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We show, both theoretically and experimentally, that the interface between two viscous fluids in a
Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is
reached. We identify the family of exact elastica solutions [Nye et al, Eur. J. Phys. 5, 73 (1984)] as
the unstable branch of the corresponding subcritical bifurcation which ends up at a topological
singularity defined by interface pinchoff. We devise an experimental procedure to prepare arbitrary
initial conditions in a Hele-Shaw cell. This is used to test the proposed bifurcation scenario and

quantitatively asses its practical relevance.
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The Saffman-Taylor (ST) instability [1,2], ie., the
fingering instability at the interface between two fluids
of different viscosity confined within two closely spaced
parallel plates, has received much attention in the last
decades as a paradigm of interfacial pattern formation in
nonequilibrium extended systems.

In this Letter we show that, before the Saffman-Taylor
linear instability point is reached, the interface is already
nonlinearly unstable, in the sense that finite-amplitude
perturbations grow while infinitesimal ones decay. The
corresponding unstable branch in this bifurcation sce-
nario is defined by a family of undulating elastica
solutions, the class of exact interfacial solutions first
reported by Nye, Lean, and Wright [3] whose relevance
becomes now apparent. This class of solutions and its
associated bifurcation scenario is arguably valid also
for other morphological instabilities (e.g., Mullins-
Sekerka). In all cases, the subcritical unstable branch
ends up at a topological singularity defined by interface
pinchoff. Furthermore, the identification of the exact
unstable branch allows a direct, quantitative experimen-
tal test of the observable dynamic implications of the
above results. To this purpose, we have devised an origi-
nal procedure that allows the preparation of arbitrary
initial conditions in a Hele-Shaw (HS) cell a la carte.

We consider a rectangular HS cell, made of two par-
allel plates of width L, separated by a small gap b < L
(Fig. 1). In the generic case a less viscous fluid 1 (air)
displaces a more viscous fluid 2 (oil), as the latter is
withdrawn from one side at velocity V,. We call
M1, Mo, P1, P2 the dynamic viscosities and densities of
the two fluids, and o their interfacial tension.

A linear stability analysis of the planar interface [4]
shows that the growth rate of a sinusoidal mode of wave-
length A is w(k) = C| k| (1 — Bk?) where k = 27/A,
and B, C are givenby B=D/C, C = (b*/12)(p> — p1)g/
(po + py) + AV, with D = (*/12)0/(py + p1), A =
(o — py)/(y + ), and we include the possibility of
a gravity component g in the ¥ direction. The dispersion
relation above shows that, for an infinite system, we are
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dealing with a long-wavelength instability, with the un-
stable band extending from k = \/1/B to k = 0.

At the nonlinear level, we show here that any given
mode of wavelength A undergoes a subcritical bifurcation
as the dimensionless parameter B* = B(27/))? crosses
unity, implying that finite-amplitude excitations of that
mode may grow if they surpass a certain amplitude
threshold, which depends on the distance to the bifurca-
tion. This fact is relevant, for instance, in a finite system,
resulting in a fully nonlinear instability if all modes
allowed lie in the linearly stable band [5].

This scenario is captured by a weakly nonlinear analy-
sis of a nearly marginal mode. Indeed, following Ref. [6],
we obtain the amplitude equation

5=(1—B*)6+§|8|25, (D

where the dimensionless amplitude 6 is measured in units
of 277/ A, and for simplicity we have used C = 1 and A =
2. The positive sign of the nonlinear term makes evi-
dent the subcritical nature of the bifurcation. The con-
dition & =0 defines a parabolic branch of unstable
stationary solutions (Fig. 2). Remarkably, unlike most
common situations, higher orders in the above equation
will never saturate the growth to a finite amplitude, since
for this problem (as for free solidification) the growth
evolves towards steadily propagating configurations. It
remains thus an open question how the above unstable
branch is continued into the strongly nonlinear domain.

FIG. 1. Sketch of a rectangular Hele-Shaw cell of width L
and gap thickness b. The gap step used to prepare arbitrary
initial conditions (see text) is also sketched.
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FIG. 2. Bifurcation diagram showing the stationary solutions
of Eq. (1). The horizontal axis corresponds to the planar inter-
face and the parabola to the subcritical branch. Linearly stable
(unstable) solutions are represented by solid (dashed) lines.

Notice that this analysis predicts the existence of non-
trivial steady solutions for finite surface tension. The only
known solutions for the usual Saffman-Taylor problem
with finite surface tension that we are aware of are the
elastica solutions reported by Nye, Lean, and Wright [3].
They were found on the basis of simple arguments bal-
ancing capillary and hydrostatic pressure, as in pendant
drops. Such solutions do correspond also to steady shapes
propagating with velocity V, in the lab frame. They were
used within an asymptotic matching scheme for the se-
lection of the ST finger in Refs. [7,8]. We will show that
these solutions are the exact continuation of the unstable
branch discussed above. Solutions of this type are given
in terms of nonlinear ordinary differential equations
(ODE)s. For the channel geometry, for instance, one
gets a uniparametric family of shapes which solve the
pendulum equation

B6,, + sind = 0, (2)

where 0 is the angle between the normal direction and the
y axis, and s is the arclength. A gallery of the resulting
interfaces is displayed on the left panel of Fig. 3. Also
shown is the maximum-to-minimum height of the inter-
faces, H, which parametrizes this family of solutions.

It may be surprising that solutions of a fully nonlocal
dynamics may be represented by such a simple local
equation, even for a nonstatic case. This apparent paradox
is easily solved by realizing that the above type of solu-
tions correspond to imposing the condition of zero vor-
ticity in the vortex-sheet formalism of Trygvasson and
Aref [9]. In the channel geometry and in a comoving
frame with velocity V,, the evolution of the interface
position 7(s, 7), as a function of the interface arclength s
and time ¢, is given by F(s, t) - A = U - A, where

1 2 X [F(s, 1) — (s, 1)]

U(s, ) = —P - _
=P [ 56070 P

y(s', 0ds',  (3)

where P denotes the principal value of the integral, y =
2A(U - 8) + 2Cy - § + 2Dk, is the vorticity, and «, the
derivative of the in-plane local curvature of the interface.
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FIG. 3. [Exact stationary solutions of the ST problem with
nonzero surface tension, in channel geometry (left) and circu-
lar geometry with rotation (right).

The condition y = 0 = 2C§ - § + 2Dk, (with U = 0)
is precisely Eq. (2). This automatically solves the equation
for the interface deformation, 7 = 0, while it does not
rule out a constant velocity field.

The condition of zero vorticity yields a simple way to
generalize the solutions to other cases. One relevant ex-
ample is a radial HS cell with rotation [10,11]. The ODE
that defines the condition y = 0 in this case balances
capillary and centrifugal forces, and reads

_ (p2 — p)O?
r

- re =0 )

Ke
in polar coordinates, where () is the angular velocity of
the cell and the inner fluid 2 has been supposed more
dense than the outer fluid 1. A sample of corresponding
interfaces is displayed on the right panel of Fig. 3. Notice,
however, that when fluid injection is present viscous pres-
sure and capillary pressure can be balanced only for a
given time, and thus not yield steady shapes.

The elastica solutions given in Eq. (2) are indepen-
dent of A, and surface tension, though necessary, only
sets the spatial scale. For a limiting value of the parame-
ter of the family, the solution presents a topological
singularity, implying an interface pinchoff (left bottom
plot in Fig. 3). Beyond that the curves obtained intersect
and thus have no longer physical meaning for the problem
at hand.

A direct expansion of the solutions of Eq. (2) in the
amplitude 6 shows that they coincide to lowest order with
those of Eq. (1) (see Fig. 4), implying that the elastica
solutions are the continuation of the subcritical branch
originating at the bifurcation. That is, each point of the
subcritical branch is one interface of the family of elastica
solutions for a given A. Notice that the continuation of
the exact curve into the nonlinear domain in Fig. 4 is
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FIG. 4. In the top panel, the distance H between the maxi-
mum and the minimum height of the interface is plotted vs B,
in scaled variables H = HQw/\), B* = BQ2m/A)?, up to
B* = 3. The branch of elastica solutions (subcritical) is repre-
sented by a light solid line. The branch ends at B* = 23.9,
where interface pinchoff occurs. The dashed line is the weakly
nonlinear approximation obtained from Eq. (1). The bottom
panel shows a magnification of the upper unstable branch,
together with the set of initial conditions used in our experi-
ments, represented by different symbols.

parametrized only with H. Obviously this is an incom-
plete description since, beyond the center manifold re-
duction, the problem is infinite-dimensional. The curve
shown is thus only a subset of the set of interface con-
figurations that separates the basins of attraction of the
two relevant attractors, namely, the planar interface and
the Saffman-Taylor finger. Nevertheless, perturbations of
the elastica solutions leading to interface pinchoff cannot
be ruled out, so the actual structure of such separatrix of
basins of attraction is presumably complex and remains
unknown. In any case, we expect that the fact that the
continuation of the subcritical unstable branch ends up at
a topological singularity is a generic feature. For in-
stance, the dynamics of free (isotropic) solidification
with small Péclet number is known to reduce to A = 1
viscous fingering [8]. It is thus reasonable to expect, on
topological grounds, that the elastica solutions will also
approximate the corresponding subcritical branch of the
solidification problem, and that the qualitative scenario
will be the same.

In order to test quantitatively the dynamic scenario
described above, and to demonstrate its relevance in
practice, we have carried out a series of experiments in
a horizontal HS channel. These experiments are also
intended to probe the robustness of a description of the
phase space based solely on the height of the curve as a
finite-amplitude criterion for the nonlinear instability.
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The cell is made of two glass plates, of 15 mm thick-
ness and 250 mm lateral size, separated by a brass frame
of thickness » = 0.50 mm. It is originally filled with a
silicone oil Rhodorsil 47V10 (dynamic viscosity pu =
8.4 X 1073 Pa-s, density p = 930kg/m?, and oil-air
surface tension o = 20.7 X 1073 N/m, at 20°C). In the
experiment the oil is withdrawn at a constant volumetric
rate from one side of the cell, using a syringe pump,
allowing air to enter the cell from the other side.

Essential to these experiments is the ability to generate
initial conditions of prescribed shapes. To this aim we
have developed an original procedure that exploits the
sensitivity of capillary pressure to slight gap thickness
variations. The gap of the Hele-Shaw cell on the region
initially occupied by the oil (displaced fluid) is made
slightly smaller (thickness b) than on the region occupied
by air (displacing fluid) (thickness d), and the step be-
tween the two regions follows the shape of the desired
initial condition (Fig. 1). Once the oil has been gently
introduced in the cell, the small difference in capillary
pressure across the interface suffices to hold the interface
still, following the profile of the gap step, until oil with-
drawal starts. In our experiment the gap thickness is
modified by attaching a thin film of polyethylene
(Alkor-Decor, d — b = 0.1 mm thickness) to the region
of the bottom plate to be covered initially by the oil. One
end of the plastic film is cut carefully with the shape of
the desired initial condition.

Figure 5 shows a series of photographs taken in two
different experiments. In both cases the initial condition,
shown as a dashed line, has been designed as follows. The
central part, of lateral size L/3, corresponds to an elastica
curve with A = L/3. This is continued on each side with a

L=20 cm

<

»
2

A

3>

FIG. 5. Snapshots of two experiments for two different ini-
tial conditions. Dark and light gray regions, above and below
the interface, correspond, respectively, to silicone oil and air.
A dashed line represents the initial condition, designed as
sketched on the bottom left panel (see text for details). The
shaded strips on the sides define the regions disregarded in the
quantitative analysis.
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FIG. 6. Time evolution of the measured maximum-to-
minimum interface height for different experiments. The
experimental parameters are indicated in Fig. 4 with corre-
sponding symbols.

flat section of size L/6, and terminated with a receding
section, also of size L/6 that meets the side walls per-
pendicularly. This particular form of the initial condition
is designed to minimize the influence of the boundaries,
which may be critical in these experiments [12]. The
elastica curve taken as initial condition in the first ex-
periment (left) has H = 1.5, while the second one (right)
has H = 4.0. Both experiments have been carried out at
the same injection rate Q = 65 ml/h, which corresponds
to a nominal B* = 1.7 [13]. Thus the conditions in the first
(second) experiment fall below (above) the branch of
Fig. 4, as shown in the bottom panel of Fig. 4 as solid
(open) circles. If the separatrix of the different basins of
attraction in phase space, for initial conditions close to
elastica interfaces, is sufficiently well described by the
branch of elastica solutions, experiments located initially
below this branch should evolve towards the flat interface,
and experiments located initially above should grow to-
wards the ST finger [14]. This is exactly what is observed
in the experiments shown in Fig. 5. On the left, the
interface has become nearly flat after 120 s, as predicted.
On the right, the maximum-to-minimum interface height
keeps growing with time.

We have repeated the same kind of experiments using
the two initial conditions of Fig. 5 and different injection
rates (i.e., different B*). The actual values of H (in the
initial condition) and B*, for the nine experiments per-
formed, are shown in Fig. 4. The growth or decay of the
maximum-to-minimum height of the interface with time
in these experiments is shown in Fig. 6. Our experimental
results show conclusively that all the interfaces decay or
grow depending on whether they are, respectively, below
or above the branch of solutions depicted in Fig. 4.

In conclusion: (i) Our experiments provide robust evi-
dence that linearly stable modes in the ST problem are
generically nonlinearly unstable. Consequently, in spe-
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cific situations the ST instability is globally nonlinear.
(i) We have identified the elastica solutions of the ST
problem with the exact unstable branch of the subcriti-
cal bifurcation diagram. (iii) Experiments also show that
this branch is an appropriate projection of the separa-
trix between the basins of attraction of the ST finger and
the planar interface, even far from the bifurcation point.
(iv) This branch ends at a topological singularity (inter-
face pinchoff).

The close connection between the ST problem and
related interfacial growth problems, together with the
generic nature of our bifurcation analysis, suggest that
the qualitative features of the above conclusions are rele-
vant to a variety of problems.
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