
inadvertently lead to critical changes in the sample.

6.1. Heating in optical traps

Optical tweezers have been proven to be a powerful microtool for biological stud-
ies since their inception, pioneered by Arthur Ashkin [5]. This non-invasive tech-
nique exhibits some advantageous features including non-contact forces in the range
0.1–100 pN and compatibility with liquid medium environments which make it highly
suitable for application in biological studies. However, even at the innocuous laser
wavelength of 1064 nm used in our experiments, light absorption in water is not
negligible; so localized heating at the focus of the optical trap and heat transfer to
the immediate surroundings could produce small but significant thermal effects.

Different methods have been used to determine temperature increases due to the
use of optical tweezers (see Fig. 6.1 and Table 6.1). By means of the fluorescence
emission shifts of a temperature-sensitive Laurdan dye probe, Liu et al. [122, 123]
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measured temperature increases of 1 °C/100 mW, 1.15 °C/100 mW and 1.45 °C/100
mW for trapped live human sperm cells, hamster ovary cells and liposomes, respec-
tively. Haro-González et al. [38] found an increase of 9.9 °C/100 mW for a 980-nm
laser trap, using quantum dot luminescence thermometry. Ebert et al. [124] devel-
oped a fluorescence ratio technique using the temperature sensitive dye Rhodamine
B and the temperature-independent reference dye Rhodamine 110, and obtained a
heating rate of 1.3 °C/100 mW. The same method was used by Wetzel et al., who
determined an increase of 2.3 °C/100 mW [125]. Kuo [126] used an adaptation of
the wax-melting method to estimate the temperature increase, which was found to
be 1.7 °C/100 mW. The changes induced by temperature in the refractive index of
water were monitored by Celliers and Conia [36], who measured a 4 °C temperature
increase in a 55-mW, 985-nm laser trap (7.3 °C/100 mW).

Figure 6.1.: Compilation of sample heating measurements in the literature ob-
tained via a number of different methods. The black (orange) line corresponds
to the simulations in water (glycerol) discussed in Section 6.5. Each symbol is
described in Table 6.1.

Following a completely different approach, Peterman et al. [35] introduced a tech-
nique based on the analysis of the thermal motion of a trapped bead and measured
a temperature increase of 3 °C - 4 °C/100 mW for different sizes of polystyrene
beads diluted in glycerol and around 0.8 °C/100 mW for silica beads diluted in
water. With the same method, Abbondanzieri et al. [128], using a system based
on a dual-beam optical trap, measured a heating of 0.4 °C every 100 mW of laser
power at the back of the objective. Similarly, Jun et al. [67] compared the active
and passive calibration of an optical trap and inferred heating rates of 2.4 °C/100
mW and 1.2 °C/100 mW for 0.49-μm polystyrene and 0.64-μm silica beads, respec-
tively, in a 980-nm laser trap. Finally, for a 975-nm low-NA laser trap, Mao et al.
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[37] obtained 5.6 °C/100 mW by measuring the temperature-dependent viscosity of
water in a Stokes drag experiment from direct force measurements based on light
momentum.

Despite this variation in reported results, temperature increase at 1064 nm is often
assumed, as a rule of thumb, to be approximately 1 °C/100 mW [8]. This small
heating is then frequently used to argue for the relative innocuousness of laser traps,
especially when used with live samples, such as cells. However, as discussed in Ref.
[35], laser heating is directly dependent on the intensity distribution of the trapping
laser and is therefore sensitive to changes in experimental conditions which could
give rise to particularly unfavourable cases with considerably larger temperature
increases. For example, Peterman et al. [35] showed the increase in heating with
the axial position of the trap in glycerol. Unfortunately, to the best of our knowledge,
that is the only work in which the variability of the heating rate, B, is analysed with
respect to some parameters.

To fill this gap, we assessed the change in B under different experimental conditions.
Heating was measured while changing the numerical aperture of the objective, the
suspension liquid, the material and size of the trapped particle, and the position
of the trap. We found a remarkable dependence on some of the parameters and,
more importantly, temperature increases as large as 4.0 °C/100 mW in water. The
experimental scheme was based on the analysis of the variation in measured drag
forces on trapped particles under different laser powers, similar to that adopted in
Refs. [35, 37]. The force was determined through measurement of the change in light
momentum [19, 20, 21]. This method is independent of the specific properties of
the sample; and particularly, it does not depend on the laser power or the chamber
temperature. This allowed us to directly infer variations in the measured force as
changes in the medium viscosity caused by the temperature rise. Our experiments
were complemented with computer simulations of the heating produced by an optical
trap. We used the model proposed by Peterman et al. [35], which provided an
accurate description of the experimental data.

6.2. Heating-induced calibration deviation

In previous work [21], we showed the validity of interpreting, under certain strict
conditions, back focal plane (BFP) interferometry signals as measurements of light
momentum changes; that is, as direct readings of the trapping force. The most
significant requirements for such an interpretation are: 1) the use of a high-NA,
aplanatic collecting lens that captures all the light from the optical traps; and 2)
to track the light intensity distribution at the BFP of the collecting lens with a
position sensitive detector (PSD). The usual approach to measuring forces in optical
tweezers consists of calibrating the trap stiffness κ (pN/μm), in accordance with:
F = −κ·x, and the position sensitivity β (μm/V), such that: x = β·Sx (where
S x is the sensor positional voltage signal). In particular, we proved that if the
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aforementioned conditions hold, the product αtrap = κ·β (pN/V) is invariant and
equal to the constant and permanent momentum calibration of the sensor, αdetector =
RD
ψf ′c

(see Section 2.3), where RD is the detector radius, f ’ and ψ (V/W) are the focal
length and the responsivity of the instrument, respectively, and c the speed of light:

αtrap ≡ κ·β =
RD

ψf ′c
≡ αdetector (6.1)

In contrast to αtrap, which must be calibrated, for example using the power spectrum
method [94], αdetector is obtained from first principles and is determined by the
optical parameters of the beam detection system alone. This suggests that, if the
required instrument design conditions are fulfilled, no new in situ trap calibration is
necessary when the experiment changes [20, 21] and force can be directly obtained
as: Fx,y = −αdetectorFx,y. The momentum calibration of the force sensor, αdetector,
is independent of the geometry of the trapped object and of the structure of the
trapping beam [69]; moreover, and importantly for the purpose of this paper, it is
not dependent on laser power or chamber temperature.

In Fig. 6.2, we used the discrepancy between the two schemes to determine changes
in sample temperature. A close look at the results for αtrap = κ·β reveals that
the equivalence αtrap = αdetector starts to fail when the laser power is increased,
with αtrap deviating from the constant value RD

ψf ′c
. This is indicative of a local

temperature increase due to laser absorption (of 4 ºC/100 mW in Fig. 6.2), which
leads to incorrect κ and β calibration if overlooked. As discussed by Peterman et al.
[35], temperature affects the power spectra of optically trapped microspheres, both
as a thermal variable governing Brownian motion and through the viscosity of the
solvent, which importantly is dependent on it.

6.3. Measurement of temperature increase

In this work, determination of local temperature in an optical trap is based on the
measurement of the viscosity of the solvent, which is accessible in a single step
from Stokes-drag force measurements. As described previous chapters, drag forces
are assessed from light-momentum measurements, such that: Fdrag = −αdetectorSx,
where Sx is the position sensitive detector (PSD) signal. The light-momentum
calibration parameter, αdetector, has been demonstrated to be independent of the
geometry of the trapped object and of the structure of the trapping beam [19, 20, 21,
69], and importantly, it is not dependent on the laser power or sample temperature.
In this way, changes in the measured drag force when incrementing the trap power,
and therefore increasing the sample temperature, are directly caused by the variation
in the medium viscosity, given as follows:

η (T ) =
αdetectorSx

6πRvb
(6.2)
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6.3 Measurement of temperature increase

Figure 6.2.: Discrepancies between αdetector and αtrap = κ·β, obtained from the
power spectrum analysis, provide evidence of change in the sample when the laser
power is increased. When the temperature increase is considered in the power
spectrum (PS) fitting [94], the calibration is compensated and αtrap is constant.

where R is the radius of the trapped microsphere, v is the flow velocity and b is the
Faxén correction due to the sphere-to-surface interaction [6, 7]. With this intention,
we used a piezoelectric stage to produce constant drag forces (see Section 3.1.3).
In Fig. 6.3a (top), we show the sudden drop in the force reading when the trap
power is switched from 20 mW to 200 mW. As all the other variables are fixed,
this is indicative of a change in the water viscosity that arises from the temperature
increase induced by laser heating. When the intensity is decreased back to its original
value, the original force is reversibly recovered. Laser heating at and around the
focus of an optical trap is due to absorption of the NIR laser light, primarily by the
solvent [122, 36, 35, 37], as we discuss below. The dynamic viscosity thus becomes
a natural vehicle to connect force readings and sample temperature. Variations in
force readings can be translated into changes in the viscosity of the medium, which
we can directly convert into changes of sample temperature (see Fig. 6.3a, bottom).
For water and glycerol, the relation between viscosity and temperature is given by
[35]:

log ηwater (T ) =
1.3272· (293.15− T )− 0.001053· (T − 293.15)2

T − 168.15
− 2.999

(6.3a)

ηglyc (T ) = T 31.734·e(−237.03+ 16739
T ) (6.3b)

In agreement with previous results [122], in all our experiments we found a linear
relation between the trap power, P trap, and the temperature, T, in the range 20 °C
– 30 °C: T = Troom + B·Ptrap (see Fig. 6.3b). Trap power was monitored from the
S SUM signal of the PSD: Ptrap = 1

ψ
SSUM (see Section 2.3). In all the experiments,
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Figure 6.3.: Determination of temperature through measurements of light momen-
tum. (a) Top: Drag force measured on a 1.16-μm bead for 200 seconds. Each
dot is the mean drag force obtained from the square force signal over one cycle,
which is produced by the piezoelectric stage continuously applying a triangular
oscillation. Power is switched from 20 mW to 200 mW at second 30 and back to
20 mW after 100 seconds. Bottom: Temperature obtained from the force mea-
surement depicted in the top panel, through Eqs. 6.2 and 6.3. (b) Both the
heating rate, B, and room temperature, T room , were determined from the linear
fit to measurements of temperature at 10 different laser powers between 20 and
200 mW. (c) Temperature values obtained from all the experiments on 1.16-μm
beads in water (red circles) compared with independent measurements with a pre-
cision thermometer (black dots). (d) The ratio Troom

Tref
showed a standard deviation

similar to that expected from the ±2–3% of the diameter of the beads used.

ten temperature measurements, Ti, at trapping powers, Ptrap,i, of 20 mW, 40 mW,
. . . , 200 mW, were linearly fitted by T = Troom + B·Ptrap, from which we could
obtain the heating rate, B, with an estimated precision of 10–15%, and the room
temperature, Troom. Final heating rates (Fig. 6.5) were calculated from the mean of
3–5 measurements. Along the measurement procedure schemed in Section 4.1.1, each
force value used for sample temperature calculations was taken as the mean over 20
consecutive cycles; and the corresponding standard deviation, typically in the range
±1–3%, was considered to be the associated error bar. Such standard deviation
resulted in an uncertainty of ±0.5 °C–1.5 °C in temperature measurements.

We compared T room with an independent measurement obtained with a precision
thermometer (±0.1 °C), T ref , and observed clear correspondence between the mea-
surements (Fig. 6.3c), with an average deviation of =1.5 °C (=0.5%) due to a slight
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discrepancy between the measured and the theoretical drag force (+2%). When nor-
malized by T ref , the room temperature measurements exhibited a ±0.3% standard
deviation (Fig. 6.3d), which mainly comes from the ± 2–3% standard deviation of
the diameter of the monodisperse polystyrene microspheres we used (see Table 6.2).

Table 6.2.: Actual flow velocities applied to the different microspheres used in our
drag experiments, measured via the piezoelectric stage output reading (see Section
3.1.3), and theoretical Stokes drag forces applied.

In Section 6.5, the temporal evolution of heating is discussed from a numerical point
of view to ensure that it is factually instantaneous. In experiments, we analyzed the
variability of the measured viscosity with the stage velocity and found no significant
change, which indicated that the dissipation of heat was faster than the motion of
the fluid, so the temperature “experienced” by the particle was constant (Fig. 6.4).

To conclude, the oscillation parameters were chosen so that they produced similar
drag forces on the microspheres used, which had different radii and were given
by their corresponding manufacturers (Table 6.2). The diameter of the smallest
microspheres (0.61 μm) was also confirmed using dynamic light scattering (DLS,
data not shown1).

6.4. Variability under experimental parameters

Measurements of B, carried out as described in Section 6.3 and shown in Fig. 6.3b,
had a reproducibility of approximately ±10% (compatible with that estimated from
the linear fit), as shown in the experiment in Fig. 6.5a, which was repeated 10
times. Here, a 1.16-μm polystyrene microbead trapped at ztrap = 10µm from the
lower coverslip of the microchamber experienced a heating rate of 1.9 °C ± 0.2
°C/100 mW (±11%); similar to previous results in the literature (see Fig. 6.1 and
Table 6.1).

1We thank A. Farré for this measurement at IDAEA - Institut de Diagnosi Ambiental i Estudis
de l’Aigua (CSIC - Consejo Superior de Investigaciones Cient́ıficas).
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Figure 6.4.: Water viscosity measured with a 0.61-μm bead at different flow ve-
locities. The vertical dashed red line indicates the velocity of 320 μm/s applied
for this kind of beads in our study (Table 6.2). The solid red line and the gray
shadow are the mean and standard deviation of the quotient η/η0.

The first parameter analysed that affects trap heating was the axial position of the
trap (Fig. 6.5b): a response previously measured and modelled in glycerol [35]. As
discussed in the Section 6.5, the higher heat conductivity of the coverslip means that
it acts as a heat sink, cooling the trap more as it is placed closer to the interface.
Similarly to previous findings [35], heating was observed to increase rapidly in the
first 10 μm above the lower glass surface, though in our case it saturated at approx-
imately 1.9 °C/100 mW (the same value obtained in Fig. 6.5a) in the range 10–30
μm. The temperature increase is chiefly concentrated in a region ˜10–15 μm around
the trap position, z trap, so that heat dissipation by the coverslip is actually sufficient
to cool down the trap only below ztrap = 10 − 15µm. For this experiment, the
water-immersion, NA = 1.2 objective was used, which avoids spherical aberration
and permits efficient trapping over the whole microchamber axial range.

We then analysed the effect of particle size. Despite it having been suggested that
this parameter has only a small influence on the final result, we observed a difference
of over twofold in B for particles with diameters from 0.61 μm to 3.00 μm (see Fig.
6.5c): much greater than the error associated with the determination of B (10–15%,
see Fig. 6.5a). The larger the particle, the lower the heating was. As discussed in
Section 6.5, this result can be directly connected to the radial temperature profile
caused by the optical trap. This was reproduced by both the water-immersion NA =
1.2 and the oil-immersion NA = 1.3 objectives, though greater heating was observed
with the latter, especially for smaller beads.

In addition, we studied the effect of reducing the effective numerical aperture, NAeff,
of the trapping beam. A diaphragm was placed at an optical equivalent to the
entrance pupil of the NA = 1.3 objective (of focal length f ′obj) to modify the diameter
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Figure 6.5.: Variability of B under different experimental conditions. (a) System-
atic measurements of the heating rate with the same sample showed a standard
deviation of 11%, confirming the error estimation of 10–15% in our measure-
ments. (b) Variation of B for different axial positions of the trap with a 1.16-μm
polystyrene microbead (squares). The mean and standard deviation of the mea-
sured B values beyond ztrap = 10µm, equal to the independent measurement
shown in a, are indicated by the red line and the grey area, respectively. Results
from the simulations described in section 6.5 are superimposed (orange trace). (c)
Heating for particles of different radius, R, and the same material (polystyrene).
Upward (downward) triangles correspond to particles trapped with the water-
(oil-) immersion NA = 1.2 (NA = 1.3) objective in water, while circles corre-
spond to the particles trapped with the NA = 1.2 objective in glycerol. The
solid lines are radial temperature distributions obtained from simulations in wa-
ter (α/K = 23.7 ºC/W) and glycerol (α/K = 76.4 ºC/W) respectively, both for the
NA = 1.2 objective. The inset shows the experimental ratio Bglyc/Bwater (squares),
which is similar to the nominal ratio: 3.2 (dashed line). (d) Heating for 0.61-μm
and 3.00-μm polystyrene microbeads in water, trapped with the oil-immersion
objective with different values of NAeff. (e) B was found to be equal for three
2-μm particles of different materials (MR: melamine resin, PS: polystyrene).
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of the beam, Dbeam, such that: NAeff = Dbeam
2

f ′obj. The measurements were critically
dependent on NAeff, exhibiting variations as large as ±2 °C/100 mW and ±1 °C/100
mW for 0.61-μm and 3.00-μm polystyrene beads, respectively (see Fig. 6.5d). For
the case of 0.61-μm beads, our experimental results did not exhibit a monotonic
trend; whereas they revealed an ascending pattern for 3.00-μm beads. The output
laser power was set to produce a similar range for the trap power (20 mW to 200
mW) when reducing NAeff, as commented in Section 6.3.

As reported by Peterman et al. [35], B also depends on the suspension medium. The
variation in temperature found when we changed water for glycerol was similar to the
quotient between the ratio of light absorption, α (m=1), to thermal conductivity, K,

between the two liquids,
(α/K)glyc

(α/K)water
= 3.2 (see Fig. 6.5c, inset). This result suggests

that, as assumed by different models [122, 36, 35, 37], the temperature increase
depends linearly on α/K.

In contrast, heating seemed to be independent of the material the trapped particle
was made of. Fig. 6.5e shows the results for microspheres of similar sizes (2.19 μm,
2.32 μm and 1.87 μm) but different dielectric materials (melamine resin, silica and
polystyrene, respectively). Despite the ratio α/K for the three beads differing by
4 orders of magnitude (13.8 °C/W, 3.6·10=3 °C/W, 50 °C/W, respectively), B was
found to change by only 0.1 °C/100 mW (±4%), in accordance with the fact that
trap heating is mainly governed by laser absorption in the surrounding buffer.

6.5. Heat transport simulations

Temperature, T, is in general terms governed by the heat equation:

∇2T =
1

k

∂T

∂t
− q

K
(6.4)

where k = K/c·d is the thermal diffusivity, c is the specific heat, d is the density, K
is the thermal conductivity and q the energy absorbed per unit of volume and unit
of time. Eq. 6.4 describes how energy transferred by the laser is diffused throughout
the surrounding space.

To solve this equation, we need to specify both the function q and the boundary
conditions. We used the absorption proposed by Peterman et al. [35], which is an
improved version of the spherical model of Liu et al. [122], taking into account the
finite volume of the focus:

q =
1

2π

αP

r2 + (λ/2πNA2)2 (6.5)

Here, we used f (θ) = 1/2π (see Section “Theoretical model” in Ref. [35]) and
we included the explicit dependence on the NA. In the equation, α (m=1) corre-
sponds to the optical absorption and P to the incident laser power. Considering the
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geometry of the problem, defined by the flat parallel coverslips, with higher con-
ductivity (Kglass = 1.4 W/m/K) and lower absorption (αglass = 0.005 m−1 ) than
water, acting as heat sinks, we alternatively chose boundary conditions with cylin-
drical coordinates, in which the spherical radial coordinate in Eq. 6.5 is expressed
as r2 = ρ2 + (z − ztrap)2. We set the Dirichlet boundary conditions: ΔT = 0 at ρ
= 80 μm and z = 80 μm; whereas a real water-glass interface was simulated at z =
0, which is the surface closest to the optical trap in all the experiments. The trap
height, ztrap, was 10 μm in all the experiments, unless otherwise stated.

The evaluation of the temporal part of the equation shows that after 1 ms the
temperature reaches 90% of the steady-state value (Fig. 6.6a). For the highest flow
velocity applied in our experiments (320 μm/s for 0.61-μm beads in water; see Table
6.2), such a characteristic heating time is still faster than the fluid displacement
time around the focal region. Sample heating of more than 90% is thereby ensured
and a steady-state situation can be considered due to our precision in temperature
measurements, which was around 10–15%. This agrees with the results in Fig. 6.4,
which show no substantial variation in the measured viscosity for flow velocities up
to 700 μm/s. For the lower flow rates applied to larger microbeads, the rate of heat
diffusion is even faster compared with the velocity of the medium (Table 6.2).

In Fig. 6.6b, we represent a typical ρ – z section of the temperature distribution
around the trap (NA = 1.2) for three different axial positions of the focus. This shows
that sample warming decreases as the trap approaches the water-glass interface,
due to heat dissipation into the coverslip becoming more efficient. The axial and
radial profiles for the trap at ztrap = 10µm μm shown in Fig. 6.6c reproduce the
characteristic ln (1/r) decay proposed by Mao et al. [37], whose solution had been
empirically found by Celliers and Conia [36] some years before, ∆T = a − b ln (r),
and experimentally proved by Haro-González et al. [38].

We can observe how the distance to the closest glass surface governs the heating
produced by the laser (Fig. 6.6d). This is due to the low α/K of glass, which
dissipates the heat produced by the laser, keeping the water-glass interface almost
at room temperature. Unlike the result found by Peterman et al. [35] obtained
assuming spherical symmetry (see Fig. 6.8a and Table 6.3), temperature was found
to increase only over the first 0–10 μm from the bottom surface of the chamber,
where the heat dissipated by the glass coverslip was significant enough to cool down
the focus. After this, B becomes almost constant as the distance increases across
the rest of the chamber. As mentioned above, the temperature profile decaying
sufficiently beyond 10 μm from the trap centre (Fig. 6.6c) leads to the cooling by
heat dissipation through the coverslip being unnoticeable for ztrap values of more
than 10 μm.

In contrast, the boundary in the radial coordinate, ρ, seems to have little impact on
the value of the temperature near the focus. In Fig. 6.6c, inset ii, we show three
temperature distributions simulated with the Dirichlet ΔT = 0 °C condition fixed
at different distances, which collapse into a single curve, i.e., maintaining the same
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Figure 6.6.: Simulation of temperature distribution inside the microchamber. (a)
Temporal evolution of heating. The simulation shows that the temperature
reaches 90% of its steady-state value after 1 ms. (b) Temperature distribution for
three different axial positions of the trap. z = 0 represents the bottom surface
of the chamber and ρ has been shifted appropriately for visualization. (c) Radial
(black) and axial (red) temperature distributions following the ln (1/r) decay (log
scale plot in inset i). Radial temperature distributions for the ΔT = 0 boundary
condition at ρ = 80, 120 and 160 μm (solid, dashed and dot-dashed black lines)
converge to the same value at short distances (inset ii). (d) Simulations of the
temperature distribution at different heights (shadowed areas). The circles corre-
spond to estimations of B for a 1.16-μm bead according to Bbead = ∆T (ρ = Rbead).

maximum heating in the vicinity of the trap. Interestingly, this profile describes the
temperature increase measured for microspheres of different radii, Rbead , as shown in
Fig. 6.5c. We found a certain connection between the temperature at distance Rbead

and the heating of a particle with that radius, i.e. between B bead and ∆T (ρ = Rbead)
at P trap = 100 mW (Fig. 6.7a). This is consistent with the fact that our method,
based on drag force measurements, detects viscosity changes at the interface between
the bead and the medium.

Concerning the effect of the NA, we had observed (Fig. 6.5c) considerably higher
heating rates for the oil-immersion, NA = 1.3 objective, particularly on the smallest,
0.61-μm beads. Likewise, Fig. 6.5d showed large variations in B when modifying
NAeff. The heat source in our simulations, q, includes the dependence on the NA
and also yields greater heating for higher NA; though the resulting difference is one
order of magnitude smaller than in the experiments. We believe that the model
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Figure 6.7.: Simulation of temperature distribution inside the microchamber. (a)
Relation between the heating rate for a given bead, B bead , and the temperature
distribution produced by the trap. (b) Simulated temperature profile introducing
a 2-μm microsphere at the focus of the trap. The gray area corresponds to the
reproducibility of our measurements, shown in Fig. 6.5a. (MR: melamine resin,
PS: polystyrene, Si: silica).

does not accurately describe the temperature increase at distances comparable to
the beam waist, r ∼ ω0, as the result depends on the shape of the beam, which is
not correctly modeled in this region. Additionally, experimental modification of the
effective NA was achieved by reducing the beam diameter with an iris placed at an
optical equivalent of the entrance pupil of the objective. This, at the same time,
modifies the overfilling, which affects additional variables that govern the optical field
at the focus and hence may also introduce some deviations from the simulations.
For 3.00-μm beads, alternative model approaches [36, 37] qualitatively describe the
heating–NA relationship (see Section 6.5.1). The fact that these beads are far larger
than the beam waist, and that the optical field at Rbead is hence described more
precisely, is the reason why the heating predicted through simulations is closer to
the experimental results.

Finally, we checked the impact of the particle material on temperature. We incorpo-
rated into the simulations a second material with a spherical shape, corresponding
to the particle, at the focus of the trap. We analyzed the temperature distribution
for three different dielectric materials (melamine resin, silica and polystyrene) and
verified that the temperature over the particle surface, i.e. at a distance Rbead , was
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almost independent of the material of which the microsphere was made within our
experimental errors (Fig. 6.7b). Therefore, only the optical absorption and the
thermal conductivity of the suspension medium seemed to play a role in the heating
(see the ratio α/K for water and glycerol in Fig. 6.5c, inset). To a first approxi-
mation, an intuitive interpretation of these results is that the particle “experiences”
on average the temperature of the surrounding solvent which is independent of the
particle itself and is thereby given by the decreasing temperature profile produced
by the trap alone, making the temperature increase lower for larger particles. Note
that for absorbing particles, such as semiconductor or metallic particles, heating
would be qualitatively higher since the energy transferred to the medium would be
sufficient to alter the temperature distribution.

6.5.1. Model discussion

We made use of the MathWorks Partial Differential Equation (PDE) Toolbox to
simulate the heating of the sample due to a laser trap. Given that the geometry
we used exhibits cylindrical symmetry, we adapted the heat equation to include the
Jacobian along the radial component and solved the problem on a 2D surface.

As mentioned above, the modeling adopted by Peterman et al. of B(z ) [35], which
was conceived in spherical geometry in which the trap is created at r = 0 and the
ΔT = 0 condition is fixed at r = z, exhibits a non-stopping increase (Fig. 6.8a). In
contrast, the choice of cylindrical symmetry and the Dirichlet boundary conditions
at two parallel surfaces corresponding to the coverslips yields a constant B value
after an abrupt rise over the first 10 μm (Fig. 6.8b). This is especially evident in
the real sink case with thermal conductivity Kglass (Fig. 6.8c), due to the coverslip
only being capable of cooling the sample sufficiently when the trap is placed very
close to the interface.

In Fig. 6.8d and Table 6.3, we show two models in the literature that describe the
radial temperature profile with similar accuracy. The model of Celliers and Conia
[36] was simulated in the same cylindrical geometry and coincided closely with our
simulations, with a slightly greater temperature increase, ΔT (ρ), for the NA = 1.3
objective than for the NA = 1.2 objective. The analytical expression provided by
Mao et al. [37] also coincides with our measurements and exhibits an even greater
difference between the two objectives.

Finally, we simulated the effect of reducing the effective NA of the trap (Fig. 6.5d
and Fig. 6.8e). Although expressed in terms of the trap power, the heating rate,
B (ºC/100 mW), is more related to the local irradiance, which eventually explains
the observed variation. Irradiance is contained in the shape of the heating source,
q(r), in models of Peterman et al. [35] and Celliers and Conia [36], as well in the R
factor in that of Mao et al [37] (see Table 6.3).

Models in Refs. [36] and [37] seem to capture the main behaviour of the heating
dependence on NAeff for the 3.00-μm beads. As compared with the experimental
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6.5 Heat transport simulations

Figure 6.8.: Heat transport simulations. (a) The model of Peterman et al. [35] of
B(z ) simulated in spherical coordinates (red dashed line). (b)ΔT (z ) distributions
in cylindrical geometry with ΔT = 0 at z = 0 and 80 μm (solid lines correspond
to ΔT (z ) curves and circles are estimations of B for a 1.16-μm microbead). (c)
Real sink at z = 0 and ΔT = 0 at z = 80 μm. In a-c, the other two curves are
superimposed in a light color for comparison. (d) Models in Refs. [35] (grey), [36]
(black) and [37] (red) simulated in our cylindrical geometry. Solid (dashed) lines
are simulations with NA = 1.2 (NA = 1.3). (e) Simulation of the dependence of
B on the NA for the three models as in d, for 3.00-μm microbeads.
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Chapter 6 Determination of heating due to IR light absorption in the optical trap

measurements, they reveal an ascending pattern that can be directly connected to
the wider light cone illuminated, i.e. wider heat source. For the smaller, 0.61-μm
beads, one could think of the smaller beam waist created with higher NAeff to con-
clude that the therefore higher irradiance leads to greater heating as well. However,
as mentioned in the previous sections, the optical field at the bead-medium inter-
face is here bound to a number of aberrations and deviates from an ideal Gaussian
shape, which leads to the measurements notably deviating from the simulations.
Besides, our reducing NAeff by means of a diaphragm at the back of the trapping
objective leads to a different overfilling, thereby producing higher variations in the
local optical field.

6.6. Discussion on laser-induced heating in optical
tweezers

We demonstrated that the direct determination of viscosity changes caused by in-
creasing laser powers is a robust strategy for obtaining local temperatures, i.e. the
heating rate B. This was possible due to our force calibration being based on the
detection of the trapping beam momentum (which is independent of the sample
temperature and trapping power, among other features) which was compared to
the temperature-dependent Stokes drag calibration. In this way, we could directly
interpret changes in the measured force as variations in the sample temperature.
Importantly, the method is precise enough to assess trap heating in watery buffers
and makes it unnecessary to carry out experiments in media with higher α/K values.

The agreement between our results and simulations allows us to extract some inter-
esting conclusions concerning the process of sample heating in an optical trap. The
model proposed in Ref. [35] seems to capture the main elements necessary for the
description of the behavior of the temperature inside the chamber under different
conditions. Simulations showed that the temperature distribution originated by an
optical trap followed the typical ln (1/r) decay reported in other papers [38, 36, 37].
This decay describes the heating experienced by microspheres of increasing radii,
which was observed to change by a factor of 2 and 3 from 0.61- to 3.00-μm beads,
trapped with an NA = 1.2 and an NA = 1.3 objective, respectively. Such varia-
tion was considerably greater than the measurement precision, which was assessed
to be of the order of 10–15%. In contrast, the material of the tweezed dielectric
microspheres did not affect the measurement of B, which was also confirmed by
simulations including the presence of the bead. Finally, the trap height played an
important role in sample heating, as the coverslip acts as a sink, dissipating heat
and maintaining the interface nearly at room temperature. When the trap was cre-
ated below 10 μm, it was efficiently cooled down; whereas beyond that distance,
B remained almost constant, due to the temperature increase being concentrated
mainly within the 10 μm surrounding the trap focus.
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The results of this work demonstrate the substantial variability in laser-induced
trap heating, depending on the multiple experimental conditions examined. Tem-
perature control is of the utmost importance in precise experiments in biophysics and
other applications of optical trapping. This makes it highly necessary to perform in
situ heating calibration, instead of applying the straightforward rule of thumb of 1
°C/100 mW. Large measurement inaccuracies, e.g. derived from erroneous thermal
trap calibration, as well as changes in the activity of biological parameters [128]
could arise if the actual trap temperature is omitted. As a critical example, samples
of a size similar to the beam waist, R ∼ ω0, showed a ±2 °C/100 mW variation in
B by only changing the effective NA of the trapping beam (Fig. 6.5d). Moreover,
trap heating studied by other research groups with manifold techniques (see Fig. 6.1
and Table 6.1) have demonstrated this variability. In conclusion, each experimen-
tal optical trap configuration leads to different heating performance due to several
aspects, such as sample size, beam structure, microchamber dimensions and buffer
specifications.

The remarkable heating observed under certain conditions could have an impact
on experiments with cells. In such samples, laser radiation is absorbed by the
intracellular medium, the cytosol, which is a complex and highly crowded compound.
However, because cells and their components present weak absorbance in the NIR
range, we can assume that absorption of laser radiation is dominated by water.
Typical laser powers required to manipulate intracellular organelles are of the order
of 200 mW. Natural structures inside cells are usually smaller than ˜1 μm. In
addition, high-NA (phase-contrast) oil-immersion objectives are normally preferred
for the visualization of cells. Therefore, in general terms, heating will tend to be
particularly large in this kind of experiments. Assuming that the heating of the cell
is similar to that of water, and using the result for B for the smallest microsphere
of diameter 0.61 μm and for NA = 1.3, we can estimate that the local temperature
will rise by approximately 8 °C.

In fact, the large attainable temperature increase that 1064 nm lasers can pro-
duce could induce serious damage that one should assess beforehand. Although
photodamage due, among other possibilities, to the generation of singlet oxygen is
accepted to be the main source of damage upon live cells [129], thermal heating
should be reconsidered as a feasible origin of cell damage/death as well.

As we have shown, heating can be reduced by the use of trapping objectives of dif-
ferent NA or by creating the traps close to the coverslip. Furthermore, the use of
laser wavelengths with lower optical absorption [127], such as 820 nm, as proposed
by Haro-González et al. [38, 130], appears to be a good choice for reducing photo-
damage and cell heating. In fact, those authors found that temperature increase at
this wavelength was close to zero at 300 mW.

111



Chapter 6 Determination of heating due to IR light absorption in the optical trap

Table 6.1.: Assorted studies of laser heating in optical traps. From left to right,
we indicate: the first author of the publications reporting the results, the symbol
used in Fig. 6.1, the method used to assess trap temperature, the laser wavelength
used, the sample trapped (size and material), the values reported (subsections NA
= 1.2 and NA = 1.3 for the present study, and measurements in glycerol buffer as
well for measurements by Peterman et al. [35]). In the last column, we indicate the
equivalent B factor obtained by applying the Beer-Lambert law [8] with spectral
attenuation α (λ) reported by Kedenburg et al [127]. Values represented in Fig.
6.1 are in bold typography. PS: polystyrene, MR: melamine resin, Si: silica, CHO:
Chinese hamster ovary.
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6.6 Discussion on laser-induced heating in optical tweezers

Table 6.3.: Laser heating models and geometries. Different geometries and math-
ematical models have been used for laser heating simulations. The finite volume
of the of the focus is represented by the parameter a = λ

2πNA
[35].
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7. Optical trapping and
light-momentum detection in
embryonic tissue

The possibility to penetrate non-invasively into tissue makes optical tweezers a
promising tool for quantitative studies in cellular mechanics, among others. Regu-
lation of many processes during embryo development, such as mechanically-induced
shape changes or collective cell migration, can be accessed by the use of optical
tweezers. Most studies targeting developmental biology have been carried out with
simplified models, such as fruit flies (Drosophila melanogaster), Caenorhabditis ele-
gans nematodes and zebrafish (Danio rerio).

M. Welte et al. used optical micromanipulation to trap lipid droplets moving along
microtubules in living Drosophila embryos and measured stall forces of molecular
motors [119]. Recently, in combination with light-sheet microscopy, K. Bambardekar
et al. demonstrated the use of optical traps to deform epithelial cell junctions and
measured tensions in the order of 100 pN [9, 2]. C. elegans were used by G. Leitz
et al. to analyze photothermal and photochemical effects induced by the trapping
laser light [131].

Zebrafish embryos have been widely used as a model for developmental biology
[132]. Recently, collective cell migration has been modeled using the wetting ap-
proach to describe the early embryogenesis stage, named epiboly [133]. At a similar
stage, around 7 hours-post-fertilization (hpf), F. Hörner et al. studied different
mechanobiological properties by trapping microbeads injected into the cells in a
holographic optical tweezers (HOTs) set-up [134]. Similarly, J. Staunton et al. in-
jected microbeads into the yolk of living zebrafish to introduce a position-sensing
calibration method for microrheology based on optical trapping [53].

Other optical trapping experiments without synthetic microbeads have been carried
out, using optical micromanipulation in a strictly non-invasive manner. For example,
P. Johansen et al. trapped red blood cells, macrophages and injected bacteria in the
caudal vein of 2-day old zebrafish larvae [135]. Using similar samples, S. Harlepp et
al. characterized hemodynamic forces after calibrating the optical traps [136]. In
older, 6-day old zebrafish, I. Favre-Bulle et al. induced vestibular responses onto
the ear otoliths [137].

From the technical point of view, optical transparency has powered zebrafish sam-
ples as good embryo models, both regarding imaging techniques and efficient optical
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Chapter 7 Optical trapping and light-momentum detection in embryonic tissue

trapping. On the other hand, quantitative force measurements, which have been dis-
cussed to be challenging for irregular samples and non-homogeneous media, becomes
especially demanding in embryonic tissue.

In this chapter, we address the possibility to use the direct force measurement
method as a standard approach in such samples. The invariant calibration of the
method, Fmeasured = αdetector Sx, will probably solve most of the issues impeding
accurate in situ calibration, such as irregularities in the trapped samples and in-
homogeneity. Also, the standard active-passive calibration method, used in the
viscoelastic cytoplasm of cells [118, 67], is likely to fail in live embryos due to the
violation of the fluctuation-dissipation theorem [138].

Here we present a preliminary demonstration of the accurate detection of light mo-
mentum through tissue. Our approach is based on the measurement of trapping force
profiles on microbeads injected into the embryos. Similar to the recent work by W.
Ahmed et al. in mouse oocytes [139], these are then compared with measurements
in water to confirm that light-momentum calibration is maintained.

7.1. Light momentum detection through zebrafish
tissue

7.1.1. Zebrafish sample preparation

Zebrafish wild type animals and embryos were maintained under the European Union
and German animal welfare protocols [134]. After fertilization, eggs were gently laid
in agarose ramps for comfortable orientation of the cell. In Fig. 7.1a, a 2-nanoliter
drop containing a highly concentrated solution of 1-μm latex beads was injected at
1-cell stage. These do not affect embryo development and spread uniformly over
the whole specimen, as demonstrated by F. Hörner et al. in Ref. [134]. As shown
in Fig. 7.1b, beads spread over the cells after first divisions, and eventually appear
over the whole embryo (Fig. 7.1c).

At approximately 5 hours-post-fertilization (hpf), embryos were dechorionated and
immersed and fixed in a low melting agarose solution. Light momentum detection
requires the collection of the whole beam emerging from the optical traps, for which
the samples need to be sandwiched between two thin coverslips. The use of two
thin coverslips, instead of a lower coverslip and an upper thicker slide, is necessary
due to zebrafish samples being approximately 500 μm thick. In this way, the col-
lecting lens working plane can be located deeper in the chamber. The animal pole
faced the water-immersion, trapping objective, for efficient trapping of the injected
microbeads.
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7.1 Light momentum detection through zebrafish tissue

Figure 7.1.: Embryo injection and sample trapping. (a) 1-nL drop injection at 1-
cell stage. (b) Parts of the embryo after two cell divisions. (c) Bright-field image
of an embryo at 6 hpf while one of the beads injected is trapped.

7.1.2. Scattering and initial momentum variation

Different structures in the embryonic tissue affect the trapping beam propagation
and induce evident changes in light momentum and eventual trapping light loss.
Refractive index mismatches between different cells, as well as scattering structures
such as different sorts of vesicles, cell membranes or nuclei, are elements that affect
free propagation of light in in-vivo experiments. It is therefore necessary to quantify
to what extent light emerging from the optical traps is still captured by the collection
system, as well as in which degree the main contribution to the light momentum
change is induced at the trapping plane, i.e. between the optical trap and the
trapped sample.

We use a CCD camera at the BFP of the light momentum detection system to
observe light scattering through different parts of the embryonic tissue, as illustrated
in Fig. 7.2a-c. The beam appears similar to the typical Gaussian profile shown
in previous analysis (see examples in Figs. 3.1 and 5.4). However, in this case an
underlying structure arising from scattering becomes clear, especially when the beam
propagates through the cells (Fig. 7.2a). When the trap is focused at the edges of
the embryo, the two parts of the beam –that freely propagated through agarose and
that scattered through the embryo– are visibly separated by a surface diffraction
pattern (Fig. 7.2b). For experiments in the cells, it is therefore needed that the
embryos be accurately oriented such that the animal pole faces the objective and
the traps are created far from the external walls of the embryos. On the other hand,
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Chapter 7 Optical trapping and light-momentum detection in embryonic tissue

the yolk is observed to induce weaker scattering (Fig. 7.2c). Figs. 7.2a-c illustrate
light trajectories through the different parts of the embryo.

Figure 7.2.: Light scattering through the embryo. BFP images of (a) the beam af-
ter propagating through the cells and yolk; (b) half the beam propagating through
the yolk and the other half though agarose; (c) half the beam propagating through
the cells and the other half through the yolk. (d) Power captured and initial beam
momentum variation across the embryo. Yolk and cell parts are indicated, as well
as the region chosen from trapping experiments.

Light creating the optical traps efficiently leaves the embryo and gets captured by
the collecting lens. Observe that more than 95% of light reaches the detector at the
BFP in Fig. 7.2d - top. The captured light profile is notably similar to that of a
homogeneous bead with diameter larger than the trapping wavelength (D > λ, see
Section 4.3.3). Under a ray-optics picture, it makes sense that light will be more
reflected backwards for greater incident angles as the trap leaves the center of the
embryo, which explains the drop in the captured light intensity for xtrap ∼ D/2.

The variation for the initial light momentum across the embryo exhibits two main
features (Fig. 7.2d - bottom). At a large scale, it clearly follows the trapping force
profile of a 500-μm sphere, i.e of a size similar to that of the embryo. However, a
random variation in the momentum is observed at a micron scale. We hypothesize
this to be in close connection with the scattering structure appearing beneath the
Gaussian envelope profile in Fig. 7.2a.

Typical trap displacements giving rise to optical forces of interest are on the order
of tens to hundreds of nanometers. For example, cell interfaces in Drosophila em-
bryos have been deflected approximately ±0.5µm by oscillating the optical trap at
±1µm [9]. In 5 to 7 hours-post-fertilization zebrafish embryos, injected beads have
been oscillated by means of an optical trap around ±220 nm, in order to study the
viscoelastic properties of different cellular structures, such as cell organelles or cell
nuclei [134]. We can thereby consider our further measurements to be insensitive
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7.1 Light momentum detection through zebrafish tissue

to the large scale, 500-μm sphere force profile envelope. The direct force measure-
ment method operates over changes in light momentum, for which a different –but
constant– initial momentum will not perturb force readings.

In contrast, the latter mentioned effect (1-μm scale oscillations in light momentum)
will somewhat add a certain noise to the measurements. For example, if a membrane
or a vesicle is to be applied a certain stress for viscoelastic response studies, acciden-
tal light momentum variation will affect the precision of the measurements. This is
due to the typical trap oscillation amplitudes being in the same order of magnitude
that the scattering-induced, small-range changes in light momentum. It is therefore
necessary to quantify the magnitude of such momentum variations and ensure that
light momentum changes detected in the direct force measurement method occur
primarily in the optically-trapped sample of interest.

7.1.3. Measurements on injected beads

In this section, we evaluate the measurement deviations due to light scattering
through tissue. PS beads injected at 1-cell stage are present over the embryo region
of interest. They are manipulated with an AOD-driven optical trap from which we
can obtain the trapping force profile, as has been used in Chapter 4. In the same
set-up, beads are trapped in a water solution to obtain a reference to be compared
with the measurements in vivo.

Forces in water and in the cytoplasm of embryo cells differ according to the higher
medium refractive index in the latter case. We took this into account by scaling the
measurements such that they could actually be compared. According to the optical
trapping theory of Y. Harada and T. Asakura (Ref. [10], see Eq. 2.1), measurements
in water, with respect to cytoplasm, will scale as follows:

C =
(nwrel)

2 − 1

(nwrel)
2 + 2

/
(nerel)

2 − 1

(nerel)
2 + 2

(7.1)

where nrelw = 1.18 and nrele = 1.15 are the relative refractive index for polystyrene
beads (nPS = 1.57) in water and in the embryo, respectively. Refractive index of
the cell cytoplasm was approached to be ne = 1.37 according to observations by C.
López-Quesada et al. on the refractive index of different elements within live cells
[140]. Similarly, this assumption is compatible with refractive index measurements
by C. Curl et al. [120].

The scale factor through Eq. 7.1 is 1.23. A similar check, using the Optical Tweezers
Computational Toolbox [12] to simulate a 1-μm polystyrene sphere in water and in
an n = 1.37 medium yields a scaling factor of 1.20. In Fig. 7.3, we show simulations
in water and cytoplasm and the latter multiplied by the scaling factor.

An example of force profile measurement set over a series of eleven beads in the same
embryo is shown in Fig. 7.4. The embryo region in which these measurements were
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Figure 7.3.: Relative refractive index scaling.

carried out is indicated in Fig. 7.4a, which reproduces the overall initial momen-
tum variation curve of Fig. 7.2d. As visible in Fig. 7.4b, the force profile directly
obtained from injected microbeads is affected in two ways. As mentioned before,
the overall change in the initial momentum, due to the trapping experiment being
undertaken at a certain position within the embryo, offsets the measurement. Nev-
ertheless, this does not affect the relative change in momentum due to the trapping
of the microsphere. In Fig. 7.4c, it is clear that the measurements on the several
beads mostly overlap after removing said offset.

On the other hand, the aformentioned 1-μm scale noise produced by smaller scat-
tering structures adds up to the measurements. This will induce increasing errors,
for instance, in eventual trap stiffness calibration and escape force measurements.
In Fig. 7.4d, the mean and standard deviation of the force profile measurement are
represented for the measurement set after removing the overall offset. The aver-
aged profile measurement exhibits a neater shape that becomes closer to the ideal
optical force response of a microsphere. Finally, it is important that the average
profile matches that obtained from water after the latter is applied the 1/1.20 factor
discussed above. In turn, observe that force profile measurements in water exhibit,
as expected, smaller standard deviation.

As quantitative indicators for the measurement accuracy, we used trap stiffness eval-
uated from linear fits around xtrap = 0 and maximum forces (Fig. 7.5). Scattering-
induced noise in force profile measurements translate here in larger standard devia-
tions in the determination of these quantities. Measurements in water show a mean
stiffness of 9.1 pN/µm (±7%) and a mean maximum trapping force of 2.3 pN (±7%).
Results for the embryos in which we obtained more data (samples #1 and #4)
appear in Table. 7.1.

As expected, measurements in embryos exhibit less reproducibility than those in
water. However, the average values inside the embryos match very reasonably those
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7.1 Light momentum detection through zebrafish tissue

Figure 7.4.: Force profile measurements in embryos. (a) Embryo region in which
the measurement set was carried out in this example. (b) Force profiles directly
obtained from eleven different microbeads. (c) Force profiles obtained after re-
moval of the overall initial light momentum. (d-e) Mean (±s.d.) profile mea-
surement in the embryo and in water. 1/1.20 factor is applied in the latter case.

obtained in water. In fact, we can assume that tissue-induced scattering will affect
light momentum in an a priori random fashion. This enlarges the standard deviation
of measurements but still yields correct values for measurements averaged over an
increasing number of micro-spheres.

embryo 1 embryo 4 water
trap stiffness (pN/μm) 8.9 (±21%) 11.6 (±22%) 9.1 (±7%)

maximum trapping force (pN) 2.1 (±20%) 2.6 (±22%) 2.3 (±7%)

Table 7.1.: Trap stiffness and maximum trapping forces in embryos and water.

We also noticed that the standard deviation of the measurements in water was yet
higher than those we had obtained in previous chapters. This was likely due to the
trapping beam being not perfectly optimized for stably trapping samples of decreas-
ing size. In fact, we noticed that effective trapping of 1-μm beads was critically
dependent on the objective compensation ring (Nikon Plan Apo, 60x, NA=1.2) and
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Figure 7.5.: Trap stiffness and maximum trapping force measurements in different
embryos. (a) Trap stiffness values over a series of different beads in four different
embryos (red, green, orange, blue) and in water (black). Shaded areas and flat
lines indicate average (± s.d.). (b) Mean stiffness (± s.d.) for the same series of
measurements. The shaded area and the flat, dashed line indicates the measure-
ment in water for comparison. (c-d) Measurements of maximum trapping forces
with the same color code.

cover glass thickness. Similarly, note the lower maximum trapping force in these
measurements, around 2 pN, whereas we had observed from 7 to 8 pN, with the
same trapping power, in Fig. 4.18. This fact may also explain for the high, ±20%
reproducibility inside tissue and suggests therefore that more accurate measurements
would be performed in a more optically stable trapping set-up.

To conclude, we confirm that the light momentum change primarily occurs at
the trapping plane, which ensures the implementation force measurements. In-
terestingly, trapping of cellular structures has been widely reported in zebrafish
[135, 136, 137] and Drosophila [9, 119], among others. Hence, the injection of aux-
iliary beads for precise force calibration can be in principle avoided. With this
preliminary results, we envision that force measurement experiments with optical
tweezers inside tissue can be carried out by means of the direct force measurement
method.
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8. Conclusions

I hereby depict the main conclusions I have reached during my PhD thesis, regarding
the different topics I have studied:

Holographic optical tweezers set-up

� Different components of our holographic optical tweezers (HOTs) set-up have
been thoroughly studied for ensuring that the experiments were carried out
in a highly controlled manner. Laser fluctuations have been stabilized using
NI-DAQ-controlled (power monitoring) and RS-232-controlled (power modu-
lating) interfaces.

� Spatial light modulator (SLM) phase response (look-up-table, LUT) has been
studied using an ellipsometric approach. Correlation with incident light power
has been observed in relation with total laser power and with the Gaussian
beam profile.

� Piezo-electric platform characterization has enabled generation of flows for
controlled hydrodynamic tests, i.e. drag force trap calibration.

� Two of sources of inaccuracy for single-trap positioning in holographic optical
tweezers (HOTs) have been studied and corrected for. Phase quantization pro-
duces positioning deviations in the order of 2 nm, in a range of approximately
5 nm around the so-called M -positions, d

(n)
M ∼ 1µm ·n. LUT mismatch results

in 2-nm oscillations with a characteristic distance, the so-called L-distance,
dL ∼ 0.5µm.

Robustness of light-momentum force measurements

� Controlled drag force as a calibration reference has been shown more reliable
than passive power spectrum calibration for testing light-momentum detection
accuracy. Moreover, this has allowed for analyzing accuracy over the whole
trapping range of forces, i.e. up to the escape force. The results have evidenced
different deviations for each force applied, especially for larger, ray-optics-
behaving microbeads.

� Experimental sources of error for light-momentum detection performance have
been discussed, analyzed and corrected for. As a result, the invariant prop-
erty of light-momentum force measurements has been proved within a ±5%
variation.
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� This brings to the direct force measurement method being only limited by the
effect of back-scattered light loss. This has been confirmed through scattering
simulations over the far field, as well as proved experimentally in relation to
to Stokes-forces and force and captured light profiles by means of AOD-driven
optical tweezers.

Force measurements on irregular samples

� Holographic optical tweezers (HOTs) has allowed for stable manipulation of
multiple-bead systems. These have been used as early irregular objects to test
for the robustness of the direct force measurement method on arbitrary sam-
ples. Studies of hydrodynamic interactions have been undertaken. The use of
several optical traps has been proved robust for collective force measurements
on extended objects.

� Micro-cylinders in a wide range of dimensions, from 2 μm to 50 μm, have been
manipulated with pairs of HOTs. It has been shown that light creating the
traps is efficiently captured by the detection system to perform force measure-
ments. These have been confirmed to be accurate compared to slender-body
hydrodynamic theory.

� Drag forces on large microspheres trapped in cogwheel beam traps have been
measured with similar accuracy compared to the standard Gaussian beam
trap.

� We envision the use of the direct force measurement method for studies in
rod-shaped biological samples, e.g. bacteria and chromosomes, which can be
manipulated in sets of multiple optical traps. The fact that biological samples
have a considerably lower relative refractive index than the objects used here
makes us consider that the accuracy found here is an upper threshold for
measurements on such samples.

Determination of heating due to IR light absorption in the optical trap

� Controlled drag forces have been used for fast characterization of sample heat-
ing due to absorption of the trapping laser light. Sample heating has been
confirmed linear against the trapping power: T = Troom +B P .

� We have found large variability in the heating occasioned in different exper-
imental situations, e.g. involving particles of different size, distance to mi-
crochamber walls and trapping beam NA. It is important that heating has
been assessed as high as 4 ºC/100 mW for certain, but common cases, such
as 0.5-μm beads in NA = 1.3, oil-immersion objectives.

� Experimental analysis has been complemented with heat transport simula-
tions. From that, we can conclude that laser heating occurs in the medium
immediately surrounding the trapped sample and that the glass surface acts
as a heat sink cooling the sample.
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� Solutions we envision for sample heating consist in using larger particles as
force probes if possible, performing optical trapping near the chamber surfaces,
or using trapping lasers of wavelengths with smaller absorption coefficients in
water.

Optical trapping and light-momentum detection in embryonic tissue

� Tissue-induced scattering in zebrafish has been shown to alter light momentum
detection. First, we have observed that the initial momentum of the trapping
beam is similar to the trapping force profile for a 500-μm sphere. From a close
look into the measurements, we have noticed 1-μm scale signal oscillations due
to the scattering structures of tissue.

� Measurements of trap stiffness and maximum trapping forces on injected mi-
crobeads have been proved to coincide with the same kind of microbeads in
water after scaling the correspondig relative refractive index, nrel. Force mea-
surements in zebrafish tissue have been performed within ±20% standard de-
viation.
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A. Appendix. Trap steering
efficiency and positioning
accuracy calculations from
Fourier optics

In this appendix, we derive the expressions in Chapter 3 that describe trap efficiency
affected by hologram pixelation and positioning inaccuracy produced by look-up-
table (LUT) mismatch. First, we will use Fourier optics to describe scalar field
propagation between the SLM plane and the trapping plane [24, 25].

In our set-up (Section 3.1), the SLM plane is conjugated onto the objective front
focal plane through telescope 2 (4f configuration, lenses f3 and f4, see Fig. A.1)1.
Assuming 1D holograms, the scalar field at the SLM (plane A), U (x), becomes

thereby U
(
−f3
f4
x
)

at the objective front focal plane (plane B). Its Fourier transform,

scaled λf ′, yields the scalar field at the trapping plane (Fourier plane, plane C) [82]:

FT λf ′
[
U

(
−f3

f4

x

)]
=
f4

f3

Ũ

(
−f4

f3

x

λf ′

)
=
f4

f3

FT − f3
f4
λf ′

[U (x)] (A.1)

where we used the Fourier transform scaling property: FT [f(ax)] = 1
|a| f̃(x

a
) (f̃

and Ũ are the Fourier transforms of f and U , respectively). The scalar field at the
trapping plane (C) is hence the Fourier transform of the field at the SLM plane
(A) through a scaling factor −f3

f4
λf ′. In other words, we can compute the light

distribution as
∣∣∣Ũ (u)

∣∣∣2 evaluating the spatial frequencies as follows:

u = −f4

f3

x′

λf ′
(A.2)

where x′ is the spatial coordinate at the trapping plane.

1For simpler notation, f3 and f4 express the image focal lengths of the lenses of telescope 2.

127



Appendix. Trap steering efficiency and positioning accuracy calculations from
Fourier optics

Figure A.1.: Optical Fourier transform.

In the following calculations, we use the convolution theorem. Being f̃ , g̃ and h̃ the
Fourier transforms of f , g and h, respectively [82]:

{
h = f · g → h̃ = f̃ ∗ g̃
h = f ∗ g → h̃ = f̃ · g̃

(A.3)

Likewise, we are considering the following Dirac function properties:

f (x) · δ (x− a) = f (a) · δ (x− a) (A.4a)

f (x) ∗ δ (x− a) = f (x− a) (A.4b)

The Fourier transforms of the terms appearing in Eqs. A.6 and A.10 are:

Function Fourier Transform
rectx

ξ
|ξ| sinc (ξ u)

∞∑
n=−∞

δ (x− n ξ) 1
|ξ|
∑∞

n=−∞ δ
(
x− n

ξ

)
ei

2π
ξ
x δ

(
u− 1

ξ

)

A.1. Trap steering efficiency

An ideal, continuous phase-only modulation of the form2 ei
2π
T
x will position the trap

at the desired position d = f3
f4

λf ′

T
. The discretization of the SLM can be expressed

2We consider no phase quantization or LUT mismatches in this section.
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in terms of a Dirac comb function:

∞∑
n=−∞

δ (x− np) · ei
2π
T
x (A.5)

If, in addition, we express the pixel (p) and SLM (L) finite sizes with the corre-
sponding rectangular functions, the hologram at the SLM reads as follows (see Eq.
3.4):

U (x) = A · rect
(x
L

)
·

{
rect

(
x

p

)
∗

[
∞∑

n=−∞

δ (x− np) · ei
2π
T
x

]}
(A.6)

The term in Eq. A.5 Fourier-transforms, omitting constant factors, as follows:

∞∑
n=−∞

δ

(
u− n

p

)
∗ δ
(
u− 1

T

)
=

∞∑
n=−∞

(
u− 1

T
− n

p

)
(A.7)

After omitting some phase terms irrelevant for the light intensity distribution at the
trapping plane, we thereby obtain Eq. 3.6:

∣∣∣Ũ (u)
∣∣∣2 ∝ ∣∣∣∣∣sinc (Lu) ∗

[
sinc (pu) ·

∞∑
n=−∞

δ

(
u− 1

T
− n

p

)]∣∣∣∣∣
2

∝

∣∣∣∣∣sinc (Lu) ∗
∞∑

n=−∞

sinc

[
p

(
1

T
+
n

p

)]
δ

(
u− 1

T
− n

p

)∣∣∣∣∣
2

∝

∣∣∣∣∣
∞∑

n=−∞

sinc

[
p

(
1

T
+
n

p

)]
sinc

[
L

(
u− 1

T
− n

p

)]∣∣∣∣∣
2

(A.8)

A.2. LUT-induced positioning deviations

As discussed in section 3.2.2.3, the actual phase introduced by the SLM scales
linearly as φactual = a φideal. The linear phase profile to place the trap at d = f3

f4

λf ′

T

will accidentally be ei
2πa
T
x. Each period of the phase phase grating resulting from

the mod 2π function can be expressed as follows:

ei
2πa
T
x · rect

[
x− T

2

T

]
(A.9)
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Appendix. Trap steering efficiency and positioning accuracy calculations from
Fourier optics

The entire hologram, obtained by replicating Eq. A.9 with a comb function with
period T and defining the finite size of the SLM, L, becomes (Fig. A.2, see Eq. 3.9):

U (x) = A · rect

(
x− x0

L

)
·

[
∞∑

n=−∞

δ (x− nT ) ∗

(
ei

2πa
T
x · rect

[
x− T

2

T

])]
(A.10)

where L is the SLM size and T is the phase grating period. Parameter x0 expresses
a hologram shift that can be implemented through the addition of a constant phase
term, so-called ψ0 (see Section 3.2.2.3): x0 = L

2
− ψ0

2π
T .

Figure A.2.: Hologram.

Eq. A.9 Fourier-transforms as:

δ
(
u− a

T

)
∗ sinc (Tu) e−i2π

T
2
u = sinc

[
T
(
u− a

T

)]
e−2π(u− a

T )T (A.11)

The light intensity at the trapping plane will be (see Eq. 3.10):
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∣∣∣Ũ (u)
∣∣∣2 ∝ ∣∣∣∣∣[sinc (Lu) e−i2πx0u

]
∗

[
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δ
(
u− n

T
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· sinc

[
T
(
u− a

T

)]
e−iπ(u−

a
T )T
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2

∝

∣∣∣∣∣
∞∑

n=−∞

{[
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2
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2x0
T
−1)n sinc

[
L
(
u− n

T
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(A.12)
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[70] F. Català, F. Marsà, M. Montes-Usategui, A. Farré, and E. Mart́ın-Badosa,
“Influence of experimental parameters on the laser heating of an optical trap,”
Scientific Reports 7, 16052 (2017).

[71] M. Robert, O. Neus, D. Cornelia, R. Meissner, N. Oliver, and C. Denz, “Opti-
cal Force Sensing with Cylindrical Microcontainers,” Particle & Particle Sys-
tems Characterization p. 1800062 (2018).

[72] A. A. Bui, A. V. Kashchuk, M. A. Balanant, T. A. Nieminen, H. Rubinsztein-
Dunlop, and A. B. Stilgoe, “Calibration of force detection for arbitrarily
shaped particles in optical tweezers,” Scientific Reports 8, 1–12 (2018).

[73] Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical
manipulation of microparticle using spatial light modulator,” Optical Review
6, 24–27 (1999).

[74] J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional op-
tical tweezers using computer-generated holograms,” Optics Communications
185, 77–82 (2000).
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[79] V. Calero, P. Garćıa-Mart́ınez, J. Albero, M. M. Sánchez-López, and
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M. D. Ludevid, E. Mart́ın-Badosa, and M. Montes-Usategui, “Artificially-
induced organelles are optimal targets for optical trapping experiments in
living cells,” Biomedical Optics Express 5, 1993–2008 (2014).

147




	FCiC_COVER
	tesi_AMBPORTADA
	Contents
	1 Overview 
	1.1 Objectives
	1.2 Structure

	2 Micromanipulation and force measurements with optical tweezers 
	2.1 Optical force 
	2.1.1 Comparison example 

	2.2 Indirect force measurements 
	2.2.1 Position measurements
	2.2.2 Thermal forces
	2.2.3 Drag forces

	2.3 Direct force measurement method 

	3 Holographic optical tweezers 
	3.1 Optical tweezers set-up
	3.1.1 Laser characterization
	3.1.2 SLM characterization
	3.1.3 Piezo-electric stage characterization for accurate drag force measurements 

	3.2 Holographic steering of a single trap 
	3.2.1 Efficiency 
	3.2.2 Trap positioning accuracy. 

	3.3 Multiple trap generation
	3.3.1 Prisms-and-lenses
	3.3.2 Random-mask
	3.3.3 Gerchberg-Saxton algorithm

	3.4 Exotic beam optical traps 
	3.4.1 Cogwheel beam traps


	4 Robustness of light-momentum force measurements
	4.1 Introduction. Deviations in light momentum detection
	4.1.1 Drag force measurements as a calibration reference

	4.2 Tolerance of the force detection instrument
	4.2.1 Instrument and trap position
	4.2.2 Collecting lens optical transmittance 

	4.3 Back-scattered light loss
	4.3.1 Analysis from simulations
	4.3.2 Experiments
	4.3.3 Analysis over samples of different size and refractive index 
	4.3.4 Comment on back-scattered light for trap calibration

	4.4 Conclusion 

	5 Force measurements on irregular samples
	5.1 Optical micromanipulation for extended objects
	5.2 Multiple bead systems as early irregular objects
	5.2.1 Hydrodynamic interaction
	5.2.2 Measurements of global momentum on arbitrary multiple bead systems

	5.3 Force measurements in cogwheel beam optical traps
	5.3.1 Drag force measurements on microspheres in a cogwheel beam trap
	5.3.2 Cogwheel beam trapping force profiles

	5.4 Force measurements on microrods
	5.4.1 Force measurements on 10-mm scale, slender cylinders
	5.4.2 Force measurements on 1-mm scale, non-slender cylinders
	5.4.3 Optical manipulation of microrods 
	5.4.4 Discussion on the applicability on biological samples


	6 Determination of heating due to IR light absorption in the optical trap
	6.1 Heating in optical traps 
	6.2 Heating-induced calibration deviation
	6.3 Measurement of temperature increase
	6.4 Variability under experimental parameters 
	6.5 Heat transport simulations
	6.5.1 Model discussion

	6.6 Discussion on laser-induced heating in optical tweezers

	7 Optical trapping and light-momentum detection in embryonic tissue 
	7.1 Light momentum detection through zebrafish tissue
	7.1.1 Zebrafish sample preparation
	7.1.2 Scattering and initial momentum variation
	7.1.3 Measurements on injected beads


	8 Conclusions
	A Appendix. Trap steering efficiency and positioning accuracy calculations from Fourier optics 
	A.1 Trap steering efficiency 
	A.2 LUT-induced positioning deviations 

	List of contributions
	Acknowledgments
	Bibliography




